blob: f730e2eeda96a0a7a9eb0ffbb33f1a026150abc7 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/random.h>
33#include <linux/sched/signal.h>
34#include <linux/export.h>
35#include <linux/swap.h>
36#include <linux/uio.h>
37#include <linux/khugepaged.h>
38#include <linux/hugetlb.h>
39
40#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42static struct vfsmount *shm_mnt;
43
44#ifdef CONFIG_SHMEM
45/*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
51#include <linux/xattr.h>
52#include <linux/exportfs.h>
53#include <linux/posix_acl.h>
54#include <linux/posix_acl_xattr.h>
55#include <linux/mman.h>
56#include <linux/string.h>
57#include <linux/slab.h>
58#include <linux/backing-dev.h>
59#include <linux/shmem_fs.h>
60#include <linux/writeback.h>
61#include <linux/blkdev.h>
62#include <linux/pagevec.h>
63#include <linux/percpu_counter.h>
64#include <linux/falloc.h>
65#include <linux/splice.h>
66#include <linux/security.h>
67#include <linux/swapops.h>
68#include <linux/mempolicy.h>
69#include <linux/namei.h>
70#include <linux/ctype.h>
71#include <linux/migrate.h>
72#include <linux/highmem.h>
73#include <linux/seq_file.h>
74#include <linux/magic.h>
75#include <linux/syscalls.h>
76#include <linux/fcntl.h>
77#include <uapi/linux/memfd.h>
78#include <linux/userfaultfd_k.h>
79#include <linux/rmap.h>
80#include <linux/uuid.h>
81
82#include <linux/uaccess.h>
83#include <asm/pgtable.h>
84
85#include "internal.h"
86
87#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90/* Pretend that each entry is of this size in directory's i_size */
91#define BOGO_DIRENT_SIZE 20
92
93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94#define SHORT_SYMLINK_LEN 128
95
96/*
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
100 */
101struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107};
108
109#ifdef CONFIG_TMPFS
110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
119#endif
120
121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp,
126 gfp_t gfp, struct vm_area_struct *vma,
127 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129int shmem_getpage(struct inode *inode, pgoff_t index,
130 struct page **pagep, enum sgp_type sgp)
131{
132 return shmem_getpage_gfp(inode, index, pagep, sgp,
133 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134}
135
136static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137{
138 return sb->s_fs_info;
139}
140
141/*
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
146 */
147static inline int shmem_acct_size(unsigned long flags, loff_t size)
148{
149 return (flags & VM_NORESERVE) ?
150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151}
152
153static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154{
155 if (!(flags & VM_NORESERVE))
156 vm_unacct_memory(VM_ACCT(size));
157}
158
159static inline int shmem_reacct_size(unsigned long flags,
160 loff_t oldsize, loff_t newsize)
161{
162 if (!(flags & VM_NORESERVE)) {
163 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 return security_vm_enough_memory_mm(current->mm,
165 VM_ACCT(newsize) - VM_ACCT(oldsize));
166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 }
169 return 0;
170}
171
172/*
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 */
178static inline int shmem_acct_block(unsigned long flags, long pages)
179{
180 if (!(flags & VM_NORESERVE))
181 return 0;
182
183 return security_vm_enough_memory_mm(current->mm,
184 pages * VM_ACCT(PAGE_SIZE));
185}
186
187static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188{
189 if (flags & VM_NORESERVE)
190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191}
192
193static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194{
195 struct shmem_inode_info *info = SHMEM_I(inode);
196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198 if (shmem_acct_block(info->flags, pages))
199 return false;
200
201 if (sbinfo->max_blocks) {
202 if (percpu_counter_compare(&sbinfo->used_blocks,
203 sbinfo->max_blocks - pages) > 0)
204 goto unacct;
205 percpu_counter_add(&sbinfo->used_blocks, pages);
206 }
207
208 return true;
209
210unacct:
211 shmem_unacct_blocks(info->flags, pages);
212 return false;
213}
214
215static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (sbinfo->max_blocks)
221 percpu_counter_sub(&sbinfo->used_blocks, pages);
222 shmem_unacct_blocks(info->flags, pages);
223}
224
225static const struct super_operations shmem_ops;
226static const struct address_space_operations shmem_aops;
227static const struct file_operations shmem_file_operations;
228static const struct inode_operations shmem_inode_operations;
229static const struct inode_operations shmem_dir_inode_operations;
230static const struct inode_operations shmem_special_inode_operations;
231static const struct vm_operations_struct shmem_vm_ops;
232static struct file_system_type shmem_fs_type;
233
234bool vma_is_shmem(struct vm_area_struct *vma)
235{
236 return vma->vm_ops == &shmem_vm_ops;
237}
238
239static LIST_HEAD(shmem_swaplist);
240static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242static int shmem_reserve_inode(struct super_block *sb)
243{
244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 if (sbinfo->max_inodes) {
246 spin_lock(&sbinfo->stat_lock);
247 if (!sbinfo->free_inodes) {
248 spin_unlock(&sbinfo->stat_lock);
249 return -ENOSPC;
250 }
251 sbinfo->free_inodes--;
252 spin_unlock(&sbinfo->stat_lock);
253 }
254 return 0;
255}
256
257static void shmem_free_inode(struct super_block *sb)
258{
259 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 if (sbinfo->max_inodes) {
261 spin_lock(&sbinfo->stat_lock);
262 sbinfo->free_inodes++;
263 spin_unlock(&sbinfo->stat_lock);
264 }
265}
266
267/**
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
270 *
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
273 *
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 *
277 * It has to be called with the spinlock held.
278 */
279static void shmem_recalc_inode(struct inode *inode)
280{
281 struct shmem_inode_info *info = SHMEM_I(inode);
282 long freed;
283
284 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 if (freed > 0) {
286 info->alloced -= freed;
287 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 shmem_inode_unacct_blocks(inode, freed);
289 }
290}
291
292bool shmem_charge(struct inode *inode, long pages)
293{
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 unsigned long flags;
296
297 if (!shmem_inode_acct_block(inode, pages))
298 return false;
299
300 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301 inode->i_mapping->nrpages += pages;
302
303 spin_lock_irqsave(&info->lock, flags);
304 info->alloced += pages;
305 inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 shmem_recalc_inode(inode);
307 spin_unlock_irqrestore(&info->lock, flags);
308
309 return true;
310}
311
312void shmem_uncharge(struct inode *inode, long pages)
313{
314 struct shmem_inode_info *info = SHMEM_I(inode);
315 unsigned long flags;
316
317 /* nrpages adjustment done by __delete_from_page_cache() or caller */
318
319 spin_lock_irqsave(&info->lock, flags);
320 info->alloced -= pages;
321 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
322 shmem_recalc_inode(inode);
323 spin_unlock_irqrestore(&info->lock, flags);
324
325 shmem_inode_unacct_blocks(inode, pages);
326}
327
328/*
329 * Replace item expected in radix tree by a new item, while holding tree lock.
330 */
331static int shmem_radix_tree_replace(struct address_space *mapping,
332 pgoff_t index, void *expected, void *replacement)
333{
334 struct radix_tree_node *node;
335 void __rcu **pslot;
336 void *item;
337
338 VM_BUG_ON(!expected);
339 VM_BUG_ON(!replacement);
340 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
341 if (!item)
342 return -ENOENT;
343 if (item != expected)
344 return -ENOENT;
345 __radix_tree_replace(&mapping->i_pages, node, pslot,
346 replacement, NULL);
347 return 0;
348}
349
350/*
351 * Sometimes, before we decide whether to proceed or to fail, we must check
352 * that an entry was not already brought back from swap by a racing thread.
353 *
354 * Checking page is not enough: by the time a SwapCache page is locked, it
355 * might be reused, and again be SwapCache, using the same swap as before.
356 */
357static bool shmem_confirm_swap(struct address_space *mapping,
358 pgoff_t index, swp_entry_t swap)
359{
360 void *item;
361
362 rcu_read_lock();
363 item = radix_tree_lookup(&mapping->i_pages, index);
364 rcu_read_unlock();
365 return item == swp_to_radix_entry(swap);
366}
367
368/*
369 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
370 *
371 * SHMEM_HUGE_NEVER:
372 * disables huge pages for the mount;
373 * SHMEM_HUGE_ALWAYS:
374 * enables huge pages for the mount;
375 * SHMEM_HUGE_WITHIN_SIZE:
376 * only allocate huge pages if the page will be fully within i_size,
377 * also respect fadvise()/madvise() hints;
378 * SHMEM_HUGE_ADVISE:
379 * only allocate huge pages if requested with fadvise()/madvise();
380 */
381
382#define SHMEM_HUGE_NEVER 0
383#define SHMEM_HUGE_ALWAYS 1
384#define SHMEM_HUGE_WITHIN_SIZE 2
385#define SHMEM_HUGE_ADVISE 3
386
387/*
388 * Special values.
389 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
390 *
391 * SHMEM_HUGE_DENY:
392 * disables huge on shm_mnt and all mounts, for emergency use;
393 * SHMEM_HUGE_FORCE:
394 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
395 *
396 */
397#define SHMEM_HUGE_DENY (-1)
398#define SHMEM_HUGE_FORCE (-2)
399
400#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
401/* ifdef here to avoid bloating shmem.o when not necessary */
402
403static int shmem_huge __read_mostly;
404
405#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
406static int shmem_parse_huge(const char *str)
407{
408 if (!strcmp(str, "never"))
409 return SHMEM_HUGE_NEVER;
410 if (!strcmp(str, "always"))
411 return SHMEM_HUGE_ALWAYS;
412 if (!strcmp(str, "within_size"))
413 return SHMEM_HUGE_WITHIN_SIZE;
414 if (!strcmp(str, "advise"))
415 return SHMEM_HUGE_ADVISE;
416 if (!strcmp(str, "deny"))
417 return SHMEM_HUGE_DENY;
418 if (!strcmp(str, "force"))
419 return SHMEM_HUGE_FORCE;
420 return -EINVAL;
421}
422
423static const char *shmem_format_huge(int huge)
424{
425 switch (huge) {
426 case SHMEM_HUGE_NEVER:
427 return "never";
428 case SHMEM_HUGE_ALWAYS:
429 return "always";
430 case SHMEM_HUGE_WITHIN_SIZE:
431 return "within_size";
432 case SHMEM_HUGE_ADVISE:
433 return "advise";
434 case SHMEM_HUGE_DENY:
435 return "deny";
436 case SHMEM_HUGE_FORCE:
437 return "force";
438 default:
439 VM_BUG_ON(1);
440 return "bad_val";
441 }
442}
443#endif
444
445static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
446 struct shrink_control *sc, unsigned long nr_to_split)
447{
448 LIST_HEAD(list), *pos, *next;
449 LIST_HEAD(to_remove);
450 struct inode *inode;
451 struct shmem_inode_info *info;
452 struct page *page;
453 unsigned long batch = sc ? sc->nr_to_scan : 128;
454 int removed = 0, split = 0;
455
456 if (list_empty(&sbinfo->shrinklist))
457 return SHRINK_STOP;
458
459 spin_lock(&sbinfo->shrinklist_lock);
460 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
461 info = list_entry(pos, struct shmem_inode_info, shrinklist);
462
463 /* pin the inode */
464 inode = igrab(&info->vfs_inode);
465
466 /* inode is about to be evicted */
467 if (!inode) {
468 list_del_init(&info->shrinklist);
469 removed++;
470 goto next;
471 }
472
473 /* Check if there's anything to gain */
474 if (round_up(inode->i_size, PAGE_SIZE) ==
475 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
476 list_move(&info->shrinklist, &to_remove);
477 removed++;
478 goto next;
479 }
480
481 list_move(&info->shrinklist, &list);
482next:
483 if (!--batch)
484 break;
485 }
486 spin_unlock(&sbinfo->shrinklist_lock);
487
488 list_for_each_safe(pos, next, &to_remove) {
489 info = list_entry(pos, struct shmem_inode_info, shrinklist);
490 inode = &info->vfs_inode;
491 list_del_init(&info->shrinklist);
492 iput(inode);
493 }
494
495 list_for_each_safe(pos, next, &list) {
496 int ret;
497
498 info = list_entry(pos, struct shmem_inode_info, shrinklist);
499 inode = &info->vfs_inode;
500
501 if (nr_to_split && split >= nr_to_split)
502 goto leave;
503
504 page = find_get_page(inode->i_mapping,
505 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
506 if (!page)
507 goto drop;
508
509 /* No huge page at the end of the file: nothing to split */
510 if (!PageTransHuge(page)) {
511 put_page(page);
512 goto drop;
513 }
514
515 /*
516 * Leave the inode on the list if we failed to lock
517 * the page at this time.
518 *
519 * Waiting for the lock may lead to deadlock in the
520 * reclaim path.
521 */
522 if (!trylock_page(page)) {
523 put_page(page);
524 goto leave;
525 }
526
527 ret = split_huge_page(page);
528 unlock_page(page);
529 put_page(page);
530
531 /* If split failed leave the inode on the list */
532 if (ret)
533 goto leave;
534
535 split++;
536drop:
537 list_del_init(&info->shrinklist);
538 removed++;
539leave:
540 iput(inode);
541 }
542
543 spin_lock(&sbinfo->shrinklist_lock);
544 list_splice_tail(&list, &sbinfo->shrinklist);
545 sbinfo->shrinklist_len -= removed;
546 spin_unlock(&sbinfo->shrinklist_lock);
547
548 return split;
549}
550
551static long shmem_unused_huge_scan(struct super_block *sb,
552 struct shrink_control *sc)
553{
554 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
555
556 if (!READ_ONCE(sbinfo->shrinklist_len))
557 return SHRINK_STOP;
558
559 return shmem_unused_huge_shrink(sbinfo, sc, 0);
560}
561
562static long shmem_unused_huge_count(struct super_block *sb,
563 struct shrink_control *sc)
564{
565 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
566 return READ_ONCE(sbinfo->shrinklist_len);
567}
568#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569
570#define shmem_huge SHMEM_HUGE_DENY
571
572static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
573 struct shrink_control *sc, unsigned long nr_to_split)
574{
575 return 0;
576}
577#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
578
579static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
580{
581 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
582 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
583 shmem_huge != SHMEM_HUGE_DENY)
584 return true;
585 return false;
586}
587
588/*
589 * Like add_to_page_cache_locked, but error if expected item has gone.
590 */
591static int shmem_add_to_page_cache(struct page *page,
592 struct address_space *mapping,
593 pgoff_t index, void *expected)
594{
595 int error, nr = hpage_nr_pages(page);
596
597 VM_BUG_ON_PAGE(PageTail(page), page);
598 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
599 VM_BUG_ON_PAGE(!PageLocked(page), page);
600 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
601 VM_BUG_ON(expected && PageTransHuge(page));
602
603 page_ref_add(page, nr);
604 page->mapping = mapping;
605 page->index = index;
606
607 xa_lock_irq(&mapping->i_pages);
608 if (PageTransHuge(page)) {
609 void __rcu **results;
610 pgoff_t idx;
611 int i;
612
613 error = 0;
614 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
615 &results, &idx, index, 1) &&
616 idx < index + HPAGE_PMD_NR) {
617 error = -EEXIST;
618 }
619
620 if (!error) {
621 for (i = 0; i < HPAGE_PMD_NR; i++) {
622 error = radix_tree_insert(&mapping->i_pages,
623 index + i, page + i);
624 VM_BUG_ON(error);
625 }
626 count_vm_event(THP_FILE_ALLOC);
627 }
628 } else if (!expected) {
629 error = radix_tree_insert(&mapping->i_pages, index, page);
630 } else {
631 error = shmem_radix_tree_replace(mapping, index, expected,
632 page);
633 }
634
635 if (!error) {
636 mapping->nrpages += nr;
637 if (PageTransHuge(page))
638 __inc_node_page_state(page, NR_SHMEM_THPS);
639 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
640 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
641 xa_unlock_irq(&mapping->i_pages);
642 } else {
643 page->mapping = NULL;
644 xa_unlock_irq(&mapping->i_pages);
645 page_ref_sub(page, nr);
646 }
647 return error;
648}
649
650/*
651 * Like delete_from_page_cache, but substitutes swap for page.
