blob: 3e0f85a9ef4aa7b2565acf9455a8c9046b69caa3 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/mm.h>
18#include <linux/sched/mm.h>
19#include <linux/module.h>
20#include <linux/gfp.h>
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
26#include <linux/vmpressure.h>
27#include <linux/vmstat.h>
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
39#include <linux/compaction.h>
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
42#include <linux/delay.h>
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45#include <linux/memcontrol.h>
46#include <linux/delayacct.h>
47#include <linux/sysctl.h>
48#include <linux/oom.h>
49#include <linux/prefetch.h>
50#include <linux/printk.h>
51#include <linux/dax.h>
52#include <linux/psi.h>
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
58#include <linux/balloon_compaction.h>
59
60#include "internal.h"
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
65struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
74
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
80
81 /* Writepage batching in laptop mode; RECLAIM_WRITE */
82 unsigned int may_writepage:1;
83
84 /* Can mapped pages be reclaimed? */
85 unsigned int may_unmap:1;
86
87 /* Can pages be swapped as part of reclaim? */
88 unsigned int may_swap:1;
89
90 /*
91 * Cgroups are not reclaimed below their configured memory.low,
92 * unless we threaten to OOM. If any cgroups are skipped due to
93 * memory.low and nothing was reclaimed, go back for memory.low.
94 */
95 unsigned int memcg_low_reclaim:1;
96 unsigned int memcg_low_skipped:1;
97
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Allocation order */
104 s8 order;
105
106 /* Scan (total_size >> priority) pages at once */
107 s8 priority;
108
109 /* The highest zone to isolate pages for reclaim from */
110 s8 reclaim_idx;
111
112 /* This context's GFP mask */
113 gfp_t gfp_mask;
114
115 /* Incremented by the number of inactive pages that were scanned */
116 unsigned long nr_scanned;
117
118 /* Number of pages freed so far during a call to shrink_zones() */
119 unsigned long nr_reclaimed;
120
121 struct {
122 unsigned int dirty;
123 unsigned int unqueued_dirty;
124 unsigned int congested;
125 unsigned int writeback;
126 unsigned int immediate;
127 unsigned int file_taken;
128 unsigned int taken;
129 } nr;
130};
131
132#ifdef ARCH_HAS_PREFETCH
133#define prefetch_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetch(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146#ifdef ARCH_HAS_PREFETCHW
147#define prefetchw_prev_lru_page(_page, _base, _field) \
148 do { \
149 if ((_page)->lru.prev != _base) { \
150 struct page *prev; \
151 \
152 prev = lru_to_page(&(_page->lru)); \
153 prefetchw(&prev->_field); \
154 } \
155 } while (0)
156#else
157#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
158#endif
159
160/*
161 * From 0 .. 100. Higher means more swappy.
162 */
163int vm_swappiness = 60;
164/*
165 * The total number of pages which are beyond the high watermark within all
166 * zones.
167 */
168unsigned long vm_total_pages;
169
170static LIST_HEAD(shrinker_list);
171static DECLARE_RWSEM(shrinker_rwsem);
172
173#ifdef CONFIG_MEMCG_KMEM
174
175/*
176 * We allow subsystems to populate their shrinker-related
177 * LRU lists before register_shrinker_prepared() is called
178 * for the shrinker, since we don't want to impose
179 * restrictions on their internal registration order.
180 * In this case shrink_slab_memcg() may find corresponding
181 * bit is set in the shrinkers map.
182 *
183 * This value is used by the function to detect registering
184 * shrinkers and to skip do_shrink_slab() calls for them.
185 */
186#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
187
188static DEFINE_IDR(shrinker_idr);
189static int shrinker_nr_max;
190
191static int prealloc_memcg_shrinker(struct shrinker *shrinker)
192{
193 int id, ret = -ENOMEM;
194
195 down_write(&shrinker_rwsem);
196 /* This may call shrinker, so it must use down_read_trylock() */
197 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
198 if (id < 0)
199 goto unlock;
200
201 if (id >= shrinker_nr_max) {
202 if (memcg_expand_shrinker_maps(id)) {
203 idr_remove(&shrinker_idr, id);
204 goto unlock;
205 }
206
207 shrinker_nr_max = id + 1;
208 }
209 shrinker->id = id;
210 ret = 0;
211unlock:
212 up_write(&shrinker_rwsem);
213 return ret;
214}
215
216static void unregister_memcg_shrinker(struct shrinker *shrinker)
217{
218 int id = shrinker->id;
219
220 BUG_ON(id < 0);
221
222 down_write(&shrinker_rwsem);
223 idr_remove(&shrinker_idr, id);
224 up_write(&shrinker_rwsem);
225}
226#else /* CONFIG_MEMCG_KMEM */
227static int prealloc_memcg_shrinker(struct shrinker *shrinker)
228{
229 return 0;
230}
231
232static void unregister_memcg_shrinker(struct shrinker *shrinker)
233{
234}
235#endif /* CONFIG_MEMCG_KMEM */
236
237#ifdef CONFIG_MEMCG
238static bool global_reclaim(struct scan_control *sc)
239{
240 return !sc->target_mem_cgroup;
241}
242
243/**
244 * sane_reclaim - is the usual dirty throttling mechanism operational?
245 * @sc: scan_control in question
246 *
247 * The normal page dirty throttling mechanism in balance_dirty_pages() is
248 * completely broken with the legacy memcg and direct stalling in
249 * shrink_page_list() is used for throttling instead, which lacks all the
250 * niceties such as fairness, adaptive pausing, bandwidth proportional
251 * allocation and configurability.
252 *
253 * This function tests whether the vmscan currently in progress can assume
254 * that the normal dirty throttling mechanism is operational.
255 */
256static bool sane_reclaim(struct scan_control *sc)
257{
258 struct mem_cgroup *memcg = sc->target_mem_cgroup;
259
260 if (!memcg)
261 return true;
262#ifdef CONFIG_CGROUP_WRITEBACK
263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 return true;
265#endif
266 return false;
267}
268
269static void set_memcg_congestion(pg_data_t *pgdat,
270 struct mem_cgroup *memcg,
271 bool congested)
272{
273 struct mem_cgroup_per_node *mn;
274
275 if (!memcg)
276 return;
277
278 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
279 WRITE_ONCE(mn->congested, congested);
280}
281
282static bool memcg_congested(pg_data_t *pgdat,
283 struct mem_cgroup *memcg)
284{
285 struct mem_cgroup_per_node *mn;
286
287 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
288 return READ_ONCE(mn->congested);
289
290}
291#else
292static bool global_reclaim(struct scan_control *sc)
293{
294 return true;
295}
296
297static bool sane_reclaim(struct scan_control *sc)
298{
299 return true;
300}
301
302static inline void set_memcg_congestion(struct pglist_data *pgdat,
303 struct mem_cgroup *memcg, bool congested)
304{
305}
306
307static inline bool memcg_congested(struct pglist_data *pgdat,
308 struct mem_cgroup *memcg)
309{
310 return false;
311
312}
313#endif
314
315/*
316 * This misses isolated pages which are not accounted for to save counters.
317 * As the data only determines if reclaim or compaction continues, it is
318 * not expected that isolated pages will be a dominating factor.
319 */
320unsigned long zone_reclaimable_pages(struct zone *zone)
321{
322 unsigned long nr;
323
324 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
325 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
326 if (get_nr_swap_pages() > 0)
327 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
328 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
329
330 return nr;
331}
332
333/**
334 * lruvec_lru_size - Returns the number of pages on the given LRU list.
335 * @lruvec: lru vector
336 * @lru: lru to use
337 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
338 */
339unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
340{
341 unsigned long lru_size;
342 int zid;
343
344 if (!mem_cgroup_disabled())
345 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
346 else
347 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
348
349 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
350 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
351 unsigned long size;
352
353 if (!managed_zone(zone))
354 continue;
355
356 if (!mem_cgroup_disabled())
357 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
358 else
359 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
360 NR_ZONE_LRU_BASE + lru);
361 lru_size -= min(size, lru_size);
362 }
363
364 return lru_size;
365
366}
367
368/*
369 * Add a shrinker callback to be called from the vm.
370 */
371int prealloc_shrinker(struct shrinker *shrinker)
372{
373 size_t size = sizeof(*shrinker->nr_deferred);
374
375 if (shrinker->flags & SHRINKER_NUMA_AWARE)
376 size *= nr_node_ids;
377
378 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
379 if (!shrinker->nr_deferred)
380 return -ENOMEM;
381
382 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
383 if (prealloc_memcg_shrinker(shrinker))
384 goto free_deferred;
385 }
386
387 return 0;
388
389free_deferred:
390 kfree(shrinker->nr_deferred);
391 shrinker->nr_deferred = NULL;
392 return -ENOMEM;
393}
394
395void free_prealloced_shrinker(struct shrinker *shrinker)
396{
397 if (!shrinker->nr_deferred)
398 return;
399
400 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 unregister_memcg_shrinker(shrinker);
402
403 kfree(shrinker->nr_deferred);
404 shrinker->nr_deferred = NULL;
405}
406
407void register_shrinker_prepared(struct shrinker *shrinker)
408{
409 down_write(&shrinker_rwsem);
410 list_add_tail(&shrinker->list, &shrinker_list);
411#ifdef CONFIG_MEMCG_KMEM
412 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
413 idr_replace(&shrinker_idr, shrinker, shrinker->id);
414#endif
415 up_write(&shrinker_rwsem);
416}
417
418int register_shrinker(struct shrinker *shrinker)
419{
420 int err = prealloc_shrinker(shrinker);
421
422 if (err)
423 return err;
424 register_shrinker_prepared(shrinker);
425 return 0;
426}
427EXPORT_SYMBOL(register_shrinker);
428
429/*
430 * Remove one
431 */
432void unregister_shrinker(struct shrinker *shrinker)
433{
434 if (!shrinker->nr_deferred)
435 return;
436 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
437 unregister_memcg_shrinker(shrinker);
438 down_write(&shrinker_rwsem);
439 list_del(&shrinker->list);
440 up_write(&shrinker_rwsem);
441 kfree(shrinker->nr_deferred);
442 shrinker->nr_deferred = NULL;
443}
444EXPORT_SYMBOL(unregister_shrinker);
445
446#define SHRINK_BATCH 128
447
448static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
449 struct shrinker *shrinker, int priority)
450{
451 unsigned long freed = 0;
452 unsigned long long delta;
453 long total_scan;
454 long freeable;
455 long nr;
456 long new_nr;
457 int nid = shrinkctl->nid;
458 long batch_size = shrinker->batch ? shrinker->batch
459 : SHRINK_BATCH;
460 long scanned = 0, next_deferred;
461
462 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
463 nid = 0;
464
465 freeable = shrinker->count_objects(shrinker, shrinkctl);
466 if (freeable == 0 || freeable == SHRINK_EMPTY)
467 return freeable;
468
469 /*
470 * copy the current shrinker scan count into a local variable
471 * and zero it so that other concurrent shrinker invocations
472 * don't also do this scanning work.