652 */
653static void shmem_delete_from_page_cache(struct page *page, void *radswap)
654{
655 struct address_space *mapping = page->mapping;
656 int error;
657
658 VM_BUG_ON_PAGE(PageCompound(page), page);
659
660 xa_lock_irq(&mapping->i_pages);
661 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
662 page->mapping = NULL;
663 mapping->nrpages--;
664 __dec_node_page_state(page, NR_FILE_PAGES);
665 __dec_node_page_state(page, NR_SHMEM);
666 xa_unlock_irq(&mapping->i_pages);
667 put_page(page);
668 BUG_ON(error);
669}
670
671/*
672 * Remove swap entry from radix tree, free the swap and its page cache.
673 */
674static int shmem_free_swap(struct address_space *mapping,
675 pgoff_t index, void *radswap)
676{
677 void *old;
678
679 xa_lock_irq(&mapping->i_pages);
680 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
681 xa_unlock_irq(&mapping->i_pages);
682 if (old != radswap)
683 return -ENOENT;
684 free_swap_and_cache(radix_to_swp_entry(radswap));
685 return 0;
686}
687
688/*
689 * Determine (in bytes) how many of the shmem object's pages mapped by the
690 * given offsets are swapped out.
691 *
692 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
693 * as long as the inode doesn't go away and racy results are not a problem.
694 */
695unsigned long shmem_partial_swap_usage(struct address_space *mapping,
696 pgoff_t start, pgoff_t end)
697{
698 struct radix_tree_iter iter;
699 void __rcu **slot;
700 struct page *page;
701 unsigned long swapped = 0;
702
703 rcu_read_lock();
704
705 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
706 if (iter.index >= end)
707 break;
708
709 page = radix_tree_deref_slot(slot);
710
711 if (radix_tree_deref_retry(page)) {
712 slot = radix_tree_iter_retry(&iter);
713 continue;
714 }
715
716 if (radix_tree_exceptional_entry(page))
717 swapped++;
718
719 if (need_resched()) {
720 slot = radix_tree_iter_resume(slot, &iter);
721 cond_resched_rcu();
722 }
723 }
724
725 rcu_read_unlock();
726
727 return swapped << PAGE_SHIFT;
728}
729
730/*
731 * Determine (in bytes) how many of the shmem object's pages mapped by the
732 * given vma is swapped out.
733 *
734 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
735 * as long as the inode doesn't go away and racy results are not a problem.
736 */
737unsigned long shmem_swap_usage(struct vm_area_struct *vma)
738{
739 struct inode *inode = file_inode(vma->vm_file);
740 struct shmem_inode_info *info = SHMEM_I(inode);
741 struct address_space *mapping = inode->i_mapping;
742 unsigned long swapped;
743
744 /* Be careful as we don't hold info->lock */
745 swapped = READ_ONCE(info->swapped);
746
747 /*
748 * The easier cases are when the shmem object has nothing in swap, or
749 * the vma maps it whole. Then we can simply use the stats that we
750 * already track.
751 */
752 if (!swapped)
753 return 0;
754
755 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
756 return swapped << PAGE_SHIFT;
757
758 /* Here comes the more involved part */
759 return shmem_partial_swap_usage(mapping,
760 linear_page_index(vma, vma->vm_start),
761 linear_page_index(vma, vma->vm_end));
762}
763
764/*
765 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
766 */
767void shmem_unlock_mapping(struct address_space *mapping)
768{
769 struct pagevec pvec;
770 pgoff_t indices[PAGEVEC_SIZE];
771 pgoff_t index = 0;
772
773 pagevec_init(&pvec);
774 /*
775 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
776 */
777 while (!mapping_unevictable(mapping)) {
778 /*
779 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
780 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
781 */
782 pvec.nr = find_get_entries(mapping, index,
783 PAGEVEC_SIZE, pvec.pages, indices);
784 if (!pvec.nr)
785 break;
786 index = indices[pvec.nr - 1] + 1;
787 pagevec_remove_exceptionals(&pvec);
788 check_move_unevictable_pages(pvec.pages, pvec.nr);
789 pagevec_release(&pvec);
790 cond_resched();
791 }
792}
793
794/*
795 * Remove range of pages and swap entries from radix tree, and free them.
796 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
797 */
798static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
799 bool unfalloc)
800{
801 struct address_space *mapping = inode->i_mapping;
802 struct shmem_inode_info *info = SHMEM_I(inode);
803 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
804 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
805 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
806 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
807 struct pagevec pvec;
808 pgoff_t indices[PAGEVEC_SIZE];
809 long nr_swaps_freed = 0;
810 pgoff_t index;
811 int i;
812
813 if (lend == -1)
814 end = -1; /* unsigned, so actually very big */
815
816 pagevec_init(&pvec);
817 index = start;
818 while (index < end) {
819 pvec.nr = find_get_entries(mapping, index,
820 min(end - index, (pgoff_t)PAGEVEC_SIZE),
821 pvec.pages, indices);
822 if (!pvec.nr)
823 break;
824 for (i = 0; i < pagevec_count(&pvec); i++) {
825 struct page *page = pvec.pages[i];
826
827 index = indices[i];
828 if (index >= end)
829 break;
830
831 if (radix_tree_exceptional_entry(page)) {
832 if (unfalloc)
833 continue;
834 nr_swaps_freed += !shmem_free_swap(mapping,
835 index, page);
836 continue;
837 }
838
839 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
840
841 if (!trylock_page(page))
842 continue;
843
844 if (PageTransTail(page)) {
845 /* Middle of THP: zero out the page */
846 clear_highpage(page);
847 unlock_page(page);
848 continue;
849 } else if (PageTransHuge(page)) {
850 if (index == round_down(end, HPAGE_PMD_NR)) {
851 /*
852 * Range ends in the middle of THP:
853 * zero out the page
854 */
855 clear_highpage(page);
856 unlock_page(page);
857 continue;
858 }
859 index += HPAGE_PMD_NR - 1;
860 i += HPAGE_PMD_NR - 1;
861 }
862
863 if (!unfalloc || !PageUptodate(page)) {
864 VM_BUG_ON_PAGE(PageTail(page), page);
865 if (page_mapping(page) == mapping) {
866 VM_BUG_ON_PAGE(PageWriteback(page), page);
867 truncate_inode_page(mapping, page);
868 }
869 }
870 unlock_page(page);
871 }
872 pagevec_remove_exceptionals(&pvec);
873 pagevec_release(&pvec);
874 cond_resched();
875 index++;
876 }
877
878 if (partial_start) {
879 struct page *page = NULL;
880 shmem_getpage(inode, start - 1, &page, SGP_READ);
881 if (page) {
882 unsigned int top = PAGE_SIZE;
883 if (start > end) {
884 top = partial_end;
885 partial_end = 0;
886 }
887 zero_user_segment(page, partial_start, top);
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
891 }
892 }
893 if (partial_end) {
894 struct page *page = NULL;
895 shmem_getpage(inode, end, &page, SGP_READ);
896 if (page) {
897 zero_user_segment(page, 0, partial_end);
898 set_page_dirty(page);
899 unlock_page(page);
900 put_page(page);
901 }
902 }
903 if (start >= end)
904 return;
905
906 index = start;
907 while (index < end) {
908 cond_resched();
909
910 pvec.nr = find_get_entries(mapping, index,
911 min(end - index, (pgoff_t)PAGEVEC_SIZE),
912 pvec.pages, indices);
913 if (!pvec.nr) {
914 /* If all gone or hole-punch or unfalloc, we're done */
915 if (index == start || end != -1)
916 break;
917 /* But if truncating, restart to make sure all gone */
918 index = start;
919 continue;
920 }
921 for (i = 0; i < pagevec_count(&pvec); i++) {
922 struct page *page = pvec.pages[i];
923
924 index = indices[i];
925 if (index >= end)
926 break;
927
928 if (radix_tree_exceptional_entry(page)) {
929 if (unfalloc)
930 continue;
931 if (shmem_free_swap(mapping, index, page)) {
932 /* Swap was replaced by page: retry */
933 index--;
934 break;
935 }
936 nr_swaps_freed++;
937 continue;
938 }
939
940 lock_page(page);
941
942 if (PageTransTail(page)) {
943 /* Middle of THP: zero out the page */
944 clear_highpage(page);
945 unlock_page(page);
946 /*
947 * Partial thp truncate due 'start' in middle
948 * of THP: don't need to look on these pages
949 * again on !pvec.nr restart.
950 */
951 if (index != round_down(end, HPAGE_PMD_NR))
952 start++;
953 continue;
954 } else if (PageTransHuge(page)) {
955 if (index == round_down(end, HPAGE_PMD_NR)) {
956 /*
957 * Range ends in the middle of THP:
958 * zero out the page
959 */
960 clear_highpage(page);
961 unlock_page(page);
962 continue;
963 }
964 index += HPAGE_PMD_NR - 1;
965 i += HPAGE_PMD_NR - 1;
966 }
967
968 if (!unfalloc || !PageUptodate(page)) {
969 VM_BUG_ON_PAGE(PageTail(page), page);
970 if (page_mapping(page) == mapping) {
971 VM_BUG_ON_PAGE(PageWriteback(page), page);
972 truncate_inode_page(mapping, page);
973 } else {
974 /* Page was replaced by swap: retry */
975 unlock_page(page);
976 index--;
977 break;
978 }
979 }
980 unlock_page(page);
981 }
982 pagevec_remove_exceptionals(&pvec);
983 pagevec_release(&pvec);
984 index++;
985 }
986
987 spin_lock_irq(&info->lock);
988 info->swapped -= nr_swaps_freed;
989 shmem_recalc_inode(inode);
990 spin_unlock_irq(&info->lock);
991}
992
993void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
994{
995 shmem_undo_range(inode, lstart, lend, false);
996 inode->i_ctime = inode->i_mtime = current_time(inode);
997}
998EXPORT_SYMBOL_GPL(shmem_truncate_range);
999
1000static int shmem_getattr(const struct path *path, struct kstat *stat,
1001 u32 request_mask, unsigned int query_flags)
1002{
1003 struct inode *inode = path->dentry->d_inode;
1004 struct shmem_inode_info *info = SHMEM_I(inode);
1005 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1006
1007 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1008 spin_lock_irq(&info->lock);
1009 shmem_recalc_inode(inode);
1010 spin_unlock_irq(&info->lock);
1011 }
1012 generic_fillattr(inode, stat);
1013
1014 if (is_huge_enabled(sb_info))
1015 stat->blksize = HPAGE_PMD_SIZE;
1016
1017 return 0;
1018}
1019
1020static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1021{
1022 struct inode *inode = d_inode(dentry);
1023 struct shmem_inode_info *info = SHMEM_I(inode);
1024 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1025 int error;
1026
1027 error = setattr_prepare(dentry, attr);
1028 if (error)
1029 return error;
1030
1031 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1032 loff_t oldsize = inode->i_size;
1033 loff_t newsize = attr->ia_size;
1034
1035 /* protected by i_mutex */
1036 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1037 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1038 return -EPERM;
1039
1040 if (newsize != oldsize) {
1041 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1042 oldsize, newsize);
1043 if (error)
1044 return error;
1045 i_size_write(inode, newsize);
1046 inode->i_ctime = inode->i_mtime = current_time(inode);
1047 }
1048 if (newsize <= oldsize) {
1049 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1050 if (oldsize > holebegin)
1051 unmap_mapping_range(inode->i_mapping,
1052 holebegin, 0, 1);
1053 if (info->alloced)
1054 shmem_truncate_range(inode,
1055 newsize, (loff_t)-1);
1056 /* unmap again to remove racily COWed private pages */
1057 if (oldsize > holebegin)
1058 unmap_mapping_range(inode->i_mapping,
1059 holebegin, 0, 1);
1060
1061 /*
1062 * Part of the huge page can be beyond i_size: subject
1063 * to shrink under memory pressure.
1064 */
1065 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1066 spin_lock(&sbinfo->shrinklist_lock);
1067 /*
1068 * _careful to defend against unlocked access to
1069 * ->shrink_list in shmem_unused_huge_shrink()
1070 */
1071 if (list_empty_careful(&info->shrinklist)) {
1072 list_add_tail(&info->shrinklist,
1073 &sbinfo->shrinklist);
1074 sbinfo->shrinklist_len++;
1075 }
1076 spin_unlock(&sbinfo->shrinklist_lock);
1077 }
1078 }
1079 }
1080
1081 setattr_copy(inode, attr);
1082 if (attr->ia_valid & ATTR_MODE)
1083 error = posix_acl_chmod(inode, inode->i_mode);
1084 return error;
1085}
1086
1087static void shmem_evict_inode(struct inode *inode)
1088{
1089 struct shmem_inode_info *info = SHMEM_I(inode);
1090 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1091
1092 if (inode->i_mapping->a_ops == &shmem_aops) {
1093 shmem_unacct_size(info->flags, inode->i_size);
1094 inode->i_size = 0;
1095 shmem_truncate_range(inode, 0, (loff_t)-1);
1096 if (!list_empty(&info->shrinklist)) {
1097 spin_lock(&sbinfo->shrinklist_lock);
1098 if (!list_empty(&info->shrinklist)) {
1099 list_del_init(&info->shrinklist);
1100 sbinfo->shrinklist_len--;
1101 }
1102 spin_unlock(&sbinfo->shrinklist_lock);
1103 }
1104 if (!list_empty(&info->swaplist)) {
1105 mutex_lock(&shmem_swaplist_mutex);
1106 list_del_init(&info->swaplist);
1107 mutex_unlock(&shmem_swaplist_mutex);
1108 }
1109 }
1110
1111 simple_xattrs_free(&info->xattrs);
1112 WARN_ON(inode->i_blocks);
1113 shmem_free_inode(inode->i_sb);
1114 clear_inode(inode);
1115}
1116
1117static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1118{
1119 struct radix_tree_iter iter;
1120 void __rcu **slot;
1121 unsigned long found = -1;
1122 unsigned int checked = 0;
1123
1124 rcu_read_lock();
1125 radix_tree_for_each_slot(slot, root, &iter, 0) {
1126 void *entry = radix_tree_deref_slot(slot);
1127
1128 if (radix_tree_deref_retry(entry)) {
1129 slot = radix_tree_iter_retry(&iter);
1130 continue;
1131 }
1132 if (entry == item) {
1133 found = iter.index;
1134 break;
1135 }
1136 checked++;
1137 if ((checked % 4096) != 0)
1138 continue;
1139 slot = radix_tree_iter_resume(slot, &iter);
1140 cond_resched_rcu();
1141 }
1142
1143 rcu_read_unlock();
1144 return found;
1145}
1146
1147/*
1148 * If swap found in inode, free it and move page from swapcache to filecache.
1149 */
1150static int shmem_unuse_inode(struct shmem_inode_info *info,
1151 swp_entry_t swap, struct page **pagep)
1152{
1153 struct address_space *mapping = info->vfs_inode.i_mapping;
1154 void *radswap;
1155 pgoff_t index;
1156 gfp_t gfp;
1157 int error = 0;
1158
1159 radswap = swp_to_radix_entry(swap);
1160 index = find_swap_entry(&mapping->i_pages, radswap);
1161 if (index == -1)
1162 return -EAGAIN; /* tell shmem_unuse we found nothing */
1163
1164 /*
1165 * Move _head_ to start search for next from here.
1166 * But be careful: shmem_evict_inode checks list_empty without taking
1167 * mutex, and there's an instant in list_move_tail when info->swaplist
1168 * would appear empty, if it were the only one on shmem_swaplist.
1169 */
1170 if (shmem_swaplist.next != &info->swaplist)
1171 list_move_tail(&shmem_swaplist, &info->swaplist);
1172
1173 gfp = mapping_gfp_mask(mapping);
1174 if (shmem_should_replace_page(*pagep, gfp)) {
1175 mutex_unlock(&shmem_swaplist_mutex);
1176 error = shmem_replace_page(pagep, gfp, info, index);
1177 mutex_lock(&shmem_swaplist_mutex);
1178 /*
1179 * We needed to drop mutex to make that restrictive page
1180 * allocation, but the inode might have been freed while we
1181 * dropped it: although a racing shmem_evict_inode() cannot
1182 * complete without emptying the radix_tree, our page lock
1183 * on this swapcache page is not enough to prevent that -
1184 * free_swap_and_cache() of our swap entry will only
1185 * trylock_page(), removing swap from radix_tree whatever.
1186 *
1187 * We must not proceed to shmem_add_to_page_cache() if the
1188 * inode has been freed, but of course we cannot rely on
1189 * inode or mapping or info to check that. However, we can
1190 * safely check if our swap entry is still in use (and here
1191 * it can't have got reused for another page): if it's still
1192 * in use, then the inode cannot have been freed yet, and we
1193 * can safely proceed (if it's no longer in use, that tells
1194 * nothing about the inode, but we don't need to unuse swap).
1195 */
1196 if (!page_swapcount(*pagep))
1197 error = -ENOENT;
1198 }
1199
1200 /*
1201 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1202 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1203 * beneath us (pagelock doesn't help until the page is in pagecache).
1204 */
1205 if (!error)
1206 error = shmem_add_to_page_cache(*pagep, mapping, index,
1207 radswap);
1208 if (error != -ENOMEM) {
1209 /*
1210 * Truncation and eviction use free_swap_and_cache(), which
1211 * only does trylock page: if we raced, best clean up here.
1212 */
1213 delete_from_swap_cache(*pagep);
1214 set_page_dirty(*pagep);
1215 if (!error) {
1216 spin_lock_irq(&info->lock);
1217 info->swapped--;
1218 spin_unlock_irq(&info->lock);
1219 swap_free(swap);
1220 }
1221 }
1222 return error;
1223}
1224
1225/*
1226 * Search through swapped inodes to find and replace swap by page.
1227 */
1228int shmem_unuse(swp_entry_t swap, struct page *page)
1229{
1230 struct list_head *this, *next;
1231 struct shmem_inode_info *info;
1232 struct mem_cgroup *memcg;
1233 int error = 0;
1234
1235 /*
1236 * There's a faint possibility that swap page was replaced before
1237 * caller locked it: caller will come back later with the right page.
1238 */
1239 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1240 goto out;
1241
1242 /*
1243 * Charge page using GFP_KERNEL while we can wait, before taking
1244 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1245 * Charged back to the user (not to caller) when swap account is used.
1246 */
1247 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1248 &memcg, false);
1249 if (error)
1250 goto out;
1251 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1252 error = -EAGAIN;
1253
1254 mutex_lock(&shmem_swaplist_mutex);
1255 list_for_each_safe(this, next, &shmem_swaplist) {
1256 info = list_entry(this, struct shmem_inode_info, swaplist);
1257 if (info->swapped)
1258 error = shmem_unuse_inode(info, swap, &page);
1259 else
1260 list_del_init(&info->swaplist);
1261 cond_resched();
1262 if (error != -EAGAIN)
1263 break;
1264 /* found nothing in this: move on to search the next */
1265 }
1266 mutex_unlock(&shmem_swaplist_mutex);
1267
1268 if (error) {
1269 if (error != -ENOMEM)
1270 error = 0;
1271 mem_cgroup_cancel_charge(page, memcg, false);
1272 } else
1273 mem_cgroup_commit_charge(page, memcg, true, false);
1274out:
1275 unlock_page(page);
1276 put_page(page);
1277 return error;
1278}
1279
1280/*
1281 * Move the page from the page cache to the swap cache.
1282 */
1283static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1284{
1285 struct shmem_inode_info *info;
1286 struct address_space *mapping;
1287 struct inode *inode;
1288 swp_entry_t swap;
1289 pgoff_t index;
1290
1291 VM_BUG_ON_PAGE(PageCompound(page), page);
1292 BUG_ON(!PageLocked(page));
1293 mapping = page->mapping;
1294 index = page->index;
1295 inode = mapping->host;
1296 info = SHMEM_I(inode);
1297 if (info->flags & VM_LOCKED)
1298 goto redirty;
1299 if (!total_swap_pages)
1300 goto redirty;
1301
1302 /*
1303 * Our capabilities prevent regular writeback or sync from ever calling
1304 * shmem_writepage; but a stacking filesystem might use ->writepage of
1305 * its underlying filesystem, in which case tmpfs should write out to
1306 * swap only in response to memory pressure, and not for the writeback
1307 * threads or sync.
1308 */
1309 if (!wbc->for_reclaim) {
1310 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1311 goto redirty;
1312 }
1313
1314 /*
1315 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1316 * value into swapfile.c, the only way we can correctly account for a
1317 * fallocated page arriving here is now to initialize it and write it.
1318 *
1319 * That's okay for a page already fallocated earlier, but if we have
1320 * not yet completed the fallocation, then (a) we want to keep track
1321 * of this page in case we have to undo it, and (b) it may not be a
1322 * good idea to continue anyway, once we're pushing into swap. So
1323 * reactivate the page, and let shmem_fallocate() quit when too many.
1324 */
1325 if (!PageUptodate(page)) {
1326 if (inode->i_private) {
1327 struct shmem_falloc *shmem_falloc;
1328 spin_lock(&inode->i_lock);
1329 shmem_falloc = inode->i_private;
1330 if (shmem_falloc &&
1331 !shmem_falloc->waitq &&
1332 index >= shmem_falloc->start &&
1333 index < shmem_falloc->next)
1334 shmem_falloc->nr_unswapped++;
1335 else
1336 shmem_falloc = NULL;
1337 spin_unlock(&inode->i_lock);
1338 if (shmem_falloc)
1339 goto redirty;
1340 }
1341 clear_highpage(page);
1342 flush_dcache_page(page);
1343 SetPageUptodate(page);
1344 }
1345
1346 swap = get_swap_page(page);
1347 if (!swap.val)
1348 goto redirty;
1349
1350 /*
1351 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1352 * if it's not already there. Do it now before the page is
1353 * moved to swap cache, when its pagelock no longer protects
1354 * the inode from eviction. But don't unlock the mutex until
1355 * we've incremented swapped, because shmem_unuse_inode() will
1356 * prune a !swapped inode from the swaplist under this mutex.
1357 */
1358 mutex_lock(&shmem_swaplist_mutex);
1359 if (list_empty(&info->swaplist))
1360 list_add_tail(&info->swaplist, &shmem_swaplist);
1361
1362 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1363 spin_lock_irq(&info->lock);
1364 shmem_recalc_inode(inode);
1365 info->swapped++;
1366 spin_unlock_irq(&info->lock);
1367
1368 swap_shmem_alloc(swap);
1369 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1370
1371 mutex_unlock(&shmem_swaplist_mutex);
1372 BUG_ON(page_mapped(page));
1373 swap_writepage(page, wbc);
1374 return 0;
1375 }
1376
1377 mutex_unlock(&shmem_swaplist_mutex);
1378 put_swap_page(page, swap);
1379redirty:
1380 set_page_dirty(page);
1381 if (wbc->for_reclaim)
1382 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1383 unlock_page(page);
1384 return 0;
1385}
1386
1387#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1388static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1389{
1390 char buffer[64];
1391
1392 if (!mpol || mpol->mode == MPOL_DEFAULT)
1393 return; /* show nothing */
1394
1395 mpol_to_str(buffer, sizeof(buffer), mpol);
1396
1397 seq_printf(seq, ",mpol=%s", buffer);
1398}
1399
1400static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1401{
1402 struct mempolicy *mpol = NULL;
1403 if (sbinfo->mpol) {
1404 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1405 mpol = sbinfo->mpol;
1406 mpol_get(mpol);
1407 spin_unlock(&sbinfo->stat_lock);
1408 }
1409 return mpol;
1410}
1411#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1412static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1413{
1414}
1415static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416{
1417 return NULL;
1418}
1419#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1420#ifndef CONFIG_NUMA
1421#define vm_policy vm_private_data
1422#endif
1423
1424static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1425 struct shmem_inode_info *info, pgoff_t index)
1426{
1427 /* Create a pseudo vma that just contains the policy */
1428 vma_init(vma, NULL);
1429 /* Bias interleave by inode number to distribute better across nodes */
1430 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1431 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1432}
1433
1434static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1435{
1436 /* Drop reference taken by mpol_shared_policy_lookup() */
1437 mpol_cond_put(vma->vm_policy);
1438}
1439
1440static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1441 struct shmem_inode_info *info, pgoff_t index)
1442{
1443 struct vm_area_struct pvma;
1444 struct page *page;
1445 struct vm_fault vmf;
1446
1447 shmem_pseudo_vma_init(&pvma, info, index);
1448 vmf.vma = &pvma;
1449 vmf.address = 0;
1450 page = swap_cluster_readahead(swap, gfp, &vmf);
1451 shmem_pseudo_vma_destroy(&pvma);
1452
1453 return page;
1454}
1455
1456static struct page *shmem_alloc_hugepage(gfp_t gfp,
1457 struct shmem_inode_info *info, pgoff_t index)
1458{
1459 struct vm_area_struct pvma;
1460 struct inode *inode = &info->vfs_inode;
1461 struct address_space *mapping = inode->i_mapping;
1462 pgoff_t idx, hindex;
1463 void __rcu **results;
1464 struct page *page;
1465
1466 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1467 return NULL;
1468
1469 hindex = round_down(index, HPAGE_PMD_NR);
1470 rcu_read_lock();
1471 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1472 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1473 rcu_read_unlock();
1474 return NULL;
1475 }
1476 rcu_read_unlock();
1477
1478 shmem_pseudo_vma_init(&pvma, info, hindex);
1479 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1480 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1481 shmem_pseudo_vma_destroy(&pvma);
1482 if (page)
1483 prep_transhuge_page(page);
1484 return page;
1485}
1486
1487static struct page *shmem_alloc_page(gfp_t gfp,
1488 struct shmem_inode_info *info, pgoff_t index)
1489{
1490 struct vm_area_struct pvma;
1491 struct page *page;
1492
1493 shmem_pseudo_vma_init(&pvma, info, index);
1494 page = alloc_page_vma(gfp, &pvma, 0);
1495 shmem_pseudo_vma_destroy(&pvma);
1496
1497 return page;
1498}
1499
1500static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1501 struct inode *inode,
1502 pgoff_t index, bool huge)
1503{
1504 struct shmem_inode_info *info = SHMEM_I(inode);
1505 struct page *page;
1506 int nr;
1507 int err = -ENOSPC;
1508
1509 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1510 huge = false;
1511 nr = huge ? HPAGE_PMD_NR : 1;
1512
1513 if (!shmem_inode_acct_block(inode, nr))
1514 goto failed;
1515
1516 if (huge)
1517 page = shmem_alloc_hugepage(gfp, info, index);
1518 else
1519 page = shmem_alloc_page(gfp, info, index);
1520 if (page) {
1521 __SetPageLocked(page);
1522 __SetPageSwapBacked(page);
1523 return page;
1524 }
1525
1526 err = -ENOMEM;
1527 shmem_inode_unacct_blocks(inode, nr);
1528failed:
1529 return ERR_PTR(err);
1530}
1531
1532/*
1533 * When a page is moved from swapcache to shmem filecache (either by the
1534 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1535 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1536 * ignorance of the mapping it belongs to. If that mapping has special
1537 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1538 * we may need to copy to a suitable page before moving to filecache.
1539 *
1540 * In a future release, this may well be extended to respect cpuset and
1541 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1542 * but for now it is a simple matter of zone.
1543 */
1544static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1545{
1546 return page_zonenum(page) > gfp_zone(gfp);
1547}
1548
1549static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1550 struct shmem_inode_info *info, pgoff_t index)
1551{
1552 struct page *oldpage, *newpage;
1553 struct address_space *swap_mapping;
1554 swp_entry_t entry;
1555 pgoff_t swap_index;
1556 int error;
1557
1558 oldpage = *pagep;
1559 entry.val = page_private(oldpage);
1560 swap_index = swp_offset(entry);
1561 swap_mapping = page_mapping(oldpage);
1562
1563 /*
1564 * We have arrived here because our zones are constrained, so don't
1565 * limit chance of success by further cpuset and node constraints.
1566 */
1567 gfp &= ~GFP_CONSTRAINT_MASK;
1568 newpage = shmem_alloc_page(gfp, info, index);
1569 if (!newpage)
1570 return -ENOMEM;
1571
1572 get_page(newpage);
1573 copy_highpage(newpage, oldpage);
1574 flush_dcache_page(newpage);
1575
1576 __SetPageLocked(newpage);
1577 __SetPageSwapBacked(newpage);
1578 SetPageUptodate(newpage);
1579 set_page_private(newpage, entry.val);
1580 SetPageSwapCache(newpage);
1581
1582 /*
1583 * Our caller will very soon move newpage out of swapcache, but it's
1584 * a nice clean interface for us to replace oldpage by newpage there.
1585 */
1586 xa_lock_irq(&swap_mapping->i_pages);
1587 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1588 newpage);
1589 if (!error) {
1590 __inc_node_page_state(newpage, NR_FILE_PAGES);
1591 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1592 }
1593 xa_unlock_irq(&swap_mapping->i_pages);
1594
1595 if (unlikely(error)) {
1596 /*
1597 * Is this possible? I think not, now that our callers check
1598 * both PageSwapCache and page_private after getting page lock;
1599 * but be defensive. Reverse old to newpage for clear and free.
1600 */
1601 oldpage = newpage;
1602 } else {
1603 mem_cgroup_migrate(oldpage, newpage);
1604 lru_cache_add_anon(newpage);
1605 *pagep = newpage;
1606 }
1607
1608 ClearPageSwapCache(oldpage);
1609 set_page_private(oldpage, 0);
1610
1611 unlock_page(oldpage);
1612 put_page(oldpage);
1613 put_page(oldpage);
1614 return error;
1615}
1616
1617/*
1618 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1619 *
1620 * If we allocate a new one we do not mark it dirty. That's up to the
1621 * vm. If we swap it in we mark it dirty since we also free the swap
1622 * entry since a page cannot live in both the swap and page cache.