473 */
474 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
475
476 total_scan = nr;
477 delta = freeable >> priority;
478 delta *= 4;
479 do_div(delta, shrinker->seeks);
480
481 total_scan += delta;
482 if (total_scan < 0) {
483 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
484 shrinker->scan_objects, total_scan);
485 total_scan = freeable;
486 next_deferred = nr;
487 } else
488 next_deferred = total_scan;
489
490 /*
491 * We need to avoid excessive windup on filesystem shrinkers
492 * due to large numbers of GFP_NOFS allocations causing the
493 * shrinkers to return -1 all the time. This results in a large
494 * nr being built up so when a shrink that can do some work
495 * comes along it empties the entire cache due to nr >>>
496 * freeable. This is bad for sustaining a working set in
497 * memory.
498 *
499 * Hence only allow the shrinker to scan the entire cache when
500 * a large delta change is calculated directly.
501 */
502 if (delta < freeable / 4)
503 total_scan = min(total_scan, freeable / 2);
504
505 /*
506 * Avoid risking looping forever due to too large nr value:
507 * never try to free more than twice the estimate number of
508 * freeable entries.
509 */
510 if (total_scan > freeable * 2)
511 total_scan = freeable * 2;
512
513 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
514 freeable, delta, total_scan, priority);
515
516 /*
517 * Normally, we should not scan less than batch_size objects in one
518 * pass to avoid too frequent shrinker calls, but if the slab has less
519 * than batch_size objects in total and we are really tight on memory,
520 * we will try to reclaim all available objects, otherwise we can end
521 * up failing allocations although there are plenty of reclaimable
522 * objects spread over several slabs with usage less than the
523 * batch_size.
524 *
525 * We detect the "tight on memory" situations by looking at the total
526 * number of objects we want to scan (total_scan). If it is greater
527 * than the total number of objects on slab (freeable), we must be
528 * scanning at high prio and therefore should try to reclaim as much as
529 * possible.
530 */
531 while (total_scan >= batch_size ||
532 total_scan >= freeable) {
533 unsigned long ret;
534 unsigned long nr_to_scan = min(batch_size, total_scan);
535
536 shrinkctl->nr_to_scan = nr_to_scan;
537 shrinkctl->nr_scanned = nr_to_scan;
538 ret = shrinker->scan_objects(shrinker, shrinkctl);
539 if (ret == SHRINK_STOP)
540 break;
541 freed += ret;
542
543 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
544 total_scan -= shrinkctl->nr_scanned;
545 scanned += shrinkctl->nr_scanned;
546
547 cond_resched();
548 }
549
550 if (next_deferred >= scanned)
551 next_deferred -= scanned;
552 else
553 next_deferred = 0;
554 /*
555 * move the unused scan count back into the shrinker in a
556 * manner that handles concurrent updates. If we exhausted the
557 * scan, there is no need to do an update.
558 */
559 if (next_deferred > 0)
560 new_nr = atomic_long_add_return(next_deferred,
561 &shrinker->nr_deferred[nid]);
562 else
563 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
564
565 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
566 return freed;
567}
568
569#ifdef CONFIG_MEMCG_KMEM
570static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
571 struct mem_cgroup *memcg, int priority)
572{
573 struct memcg_shrinker_map *map;
574 unsigned long ret, freed = 0;
575 int i;
576
577 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
578 return 0;
579
580 if (!down_read_trylock(&shrinker_rwsem))
581 return 0;
582
583 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
584 true);
585 if (unlikely(!map))
586 goto unlock;
587
588 for_each_set_bit(i, map->map, shrinker_nr_max) {
589 struct shrink_control sc = {
590 .gfp_mask = gfp_mask,
591 .nid = nid,
592 .memcg = memcg,
593 };
594 struct shrinker *shrinker;
595
596 shrinker = idr_find(&shrinker_idr, i);
597 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
598 if (!shrinker)
599 clear_bit(i, map->map);
600 continue;
601 }
602
603 ret = do_shrink_slab(&sc, shrinker, priority);
604 if (ret == SHRINK_EMPTY) {
605 clear_bit(i, map->map);
606 /*
607 * After the shrinker reported that it had no objects to
608 * free, but before we cleared the corresponding bit in
609 * the memcg shrinker map, a new object might have been
610 * added. To make sure, we have the bit set in this
611 * case, we invoke the shrinker one more time and reset
612 * the bit if it reports that it is not empty anymore.
613 * The memory barrier here pairs with the barrier in
614 * memcg_set_shrinker_bit():
615 *
616 * list_lru_add() shrink_slab_memcg()
617 * list_add_tail() clear_bit()
618 * <MB> <MB>
619 * set_bit() do_shrink_slab()
620 */
621 smp_mb__after_atomic();
622 ret = do_shrink_slab(&sc, shrinker, priority);
623 if (ret == SHRINK_EMPTY)
624 ret = 0;
625 else
626 memcg_set_shrinker_bit(memcg, nid, i);
627 }
628 freed += ret;
629
630 if (rwsem_is_contended(&shrinker_rwsem)) {
631 freed = freed ? : 1;
632 break;
633 }
634 }
635unlock:
636 up_read(&shrinker_rwsem);
637 return freed;
638}
639#else /* CONFIG_MEMCG_KMEM */
640static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
641 struct mem_cgroup *memcg, int priority)
642{
643 return 0;
644}
645#endif /* CONFIG_MEMCG_KMEM */
646
647/**
648 * shrink_slab - shrink slab caches
649 * @gfp_mask: allocation context
650 * @nid: node whose slab caches to target
651 * @memcg: memory cgroup whose slab caches to target
652 * @priority: the reclaim priority
653 *
654 * Call the shrink functions to age shrinkable caches.
655 *
656 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
657 * unaware shrinkers will receive a node id of 0 instead.
658 *
659 * @memcg specifies the memory cgroup to target. Unaware shrinkers
660 * are called only if it is the root cgroup.
661 *
662 * @priority is sc->priority, we take the number of objects and >> by priority
663 * in order to get the scan target.
664 *
665 * Returns the number of reclaimed slab objects.
666 */
667static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
668 struct mem_cgroup *memcg,
669 int priority)
670{
671 unsigned long ret, freed = 0;
672 struct shrinker *shrinker;
673
674 /*
675 * The root memcg might be allocated even though memcg is disabled
676 * via "cgroup_disable=memory" boot parameter. This could make
677 * mem_cgroup_is_root() return false, then just run memcg slab
678 * shrink, but skip global shrink. This may result in premature
679 * oom.
680 */
681 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
682 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
683
684 if (!down_read_trylock(&shrinker_rwsem))
685 goto out;
686
687 list_for_each_entry(shrinker, &shrinker_list, list) {
688 struct shrink_control sc = {
689 .gfp_mask = gfp_mask,
690 .nid = nid,
691 .memcg = memcg,
692 };
693
694 ret = do_shrink_slab(&sc, shrinker, priority);
695 if (ret == SHRINK_EMPTY)
696 ret = 0;
697 freed += ret;
698 /*
699 * Bail out if someone want to register a new shrinker to
700 * prevent the regsitration from being stalled for long periods
701 * by parallel ongoing shrinking.
702 */
703 if (rwsem_is_contended(&shrinker_rwsem)) {
704 freed = freed ? : 1;
705 break;
706 }
707 }
708
709 up_read(&shrinker_rwsem);
710out:
711 cond_resched();
712 return freed;
713}
714
715void drop_slab_node(int nid)
716{
717 unsigned long freed;
718
719 do {
720 struct mem_cgroup *memcg = NULL;
721
722 freed = 0;
723 memcg = mem_cgroup_iter(NULL, NULL, NULL);
724 do {
725 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
726 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
727 } while (freed > 10);
728}
729
730void drop_slab(void)
731{
732 int nid;
733
734 for_each_online_node(nid)
735 drop_slab_node(nid);
736}
737
738static inline int is_page_cache_freeable(struct page *page)
739{
740 /*
741 * A freeable page cache page is referenced only by the caller
742 * that isolated the page, the page cache radix tree and
743 * optional buffer heads at page->private.
744 */
745 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
746 HPAGE_PMD_NR : 1;
747 return page_count(page) - page_has_private(page) == 1 + radix_pins;
748}
749
750static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
751{
752 if (current->flags & PF_SWAPWRITE)
753 return 1;
754 if (!inode_write_congested(inode))
755 return 1;
756 if (inode_to_bdi(inode) == current->backing_dev_info)
757 return 1;
758 return 0;
759}
760
761/*
762 * We detected a synchronous write error writing a page out. Probably
763 * -ENOSPC. We need to propagate that into the address_space for a subsequent
764 * fsync(), msync() or close().
765 *
766 * The tricky part is that after writepage we cannot touch the mapping: nothing
767 * prevents it from being freed up. But we have a ref on the page and once
768 * that page is locked, the mapping is pinned.
769 *
770 * We're allowed to run sleeping lock_page() here because we know the caller has
771 * __GFP_FS.
772 */
773static void handle_write_error(struct address_space *mapping,
774 struct page *page, int error)
775{
776 lock_page(page);
777 if (page_mapping(page) == mapping)
778 mapping_set_error(mapping, error);
779 unlock_page(page);
780}
781
782/* possible outcome of pageout() */
783typedef enum {
784 /* failed to write page out, page is locked */
785 PAGE_KEEP,
786 /* move page to the active list, page is locked */
787 PAGE_ACTIVATE,
788 /* page has been sent to the disk successfully, page is unlocked */
789 PAGE_SUCCESS,
790 /* page is clean and locked */
791 PAGE_CLEAN,
792} pageout_t;
793
794/*
795 * pageout is called by shrink_page_list() for each dirty page.
796 * Calls ->writepage().
797 */
798static pageout_t pageout(struct page *page, struct address_space *mapping,
799 struct scan_control *sc)
800{
801 /*
802 * If the page is dirty, only perform writeback if that write
803 * will be non-blocking. To prevent this allocation from being
804 * stalled by pagecache activity. But note that there may be
805 * stalls if we need to run get_block(). We could test
806 * PagePrivate for that.
807 *
808 * If this process is currently in __generic_file_write_iter() against
809 * this page's queue, we can perform writeback even if that
810 * will block.
811 *
812 * If the page is swapcache, write it back even if that would
813 * block, for some throttling. This happens by accident, because
814 * swap_backing_dev_info is bust: it doesn't reflect the
815 * congestion state of the swapdevs. Easy to fix, if needed.
816 */
817 if (!is_page_cache_freeable(page))
818 return PAGE_KEEP;
819 if (!mapping) {
820 /*
821 * Some data journaling orphaned pages can have
822 * page->mapping == NULL while being dirty with clean buffers.
823 */
824 if (page_has_private(page)) {
825 if (try_to_free_buffers(page)) {
826 ClearPageDirty(page);
827 pr_info("%s: orphaned page\n", __func__);
828 return PAGE_CLEAN;
829 }
830 }
831 return PAGE_KEEP;
832 }
833 if (mapping->a_ops->writepage == NULL)
834 return PAGE_ACTIVATE;
835 if (!may_write_to_inode(mapping->host, sc))
836 return PAGE_KEEP;
837
838 if (clear_page_dirty_for_io(page)) {
839 int res;
840 struct writeback_control wbc = {
841 .sync_mode = WB_SYNC_NONE,
842 .nr_to_write = SWAP_CLUSTER_MAX,
843 .range_start = 0,
844 .range_end = LLONG_MAX,
845 .for_reclaim = 1,
846 };
847
848 SetPageReclaim(page);
849 res = mapping->a_ops->writepage(page, &wbc);
850 if (res < 0)
851 handle_write_error(mapping, page, res);
852 if (res == AOP_WRITEPAGE_ACTIVATE) {
853 ClearPageReclaim(page);
854 return PAGE_ACTIVATE;
855 }
856
857 if (!PageWriteback(page)) {
858 /* synchronous write or broken a_ops? */
859 ClearPageReclaim(page);
860 }
861 trace_mm_vmscan_writepage(page);
862 inc_node_page_state(page, NR_VMSCAN_WRITE);
863 return PAGE_SUCCESS;
864 }
865
866 return PAGE_CLEAN;
867}
868
869/*
870 * Same as remove_mapping, but if the page is removed from the mapping, it
871 * gets returned with a refcount of 0.
872 */
873static int __remove_mapping(struct address_space *mapping, struct page *page,
874 bool reclaimed)
875{
876 unsigned long flags;
877 int refcount;
878
879 BUG_ON(!PageLocked(page));
880 BUG_ON(mapping != page_mapping(page));
881
882 xa_lock_irqsave(&mapping->i_pages, flags);
883 /*
884 * The non racy check for a busy page.
885 *
886 * Must be careful with the order of the tests. When someone has
887 * a ref to the page, it may be possible that they dirty it then
888 * drop the reference. So if PageDirty is tested before page_count
889 * here, then the following race may occur:
890 *
891 * get_user_pages(&page);
892 * [user mapping goes away]
893 * write_to(page);
894 * !PageDirty(page) [good]
895 * SetPageDirty(page);
896 * put_page(page);
897 * !page_count(page) [good, discard it]
898 *
899 * [oops, our write_to data is lost]
900 *
901 * Reversing the order of the tests ensures such a situation cannot
902 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
903 * load is not satisfied before that of page->_refcount.
904 *
905 * Note that if SetPageDirty is always performed via set_page_dirty,
906 * and thus under the i_pages lock, then this ordering is not required.
907 */
908 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
909 refcount = 1 + HPAGE_PMD_NR;
910 else
911 refcount = 2;
912 if (!page_ref_freeze(page, refcount))
913 goto cannot_free;
914 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
915 if (unlikely(PageDirty(page))) {
916 page_ref_unfreeze(page, refcount);
917 goto cannot_free;
918 }
919
920 if (PageSwapCache(page)) {
921 swp_entry_t swap = { .val = page_private(page) };
922 mem_cgroup_swapout(page, swap);
923 __delete_from_swap_cache(page);
924 xa_unlock_irqrestore(&mapping->i_pages, flags);
925 put_swap_page(page, swap);
926 } else {
927 void (*freepage)(struct page *);
928 void *shadow = NULL;
929
930 freepage = mapping->a_ops->freepage;
931 /*
932 * Remember a shadow entry for reclaimed file cache in
933 * order to detect refaults, thus thrashing, later on.
934 *
935 * But don't store shadows in an address space that is
936 * already exiting. This is not just an optizimation,
937 * inode reclaim needs to empty out the radix tree or
938 * the nodes are lost. Don't plant shadows behind its
939 * back.
940 *
941 * We also don't store shadows for DAX mappings because the
942 * only page cache pages found in these are zero pages
943 * covering holes, and because we don't want to mix DAX
944 * exceptional entries and shadow exceptional entries in the
945 * same address_space.
946 */
947 if (reclaimed && page_is_file_cache(page) &&
948 !mapping_exiting(mapping) && !dax_mapping(mapping))
949 shadow = workingset_eviction(mapping, page);
950 __delete_from_page_cache(page, shadow);
951 xa_unlock_irqrestore(&mapping->i_pages, flags);
952
953 if (freepage != NULL)
954 freepage(page);
955 }
956
957 return 1;
958
959cannot_free:
960 xa_unlock_irqrestore(&mapping->i_pages, flags);
961 return 0;
962}
963
964/*
965 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
966 * someone else has a ref on the page, abort and return 0. If it was
967 * successfully detached, return 1. Assumes the caller has a single ref on
968 * this page.
969 */
970int remove_mapping(struct address_space *mapping, struct page *page)
971{
972 if (__remove_mapping(mapping, page, false)) {
973 /*
974 * Unfreezing the refcount with 1 rather than 2 effectively
975 * drops the pagecache ref for us without requiring another
976 * atomic operation.
977 */
978 page_ref_unfreeze(page, 1);
979 return 1;
980 }
981 return 0;
982}
983
984/**
985 * putback_lru_page - put previously isolated page onto appropriate LRU list
986 * @page: page to be put back to appropriate lru list
987 *
988 * Add previously isolated @page to appropriate LRU list.
989 * Page may still be unevictable for other reasons.
990 *
991 * lru_lock must not be held, interrupts must be enabled.
992 */
993void putback_lru_page(struct page *page)
994{
995 lru_cache_add(page);
996 put_page(page); /* drop ref from isolate */
997}
998
999enum page_references {
1000 PAGEREF_RECLAIM,
1001 PAGEREF_RECLAIM_CLEAN,
1002 PAGEREF_KEEP,
1003 PAGEREF_ACTIVATE,
1004};
1005
1006static enum page_references page_check_references(struct page *page,
1007 struct scan_control *sc)
1008{
1009 int referenced_ptes, referenced_page;
1010 unsigned long vm_flags;
1011
1012 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1013 &vm_flags);
1014 referenced_page = TestClearPageReferenced(page);
1015
1016 /*
1017 * Mlock lost the isolation race with us. Let try_to_unmap()
1018 * move the page to the unevictable list.
1019 */
1020 if (vm_flags & VM_LOCKED)
1021 return PAGEREF_RECLAIM;
1022
1023 if (referenced_ptes) {
1024 if (PageSwapBacked(page))
1025 return PAGEREF_ACTIVATE;
1026 /*
1027 * All mapped pages start out with page table
1028 * references from the instantiating fault, so we need
1029 * to look twice if a mapped file page is used more
1030 * than once.
1031 *
1032 * Mark it and spare it for another trip around the
1033 * inactive list. Another page table reference will
1034 * lead to its activation.
1035 *
1036 * Note: the mark is set for activated pages as well
1037 * so that recently deactivated but used pages are
1038 * quickly recovered.
1039 */
1040 SetPageReferenced(page);
1041
1042 if (referenced_page || referenced_ptes > 1)
1043 return PAGEREF_ACTIVATE;
1044
1045 /*
1046 * Activate file-backed executable pages after first usage.