1623 *
1624 * fault_mm and fault_type are only supplied by shmem_fault:
1625 * otherwise they are NULL.
1626 */
1627static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1628 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1629 struct vm_area_struct *vma, struct vm_fault *vmf,
1630 vm_fault_t *fault_type)
1631{
1632 struct address_space *mapping = inode->i_mapping;
1633 struct shmem_inode_info *info = SHMEM_I(inode);
1634 struct shmem_sb_info *sbinfo;
1635 struct mm_struct *charge_mm;
1636 struct mem_cgroup *memcg;
1637 struct page *page;
1638 swp_entry_t swap;
1639 enum sgp_type sgp_huge = sgp;
1640 pgoff_t hindex = index;
1641 int error;
1642 int once = 0;
1643 int alloced = 0;
1644
1645 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1646 return -EFBIG;
1647 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1648 sgp = SGP_CACHE;
1649repeat:
1650 swap.val = 0;
1651 page = find_lock_entry(mapping, index);
1652 if (radix_tree_exceptional_entry(page)) {
1653 swap = radix_to_swp_entry(page);
1654 page = NULL;
1655 }
1656
1657 if (sgp <= SGP_CACHE &&
1658 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1659 error = -EINVAL;
1660 goto unlock;
1661 }
1662
1663 if (page && sgp == SGP_WRITE)
1664 mark_page_accessed(page);
1665
1666 /* fallocated page? */
1667 if (page && !PageUptodate(page)) {
1668 if (sgp != SGP_READ)
1669 goto clear;
1670 unlock_page(page);
1671 put_page(page);
1672 page = NULL;
1673 }
1674 if (page || (sgp == SGP_READ && !swap.val)) {
1675 *pagep = page;
1676 return 0;
1677 }
1678
1679 /*
1680 * Fast cache lookup did not find it:
1681 * bring it back from swap or allocate.
1682 */
1683 sbinfo = SHMEM_SB(inode->i_sb);
1684 charge_mm = vma ? vma->vm_mm : current->mm;
1685
1686 if (swap.val) {
1687 /* Look it up and read it in.. */
1688 page = lookup_swap_cache(swap, NULL, 0);
1689 if (!page) {
1690 /* Or update major stats only when swapin succeeds?? */
1691 if (fault_type) {
1692 *fault_type |= VM_FAULT_MAJOR;
1693 count_vm_event(PGMAJFAULT);
1694 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1695 }
1696 /* Here we actually start the io */
1697 page = shmem_swapin(swap, gfp, info, index);
1698 if (!page) {
1699 error = -ENOMEM;
1700 goto failed;
1701 }
1702 }
1703
1704 /* We have to do this with page locked to prevent races */
1705 lock_page(page);
1706 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1707 !shmem_confirm_swap(mapping, index, swap)) {
1708 error = -EEXIST; /* try again */
1709 goto unlock;
1710 }
1711 if (!PageUptodate(page)) {
1712 error = -EIO;
1713 goto failed;
1714 }
1715 wait_on_page_writeback(page);
1716
1717 if (shmem_should_replace_page(page, gfp)) {
1718 error = shmem_replace_page(&page, gfp, info, index);
1719 if (error)
1720 goto failed;
1721 }
1722
1723 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1724 false);
1725 if (!error) {
1726 error = shmem_add_to_page_cache(page, mapping, index,
1727 swp_to_radix_entry(swap));
1728 /*
1729 * We already confirmed swap under page lock, and make
1730 * no memory allocation here, so usually no possibility
1731 * of error; but free_swap_and_cache() only trylocks a
1732 * page, so it is just possible that the entry has been
1733 * truncated or holepunched since swap was confirmed.
1734 * shmem_undo_range() will have done some of the
1735 * unaccounting, now delete_from_swap_cache() will do
1736 * the rest.
1737 * Reset swap.val? No, leave it so "failed" goes back to
1738 * "repeat": reading a hole and writing should succeed.
1739 */
1740 if (error) {
1741 mem_cgroup_cancel_charge(page, memcg, false);
1742 delete_from_swap_cache(page);
1743 }
1744 }
1745 if (error)
1746 goto failed;
1747
1748 mem_cgroup_commit_charge(page, memcg, true, false);
1749
1750 spin_lock_irq(&info->lock);
1751 info->swapped--;
1752 shmem_recalc_inode(inode);
1753 spin_unlock_irq(&info->lock);
1754
1755 if (sgp == SGP_WRITE)
1756 mark_page_accessed(page);
1757
1758 delete_from_swap_cache(page);
1759 set_page_dirty(page);
1760 swap_free(swap);
1761
1762 } else {
1763 if (vma && userfaultfd_missing(vma)) {
1764 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1765 return 0;
1766 }
1767
1768 /* shmem_symlink() */
1769 if (mapping->a_ops != &shmem_aops)
1770 goto alloc_nohuge;
1771 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1772 goto alloc_nohuge;
1773 if (shmem_huge == SHMEM_HUGE_FORCE)
1774 goto alloc_huge;
1775 switch (sbinfo->huge) {
1776 loff_t i_size;
1777 pgoff_t off;
1778 case SHMEM_HUGE_NEVER:
1779 goto alloc_nohuge;
1780 case SHMEM_HUGE_WITHIN_SIZE:
1781 off = round_up(index, HPAGE_PMD_NR);
1782 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1783 if (i_size >= HPAGE_PMD_SIZE &&
1784 i_size >> PAGE_SHIFT >= off)
1785 goto alloc_huge;
1786 /* fallthrough */
1787 case SHMEM_HUGE_ADVISE:
1788 if (sgp_huge == SGP_HUGE)
1789 goto alloc_huge;
1790 /* TODO: implement fadvise() hints */
1791 goto alloc_nohuge;
1792 }
1793
1794alloc_huge:
1795 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1796 if (IS_ERR(page)) {
1797alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1798 index, false);
1799 }
1800 if (IS_ERR(page)) {
1801 int retry = 5;
1802 error = PTR_ERR(page);
1803 page = NULL;
1804 if (error != -ENOSPC)
1805 goto failed;
1806 /*
1807 * Try to reclaim some spece by splitting a huge page
1808 * beyond i_size on the filesystem.
1809 */
1810 while (retry--) {
1811 int ret;
1812 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1813 if (ret == SHRINK_STOP)
1814 break;
1815 if (ret)
1816 goto alloc_nohuge;
1817 }
1818 goto failed;
1819 }
1820
1821 if (PageTransHuge(page))
1822 hindex = round_down(index, HPAGE_PMD_NR);
1823 else
1824 hindex = index;
1825
1826 if (sgp == SGP_WRITE)
1827 __SetPageReferenced(page);
1828
1829 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1830 PageTransHuge(page));
1831 if (error)
1832 goto unacct;
1833 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1834 compound_order(page));
1835 if (!error) {
1836 error = shmem_add_to_page_cache(page, mapping, hindex,
1837 NULL);
1838 radix_tree_preload_end();
1839 }
1840 if (error) {
1841 mem_cgroup_cancel_charge(page, memcg,
1842 PageTransHuge(page));
1843 goto unacct;
1844 }
1845 mem_cgroup_commit_charge(page, memcg, false,
1846 PageTransHuge(page));
1847 lru_cache_add_anon(page);
1848
1849 spin_lock_irq(&info->lock);
1850 info->alloced += 1 << compound_order(page);
1851 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1852 shmem_recalc_inode(inode);
1853 spin_unlock_irq(&info->lock);
1854 alloced = true;
1855
1856 if (PageTransHuge(page) &&
1857 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1858 hindex + HPAGE_PMD_NR - 1) {
1859 /*
1860 * Part of the huge page is beyond i_size: subject
1861 * to shrink under memory pressure.
1862 */
1863 spin_lock(&sbinfo->shrinklist_lock);
1864 /*
1865 * _careful to defend against unlocked access to
1866 * ->shrink_list in shmem_unused_huge_shrink()
1867 */
1868 if (list_empty_careful(&info->shrinklist)) {
1869 list_add_tail(&info->shrinklist,
1870 &sbinfo->shrinklist);
1871 sbinfo->shrinklist_len++;
1872 }
1873 spin_unlock(&sbinfo->shrinklist_lock);
1874 }
1875
1876 /*
1877 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1878 */
1879 if (sgp == SGP_FALLOC)
1880 sgp = SGP_WRITE;
1881clear:
1882 /*
1883 * Let SGP_WRITE caller clear ends if write does not fill page;
1884 * but SGP_FALLOC on a page fallocated earlier must initialize
1885 * it now, lest undo on failure cancel our earlier guarantee.
1886 */
1887 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1888 struct page *head = compound_head(page);
1889 int i;
1890
1891 for (i = 0; i < (1 << compound_order(head)); i++) {
1892 clear_highpage(head + i);
1893 flush_dcache_page(head + i);
1894 }
1895 SetPageUptodate(head);
1896 }
1897 }
1898
1899 /* Perhaps the file has been truncated since we checked */
1900 if (sgp <= SGP_CACHE &&
1901 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1902 if (alloced) {
1903 ClearPageDirty(page);
1904 delete_from_page_cache(page);
1905 spin_lock_irq(&info->lock);
1906 shmem_recalc_inode(inode);
1907 spin_unlock_irq(&info->lock);
1908 }
1909 error = -EINVAL;
1910 goto unlock;
1911 }
1912 *pagep = page + index - hindex;
1913 return 0;
1914
1915 /*
1916 * Error recovery.
1917 */
1918unacct:
1919 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1920
1921 if (PageTransHuge(page)) {
1922 unlock_page(page);
1923 put_page(page);
1924 goto alloc_nohuge;
1925 }
1926failed:
1927 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1928 error = -EEXIST;
1929unlock:
1930 if (page) {
1931 unlock_page(page);
1932 put_page(page);
1933 }
1934 if (error == -ENOSPC && !once++) {
1935 spin_lock_irq(&info->lock);
1936 shmem_recalc_inode(inode);
1937 spin_unlock_irq(&info->lock);
1938 goto repeat;
1939 }
1940 if (error == -EEXIST) /* from above or from radix_tree_insert */
1941 goto repeat;
1942 return error;
1943}
1944
1945/*
1946 * This is like autoremove_wake_function, but it removes the wait queue
1947 * entry unconditionally - even if something else had already woken the
1948 * target.
1949 */
1950static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1951{
1952 int ret = default_wake_function(wait, mode, sync, key);
1953 list_del_init(&wait->entry);
1954 return ret;
1955}
1956
1957static vm_fault_t shmem_fault(struct vm_fault *vmf)
1958{
1959 struct vm_area_struct *vma = vmf->vma;
1960 struct inode *inode = file_inode(vma->vm_file);
1961 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1962 enum sgp_type sgp;
1963 int err;
1964 vm_fault_t ret = VM_FAULT_LOCKED;
1965
1966 /*
1967 * Trinity finds that probing a hole which tmpfs is punching can
1968 * prevent the hole-punch from ever completing: which in turn
1969 * locks writers out with its hold on i_mutex. So refrain from
1970 * faulting pages into the hole while it's being punched. Although
1971 * shmem_undo_range() does remove the additions, it may be unable to
1972 * keep up, as each new page needs its own unmap_mapping_range() call,
1973 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1974 *
1975 * It does not matter if we sometimes reach this check just before the
1976 * hole-punch begins, so that one fault then races with the punch:
1977 * we just need to make racing faults a rare case.
1978 *
1979 * The implementation below would be much simpler if we just used a
1980 * standard mutex or completion: but we cannot take i_mutex in fault,
1981 * and bloating every shmem inode for this unlikely case would be sad.
1982 */
1983 if (unlikely(inode->i_private)) {
1984 struct shmem_falloc *shmem_falloc;
1985
1986 spin_lock(&inode->i_lock);
1987 shmem_falloc = inode->i_private;
1988 if (shmem_falloc &&
1989 shmem_falloc->waitq &&
1990 vmf->pgoff >= shmem_falloc->start &&
1991 vmf->pgoff < shmem_falloc->next) {
1992 wait_queue_head_t *shmem_falloc_waitq;
1993 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1994
1995 ret = VM_FAULT_NOPAGE;
1996 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1997 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1998 /* It's polite to up mmap_sem if we can */
1999 up_read(&vma->vm_mm->mmap_sem);
2000 ret = VM_FAULT_RETRY;
2001 }
2002
2003 shmem_falloc_waitq = shmem_falloc->waitq;
2004 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2005 TASK_UNINTERRUPTIBLE);
2006 spin_unlock(&inode->i_lock);
2007 schedule();
2008
2009 /*
2010 * shmem_falloc_waitq points into the shmem_fallocate()
2011 * stack of the hole-punching task: shmem_falloc_waitq
2012 * is usually invalid by the time we reach here, but
2013 * finish_wait() does not dereference it in that case;
2014 * though i_lock needed lest racing with wake_up_all().
2015 */
2016 spin_lock(&inode->i_lock);
2017 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2018 spin_unlock(&inode->i_lock);
2019 return ret;
2020 }
2021 spin_unlock(&inode->i_lock);
2022 }
2023
2024 sgp = SGP_CACHE;
2025
2026 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2027 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2028 sgp = SGP_NOHUGE;
2029 else if (vma->vm_flags & VM_HUGEPAGE)
2030 sgp = SGP_HUGE;
2031
2032 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2033 gfp, vma, vmf, &ret);
2034 if (err)
2035 return vmf_error(err);
2036 return ret;
2037}
2038
2039unsigned long shmem_get_unmapped_area(struct file *file,
2040 unsigned long uaddr, unsigned long len,
2041 unsigned long pgoff, unsigned long flags)
2042{
2043 unsigned long (*get_area)(struct file *,
2044 unsigned long, unsigned long, unsigned long, unsigned long);
2045 unsigned long addr;
2046 unsigned long offset;
2047 unsigned long inflated_len;
2048 unsigned long inflated_addr;
2049 unsigned long inflated_offset;
2050
2051 if (len > TASK_SIZE)
2052 return -ENOMEM;
2053
2054 get_area = current->mm->get_unmapped_area;
2055 addr = get_area(file, uaddr, len, pgoff, flags);
2056
2057 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2058 return addr;
2059 if (IS_ERR_VALUE(addr))
2060 return addr;
2061 if (addr & ~PAGE_MASK)
2062 return addr;
2063 if (addr > TASK_SIZE - len)
2064 return addr;
2065
2066 if (shmem_huge == SHMEM_HUGE_DENY)
2067 return addr;
2068 if (len < HPAGE_PMD_SIZE)
2069 return addr;
2070 if (flags & MAP_FIXED)
2071 return addr;
2072 /*
2073 * Our priority is to support MAP_SHARED mapped hugely;
2074 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2075 * But if caller specified an address hint and we allocated area there
2076 * successfully, respect that as before.
2077 */
2078 if (uaddr == addr)
2079 return addr;
2080
2081 if (shmem_huge != SHMEM_HUGE_FORCE) {
2082 struct super_block *sb;
2083
2084 if (file) {
2085 VM_BUG_ON(file->f_op != &shmem_file_operations);
2086 sb = file_inode(file)->i_sb;
2087 } else {
2088 /*
2089 * Called directly from mm/mmap.c, or drivers/char/mem.c
2090 * for "/dev/zero", to create a shared anonymous object.