1047 */
1048 if (vm_flags & VM_EXEC)
1049 return PAGEREF_ACTIVATE;
1050
1051 return PAGEREF_KEEP;
1052 }
1053
1054 /* Reclaim if clean, defer dirty pages to writeback */
1055 if (referenced_page && !PageSwapBacked(page))
1056 return PAGEREF_RECLAIM_CLEAN;
1057
1058 return PAGEREF_RECLAIM;
1059}
1060
1061/* Check if a page is dirty or under writeback */
1062static void page_check_dirty_writeback(struct page *page,
1063 bool *dirty, bool *writeback)
1064{
1065 struct address_space *mapping;
1066
1067 /*
1068 * Anonymous pages are not handled by flushers and must be written
1069 * from reclaim context. Do not stall reclaim based on them
1070 */
1071 if (!page_is_file_cache(page) ||
1072 (PageAnon(page) && !PageSwapBacked(page))) {
1073 *dirty = false;
1074 *writeback = false;
1075 return;
1076 }
1077
1078 /* By default assume that the page flags are accurate */
1079 *dirty = PageDirty(page);
1080 *writeback = PageWriteback(page);
1081
1082 /* Verify dirty/writeback state if the filesystem supports it */
1083 if (!page_has_private(page))
1084 return;
1085
1086 mapping = page_mapping(page);
1087 if (mapping && mapping->a_ops->is_dirty_writeback)
1088 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1089}
1090
1091/*
1092 * shrink_page_list() returns the number of reclaimed pages
1093 */
1094static unsigned long shrink_page_list(struct list_head *page_list,
1095 struct pglist_data *pgdat,
1096 struct scan_control *sc,
1097 enum ttu_flags ttu_flags,
1098 struct reclaim_stat *stat,
1099 bool force_reclaim)
1100{
1101 LIST_HEAD(ret_pages);
1102 LIST_HEAD(free_pages);
1103 int pgactivate = 0;
1104 unsigned nr_unqueued_dirty = 0;
1105 unsigned nr_dirty = 0;
1106 unsigned nr_congested = 0;
1107 unsigned nr_reclaimed = 0;
1108 unsigned nr_writeback = 0;
1109 unsigned nr_immediate = 0;
1110 unsigned nr_ref_keep = 0;
1111 unsigned nr_unmap_fail = 0;
1112
1113 cond_resched();
1114
1115 while (!list_empty(page_list)) {
1116 struct address_space *mapping;
1117 struct page *page;
1118 int may_enter_fs;
1119 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120 bool dirty, writeback;
1121
1122 cond_resched();
1123
1124 page = lru_to_page(page_list);
1125 list_del(&page->lru);
1126
1127 if (!trylock_page(page))
1128 goto keep;
1129
1130 VM_BUG_ON_PAGE(PageActive(page), page);
1131
1132 sc->nr_scanned++;
1133
1134 if (unlikely(!page_evictable(page)))
1135 goto activate_locked;
1136
1137 if (!sc->may_unmap && page_mapped(page))
1138 goto keep_locked;
1139
1140 /* Double the slab pressure for mapped and swapcache pages */
1141 if ((page_mapped(page) || PageSwapCache(page)) &&
1142 !(PageAnon(page) && !PageSwapBacked(page)))
1143 sc->nr_scanned++;
1144
1145 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1146 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1147
1148 /*
1149 * The number of dirty pages determines if a node is marked
1150 * reclaim_congested which affects wait_iff_congested. kswapd
1151 * will stall and start writing pages if the tail of the LRU
1152 * is all dirty unqueued pages.
1153 */
1154 page_check_dirty_writeback(page, &dirty, &writeback);
1155 if (dirty || writeback)
1156 nr_dirty++;
1157
1158 if (dirty && !writeback)
1159 nr_unqueued_dirty++;
1160
1161 /*
1162 * Treat this page as congested if the underlying BDI is or if
1163 * pages are cycling through the LRU so quickly that the
1164 * pages marked for immediate reclaim are making it to the
1165 * end of the LRU a second time.
1166 */
1167 mapping = page_mapping(page);
1168 if (((dirty || writeback) && mapping &&
1169 inode_write_congested(mapping->host)) ||
1170 (writeback && PageReclaim(page)))
1171 nr_congested++;
1172
1173 /*
1174 * If a page at the tail of the LRU is under writeback, there
1175 * are three cases to consider.
1176 *
1177 * 1) If reclaim is encountering an excessive number of pages
1178 * under writeback and this page is both under writeback and
1179 * PageReclaim then it indicates that pages are being queued
1180 * for IO but are being recycled through the LRU before the
1181 * IO can complete. Waiting on the page itself risks an
1182 * indefinite stall if it is impossible to writeback the
1183 * page due to IO error or disconnected storage so instead
1184 * note that the LRU is being scanned too quickly and the
1185 * caller can stall after page list has been processed.
1186 *
1187 * 2) Global or new memcg reclaim encounters a page that is
1188 * not marked for immediate reclaim, or the caller does not
1189 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1190 * not to fs). In this case mark the page for immediate
1191 * reclaim and continue scanning.
1192 *
1193 * Require may_enter_fs because we would wait on fs, which
1194 * may not have submitted IO yet. And the loop driver might
1195 * enter reclaim, and deadlock if it waits on a page for
1196 * which it is needed to do the write (loop masks off
1197 * __GFP_IO|__GFP_FS for this reason); but more thought
1198 * would probably show more reasons.
1199 *
1200 * 3) Legacy memcg encounters a page that is already marked
1201 * PageReclaim. memcg does not have any dirty pages
1202 * throttling so we could easily OOM just because too many
1203 * pages are in writeback and there is nothing else to
1204 * reclaim. Wait for the writeback to complete.
1205 *
1206 * In cases 1) and 2) we activate the pages to get them out of
1207 * the way while we continue scanning for clean pages on the
1208 * inactive list and refilling from the active list. The
1209 * observation here is that waiting for disk writes is more
1210 * expensive than potentially causing reloads down the line.
1211 * Since they're marked for immediate reclaim, they won't put
1212 * memory pressure on the cache working set any longer than it
1213 * takes to write them to disk.
1214 */
1215 if (PageWriteback(page)) {
1216 /* Case 1 above */
1217 if (current_is_kswapd() &&
1218 PageReclaim(page) &&
1219 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220 nr_immediate++;
1221 goto activate_locked;
1222
1223 /* Case 2 above */
1224 } else if (sane_reclaim(sc) ||
1225 !PageReclaim(page) || !may_enter_fs) {
1226 /*
1227 * This is slightly racy - end_page_writeback()
1228 * might have just cleared PageReclaim, then
1229 * setting PageReclaim here end up interpreted
1230 * as PageReadahead - but that does not matter
1231 * enough to care. What we do want is for this
1232 * page to have PageReclaim set next time memcg
1233 * reclaim reaches the tests above, so it will
1234 * then wait_on_page_writeback() to avoid OOM;
1235 * and it's also appropriate in global reclaim.
1236 */
1237 SetPageReclaim(page);
1238 nr_writeback++;
1239 goto activate_locked;
1240
1241 /* Case 3 above */
1242 } else {
1243 unlock_page(page);
1244 wait_on_page_writeback(page);
1245 /* then go back and try same page again */
1246 list_add_tail(&page->lru, page_list);
1247 continue;
1248 }
1249 }
1250
1251 if (!force_reclaim)
1252 references = page_check_references(page, sc);
1253
1254 switch (references) {
1255 case PAGEREF_ACTIVATE:
1256 goto activate_locked;
1257 case PAGEREF_KEEP:
1258 nr_ref_keep++;
1259 goto keep_locked;
1260 case PAGEREF_RECLAIM:
1261 case PAGEREF_RECLAIM_CLEAN:
1262 ; /* try to reclaim the page below */
1263 }
1264
1265 /*
1266 * Anonymous process memory has backing store?
1267 * Try to allocate it some swap space here.
1268 * Lazyfree page could be freed directly
1269 */
1270 if (PageAnon(page) && PageSwapBacked(page)) {
1271 if (!PageSwapCache(page)) {
1272 if (!(sc->gfp_mask & __GFP_IO))
1273 goto keep_locked;
1274 if (PageTransHuge(page)) {
1275 /* cannot split THP, skip it */
1276 if (!can_split_huge_page(page, NULL))
1277 goto activate_locked;
1278 /*
1279 * Split pages without a PMD map right
1280 * away. Chances are some or all of the
1281 * tail pages can be freed without IO.
1282 */
1283 if (!compound_mapcount(page) &&
1284 split_huge_page_to_list(page,
1285 page_list))
1286 goto activate_locked;
1287 }
1288 if (!add_to_swap(page)) {
1289 if (!PageTransHuge(page))
1290 goto activate_locked;
1291 /* Fallback to swap normal pages */
1292 if (split_huge_page_to_list(page,
1293 page_list))
1294 goto activate_locked;
1295#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1296 count_vm_event(THP_SWPOUT_FALLBACK);
1297#endif
1298 if (!add_to_swap(page))
1299 goto activate_locked;
1300 }
1301
1302 may_enter_fs = 1;
1303
1304 /* Adding to swap updated mapping */
1305 mapping = page_mapping(page);
1306 }
1307 } else if (unlikely(PageTransHuge(page))) {
1308 /* Split file THP */
1309 if (split_huge_page_to_list(page, page_list))
1310 goto keep_locked;
1311 }
1312
1313 /*
1314 * The page is mapped into the page tables of one or more
1315 * processes. Try to unmap it here.
1316 */
1317 if (page_mapped(page)) {
1318 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1319
1320 if (unlikely(PageTransHuge(page)))
1321 flags |= TTU_SPLIT_HUGE_PMD;
1322 if (!try_to_unmap(page, flags)) {
1323 nr_unmap_fail++;
1324 goto activate_locked;
1325 }
1326 }
1327
1328 if (PageDirty(page)) {
1329 /*
1330 * Only kswapd can writeback filesystem pages
1331 * to avoid risk of stack overflow. But avoid
1332 * injecting inefficient single-page IO into
1333 * flusher writeback as much as possible: only
1334 * write pages when we've encountered many
1335 * dirty pages, and when we've already scanned
1336 * the rest of the LRU for clean pages and see
1337 * the same dirty pages again (PageReclaim).
1338 */
1339 if (page_is_file_cache(page) &&
1340 (!current_is_kswapd() || !PageReclaim(page) ||
1341 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1342 /*
1343 * Immediately reclaim when written back.
1344 * Similar in principal to deactivate_page()
1345 * except we already have the page isolated
1346 * and know it's dirty
1347 */
1348 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1349 SetPageReclaim(page);
1350
1351 goto activate_locked;
1352 }
1353
1354 if (references == PAGEREF_RECLAIM_CLEAN)
1355 goto keep_locked;
1356 if (!may_enter_fs)
1357 goto keep_locked;
1358 if (!sc->may_writepage)
1359 goto keep_locked;
1360
1361 /*
1362 * Page is dirty. Flush the TLB if a writable entry
1363 * potentially exists to avoid CPU writes after IO
1364 * starts and then write it out here.
1365 */
1366 try_to_unmap_flush_dirty();
1367 switch (pageout(page, mapping, sc)) {
1368 case PAGE_KEEP:
1369 goto keep_locked;
1370 case PAGE_ACTIVATE:
1371 goto activate_locked;
1372 case PAGE_SUCCESS:
1373 if (PageWriteback(page))
1374 goto keep;
1375 if (PageDirty(page))
1376 goto keep;
1377
1378 /*
1379 * A synchronous write - probably a ramdisk. Go
1380 * ahead and try to reclaim the page.