2091 */
2092 if (IS_ERR(shm_mnt))
2093 return addr;
2094 sb = shm_mnt->mnt_sb;
2095 }
2096 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2097 return addr;
2098 }
2099
2100 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2101 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2102 return addr;
2103 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2104 return addr;
2105
2106 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2107 if (inflated_len > TASK_SIZE)
2108 return addr;
2109 if (inflated_len < len)
2110 return addr;
2111
2112 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2113 if (IS_ERR_VALUE(inflated_addr))
2114 return addr;
2115 if (inflated_addr & ~PAGE_MASK)
2116 return addr;
2117
2118 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2119 inflated_addr += offset - inflated_offset;
2120 if (inflated_offset > offset)
2121 inflated_addr += HPAGE_PMD_SIZE;
2122
2123 if (inflated_addr > TASK_SIZE - len)
2124 return addr;
2125 return inflated_addr;
2126}
2127
2128#ifdef CONFIG_NUMA
2129static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2130{
2131 struct inode *inode = file_inode(vma->vm_file);
2132 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2133}
2134
2135static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2136 unsigned long addr)
2137{
2138 struct inode *inode = file_inode(vma->vm_file);
2139 pgoff_t index;
2140
2141 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2142 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2143}
2144#endif
2145
2146int shmem_lock(struct file *file, int lock, struct user_struct *user)
2147{
2148 struct inode *inode = file_inode(file);
2149 struct shmem_inode_info *info = SHMEM_I(inode);
2150 int retval = -ENOMEM;
2151
2152 spin_lock_irq(&info->lock);
2153 if (lock && !(info->flags & VM_LOCKED)) {
2154 if (!user_shm_lock(inode->i_size, user))
2155 goto out_nomem;
2156 info->flags |= VM_LOCKED;
2157 mapping_set_unevictable(file->f_mapping);
2158 }
2159 if (!lock && (info->flags & VM_LOCKED) && user) {
2160 user_shm_unlock(inode->i_size, user);
2161 info->flags &= ~VM_LOCKED;
2162 mapping_clear_unevictable(file->f_mapping);
2163 }
2164 retval = 0;
2165
2166out_nomem:
2167 spin_unlock_irq(&info->lock);
2168 return retval;
2169}
2170
2171static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2172{
2173 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2174
2175 if (info->seals & F_SEAL_FUTURE_WRITE) {
2176 /*
2177 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2178 * "future write" seal active.
2179 */
2180 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2181 return -EPERM;
2182
2183 /*
2184 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2185 * read-only mapping, take care to not allow mprotect to revert
2186 * protections.
2187 */
2188 vma->vm_flags &= ~(VM_MAYWRITE);
2189 }
2190
2191 file_accessed(file);
2192 vma->vm_ops = &shmem_vm_ops;
2193 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2194 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2195 (vma->vm_end & HPAGE_PMD_MASK)) {
2196 khugepaged_enter(vma, vma->vm_flags);
2197 }
2198 return 0;
2199}
2200
2201static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2202 umode_t mode, dev_t dev, unsigned long flags)
2203{
2204 struct inode *inode;
2205 struct shmem_inode_info *info;
2206 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2207
2208 if (shmem_reserve_inode(sb))
2209 return NULL;
2210
2211 inode = new_inode(sb);
2212 if (inode) {
2213 inode->i_ino = get_next_ino();
2214 inode_init_owner(inode, dir, mode);
2215 inode->i_blocks = 0;
2216 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2217 inode->i_generation = prandom_u32();
2218 info = SHMEM_I(inode);
2219 memset(info, 0, (char *)inode - (char *)info);
2220 spin_lock_init(&info->lock);
2221 info->seals = F_SEAL_SEAL;
2222 info->flags = flags & VM_NORESERVE;
2223 INIT_LIST_HEAD(&info->shrinklist);
2224 INIT_LIST_HEAD(&info->swaplist);
2225 simple_xattrs_init(&info->xattrs);
2226 cache_no_acl(inode);
2227
2228 switch (mode & S_IFMT) {
2229 default:
2230 inode->i_op = &shmem_special_inode_operations;
2231 init_special_inode(inode, mode, dev);
2232 break;
2233 case S_IFREG:
2234 inode->i_mapping->a_ops = &shmem_aops;
2235 inode->i_op = &shmem_inode_operations;
2236 inode->i_fop = &shmem_file_operations;
2237 mpol_shared_policy_init(&info->policy,
2238 shmem_get_sbmpol(sbinfo));
2239 break;
2240 case S_IFDIR:
2241 inc_nlink(inode);
2242 /* Some things misbehave if size == 0 on a directory */
2243 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2244 inode->i_op = &shmem_dir_inode_operations;
2245 inode->i_fop = &simple_dir_operations;
2246 break;
2247 case S_IFLNK:
2248 /*
2249 * Must not load anything in the rbtree,
2250 * mpol_free_shared_policy will not be called.
2251 */
2252 mpol_shared_policy_init(&info->policy, NULL);
2253 break;
2254 }
2255
2256 lockdep_annotate_inode_mutex_key(inode);
2257 } else
2258 shmem_free_inode(sb);
2259 return inode;
2260}
2261
2262bool shmem_mapping(struct address_space *mapping)
2263{
2264 return mapping->a_ops == &shmem_aops;
2265}
2266
2267static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2268 pmd_t *dst_pmd,
2269 struct vm_area_struct *dst_vma,
2270 unsigned long dst_addr,
2271 unsigned long src_addr,
2272 bool zeropage,
2273 struct page **pagep)
2274{
2275 struct inode *inode = file_inode(dst_vma->vm_file);
2276 struct shmem_inode_info *info = SHMEM_I(inode);
2277 struct address_space *mapping = inode->i_mapping;
2278 gfp_t gfp = mapping_gfp_mask(mapping);
2279 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2280 struct mem_cgroup *memcg;
2281 spinlock_t *ptl;
2282 void *page_kaddr;
2283 struct page *page;
2284 pte_t _dst_pte, *dst_pte;
2285 int ret;
2286 pgoff_t offset, max_off;
2287
2288 ret = -ENOMEM;
2289 if (!shmem_inode_acct_block(inode, 1))
2290 goto out;
2291
2292 if (!*pagep) {
2293 page = shmem_alloc_page(gfp, info, pgoff);
2294 if (!page)
2295 goto out_unacct_blocks;
2296
2297 if (!zeropage) { /* mcopy_atomic */
2298 page_kaddr = kmap_atomic(page);
2299 ret = copy_from_user(page_kaddr,
2300 (const void __user *)src_addr,
2301 PAGE_SIZE);
2302 kunmap_atomic(page_kaddr);
2303
2304 /* fallback to copy_from_user outside mmap_sem */
2305 if (unlikely(ret)) {
2306 *pagep = page;
2307 shmem_inode_unacct_blocks(inode, 1);
2308 /* don't free the page */
2309 return -ENOENT;
2310 }
2311 } else { /* mfill_zeropage_atomic */
2312 clear_highpage(page);
2313 }
2314 } else {
2315 page = *pagep;
2316 *pagep = NULL;
2317 }
2318
2319 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2320 __SetPageLocked(page);
2321 __SetPageSwapBacked(page);
2322 __SetPageUptodate(page);
2323
2324 ret = -EFAULT;
2325 offset = linear_page_index(dst_vma, dst_addr);
2326 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2327 if (unlikely(offset >= max_off))
2328 goto out_release;
2329
2330 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2331 if (ret)
2332 goto out_release;
2333
2334 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2335 if (!ret) {
2336 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2337 radix_tree_preload_end();
2338 }
2339 if (ret)
2340 goto out_release_uncharge;
2341
2342 mem_cgroup_commit_charge(page, memcg, false, false);
2343
2344 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2345 if (dst_vma->vm_flags & VM_WRITE)
2346 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2347 else {
2348 /*
2349 * We don't set the pte dirty if the vma has no
2350 * VM_WRITE permission, so mark the page dirty or it
2351 * could be freed from under us. We could do it
2352 * unconditionally before unlock_page(), but doing it
2353 * only if VM_WRITE is not set is faster.
2354 */
2355 set_page_dirty(page);
2356 }
2357
2358 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2359
2360 ret = -EFAULT;
2361 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2362 if (unlikely(offset >= max_off))
2363 goto out_release_uncharge_unlock;
2364
2365 ret = -EEXIST;
2366 if (!pte_none(*dst_pte))
2367 goto out_release_uncharge_unlock;
2368
2369 lru_cache_add_anon(page);
2370
2371 spin_lock(&info->lock);
2372 info->alloced++;
2373 inode->i_blocks += BLOCKS_PER_PAGE;
2374 shmem_recalc_inode(inode);
2375 spin_unlock(&info->lock);
2376
2377 inc_mm_counter(dst_mm, mm_counter_file(page));
2378 page_add_file_rmap(page, false);
2379 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2380
2381 /* No need to invalidate - it was non-present before */
2382 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2383 pte_unmap_unlock(dst_pte, ptl);
2384 unlock_page(page);
2385 ret = 0;
2386out:
2387 return ret;
2388out_release_uncharge_unlock:
2389 pte_unmap_unlock(dst_pte, ptl);
2390 ClearPageDirty(page);
2391 delete_from_page_cache(page);
2392out_release_uncharge:
2393 mem_cgroup_cancel_charge(page, memcg, false);
2394out_release:
2395 unlock_page(page);
2396 put_page(page);
2397out_unacct_blocks:
2398 shmem_inode_unacct_blocks(inode, 1);
2399 goto out;
2400}
2401
2402int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2403 pmd_t *dst_pmd,
2404 struct vm_area_struct *dst_vma,
2405 unsigned long dst_addr,
2406 unsigned long src_addr,
2407 struct page **pagep)
2408{
2409 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2410 dst_addr, src_addr, false, pagep);
2411}
2412
2413int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2414 pmd_t *dst_pmd,
2415 struct vm_area_struct *dst_vma,
2416 unsigned long dst_addr)
2417{
2418 struct page *page = NULL;
2419
2420 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2421 dst_addr, 0, true, &page);
2422}
2423
2424#ifdef CONFIG_TMPFS
2425static const struct inode_operations shmem_symlink_inode_operations;
2426static const struct inode_operations shmem_short_symlink_operations;
2427
2428#ifdef CONFIG_TMPFS_XATTR
2429static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2430#else
2431#define shmem_initxattrs NULL
2432#endif
2433
2434static int
2435shmem_write_begin(struct file *file, struct address_space *mapping,
2436 loff_t pos, unsigned len, unsigned flags,
2437 struct page **pagep, void **fsdata)
2438{
2439 struct inode *inode = mapping->host;
2440 struct shmem_inode_info *info = SHMEM_I(inode);
2441 pgoff_t index = pos >> PAGE_SHIFT;
2442
2443 /* i_mutex is held by caller */
2444 if (unlikely(info->seals & (F_SEAL_GROW |
2445 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2446 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2447 return -EPERM;
2448 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2449 return -EPERM;
2450 }
2451
2452 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2453}
2454
2455static int
2456shmem_write_end(struct file *file, struct address_space *mapping,
2457 loff_t pos, unsigned len, unsigned copied,
2458 struct page *page, void *fsdata)
2459{
2460 struct inode *inode = mapping->host;
2461
2462 if (pos + copied > inode->i_size)
2463 i_size_write(inode, pos + copied);
2464
2465 if (!PageUptodate(page)) {
2466 struct page *head = compound_head(page);
2467 if (PageTransCompound(page)) {
2468 int i;
2469
2470 for (i = 0; i < HPAGE_PMD_NR; i++) {
2471 if (head + i == page)
2472 continue;
2473 clear_highpage(head + i);
2474 flush_dcache_page(head + i);
2475 }
2476 }
2477 if (copied < PAGE_SIZE) {
2478 unsigned from = pos & (PAGE_SIZE - 1);
2479 zero_user_segments(page, 0, from,
2480 from + copied, PAGE_SIZE);
2481 }
2482 SetPageUptodate(head);
2483 }
2484 set_page_dirty(page);
2485 unlock_page(page);
2486 put_page(page);
2487
2488 return copied;
2489}
2490
2491static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2492{
2493 struct file *file = iocb->ki_filp;
2494 struct inode *inode = file_inode(file);
2495 struct address_space *mapping = inode->i_mapping;
2496 pgoff_t index;
2497 unsigned long offset;
2498 enum sgp_type sgp = SGP_READ;
2499 int error = 0;
2500 ssize_t retval = 0;
2501 loff_t *ppos = &iocb->ki_pos;
2502
2503 /*
2504 * Might this read be for a stacking filesystem? Then when reading
2505 * holes of a sparse file, we actually need to allocate those pages,
2506 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2507 */
2508 if (!iter_is_iovec(to))
2509 sgp = SGP_CACHE;
2510
2511 index = *ppos >> PAGE_SHIFT;
2512 offset = *ppos & ~PAGE_MASK;
2513
2514 for (;;) {
2515 struct page *page = NULL;
2516 pgoff_t end_index;
2517 unsigned long nr, ret;
2518 loff_t i_size = i_size_read(inode);
2519
2520 end_index = i_size >> PAGE_SHIFT;
2521 if (index > end_index)
2522 break;
2523 if (index == end_index) {
2524 nr = i_size & ~PAGE_MASK;
2525 if (nr <= offset)
2526 break;
2527 }
2528
2529 error = shmem_getpage(inode, index, &page, sgp);
2530 if (error) {
2531 if (error == -EINVAL)
2532 error = 0;
2533 break;
2534 }
2535 if (page) {
2536 if (sgp == SGP_CACHE)
2537 set_page_dirty(page);
2538 unlock_page(page);
2539 }
2540
2541 /*
2542 * We must evaluate after, since reads (unlike writes)
2543 * are called without i_mutex protection against truncate
2544 */
2545 nr = PAGE_SIZE;
2546 i_size = i_size_read(inode);
2547 end_index = i_size >> PAGE_SHIFT;
2548 if (index == end_index) {
2549 nr = i_size & ~PAGE_MASK;
2550 if (nr <= offset) {
2551 if (page)
2552 put_page(page);
2553 break;
2554 }
2555 }
2556 nr -= offset;
2557
2558 if (page) {
2559 /*
2560 * If users can be writing to this page using arbitrary
2561 * virtual addresses, take care about potential aliasing
2562 * before reading the page on the kernel side.
2563 */
2564 if (mapping_writably_mapped(mapping))
2565 flush_dcache_page(page);
2566 /*
2567 * Mark the page accessed if we read the beginning.
2568 */
2569 if (!offset)
2570 mark_page_accessed(page);
2571 } else {
2572 page = ZERO_PAGE(0);
2573 get_page(page);
2574 }
2575
2576 /*
2577 * Ok, we have the page, and it's up-to-date, so
2578 * now we can copy it to user space...
2579 */
2580 ret = copy_page_to_iter(page, offset, nr, to);
2581 retval += ret;
2582 offset += ret;
2583 index += offset >> PAGE_SHIFT;
2584 offset &= ~PAGE_MASK;
2585
2586 put_page(page);
2587 if (!iov_iter_count(to))
2588 break;
2589 if (ret < nr) {
2590 error = -EFAULT;
2591 break;
2592 }
2593 cond_resched();
2594 }
2595
2596 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2597 file_accessed(file);
2598 return retval ? retval : error;
2599}
2600
2601/*
2602 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2603 */
2604static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2605 pgoff_t index, pgoff_t end, int whence)
2606{
2607 struct page *page;
2608 struct pagevec pvec;
2609 pgoff_t indices[PAGEVEC_SIZE];
2610 bool done = false;
2611 int i;
2612
2613 pagevec_init(&pvec);
2614 pvec.nr = 1; /* start small: we may be there already */
2615 while (!done) {
2616 pvec.nr = find_get_entries(mapping, index,
2617 pvec.nr, pvec.pages, indices);
2618 if (!pvec.nr) {
2619 if (whence == SEEK_DATA)
2620 index = end;
2621 break;
2622 }
2623 for (i = 0; i < pvec.nr; i++, index++) {
2624 if (index < indices[i]) {
2625 if (whence == SEEK_HOLE) {
2626 done = true;
2627 break;
2628 }
2629 index = indices[i];
2630 }
2631 page = pvec.pages[i];
2632 if (page && !radix_tree_exceptional_entry(page)) {
2633 if (!PageUptodate(page))
2634 page = NULL;
2635 }
2636 if (index >= end ||
2637 (page && whence == SEEK_DATA) ||
2638 (!page && whence == SEEK_HOLE)) {
2639 done = true;
2640 break;
2641 }
2642 }
2643 pagevec_remove_exceptionals(&pvec);
2644 pagevec_release(&pvec);
2645 pvec.nr = PAGEVEC_SIZE;
2646 cond_resched();
2647 }
2648 return index;
2649}
2650
2651static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2652{
2653 struct address_space *mapping = file->f_mapping;
2654 struct inode *inode = mapping->host;
2655 pgoff_t start, end;
2656 loff_t new_offset;
2657
2658 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2659 return generic_file_llseek_size(file, offset, whence,
2660 MAX_LFS_FILESIZE, i_size_read(inode));
2661 inode_lock(inode);
2662 /* We're holding i_mutex so we can access i_size directly */
2663
2664 if (offset < 0 || offset >= inode->i_size)
2665 offset = -ENXIO;
2666 else {
2667 start = offset >> PAGE_SHIFT;
2668 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2669 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2670 new_offset <<= PAGE_SHIFT;
2671 if (new_offset > offset) {
2672 if (new_offset < inode->i_size)
2673 offset = new_offset;
2674 else if (whence == SEEK_DATA)
2675 offset = -ENXIO;
2676 else
2677 offset = inode->i_size;
2678 }
2679 }
2680
2681 if (offset >= 0)
2682 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2683 inode_unlock(inode);
2684 return offset;
2685}
2686
2687static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2688 loff_t len)
2689{
2690 struct inode *inode = file_inode(file);
2691 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2692 struct shmem_inode_info *info = SHMEM_I(inode);
2693 struct shmem_falloc shmem_falloc;
2694 pgoff_t start, index, end;
2695 int error;
2696
2697 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2698 return -EOPNOTSUPP;
2699
2700 inode_lock(inode);
2701
2702 if (mode & FALLOC_FL_PUNCH_HOLE) {
2703 struct address_space *mapping = file->f_mapping;
2704 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2705 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2706 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2707
2708 /* protected by i_mutex */
2709 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2710 error = -EPERM;
2711 goto out;
2712 }
2713
2714 shmem_falloc.waitq = &shmem_falloc_waitq;
2715 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2716 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2717 spin_lock(&inode->i_lock);
2718 inode->i_private = &shmem_falloc;
2719 spin_unlock(&inode->i_lock);
2720
2721 if ((u64)unmap_end > (u64)unmap_start)
2722 unmap_mapping_range(mapping, unmap_start,
2723 1 + unmap_end - unmap_start, 0);
2724 shmem_truncate_range(inode, offset, offset + len - 1);
2725 /* No need to unmap again: hole-punching leaves COWed pages */
2726
2727 spin_lock(&inode->i_lock);
2728 inode->i_private = NULL;
2729 wake_up_all(&shmem_falloc_waitq);
2730 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2731 spin_unlock(&inode->i_lock);
2732 error = 0;
2733 goto out;
2734 }
2735
2736 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2737 error = inode_newsize_ok(inode, offset + len);
2738 if (error)
2739 goto out;
2740
2741 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2742 error = -EPERM;
2743 goto out;
2744 }
2745
2746 start = offset >> PAGE_SHIFT;
2747 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2748 /* Try to avoid a swapstorm if len is impossible to satisfy */
2749 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2750 error = -ENOSPC;
2751 goto out;
2752 }
2753
2754 shmem_falloc.waitq = NULL;
2755 shmem_falloc.start = start;
2756 shmem_falloc.next = start;
2757 shmem_falloc.nr_falloced = 0;
2758 shmem_falloc.nr_unswapped = 0;
2759 spin_lock(&inode->i_lock);
2760 inode->i_private = &shmem_falloc;
2761 spin_unlock(&inode->i_lock);
2762
2763 for (index = start; index < end; index++) {
2764 struct page *page;
2765
2766 /*
2767 * Good, the fallocate(2) manpage permits EINTR: we may have
2768 * been interrupted because we are using up too much memory.
2769 */
2770 if (signal_pending(current))
2771 error = -EINTR;
2772 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2773 error = -ENOMEM;
2774 else
2775 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2776 if (error) {
2777 /* Remove the !PageUptodate pages we added */
2778 if (index > start) {
2779 shmem_undo_range(inode,
2780 (loff_t)start << PAGE_SHIFT,
2781 ((loff_t)index << PAGE_SHIFT) - 1, true);
2782 }
2783 goto undone;
2784 }
2785
2786 /*
2787 * Inform shmem_writepage() how far we have reached.
2788 * No need for lock or barrier: we have the page lock.
2789 */
2790 shmem_falloc.next++;
2791 if (!PageUptodate(page))
2792 shmem_falloc.nr_falloced++;
2793
2794 /*
2795 * If !PageUptodate, leave it that way so that freeable pages
2796 * can be recognized if we need to rollback on error later.
2797 * But set_page_dirty so that memory pressure will swap rather
2798 * than free the pages we are allocating (and SGP_CACHE pages
2799 * might still be clean: we now need to mark those dirty too).
2800 */
2801 set_page_dirty(page);
2802 unlock_page(page);
2803 put_page(page);
2804 cond_resched();
2805 }
2806
2807 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2808 i_size_write(inode, offset + len);
2809 inode->i_ctime = current_time(inode);
2810undone:
2811 spin_lock(&inode->i_lock);
2812 inode->i_private = NULL;
2813 spin_unlock(&inode->i_lock);
2814out:
2815 inode_unlock(inode);
2816 return error;
2817}
2818
2819static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2820{
2821 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2822
2823 buf->f_type = TMPFS_MAGIC;
2824 buf->f_bsize = PAGE_SIZE;
2825 buf->f_namelen = NAME_MAX;
2826 if (sbinfo->max_blocks) {
2827 buf->f_blocks = sbinfo->max_blocks;
2828 buf->f_bavail =
2829 buf->f_bfree = sbinfo->max_blocks -
2830 percpu_counter_sum(&sbinfo->used_blocks);
2831 }
2832 if (sbinfo->max_inodes) {
2833 buf->f_files = sbinfo->max_inodes;
2834 buf->f_ffree = sbinfo->free_inodes;
2835 }
2836 /* else leave those fields 0 like simple_statfs */
2837 return 0;
2838}
2839
2840/*
2841 * File creation. Allocate an inode, and we're done..
2842 */
2843static int
2844shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2845{
2846 struct inode *inode;
2847 int error = -ENOSPC;
2848
2849 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2850 if (inode) {
2851 error = simple_acl_create(dir, inode);
2852 if (error)
2853 goto out_iput;
2854 error = security_inode_init_security(inode, dir,
2855 &dentry->d_name,
2856 shmem_initxattrs, NULL);
2857 if (error && error != -EOPNOTSUPP)
2858 goto out_iput;
2859
2860 error = 0;
2861 dir->i_size += BOGO_DIRENT_SIZE;
2862 dir->i_ctime = dir->i_mtime = current_time(dir);
2863 d_instantiate(dentry, inode);
2864 dget(dentry); /* Extra count - pin the dentry in core */
2865 }
2866 return error;
2867out_iput:
2868 iput(inode);
2869 return error;
2870}
2871
2872static int
2873shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2874{
2875 struct inode *inode;
2876 int error = -ENOSPC;
2877
2878 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2879 if (inode) {
2880 error = security_inode_init_security(inode, dir,
2881 NULL,
2882 shmem_initxattrs, NULL);
2883 if (error && error != -EOPNOTSUPP)
2884 goto out_iput;
2885 error = simple_acl_create(dir, inode);
2886 if (error)
2887 goto out_iput;
2888 d_tmpfile(dentry, inode);
2889 }
2890 return error;
2891out_iput:
2892 iput(inode);
2893 return error;
2894}
2895
2896static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2897{
2898 int error;
2899
2900 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2901 return error;
2902 inc_nlink(dir);
2903 return 0;
2904}
2905
2906static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2907 bool excl)
2908{
2909 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2910}
2911
2912/*
2913 * Link a file..
2914 */
2915static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2916{
2917 struct inode *inode = d_inode(old_dentry);
2918 int ret = 0;
2919
2920 /*
2921 * No ordinary (disk based) filesystem counts links as inodes;
2922 * but each new link needs a new dentry, pinning lowmem, and
2923 * tmpfs dentries cannot be pruned until they are unlinked.
2924 * But if an O_TMPFILE file is linked into the tmpfs, the
2925 * first link must skip that, to get the accounting right.
2926 */
2927 if (inode->i_nlink) {
2928 ret = shmem_reserve_inode(inode->i_sb);
2929 if (ret)
2930 goto out;
2931 }
2932
2933 dir->i_size += BOGO_DIRENT_SIZE;
2934 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935 inc_nlink(inode);
2936 ihold(inode); /* New dentry reference */
2937 dget(dentry); /* Extra pinning count for the created dentry */
2938 d_instantiate(dentry, inode);
2939out:
2940 return ret;
2941}
2942
2943static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2944{
2945 struct inode *inode = d_inode(dentry);
2946
2947 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2948 shmem_free_inode(inode->i_sb);
2949
2950 dir->i_size -= BOGO_DIRENT_SIZE;
2951 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2952 drop_nlink(inode);
2953 dput(dentry); /* Undo the count from "create" - this does all the work */
2954 return 0;
2955}
2956
2957static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2958{
2959 if (!simple_empty(dentry))
2960 return -ENOTEMPTY;
2961
2962 drop_nlink(d_inode(dentry));
2963 drop_nlink(dir);
2964 return shmem_unlink(dir, dentry);
2965}
2966
2967static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2968{
2969 bool old_is_dir = d_is_dir(old_dentry);
2970 bool new_is_dir = d_is_dir(new_dentry);
2971
2972 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2973 if (old_is_dir) {
2974 drop_nlink(old_dir);
2975 inc_nlink(new_dir);
2976 } else {
2977 drop_nlink(new_dir);
2978 inc_nlink(old_dir);
2979 }
2980 }
2981 old_dir->i_ctime = old_dir->i_mtime =
2982 new_dir->i_ctime = new_dir->i_mtime =
2983 d_inode(old_dentry)->i_ctime =
2984 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2985
2986 return 0;
2987}
2988
2989static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2990{
2991 struct dentry *whiteout;
2992 int error;
2993
2994 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2995 if (!whiteout)
2996 return -ENOMEM;
2997
2998 error = shmem_mknod(old_dir, whiteout,
2999 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3000 dput(whiteout);
3001 if (error)
3002 return error;
3003
3004 /*
3005 * Cheat and hash the whiteout while the old dentry is still in
3006 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3007 *
3008 * d_lookup() will consistently find one of them at this point,
3009 * not sure which one, but that isn't even important.
3010 */
3011 d_rehash(whiteout);
3012 return 0;
3013}
3014
3015/*
3016 * The VFS layer already does all the dentry stuff for rename,
3017 * we just have to decrement the usage count for the target if
3018 * it exists so that the VFS layer correctly free's it when it
3019 * gets overwritten.
3020 */
3021static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3022{
3023 struct inode *inode = d_inode(old_dentry);
3024 int they_are_dirs = S_ISDIR(inode->i_mode);
3025
3026 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3027 return -EINVAL;
3028
3029 if (flags & RENAME_EXCHANGE)
3030 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3031
3032 if (!simple_empty(new_dentry))
3033 return -ENOTEMPTY;
3034
3035 if (flags & RENAME_WHITEOUT) {
3036 int error;
3037
3038 error = shmem_whiteout(old_dir, old_dentry);
3039 if (error)
3040 return error;
3041 }
3042
3043 if (d_really_is_positive(new_dentry)) {
3044 (void) shmem_unlink(new_dir, new_dentry);
3045 if (they_are_dirs) {
3046 drop_nlink(d_inode(new_dentry));
3047 drop_nlink(old_dir);
3048 }
3049 } else if (they_are_dirs) {
3050 drop_nlink(old_dir);
3051 inc_nlink(new_dir);
3052 }
3053
3054 old_dir->i_size -= BOGO_DIRENT_SIZE;
3055 new_dir->i_size += BOGO_DIRENT_SIZE;
3056 old_dir->i_ctime = old_dir->i_mtime =
3057 new_dir->i_ctime = new_dir->i_mtime =
3058 inode->i_ctime = current_time(old_dir);
3059 return 0;
3060}
3061
3062static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3063{
3064 int error;
3065 int len;
3066 struct inode *inode;
3067 struct page *page;
3068
3069 len = strlen(symname) + 1;
3070 if (len > PAGE_SIZE)
3071 return -ENAMETOOLONG;
3072
3073 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3074 VM_NORESERVE);
3075 if (!inode)
3076 return -ENOSPC;
3077
3078 error = security_inode_init_security(inode, dir, &dentry->d_name,
3079 shmem_initxattrs, NULL);
3080 if (error) {
3081 if (error != -EOPNOTSUPP) {
3082 iput(inode);
3083 return error;
3084 }
3085 error = 0;
3086 }
3087
3088 inode->i_size = len-1;
3089 if (len <= SHORT_SYMLINK_LEN) {
3090 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3091 if (!inode->i_link) {
3092 iput(inode);
3093 return -ENOMEM;
3094 }
3095 inode->i_op = &shmem_short_symlink_operations;
3096 } else {
3097 inode_nohighmem(inode);
3098 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3099 if (error) {
3100 iput(inode);
3101 return error;
3102 }
3103 inode->i_mapping->a_ops = &shmem_aops;
3104 inode->i_op = &shmem_symlink_inode_operations;
3105 memcpy(page_address(page), symname, len);
3106 SetPageUptodate(page);
3107 set_page_dirty(page);
3108 unlock_page(page);
3109 put_page(page);
3110 }
3111 dir->i_size += BOGO_DIRENT_SIZE;
3112 dir->i_ctime = dir->i_mtime = current_time(dir);
3113 d_instantiate(dentry, inode);
3114 dget(dentry);
3115 return 0;
3116}
3117
3118static void shmem_put_link(void *arg)
3119{
3120 mark_page_accessed(arg);
3121 put_page(arg);
3122}
3123
3124static const char *shmem_get_link(struct dentry *dentry,
3125 struct inode *inode,
3126 struct delayed_call *done)
3127{
3128 struct page *page = NULL;
3129 int error;
3130 if (!dentry) {
3131 page = find_get_page(inode->i_mapping, 0);
3132 if (!page)
3133 return ERR_PTR(-ECHILD);
3134 if (!PageUptodate(page)) {
3135 put_page(page);
3136 return ERR_PTR(-ECHILD);
3137 }
3138 } else {
3139 error = shmem_getpage(inode, 0, &page, SGP_READ);
3140 if (error)
3141 return ERR_PTR(error);
3142 unlock_page(page);
3143 }
3144 set_delayed_call(done, shmem_put_link, page);
3145 return page_address(page);
3146}
3147
3148#ifdef CONFIG_TMPFS_XATTR
3149/*
3150 * Superblocks without xattr inode operations may get some security.* xattr
3151 * support from the LSM "for free". As soon as we have any other xattrs
3152 * like ACLs, we also need to implement the security.* handlers at
3153 * filesystem level, though.