1381 */
1382 if (!trylock_page(page))
1383 goto keep;
1384 if (PageDirty(page) || PageWriteback(page))
1385 goto keep_locked;
1386 mapping = page_mapping(page);
1387 case PAGE_CLEAN:
1388 ; /* try to free the page below */
1389 }
1390 }
1391
1392 /*
1393 * If the page has buffers, try to free the buffer mappings
1394 * associated with this page. If we succeed we try to free
1395 * the page as well.
1396 *
1397 * We do this even if the page is PageDirty().
1398 * try_to_release_page() does not perform I/O, but it is
1399 * possible for a page to have PageDirty set, but it is actually
1400 * clean (all its buffers are clean). This happens if the
1401 * buffers were written out directly, with submit_bh(). ext3
1402 * will do this, as well as the blockdev mapping.
1403 * try_to_release_page() will discover that cleanness and will
1404 * drop the buffers and mark the page clean - it can be freed.
1405 *
1406 * Rarely, pages can have buffers and no ->mapping. These are
1407 * the pages which were not successfully invalidated in
1408 * truncate_complete_page(). We try to drop those buffers here
1409 * and if that worked, and the page is no longer mapped into
1410 * process address space (page_count == 1) it can be freed.
1411 * Otherwise, leave the page on the LRU so it is swappable.
1412 */
1413 if (page_has_private(page)) {
1414 if (!try_to_release_page(page, sc->gfp_mask))
1415 goto activate_locked;
1416 if (!mapping && page_count(page) == 1) {
1417 unlock_page(page);
1418 if (put_page_testzero(page))
1419 goto free_it;
1420 else {
1421 /*
1422 * rare race with speculative reference.
1423 * the speculative reference will free
1424 * this page shortly, so we may
1425 * increment nr_reclaimed here (and
1426 * leave it off the LRU).
1427 */
1428 nr_reclaimed++;
1429 continue;
1430 }
1431 }
1432 }
1433
1434 if (PageAnon(page) && !PageSwapBacked(page)) {
1435 /* follow __remove_mapping for reference */
1436 if (!page_ref_freeze(page, 1))
1437 goto keep_locked;
1438 if (PageDirty(page)) {
1439 page_ref_unfreeze(page, 1);
1440 goto keep_locked;
1441 }
1442
1443 count_vm_event(PGLAZYFREED);
1444 count_memcg_page_event(page, PGLAZYFREED);
1445 } else if (!mapping || !__remove_mapping(mapping, page, true))
1446 goto keep_locked;
1447 /*
1448 * At this point, we have no other references and there is
1449 * no way to pick any more up (removed from LRU, removed
1450 * from pagecache). Can use non-atomic bitops now (and
1451 * we obviously don't have to worry about waking up a process
1452 * waiting on the page lock, because there are no references.
1453 */
1454 __ClearPageLocked(page);
1455free_it:
1456 nr_reclaimed++;
1457
1458 /*
1459 * Is there need to periodically free_page_list? It would
1460 * appear not as the counts should be low
1461 */
1462 if (unlikely(PageTransHuge(page))) {
1463 mem_cgroup_uncharge(page);
1464 (*get_compound_page_dtor(page))(page);
1465 } else
1466 list_add(&page->lru, &free_pages);
1467 continue;
1468
1469activate_locked:
1470 /* Not a candidate for swapping, so reclaim swap space. */
1471 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1472 PageMlocked(page)))
1473 try_to_free_swap(page);
1474 VM_BUG_ON_PAGE(PageActive(page), page);
1475 if (!PageMlocked(page)) {
1476 SetPageActive(page);
1477 pgactivate++;
1478 count_memcg_page_event(page, PGACTIVATE);
1479 }
1480keep_locked:
1481 unlock_page(page);
1482keep:
1483 list_add(&page->lru, &ret_pages);
1484 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1485 }
1486
1487 mem_cgroup_uncharge_list(&free_pages);
1488 try_to_unmap_flush();
1489 free_unref_page_list(&free_pages);
1490
1491 list_splice(&ret_pages, page_list);
1492 count_vm_events(PGACTIVATE, pgactivate);
1493
1494 if (stat) {
1495 stat->nr_dirty = nr_dirty;
1496 stat->nr_congested = nr_congested;
1497 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1498 stat->nr_writeback = nr_writeback;
1499 stat->nr_immediate = nr_immediate;
1500 stat->nr_activate = pgactivate;
1501 stat->nr_ref_keep = nr_ref_keep;
1502 stat->nr_unmap_fail = nr_unmap_fail;
1503 }
1504 return nr_reclaimed;
1505}
1506
1507unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1508 struct list_head *page_list)
1509{
1510 struct scan_control sc = {
1511 .gfp_mask = GFP_KERNEL,
1512 .priority = DEF_PRIORITY,
1513 .may_unmap = 1,
1514 };
1515 unsigned long ret;
1516 struct page *page, *next;
1517 LIST_HEAD(clean_pages);
1518
1519 list_for_each_entry_safe(page, next, page_list, lru) {
1520 if (page_is_file_cache(page) && !PageDirty(page) &&
1521 !__PageMovable(page) && !PageUnevictable(page)) {
1522 ClearPageActive(page);
1523 list_move(&page->lru, &clean_pages);
1524 }
1525 }
1526
1527 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1528 TTU_IGNORE_ACCESS, NULL, true);
1529 list_splice(&clean_pages, page_list);
1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1531 return ret;
1532}
1533
1534/*
1535 * Attempt to remove the specified page from its LRU. Only take this page
1536 * if it is of the appropriate PageActive status. Pages which are being
1537 * freed elsewhere are also ignored.
1538 *
1539 * page: page to consider
1540 * mode: one of the LRU isolation modes defined above
1541 *
1542 * returns 0 on success, -ve errno on failure.
1543 */
1544int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1545{
1546 int ret = -EINVAL;
1547
1548 /* Only take pages on the LRU. */
1549 if (!PageLRU(page))
1550 return ret;
1551
1552 /* Compaction should not handle unevictable pages but CMA can do so */
1553 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1554 return ret;
1555
1556 ret = -EBUSY;
1557
1558 /*
1559 * To minimise LRU disruption, the caller can indicate that it only
1560 * wants to isolate pages it will be able to operate on without
1561 * blocking - clean pages for the most part.
1562 *
1563 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1564 * that it is possible to migrate without blocking
1565 */
1566 if (mode & ISOLATE_ASYNC_MIGRATE) {
1567 /* All the caller can do on PageWriteback is block */
1568 if (PageWriteback(page))
1569 return ret;
1570
1571 if (PageDirty(page)) {
1572 struct address_space *mapping;
1573 bool migrate_dirty;
1574
1575 /*
1576 * Only pages without mappings or that have a
1577 * ->migratepage callback are possible to migrate
1578 * without blocking. However, we can be racing with
1579 * truncation so it's necessary to lock the page
1580 * to stabilise the mapping as truncation holds
1581 * the page lock until after the page is removed
1582 * from the page cache.
1583 */
1584 if (!trylock_page(page))
1585 return ret;
1586
1587 mapping = page_mapping(page);
1588 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1589 unlock_page(page);
1590 if (!migrate_dirty)
1591 return ret;
1592 }
1593 }
1594
1595 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1596 return ret;
1597
1598 if (likely(get_page_unless_zero(page))) {
1599 /*
1600 * Be careful not to clear PageLRU until after we're
1601 * sure the page is not being freed elsewhere -- the
1602 * page release code relies on it.
1603 */
1604 ClearPageLRU(page);
1605 ret = 0;
1606 }
1607
1608 return ret;
1609}
1610
1611
1612/*
1613 * Update LRU sizes after isolating pages. The LRU size updates must
1614 * be complete before mem_cgroup_update_lru_size due to a santity check.
1615 */
1616static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1617 enum lru_list lru, unsigned long *nr_zone_taken)
1618{
1619 int zid;
1620
1621 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1622 if (!nr_zone_taken[zid])
1623 continue;
1624
1625 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1626#ifdef CONFIG_MEMCG
1627 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1628#endif
1629 }
1630
1631}
1632
1633/*
1634 * zone_lru_lock is heavily contended. Some of the functions that
1635 * shrink the lists perform better by taking out a batch of pages
1636 * and working on them outside the LRU lock.
1637 *
1638 * For pagecache intensive workloads, this function is the hottest
1639 * spot in the kernel (apart from copy_*_user functions).
1640 *
1641 * Appropriate locks must be held before calling this function.
1642 *
1643 * @nr_to_scan: The number of eligible pages to look through on the list.
1644 * @lruvec: The LRU vector to pull pages from.
1645 * @dst: The temp list to put pages on to.
1646 * @nr_scanned: The number of pages that were scanned.
1647 * @sc: The scan_control struct for this reclaim session
1648 * @mode: One of the LRU isolation modes
1649 * @lru: LRU list id for isolating
1650 *
1651 * returns how many pages were moved onto *@dst.
1652 */
1653static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1654 struct lruvec *lruvec, struct list_head *dst,
1655 unsigned long *nr_scanned, struct scan_control *sc,
1656 isolate_mode_t mode, enum lru_list lru)
1657{
1658 struct list_head *src = &lruvec->lists[lru];
1659 unsigned long nr_taken = 0;
1660 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1661 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1662 unsigned long skipped = 0;
1663 unsigned long scan, total_scan, nr_pages;
1664 LIST_HEAD(pages_skipped);
1665
1666 scan = 0;
1667 for (total_scan = 0;
1668 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1669 total_scan++) {
1670 struct page *page;
1671
1672 page = lru_to_page(src);
1673 prefetchw_prev_lru_page(page, src, flags);
1674
1675 VM_BUG_ON_PAGE(!PageLRU(page), page);
1676
1677 if (page_zonenum(page) > sc->reclaim_idx) {
1678 list_move(&page->lru, &pages_skipped);
1679 nr_skipped[page_zonenum(page)]++;
1680 continue;
1681 }
1682
1683 /*
1684 * Do not count skipped pages because that makes the function
1685 * return with no isolated pages if the LRU mostly contains
1686 * ineligible pages. This causes the VM to not reclaim any
1687 * pages, triggering a premature OOM.