3154 */
3155
3156/*
3157 * Callback for security_inode_init_security() for acquiring xattrs.
3158 */
3159static int shmem_initxattrs(struct inode *inode,
3160 const struct xattr *xattr_array,
3161 void *fs_info)
3162{
3163 struct shmem_inode_info *info = SHMEM_I(inode);
3164 const struct xattr *xattr;
3165 struct simple_xattr *new_xattr;
3166 size_t len;
3167
3168 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3169 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3170 if (!new_xattr)
3171 return -ENOMEM;
3172
3173 len = strlen(xattr->name) + 1;
3174 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3175 GFP_KERNEL);
3176 if (!new_xattr->name) {
3177 kfree(new_xattr);
3178 return -ENOMEM;
3179 }
3180
3181 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3182 XATTR_SECURITY_PREFIX_LEN);
3183 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3184 xattr->name, len);
3185
3186 simple_xattr_list_add(&info->xattrs, new_xattr);
3187 }
3188
3189 return 0;
3190}
3191
3192static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3193 struct dentry *unused, struct inode *inode,
3194 const char *name, void *buffer, size_t size)
3195{
3196 struct shmem_inode_info *info = SHMEM_I(inode);
3197
3198 name = xattr_full_name(handler, name);
3199 return simple_xattr_get(&info->xattrs, name, buffer, size);
3200}
3201
3202static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3203 struct dentry *unused, struct inode *inode,
3204 const char *name, const void *value,
3205 size_t size, int flags)
3206{
3207 struct shmem_inode_info *info = SHMEM_I(inode);
3208
3209 name = xattr_full_name(handler, name);
3210 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3211}
3212
3213static const struct xattr_handler shmem_security_xattr_handler = {
3214 .prefix = XATTR_SECURITY_PREFIX,
3215 .get = shmem_xattr_handler_get,
3216 .set = shmem_xattr_handler_set,
3217};
3218
3219static const struct xattr_handler shmem_trusted_xattr_handler = {
3220 .prefix = XATTR_TRUSTED_PREFIX,
3221 .get = shmem_xattr_handler_get,
3222 .set = shmem_xattr_handler_set,
3223};
3224
3225static const struct xattr_handler *shmem_xattr_handlers[] = {
3226#ifdef CONFIG_TMPFS_POSIX_ACL
3227 &posix_acl_access_xattr_handler,
3228 &posix_acl_default_xattr_handler,
3229#endif
3230 &shmem_security_xattr_handler,
3231 &shmem_trusted_xattr_handler,
3232 NULL
3233};
3234
3235static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3236{
3237 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3238 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3239}
3240#endif /* CONFIG_TMPFS_XATTR */
3241
3242static const struct inode_operations shmem_short_symlink_operations = {
3243 .get_link = simple_get_link,
3244#ifdef CONFIG_TMPFS_XATTR
3245 .listxattr = shmem_listxattr,
3246#endif
3247};
3248
3249static const struct inode_operations shmem_symlink_inode_operations = {
3250 .get_link = shmem_get_link,
3251#ifdef CONFIG_TMPFS_XATTR
3252 .listxattr = shmem_listxattr,
3253#endif
3254};
3255
3256static struct dentry *shmem_get_parent(struct dentry *child)
3257{
3258 return ERR_PTR(-ESTALE);
3259}
3260
3261static int shmem_match(struct inode *ino, void *vfh)
3262{
3263 __u32 *fh = vfh;
3264 __u64 inum = fh[2];
3265 inum = (inum << 32) | fh[1];
3266 return ino->i_ino == inum && fh[0] == ino->i_generation;
3267}
3268
3269/* Find any alias of inode, but prefer a hashed alias */
3270static struct dentry *shmem_find_alias(struct inode *inode)
3271{
3272 struct dentry *alias = d_find_alias(inode);
3273
3274 return alias ?: d_find_any_alias(inode);
3275}
3276
3277
3278static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3279 struct fid *fid, int fh_len, int fh_type)
3280{
3281 struct inode *inode;
3282 struct dentry *dentry = NULL;
3283 u64 inum;
3284
3285 if (fh_len < 3)
3286 return NULL;
3287
3288 inum = fid->raw[2];
3289 inum = (inum << 32) | fid->raw[1];
3290
3291 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3292 shmem_match, fid->raw);
3293 if (inode) {
3294 dentry = shmem_find_alias(inode);
3295 iput(inode);
3296 }
3297
3298 return dentry;
3299}
3300
3301static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3302 struct inode *parent)
3303{
3304 if (*len < 3) {
3305 *len = 3;
3306 return FILEID_INVALID;
3307 }
3308
3309 if (inode_unhashed(inode)) {
3310 /* Unfortunately insert_inode_hash is not idempotent,
3311 * so as we hash inodes here rather than at creation
3312 * time, we need a lock to ensure we only try
3313 * to do it once
3314 */
3315 static DEFINE_SPINLOCK(lock);
3316 spin_lock(&lock);
3317 if (inode_unhashed(inode))
3318 __insert_inode_hash(inode,
3319 inode->i_ino + inode->i_generation);
3320 spin_unlock(&lock);
3321 }
3322
3323 fh[0] = inode->i_generation;
3324 fh[1] = inode->i_ino;
3325 fh[2] = ((__u64)inode->i_ino) >> 32;
3326
3327 *len = 3;
3328 return 1;
3329}
3330
3331static const struct export_operations shmem_export_ops = {
3332 .get_parent = shmem_get_parent,
3333 .encode_fh = shmem_encode_fh,
3334 .fh_to_dentry = shmem_fh_to_dentry,
3335};
3336
3337static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3338 bool remount)
3339{
3340 char *this_char, *value, *rest;
3341 struct mempolicy *mpol = NULL;
3342 uid_t uid;
3343 gid_t gid;
3344
3345 while (options != NULL) {
3346 this_char = options;
3347 for (;;) {
3348 /*
3349 * NUL-terminate this option: unfortunately,
3350 * mount options form a comma-separated list,
3351 * but mpol's nodelist may also contain commas.
3352 */
3353 options = strchr(options, ',');
3354 if (options == NULL)
3355 break;
3356 options++;
3357 if (!isdigit(*options)) {
3358 options[-1] = '\0';
3359 break;
3360 }
3361 }
3362 if (!*this_char)
3363 continue;
3364 if ((value = strchr(this_char,'=')) != NULL) {
3365 *value++ = 0;
3366 } else {
3367 pr_err("tmpfs: No value for mount option '%s'\n",
3368 this_char);
3369 goto error;
3370 }
3371
3372 if (!strcmp(this_char,"size")) {
3373 unsigned long long size;
3374 size = memparse(value,&rest);
3375 if (*rest == '%') {
3376 size <<= PAGE_SHIFT;
3377 size *= totalram_pages;
3378 do_div(size, 100);
3379 rest++;
3380 }
3381 if (*rest)
3382 goto bad_val;
3383 sbinfo->max_blocks =
3384 DIV_ROUND_UP(size, PAGE_SIZE);
3385 } else if (!strcmp(this_char,"nr_blocks")) {
3386 sbinfo->max_blocks = memparse(value, &rest);
3387 if (*rest)
3388 goto bad_val;
3389 } else if (!strcmp(this_char,"nr_inodes")) {
3390 sbinfo->max_inodes = memparse(value, &rest);
3391 if (*rest)
3392 goto bad_val;
3393 } else if (!strcmp(this_char,"mode")) {
3394 if (remount)
3395 continue;
3396 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3397 if (*rest)
3398 goto bad_val;
3399 } else if (!strcmp(this_char,"uid")) {
3400 if (remount)
3401 continue;
3402 uid = simple_strtoul(value, &rest, 0);
3403 if (*rest)
3404 goto bad_val;
3405 sbinfo->uid = make_kuid(current_user_ns(), uid);
3406 if (!uid_valid(sbinfo->uid))
3407 goto bad_val;
3408 } else if (!strcmp(this_char,"gid")) {
3409 if (remount)
3410 continue;
3411 gid = simple_strtoul(value, &rest, 0);
3412 if (*rest)
3413 goto bad_val;
3414 sbinfo->gid = make_kgid(current_user_ns(), gid);
3415 if (!gid_valid(sbinfo->gid))
3416 goto bad_val;
3417#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3418 } else if (!strcmp(this_char, "huge")) {
3419 int huge;
3420 huge = shmem_parse_huge(value);
3421 if (huge < 0)
3422 goto bad_val;
3423 if (!has_transparent_hugepage() &&
3424 huge != SHMEM_HUGE_NEVER)
3425 goto bad_val;
3426 sbinfo->huge = huge;
3427#endif
3428#ifdef CONFIG_NUMA
3429 } else if (!strcmp(this_char,"mpol")) {
3430 mpol_put(mpol);
3431 mpol = NULL;
3432 if (mpol_parse_str(value, &mpol))
3433 goto bad_val;
3434#endif
3435 } else {
3436 pr_err("tmpfs: Bad mount option %s\n", this_char);
3437 goto error;
3438 }
3439 }
3440 sbinfo->mpol = mpol;
3441 return 0;
3442
3443bad_val:
3444 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3445 value, this_char);
3446error:
3447 mpol_put(mpol);
3448 return 1;
3449
3450}
3451
3452static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3453{
3454 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3455 struct shmem_sb_info config = *sbinfo;
3456 unsigned long inodes;
3457 int error = -EINVAL;
3458
3459 config.mpol = NULL;
3460 if (shmem_parse_options(data, &config, true))
3461 return error;
3462
3463 spin_lock(&sbinfo->stat_lock);
3464 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3465 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3466 goto out;
3467 if (config.max_inodes < inodes)
3468 goto out;
3469 /*
3470 * Those tests disallow limited->unlimited while any are in use;
3471 * but we must separately disallow unlimited->limited, because
3472 * in that case we have no record of how much is already in use.
3473 */
3474 if (config.max_blocks && !sbinfo->max_blocks)
3475 goto out;
3476 if (config.max_inodes && !sbinfo->max_inodes)
3477 goto out;
3478
3479 error = 0;
3480 sbinfo->huge = config.huge;
3481 sbinfo->max_blocks = config.max_blocks;
3482 sbinfo->max_inodes = config.max_inodes;
3483 sbinfo->free_inodes = config.max_inodes - inodes;
3484
3485 /*
3486 * Preserve previous mempolicy unless mpol remount option was specified.
3487 */
3488 if (config.mpol) {
3489 mpol_put(sbinfo->mpol);
3490 sbinfo->mpol = config.mpol; /* transfers initial ref */
3491 }
3492out:
3493 spin_unlock(&sbinfo->stat_lock);
3494 return error;
3495}
3496
3497static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3498{
3499 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3500
3501 if (sbinfo->max_blocks != shmem_default_max_blocks())
3502 seq_printf(seq, ",size=%luk",
3503 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3504 if (sbinfo->max_inodes != shmem_default_max_inodes())
3505 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3506 if (sbinfo->mode != (0777 | S_ISVTX))
3507 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3508 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3509 seq_printf(seq, ",uid=%u",
3510 from_kuid_munged(&init_user_ns, sbinfo->uid));
3511 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3512 seq_printf(seq, ",gid=%u",
3513 from_kgid_munged(&init_user_ns, sbinfo->gid));
3514#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3515 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3516 if (sbinfo->huge)
3517 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3518#endif
3519 shmem_show_mpol(seq, sbinfo->mpol);
3520 return 0;
3521}
3522
3523#endif /* CONFIG_TMPFS */
3524
3525static void shmem_put_super(struct super_block *sb)
3526{
3527 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3528
3529 percpu_counter_destroy(&sbinfo->used_blocks);
3530 mpol_put(sbinfo->mpol);
3531 kfree(sbinfo);
3532 sb->s_fs_info = NULL;
3533}
3534
3535int shmem_fill_super(struct super_block *sb, void *data, int silent)
3536{
3537 struct inode *inode;
3538 struct shmem_sb_info *sbinfo;
3539 int err = -ENOMEM;
3540
3541 /* Round up to L1_CACHE_BYTES to resist false sharing */
3542 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3543 L1_CACHE_BYTES), GFP_KERNEL);
3544 if (!sbinfo)
3545 return -ENOMEM;
3546
3547 sbinfo->mode = 0777 | S_ISVTX;
3548 sbinfo->uid = current_fsuid();
3549 sbinfo->gid = current_fsgid();
3550 sb->s_fs_info = sbinfo;
3551
3552#ifdef CONFIG_TMPFS
3553 /*
3554 * Per default we only allow half of the physical ram per
3555 * tmpfs instance, limiting inodes to one per page of lowmem;
3556 * but the internal instance is left unlimited.
3557 */
3558 if (!(sb->s_flags & SB_KERNMOUNT)) {
3559 sbinfo->max_blocks = shmem_default_max_blocks();
3560 sbinfo->max_inodes = shmem_default_max_inodes();
3561 if (shmem_parse_options(data, sbinfo, false)) {
3562 err = -EINVAL;
3563 goto failed;
3564 }
3565 } else {
3566 sb->s_flags |= SB_NOUSER;
3567 }
3568 sb->s_export_op = &shmem_export_ops;
3569 sb->s_flags |= SB_NOSEC;
3570#else
3571 sb->s_flags |= SB_NOUSER;
3572#endif
3573
3574 spin_lock_init(&sbinfo->stat_lock);
3575 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3576 goto failed;
3577 sbinfo->free_inodes = sbinfo->max_inodes;
3578 spin_lock_init(&sbinfo->shrinklist_lock);
3579 INIT_LIST_HEAD(&sbinfo->shrinklist);
3580
3581 sb->s_maxbytes = MAX_LFS_FILESIZE;
3582 sb->s_blocksize = PAGE_SIZE;
3583 sb->s_blocksize_bits = PAGE_SHIFT;
3584 sb->s_magic = TMPFS_MAGIC;
3585 sb->s_op = &shmem_ops;
3586 sb->s_time_gran = 1;
3587#ifdef CONFIG_TMPFS_XATTR
3588 sb->s_xattr = shmem_xattr_handlers;
3589#endif
3590#ifdef CONFIG_TMPFS_POSIX_ACL
3591 sb->s_flags |= SB_POSIXACL;
3592#endif
3593 uuid_gen(&sb->s_uuid);
3594
3595 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3596 if (!inode)
3597 goto failed;
3598 inode->i_uid = sbinfo->uid;
3599 inode->i_gid = sbinfo->gid;
3600 sb->s_root = d_make_root(inode);
3601 if (!sb->s_root)
3602 goto failed;
3603 return 0;
3604
3605failed:
3606 shmem_put_super(sb);
3607 return err;
3608}
3609
3610static struct kmem_cache *shmem_inode_cachep;
3611
3612static struct inode *shmem_alloc_inode(struct super_block *sb)
3613{
3614 struct shmem_inode_info *info;
3615 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3616 if (!info)
3617 return NULL;
3618 return &info->vfs_inode;
3619}
3620
3621static void shmem_destroy_callback(struct rcu_head *head)
3622{
3623 struct inode *inode = container_of(head, struct inode, i_rcu);
3624 if (S_ISLNK(inode->i_mode))
3625 kfree(inode->i_link);
3626 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3627}
3628
3629static void shmem_destroy_inode(struct inode *inode)
3630{
3631 if (S_ISREG(inode->i_mode))
3632 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3633 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3634}
3635
3636static void shmem_init_inode(void *foo)
3637{
3638 struct shmem_inode_info *info = foo;
3639 inode_init_once(&info->vfs_inode);
3640}
3641
3642static void shmem_init_inodecache(void)
3643{
3644 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3645 sizeof(struct shmem_inode_info),
3646 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3647}
3648
3649static void shmem_destroy_inodecache(void)
3650{
3651 kmem_cache_destroy(shmem_inode_cachep);
3652}
3653
3654static const struct address_space_operations shmem_aops = {
3655 .writepage = shmem_writepage,
3656 .set_page_dirty = __set_page_dirty_no_writeback,
3657#ifdef CONFIG_TMPFS
3658 .write_begin = shmem_write_begin,
3659 .write_end = shmem_write_end,
3660#endif
3661#ifdef CONFIG_MIGRATION
3662 .migratepage = migrate_page,
3663#endif
3664 .error_remove_page = generic_error_remove_page,
3665};
3666
3667static const struct file_operations shmem_file_operations = {
3668 .mmap = shmem_mmap,
3669 .get_unmapped_area = shmem_get_unmapped_area,
3670#ifdef CONFIG_TMPFS
3671 .llseek = shmem_file_llseek,
3672 .read_iter = shmem_file_read_iter,
3673 .write_iter = generic_file_write_iter,
3674 .fsync = noop_fsync,
3675 .splice_read = generic_file_splice_read,
3676 .splice_write = iter_file_splice_write,
3677 .fallocate = shmem_fallocate,
3678#endif
3679};
3680
3681static const struct inode_operations shmem_inode_operations = {
3682 .getattr = shmem_getattr,
3683 .setattr = shmem_setattr,
3684#ifdef CONFIG_TMPFS_XATTR
3685 .listxattr = shmem_listxattr,
3686 .set_acl = simple_set_acl,
3687#endif
3688};
3689
3690static const struct inode_operations shmem_dir_inode_operations = {
3691#ifdef CONFIG_TMPFS
3692 .create = shmem_create,
3693 .lookup = simple_lookup,
3694 .link = shmem_link,
3695 .unlink = shmem_unlink,
3696 .symlink = shmem_symlink,
3697 .mkdir = shmem_mkdir,
3698 .rmdir = shmem_rmdir,
3699 .mknod = shmem_mknod,
3700 .rename = shmem_rename2,
3701 .tmpfile = shmem_tmpfile,
3702#endif
3703#ifdef CONFIG_TMPFS_XATTR
3704 .listxattr = shmem_listxattr,
3705#endif
3706#ifdef CONFIG_TMPFS_POSIX_ACL
3707 .setattr = shmem_setattr,
3708 .set_acl = simple_set_acl,
3709#endif
3710};
3711
3712static const struct inode_operations shmem_special_inode_operations = {
3713#ifdef CONFIG_TMPFS_XATTR
3714 .listxattr = shmem_listxattr,
3715#endif
3716#ifdef CONFIG_TMPFS_POSIX_ACL
3717 .setattr = shmem_setattr,
3718 .set_acl = simple_set_acl,
3719#endif
3720};
3721
3722static const struct super_operations shmem_ops = {
3723 .alloc_inode = shmem_alloc_inode,
3724 .destroy_inode = shmem_destroy_inode,
3725#ifdef CONFIG_TMPFS
3726 .statfs = shmem_statfs,
3727 .remount_fs = shmem_remount_fs,
3728 .show_options = shmem_show_options,
3729#endif
3730 .evict_inode = shmem_evict_inode,
3731 .drop_inode = generic_delete_inode,
3732 .put_super = shmem_put_super,
3733#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3734 .nr_cached_objects = shmem_unused_huge_count,
3735 .free_cached_objects = shmem_unused_huge_scan,
3736#endif
3737};
3738
3739static const struct vm_operations_struct shmem_vm_ops = {
3740 .fault = shmem_fault,
3741 .map_pages = filemap_map_pages,
3742#ifdef CONFIG_NUMA
3743 .set_policy = shmem_set_policy,
3744 .get_policy = shmem_get_policy,
3745#endif
3746};
3747
3748static struct dentry *shmem_mount(struct file_system_type *fs_type,
3749 int flags, const char *dev_name, void *data)
3750{
3751 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3752}
3753
3754static struct file_system_type shmem_fs_type = {
3755 .owner = THIS_MODULE,
3756 .name = "tmpfs",
3757 .mount = shmem_mount,
3758 .kill_sb = kill_litter_super,
3759 .fs_flags = FS_USERNS_MOUNT,
3760};
3761
3762int __init shmem_init(void)
3763{
3764 int error;
3765
3766 /* If rootfs called this, don't re-init */
3767 if (shmem_inode_cachep)
3768 return 0;
3769
3770 shmem_init_inodecache();
3771
3772 error = register_filesystem(&shmem_fs_type);
3773 if (error) {
3774 pr_err("Could not register tmpfs\n");
3775 goto out2;
3776 }
3777
3778 shm_mnt = kern_mount(&shmem_fs_type);
3779 if (IS_ERR(shm_mnt)) {
3780 error = PTR_ERR(shm_mnt);
3781 pr_err("Could not kern_mount tmpfs\n");
3782 goto out1;
3783 }
3784
3785#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3786 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3787 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3788 else
3789 shmem_huge = 0; /* just in case it was patched */
3790#endif
3791 return 0;
3792
3793out1:
3794 unregister_filesystem(&shmem_fs_type);
3795out2:
3796 shmem_destroy_inodecache();
3797 shm_mnt = ERR_PTR(error);
3798 return error;
3799}
3800
3801#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3802static ssize_t shmem_enabled_show(struct kobject *kobj,
3803 struct kobj_attribute *attr, char *buf)
3804{
3805 int values[] = {
3806 SHMEM_HUGE_ALWAYS,
3807 SHMEM_HUGE_WITHIN_SIZE,
3808 SHMEM_HUGE_ADVISE,
3809 SHMEM_HUGE_NEVER,
3810 SHMEM_HUGE_DENY,
3811 SHMEM_HUGE_FORCE,
3812 };
3813 int i, count;
3814
3815 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3816 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3817
3818 count += sprintf(buf + count, fmt,
3819 shmem_format_huge(values[i]));
3820 }
3821 buf[count - 1] = '\n';
3822 return count;
3823}
3824
3825static ssize_t shmem_enabled_store(struct kobject *kobj,
3826 struct kobj_attribute *attr, const char *buf, size_t count)
3827{
3828 char tmp[16];
3829 int huge;
3830
3831 if (count + 1 > sizeof(tmp))
3832 return -EINVAL;
3833 memcpy(tmp, buf, count);
3834 tmp[count] = '\0';
3835 if (count && tmp[count - 1] == '\n')
3836 tmp[count - 1] = '\0';
3837
3838 huge = shmem_parse_huge(tmp);
3839 if (huge == -EINVAL)
3840 return -EINVAL;
3841 if (!has_transparent_hugepage() &&
3842 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3843 return -EINVAL;
3844
3845 shmem_huge = huge;
3846 if (shmem_huge > SHMEM_HUGE_DENY)
3847 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3848 return count;
3849}
3850
3851struct kobj_attribute shmem_enabled_attr =
3852 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3853#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3854
3855#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3856bool shmem_huge_enabled(struct vm_area_struct *vma)
3857{
3858 struct inode *inode = file_inode(vma->vm_file);
3859 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3860 loff_t i_size;
3861 pgoff_t off;
3862
3863 if (shmem_huge == SHMEM_HUGE_FORCE)
3864 return true;
3865 if (shmem_huge == SHMEM_HUGE_DENY)
3866 return false;
3867 switch (sbinfo->huge) {
3868 case SHMEM_HUGE_NEVER:
3869 return false;
3870 case SHMEM_HUGE_ALWAYS:
3871 return true;
3872 case SHMEM_HUGE_WITHIN_SIZE:
3873 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3874 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3875 if (i_size >= HPAGE_PMD_SIZE &&
3876 i_size >> PAGE_SHIFT >= off)
3877 return true;
3878 /* fall through */
3879 case SHMEM_HUGE_ADVISE:
3880 /* TODO: implement fadvise() hints */
3881 return (vma->vm_flags & VM_HUGEPAGE);
3882 default:
3883 VM_BUG_ON(1);
3884 return false;
3885 }
3886}
3887#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3888
3889#else /* !CONFIG_SHMEM */
3890
3891/*
3892 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3893 *
3894 * This is intended for small system where the benefits of the full
3895 * shmem code (swap-backed and resource-limited) are outweighed by
3896 * their complexity. On systems without swap this code should be
3897 * effectively equivalent, but much lighter weight.
3898 */
3899
3900static struct file_system_type shmem_fs_type = {
3901 .name = "tmpfs",
3902 .mount = ramfs_mount,
3903 .kill_sb = kill_litter_super,
3904 .fs_flags = FS_USERNS_MOUNT,
3905};
3906
3907int __init shmem_init(void)
3908{
3909 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3910
3911 shm_mnt = kern_mount(&shmem_fs_type);
3912 BUG_ON(IS_ERR(shm_mnt));
3913
3914 return 0;
3915}
3916
3917int shmem_unuse(swp_entry_t swap, struct page *page)
3918{
3919 return 0;
3920}
3921
3922int shmem_lock(struct file *file, int lock, struct user_struct *user)
3923{
3924 return 0;
3925}
3926
3927void shmem_unlock_mapping(struct address_space *mapping)
3928{
3929}
3930
3931#ifdef CONFIG_MMU
3932unsigned long shmem_get_unmapped_area(struct file *file,
3933 unsigned long addr, unsigned long len,
3934 unsigned long pgoff, unsigned long flags)
3935{
3936 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3937}
3938#endif
3939
3940void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3941{
3942 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3943}
3944EXPORT_SYMBOL_GPL(shmem_truncate_range);
3945
3946#define shmem_vm_ops generic_file_vm_ops
3947#define shmem_file_operations ramfs_file_operations
3948#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3949#define shmem_acct_size(flags, size) 0
3950#define shmem_unacct_size(flags, size) do {} while (0)
3951
3952#endif /* CONFIG_SHMEM */
3953
3954/* common code */
3955
3956static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3957 unsigned long flags, unsigned int i_flags)
3958{
3959 struct inode *inode;
3960 struct file *res;
3961
3962 if (IS_ERR(mnt))
3963 return ERR_CAST(mnt);
3964
3965 if (size < 0 || size > MAX_LFS_FILESIZE)
3966 return ERR_PTR(-EINVAL);
3967
3968 if (shmem_acct_size(flags, size))
3969 return ERR_PTR(-ENOMEM);
3970
3971 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3972 flags);
3973 if (unlikely(!inode)) {
3974 shmem_unacct_size(flags, size);
3975 return ERR_PTR(-ENOSPC);
3976 }
3977 inode->i_flags |= i_flags;
3978 inode->i_size = size;
3979 clear_nlink(inode); /* It is unlinked */
3980 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3981 if (!IS_ERR(res))
3982 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3983 &shmem_file_operations);
3984 if (IS_ERR(res))
3985 iput(inode);
3986 return res;
3987}
3988
3989/**
3990 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3991 * kernel internal. There will be NO LSM permission checks against the
3992 * underlying inode. So users of this interface must do LSM checks at a
3993 * higher layer. The users are the big_key and shm implementations. LSM
3994 * checks are provided at the key or shm level rather than the inode.
3995 * @name: name for dentry (to be seen in /proc/<pid>/maps
3996 * @size: size to be set for the file
3997 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3998 */
3999struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4000{
4001 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4002}
4003
4004/**
4005 * shmem_file_setup - get an unlinked file living in tmpfs
4006 * @name: name for dentry (to be seen in /proc/<pid>/maps
4007 * @size: size to be set for the file
4008 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4009 */
4010struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4011{
4012 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4013}
4014EXPORT_SYMBOL_GPL(shmem_file_setup);
4015
4016/**
4017 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4018 * @mnt: the tmpfs mount where the file will be created
4019 * @name: name for dentry (to be seen in /proc/<pid>/maps
4020 * @size: size to be set for the file
4021 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4022 */
4023struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4024 loff_t size, unsigned long flags)
4025{
4026 return __shmem_file_setup(mnt, name, size, flags, 0);
4027}
4028EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4029
4030/**
4031 * shmem_zero_setup - setup a shared anonymous mapping
4032 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4033 */
4034int shmem_zero_setup(struct vm_area_struct *vma)
4035{
4036 struct file *file;
4037 loff_t size = vma->vm_end - vma->vm_start;
4038
4039 /*
4040 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4041 * between XFS directory reading and selinux: since this file is only
4042 * accessible to the user through its mapping, use S_PRIVATE flag to
4043 * bypass file security, in the same way as shmem_kernel_file_setup().
4044 */
4045 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4046 if (IS_ERR(file))
4047 return PTR_ERR(file);
4048
4049 if (vma->vm_file)
4050 fput(vma->vm_file);
4051 vma->vm_file = file;
4052 vma->vm_ops = &shmem_vm_ops;
4053
4054 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4055 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4056 (vma->vm_end & HPAGE_PMD_MASK)) {
4057 khugepaged_enter(vma, vma->vm_flags);
4058 }
4059
4060 return 0;
4061}
4062
4063/**
4064 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4065 * @mapping: the page's address_space
4066 * @index: the page index
4067 * @gfp: the page allocator flags to use if allocating
4068 *
4069 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4070 * with any new page allocations done using the specified allocation flags.
4071 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4072 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4073 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4074 *
4075 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4076 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4077 */
4078struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4079 pgoff_t index, gfp_t gfp)
4080{
4081#ifdef CONFIG_SHMEM
4082 struct inode *inode = mapping->host;
4083 struct page *page;
4084 int error;
4085
4086 BUG_ON(mapping->a_ops != &shmem_aops);
4087 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4088 gfp, NULL, NULL, NULL);
4089 if (error)
4090 page = ERR_PTR(error);
4091 else
4092 unlock_page(page);
4093 return page;
4094#else
4095 /*
4096 * The tiny !SHMEM case uses ramfs without swap
4097 */
4098 return read_cache_page_gfp(mapping, index, gfp);
4099#endif
4100}
4101EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);