1688 */
1689 scan++;
1690 switch (__isolate_lru_page(page, mode)) {
1691 case 0:
1692 nr_pages = hpage_nr_pages(page);
1693 nr_taken += nr_pages;
1694 nr_zone_taken[page_zonenum(page)] += nr_pages;
1695 list_move(&page->lru, dst);
1696 break;
1697
1698 case -EBUSY:
1699 /* else it is being freed elsewhere */
1700 list_move(&page->lru, src);
1701 continue;
1702
1703 default:
1704 BUG();
1705 }
1706 }
1707
1708 /*
1709 * Splice any skipped pages to the start of the LRU list. Note that
1710 * this disrupts the LRU order when reclaiming for lower zones but
1711 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1712 * scanning would soon rescan the same pages to skip and put the
1713 * system at risk of premature OOM.
1714 */
1715 if (!list_empty(&pages_skipped)) {
1716 int zid;
1717
1718 list_splice(&pages_skipped, src);
1719 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1720 if (!nr_skipped[zid])
1721 continue;
1722
1723 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1724 skipped += nr_skipped[zid];
1725 }
1726 }
1727 *nr_scanned = total_scan;
1728 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1729 total_scan, skipped, nr_taken, mode, lru);
1730 update_lru_sizes(lruvec, lru, nr_zone_taken);
1731 return nr_taken;
1732}
1733
1734/**
1735 * isolate_lru_page - tries to isolate a page from its LRU list
1736 * @page: page to isolate from its LRU list
1737 *
1738 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1739 * vmstat statistic corresponding to whatever LRU list the page was on.
1740 *
1741 * Returns 0 if the page was removed from an LRU list.
1742 * Returns -EBUSY if the page was not on an LRU list.
1743 *
1744 * The returned page will have PageLRU() cleared. If it was found on
1745 * the active list, it will have PageActive set. If it was found on
1746 * the unevictable list, it will have the PageUnevictable bit set. That flag
1747 * may need to be cleared by the caller before letting the page go.
1748 *
1749 * The vmstat statistic corresponding to the list on which the page was
1750 * found will be decremented.
1751 *
1752 * Restrictions:
1753 *
1754 * (1) Must be called with an elevated refcount on the page. This is a
1755 * fundamentnal difference from isolate_lru_pages (which is called
1756 * without a stable reference).
1757 * (2) the lru_lock must not be held.
1758 * (3) interrupts must be enabled.
1759 */
1760int isolate_lru_page(struct page *page)
1761{
1762 int ret = -EBUSY;
1763
1764 VM_BUG_ON_PAGE(!page_count(page), page);
1765 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1766
1767 if (PageLRU(page)) {
1768 struct zone *zone = page_zone(page);
1769 struct lruvec *lruvec;
1770
1771 spin_lock_irq(zone_lru_lock(zone));
1772 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1773 if (PageLRU(page)) {
1774 int lru = page_lru(page);
1775 get_page(page);
1776 ClearPageLRU(page);
1777 del_page_from_lru_list(page, lruvec, lru);
1778 ret = 0;
1779 }
1780 spin_unlock_irq(zone_lru_lock(zone));
1781 }
1782 return ret;
1783}
1784
1785/*
1786 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1787 * then get resheduled. When there are massive number of tasks doing page
1788 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1789 * the LRU list will go small and be scanned faster than necessary, leading to
1790 * unnecessary swapping, thrashing and OOM.
1791 */
1792static int too_many_isolated(struct pglist_data *pgdat, int file,
1793 struct scan_control *sc)
1794{
1795 unsigned long inactive, isolated;
1796
1797 if (current_is_kswapd())
1798 return 0;
1799
1800 if (!sane_reclaim(sc))
1801 return 0;
1802
1803 if (file) {
1804 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1805 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1806 } else {
1807 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1808 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1809 }
1810
1811 /*
1812 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1813 * won't get blocked by normal direct-reclaimers, forming a circular
1814 * deadlock.
1815 */
1816 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1817 inactive >>= 3;
1818
1819 return isolated > inactive;
1820}
1821
1822static noinline_for_stack void
1823putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1824{
1825 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1826 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1827 LIST_HEAD(pages_to_free);
1828
1829 /*
1830 * Put back any unfreeable pages.
1831 */
1832 while (!list_empty(page_list)) {
1833 struct page *page = lru_to_page(page_list);
1834 int lru;
1835
1836 VM_BUG_ON_PAGE(PageLRU(page), page);
1837 list_del(&page->lru);
1838 if (unlikely(!page_evictable(page))) {
1839 spin_unlock_irq(&pgdat->lru_lock);
1840 putback_lru_page(page);
1841 spin_lock_irq(&pgdat->lru_lock);
1842 continue;
1843 }
1844
1845 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1846
1847 SetPageLRU(page);
1848 lru = page_lru(page);
1849 add_page_to_lru_list(page, lruvec, lru);
1850
1851 if (is_active_lru(lru)) {
1852 int file = is_file_lru(lru);
1853 int numpages = hpage_nr_pages(page);
1854 reclaim_stat->recent_rotated[file] += numpages;
1855 }
1856 if (put_page_testzero(page)) {
1857 __ClearPageLRU(page);
1858 __ClearPageActive(page);
1859 del_page_from_lru_list(page, lruvec, lru);
1860
1861 if (unlikely(PageCompound(page))) {
1862 spin_unlock_irq(&pgdat->lru_lock);
1863 mem_cgroup_uncharge(page);
1864 (*get_compound_page_dtor(page))(page);
1865 spin_lock_irq(&pgdat->lru_lock);
1866 } else
1867 list_add(&page->lru, &pages_to_free);
1868 }
1869 }
1870
1871 /*
1872 * To save our caller's stack, now use input list for pages to free.
1873 */
1874 list_splice(&pages_to_free, page_list);
1875}
1876
1877/*
1878 * If a kernel thread (such as nfsd for loop-back mounts) services
1879 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1880 * In that case we should only throttle if the backing device it is
1881 * writing to is congested. In other cases it is safe to throttle.
1882 */
1883static int current_may_throttle(void)
1884{
1885 return !(current->flags & PF_LESS_THROTTLE) ||
1886 current->backing_dev_info == NULL ||
1887 bdi_write_congested(current->backing_dev_info);
1888}
1889
1890/*
1891 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1892 * of reclaimed pages
1893 */
1894static noinline_for_stack unsigned long
1895shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1896 struct scan_control *sc, enum lru_list lru)
1897{
1898 LIST_HEAD(page_list);
1899 unsigned long nr_scanned;
1900 unsigned long nr_reclaimed = 0;
1901 unsigned long nr_taken;
1902 struct reclaim_stat stat = {};
1903 isolate_mode_t isolate_mode = 0;
1904 int file = is_file_lru(lru);
1905 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1906 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1907 bool stalled = false;
1908
1909 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1910 if (stalled)
1911 return 0;
1912
1913 /* wait a bit for the reclaimer. */
1914 msleep(100);
1915 stalled = true;
1916
1917 /* We are about to die and free our memory. Return now. */
1918 if (fatal_signal_pending(current))
1919 return SWAP_CLUSTER_MAX;
1920 }
1921
1922 lru_add_drain();
1923
1924 if (!sc->may_unmap)
1925 isolate_mode |= ISOLATE_UNMAPPED;
1926
1927 spin_lock_irq(&pgdat->lru_lock);
1928
1929 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1930 &nr_scanned, sc, isolate_mode, lru);
1931
1932 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1933 reclaim_stat->recent_scanned[file] += nr_taken;
1934
1935 if (current_is_kswapd()) {
1936 if (global_reclaim(sc))
1937 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1938 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1939 nr_scanned);
1940 } else {
1941 if (global_reclaim(sc))
1942 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1943 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1944 nr_scanned);
1945 }
1946 spin_unlock_irq(&pgdat->lru_lock);
1947
1948 if (nr_taken == 0)
1949 return 0;
1950
1951 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1952 &stat, false);
1953
1954 spin_lock_irq(&pgdat->lru_lock);
1955
1956 if (current_is_kswapd()) {
1957 if (global_reclaim(sc))
1958 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1959 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1960 nr_reclaimed);
1961 } else {
1962 if (global_reclaim(sc))
1963 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1964 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1965 nr_reclaimed);
1966 }
1967
1968 putback_inactive_pages(lruvec, &page_list);
1969
1970 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1971
1972 spin_unlock_irq(&pgdat->lru_lock);
1973
1974 mem_cgroup_uncharge_list(&page_list);
1975 free_unref_page_list(&page_list);
1976
1977 /*
1978 * If dirty pages are scanned that are not queued for IO, it
1979 * implies that flushers are not doing their job. This can
1980 * happen when memory pressure pushes dirty pages to the end of
1981 * the LRU before the dirty limits are breached and the dirty
1982 * data has expired. It can also happen when the proportion of
1983 * dirty pages grows not through writes but through memory
1984 * pressure reclaiming all the clean cache. And in some cases,
1985 * the flushers simply cannot keep up with the allocation
1986 * rate. Nudge the flusher threads in case they are asleep.
1987 */
1988 if (stat.nr_unqueued_dirty == nr_taken)
1989 wakeup_flusher_threads(WB_REASON_VMSCAN);
1990
1991 sc->nr.dirty += stat.nr_dirty;
1992 sc->nr.congested += stat.nr_congested;
1993 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1994 sc->nr.writeback += stat.nr_writeback;
1995 sc->nr.immediate += stat.nr_immediate;
1996 sc->nr.taken += nr_taken;
1997 if (file)
1998 sc->nr.file_taken += nr_taken;
1999
2000 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2001 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2002 return nr_reclaimed;
2003}
2004
2005/*
2006 * This moves pages from the active list to the inactive list.
2007 *
2008 * We move them the other way if the page is referenced by one or more
2009 * processes, from rmap.
2010 *
2011 * If the pages are mostly unmapped, the processing is fast and it is
2012 * appropriate to hold zone_lru_lock across the whole operation. But if
2013 * the pages are mapped, the processing is slow (page_referenced()) so we
2014 * should drop zone_lru_lock around each page. It's impossible to balance
2015 * this, so instead we remove the pages from the LRU while processing them.
2016 * It is safe to rely on PG_active against the non-LRU pages in here because
2017 * nobody will play with that bit on a non-LRU page.
2018 *
2019 * The downside is that we have to touch page->_refcount against each page.
2020 * But we had to alter page->flags anyway.
2021 *
2022 * Returns the number of pages moved to the given lru.
2023 */
2024
2025static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2026 struct list_head *list,
2027 struct list_head *pages_to_free,
2028 enum lru_list lru)
2029{
2030 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2031 struct page *page;
2032 int nr_pages;
2033 int nr_moved = 0;
2034
2035 while (!list_empty(list)) {
2036 page = lru_to_page(list);
2037 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2038
2039 VM_BUG_ON_PAGE(PageLRU(page), page);
2040 SetPageLRU(page);
2041
2042 nr_pages = hpage_nr_pages(page);
2043 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2044 list_move(&page->lru, &lruvec->lists[lru]);
2045
2046 if (put_page_testzero(page)) {
2047 __ClearPageLRU(page);
2048 __ClearPageActive(page);
2049 del_page_from_lru_list(page, lruvec, lru);
2050
2051 if (unlikely(PageCompound(page))) {
2052 spin_unlock_irq(&pgdat->lru_lock);
2053 mem_cgroup_uncharge(page);
2054 (*get_compound_page_dtor(page))(page);
2055 spin_lock_irq(&pgdat->lru_lock);
2056 } else
2057 list_add(&page->lru, pages_to_free);
2058 } else {
2059 nr_moved += nr_pages;
2060 }
2061 }
2062
2063 if (!is_active_lru(lru)) {
2064 __count_vm_events(PGDEACTIVATE, nr_moved);
2065 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2066 nr_moved);
2067 }
2068
2069 return nr_moved;
2070}
2071
2072static void shrink_active_list(unsigned long nr_to_scan,
2073 struct lruvec *lruvec,
2074 struct scan_control *sc,
2075 enum lru_list lru)
2076{
2077 unsigned long nr_taken;
2078 unsigned long nr_scanned;
2079 unsigned long vm_flags;
2080 LIST_HEAD(l_hold); /* The pages which were snipped off */
2081 LIST_HEAD(l_active);
2082 LIST_HEAD(l_inactive);
2083 struct page *page;
2084 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2085 unsigned nr_deactivate, nr_activate;
2086 unsigned nr_rotated = 0;
2087 isolate_mode_t isolate_mode = 0;
2088 int file = is_file_lru(lru);
2089 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2090
2091 lru_add_drain();
2092
2093 if (!sc->may_unmap)
2094 isolate_mode |= ISOLATE_UNMAPPED;
2095
2096 spin_lock_irq(&pgdat->lru_lock);
2097
2098 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2099 &nr_scanned, sc, isolate_mode, lru);
2100
2101 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2102 reclaim_stat->recent_scanned[file] += nr_taken;
2103
2104 __count_vm_events(PGREFILL, nr_scanned);
2105 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2106
2107 spin_unlock_irq(&pgdat->lru_lock);
2108
2109 while (!list_empty(&l_hold)) {
2110 cond_resched();
2111 page = lru_to_page(&l_hold);
2112 list_del(&page->lru);
2113
2114 if (unlikely(!page_evictable(page))) {
2115 putback_lru_page(page);
2116 continue;
2117 }
2118
2119 if (unlikely(buffer_heads_over_limit)) {
2120 if (page_has_private(page) && trylock_page(page)) {
2121 if (page_has_private(page))
2122 try_to_release_page(page, 0);
2123 unlock_page(page);
2124 }
2125 }
2126
2127 if (page_referenced(page, 0, sc->target_mem_cgroup,
2128 &vm_flags)) {
2129 nr_rotated += hpage_nr_pages(page);
2130 /*
2131 * Identify referenced, file-backed active pages and
2132 * give them one more trip around the active list. So
2133 * that executable code get better chances to stay in
2134 * memory under moderate memory pressure. Anon pages
2135 * are not likely to be evicted by use-once streaming
2136 * IO, plus JVM can create lots of anon VM_EXEC pages,
2137 * so we ignore them here.
2138 */
2139 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2140 list_add(&page->lru, &l_active);
2141 continue;
2142 }
2143 }
2144
2145 ClearPageActive(page); /* we are de-activating */
2146 SetPageWorkingset(page);
2147 list_add(&page->lru, &l_inactive);
2148 }
2149
2150 /*
2151 * Move pages back to the lru list.
2152 */
2153 spin_lock_irq(&pgdat->lru_lock);
2154 /*
2155 * Count referenced pages from currently used mappings as rotated,
2156 * even though only some of them are actually re-activated. This
2157 * helps balance scan pressure between file and anonymous pages in
2158 * get_scan_count.
2159 */
2160 reclaim_stat->recent_rotated[file] += nr_rotated;
2161
2162 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2163 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2164 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2165 spin_unlock_irq(&pgdat->lru_lock);
2166
2167 mem_cgroup_uncharge_list(&l_hold);
2168 free_unref_page_list(&l_hold);
2169 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2170 nr_deactivate, nr_rotated, sc->priority, file);
2171}
2172
2173/*
2174 * The inactive anon list should be small enough that the VM never has
2175 * to do too much work.
2176 *
2177 * The inactive file list should be small enough to leave most memory
2178 * to the established workingset on the scan-resistant active list,
2179 * but large enough to avoid thrashing the aggregate readahead window.
2180 *
2181 * Both inactive lists should also be large enough that each inactive
2182 * page has a chance to be referenced again before it is reclaimed.
2183 *
2184 * If that fails and refaulting is observed, the inactive list grows.
2185 *
2186 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2187 * on this LRU, maintained by the pageout code. An inactive_ratio
2188 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2189 *
2190 * total target max
2191 * memory ratio inactive
2192 * -------------------------------------
2193 * 10MB 1 5MB
2194 * 100MB 1 50MB
2195 * 1GB 3 250MB
2196 * 10GB 10 0.9GB
2197 * 100GB 31 3GB
2198 * 1TB 101 10GB
2199 * 10TB 320 32GB
2200 */
2201static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2202 struct scan_control *sc, bool trace)
2203{
2204 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2205 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2206 enum lru_list inactive_lru = file * LRU_FILE;
2207 unsigned long inactive, active;
2208 unsigned long inactive_ratio;
2209 unsigned long refaults;
2210 unsigned long gb;
2211
2212 /*
2213 * If we don't have swap space, anonymous page deactivation
2214 * is pointless.
2215 */
2216 if (!file && !total_swap_pages)
2217 return false;
2218
2219 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2220 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2221
2222 /*
2223 * When refaults are being observed, it means a new workingset
2224 * is being established. Disable active list protection to get
2225 * rid of the stale workingset quickly.
2226 */
2227 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2228 if (file && lruvec->refaults != refaults) {
2229 inactive_ratio = 0;
2230 } else {
2231 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2232 if (gb)
2233 inactive_ratio = int_sqrt(10 * gb);
2234 else
2235 inactive_ratio = 1;
2236 }
2237
2238 if (trace)
2239 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2240 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2241 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2242 inactive_ratio, file);
2243
2244 return inactive * inactive_ratio < active;
2245}
2246
2247static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2248 struct lruvec *lruvec, struct scan_control *sc)
2249{
2250 if (is_active_lru(lru)) {
2251 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2252 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2253 return 0;
2254 }
2255
2256 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2257}
2258
2259enum scan_balance {
2260 SCAN_EQUAL,
2261 SCAN_FRACT,
2262 SCAN_ANON,
2263 SCAN_FILE,
2264};
2265
2266/*
2267 * Determine how aggressively the anon and file LRU lists should be
2268 * scanned. The relative value of each set of LRU lists is determined
2269 * by looking at the fraction of the pages scanned we did rotate back
2270 * onto the active list instead of evict.
2271 *
2272 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2273 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2274 */
2275static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2276 struct scan_control *sc, unsigned long *nr,
2277 unsigned long *lru_pages)
2278{
2279 int swappiness = mem_cgroup_swappiness(memcg);
2280 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2281 u64 fraction[2];
2282 u64 denominator = 0; /* gcc */
2283 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2284 unsigned long anon_prio, file_prio;
2285 enum scan_balance scan_balance;
2286 unsigned long anon, file;
2287 unsigned long ap, fp;
2288 enum lru_list lru;
2289
2290 /* If we have no swap space, do not bother scanning anon pages. */
2291 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2292 scan_balance = SCAN_FILE;
2293 goto out;
2294 }
2295
2296 /*
2297 * Global reclaim will swap to prevent OOM even with no
2298 * swappiness, but memcg users want to use this knob to
2299 * disable swapping for individual groups completely when
2300 * using the memory controller's swap limit feature would be
2301 * too expensive.
2302 */
2303 if (!global_reclaim(sc) && !swappiness) {
2304 scan_balance = SCAN_FILE;
2305 goto out;
2306 }
2307
2308 /*
2309 * Do not apply any pressure balancing cleverness when the
2310 * system is close to OOM, scan both anon and file equally
2311 * (unless the swappiness setting disagrees with swapping).
2312 */
2313 if (!sc->priority && swappiness) {
2314 scan_balance = SCAN_EQUAL;
2315 goto out;
2316 }
2317
2318 /*
2319 * Prevent the reclaimer from falling into the cache trap: as
2320 * cache pages start out inactive, every cache fault will tip
2321 * the scan balance towards the file LRU. And as the file LRU
2322 * shrinks, so does the window for rotation from references.
2323 * This means we have a runaway feedback loop where a tiny
2324 * thrashing file LRU becomes infinitely more attractive than
2325 * anon pages. Try to detect this based on file LRU size.
2326 */
2327 if (global_reclaim(sc)) {
2328 unsigned long pgdatfile;
2329 unsigned long pgdatfree;
2330 int z;
2331 unsigned long total_high_wmark = 0;
2332
2333 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2334 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2335 node_page_state(pgdat, NR_INACTIVE_FILE);
2336
2337 for (z = 0; z < MAX_NR_ZONES; z++) {
2338 struct zone *zone = &pgdat->node_zones[z];
2339 if (!managed_zone(zone))
2340 continue;
2341
2342 total_high_wmark += high_wmark_pages(zone);
2343 }
2344
2345 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2346 /*
2347 * Force SCAN_ANON if there are enough inactive
2348 * anonymous pages on the LRU in eligible zones.
2349 * Otherwise, the small LRU gets thrashed.
2350 */
2351 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2352 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2353 >> sc->priority) {
2354 scan_balance = SCAN_ANON;
2355 goto out;
2356 }
2357 }
2358 }
2359
2360 /*
2361 * If there is enough inactive page cache, i.e. if the size of the
2362 * inactive list is greater than that of the active list *and* the
2363 * inactive list actually has some pages to scan on this priority, we
2364 * do not reclaim anything from the anonymous working set right now.
2365 * Without the second condition we could end up never scanning an
2366 * lruvec even if it has plenty of old anonymous pages unless the
2367 * system is under heavy pressure.
2368 */
2369 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2370 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2371 scan_balance = SCAN_FILE;
2372 goto out;
2373 }
2374
2375 scan_balance = SCAN_FRACT;
2376
2377 /*
2378 * With swappiness at 100, anonymous and file have the same priority.
2379 * This scanning priority is essentially the inverse of IO cost.
2380 */
2381 anon_prio = swappiness;
2382 file_prio = 200 - anon_prio;
2383
2384 /*
2385 * OK, so we have swap space and a fair amount of page cache
2386 * pages. We use the recently rotated / recently scanned
2387 * ratios to determine how valuable each cache is.
2388 *
2389 * Because workloads change over time (and to avoid overflow)
2390 * we keep these statistics as a floating average, which ends
2391 * up weighing recent references more than old ones.
2392 *
2393 * anon in [0], file in [1]
2394 */
2395
2396 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2397 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2398 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2399 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2400
2401 spin_lock_irq(&pgdat->lru_lock);
2402 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2403 reclaim_stat->recent_scanned[0] /= 2;
2404 reclaim_stat->recent_rotated[0] /= 2;
2405 }
2406
2407 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2408 reclaim_stat->recent_scanned[1] /= 2;
2409 reclaim_stat->recent_rotated[1] /= 2;
2410 }
2411
2412 /*
2413 * The amount of pressure on anon vs file pages is inversely
2414 * proportional to the fraction of recently scanned pages on
2415 * each list that were recently referenced and in active use.
2416 */
2417 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2418 ap /= reclaim_stat->recent_rotated[0] + 1;
2419
2420 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2421 fp /= reclaim_stat->recent_rotated[1] + 1;
2422 spin_unlock_irq(&pgdat->lru_lock);
2423
2424 fraction[0] = ap;
2425 fraction[1] = fp;
2426 denominator = ap + fp + 1;
2427out:
2428 *lru_pages = 0;
2429 for_each_evictable_lru(lru) {
2430 int file = is_file_lru(lru);
2431 unsigned long size;
2432 unsigned long scan;
2433
2434 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2435 scan = size >> sc->priority;
2436 /*
2437 * If the cgroup's already been deleted, make sure to
2438 * scrape out the remaining cache.
2439 */
2440 if (!scan && !mem_cgroup_online(memcg))
2441 scan = min(size, SWAP_CLUSTER_MAX);
2442
2443 switch (scan_balance) {
2444 case SCAN_EQUAL:
2445 /* Scan lists relative to size */
2446 break;
2447 case SCAN_FRACT:
2448 /*
2449 * Scan types proportional to swappiness and
2450 * their relative recent reclaim efficiency.
2451 * Make sure we don't miss the last page
2452 * because of a round-off error.
2453 */
2454 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2455 denominator);
2456 break;
2457 case SCAN_FILE:
2458 case SCAN_ANON:
2459 /* Scan one type exclusively */
2460 if ((scan_balance == SCAN_FILE) != file) {
2461 size = 0;
2462 scan = 0;
2463 }
2464 break;
2465 default:
2466 /* Look ma, no brain */
2467 BUG();
2468 }
2469
2470 *lru_pages += size;
2471 nr[lru] = scan;
2472 }
2473}
2474
2475/*
2476 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2477 */
2478static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2479 struct scan_control *sc, unsigned long *lru_pages)
2480{
2481 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2482 unsigned long nr[NR_LRU_LISTS];
2483 unsigned long targets[NR_LRU_LISTS];
2484 unsigned long nr_to_scan;
2485 enum lru_list lru;
2486 unsigned long nr_reclaimed = 0;
2487 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2488 struct blk_plug plug;
2489 bool scan_adjusted;
2490
2491 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2492
2493 /* Record the original scan target for proportional adjustments later */
2494 memcpy(targets, nr, sizeof(nr));
2495
2496 /*
2497 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2498 * event that can occur when there is little memory pressure e.g.
2499 * multiple streaming readers/writers. Hence, we do not abort scanning
2500 * when the requested number of pages are reclaimed when scanning at
2501 * DEF_PRIORITY on the assumption that the fact we are direct
2502 * reclaiming implies that kswapd is not keeping up and it is best to
2503 * do a batch of work at once. For memcg reclaim one check is made to
2504 * abort proportional reclaim if either the file or anon lru has already
2505 * dropped to zero at the first pass.
2506 */
2507 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2508 sc->priority == DEF_PRIORITY);
2509
2510 blk_start_plug(&plug);
2511 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2512 nr[LRU_INACTIVE_FILE]) {
2513 unsigned long nr_anon, nr_file, percentage;
2514 unsigned long nr_scanned;
2515
2516 for_each_evictable_lru(lru) {
2517 if (nr[lru]) {
2518 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2519 nr[lru] -= nr_to_scan;
2520
2521 nr_reclaimed += shrink_list(lru, nr_to_scan,
2522 lruvec, sc);
2523 }
2524 }
2525
2526 cond_resched();
2527
2528 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2529 continue;
2530
2531 /*
2532 * For kswapd and memcg, reclaim at least the number of pages
2533 * requested. Ensure that the anon and file LRUs are scanned
2534 * proportionally what was requested by get_scan_count(). We
2535 * stop reclaiming one LRU and reduce the amount scanning
2536 * proportional to the original scan target.
2537 */
2538 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2539 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2540
2541 /*
2542 * It's just vindictive to attack the larger once the smaller
2543 * has gone to zero. And given the way we stop scanning the
2544 * smaller below, this makes sure that we only make one nudge
2545 * towards proportionality once we've got nr_to_reclaim.
2546 */
2547 if (!nr_file || !nr_anon)
2548 break;
2549
2550 if (nr_file > nr_anon) {
2551 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2552 targets[LRU_ACTIVE_ANON] + 1;
2553 lru = LRU_BASE;
2554 percentage = nr_anon * 100 / scan_target;
2555 } else {
2556 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2557 targets[LRU_ACTIVE_FILE] + 1;
2558 lru = LRU_FILE;
2559 percentage = nr_file * 100 / scan_target;
2560 }
2561
2562 /* Stop scanning the smaller of the LRU */
2563 nr[lru] = 0;
2564 nr[lru + LRU_ACTIVE] = 0;
2565
2566 /*
2567 * Recalculate the other LRU scan count based on its original
2568 * scan target and the percentage scanning already complete
2569 */
2570 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2571 nr_scanned = targets[lru] - nr[lru];
2572 nr[lru] = targets[lru] * (100 - percentage) / 100;
2573 nr[lru] -= min(nr[lru], nr_scanned);
2574
2575 lru += LRU_ACTIVE;
2576 nr_scanned = targets[lru] - nr[lru];
2577 nr[lru] = targets[lru] * (100 - percentage) / 100;
2578 nr[lru] -= min(nr[lru], nr_scanned);
2579
2580 scan_adjusted = true;
2581 }
2582 blk_finish_plug(&plug);
2583 sc->nr_reclaimed += nr_reclaimed;
2584
2585 /*
2586 * Even if we did not try to evict anon pages at all, we want to
2587 * rebalance the anon lru active/inactive ratio.
2588 */
2589 if (inactive_list_is_low(lruvec, false, sc, true))
2590 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2591 sc, LRU_ACTIVE_ANON);
2592}
2593
2594/* Use reclaim/compaction for costly allocs or under memory pressure */
2595static bool in_reclaim_compaction(struct scan_control *sc)
2596{
2597 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2598 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2599 sc->priority < DEF_PRIORITY - 2))
2600 return true;
2601
2602 return false;
2603}
2604
2605/*
2606 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2607 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2608 * true if more pages should be reclaimed such that when the page allocator
2609 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2610 * It will give up earlier than that if there is difficulty reclaiming pages.
2611 */
2612static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2613 unsigned long nr_reclaimed,
2614 unsigned long nr_scanned,
2615 struct scan_control *sc)
2616{
2617 unsigned long pages_for_compaction;
2618 unsigned long inactive_lru_pages;
2619 int z;
2620
2621 /* If not in reclaim/compaction mode, stop */
2622 if (!in_reclaim_compaction(sc))
2623 return false;
2624
2625 /* Consider stopping depending on scan and reclaim activity */
2626 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2627 /*
2628 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2629 * full LRU list has been scanned and we are still failing
2630 * to reclaim pages. This full LRU scan is potentially
2631 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2632 */
2633 if (!nr_reclaimed && !nr_scanned)
2634 return false;
2635 } else {
2636 /*
2637 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2638 * fail without consequence, stop if we failed to reclaim
2639 * any pages from the last SWAP_CLUSTER_MAX number of
2640 * pages that were scanned. This will return to the
2641 * caller faster at the risk reclaim/compaction and
2642 * the resulting allocation attempt fails
2643 */
2644 if (!nr_reclaimed)
2645 return false;
2646 }
2647
2648 /*
2649 * If we have not reclaimed enough pages for compaction and the
2650 * inactive lists are large enough, continue reclaiming
2651 */
2652 pages_for_compaction = compact_gap(sc->order);
2653 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2654 if (get_nr_swap_pages() > 0)
2655 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2656 if (sc->nr_reclaimed < pages_for_compaction &&
2657 inactive_lru_pages > pages_for_compaction)
2658 return true;
2659
2660 /* If compaction would go ahead or the allocation would succeed, stop */
2661 for (z = 0; z <= sc->reclaim_idx; z++) {
2662 struct zone *zone = &pgdat->node_zones[z];
2663 if (!managed_zone(zone))
2664 continue;
2665
2666 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2667 case COMPACT_SUCCESS:
2668 case COMPACT_CONTINUE:
2669 return false;
2670 default:
2671 /* check next zone */
2672 ;
2673 }
2674 }
2675 return true;
2676}
2677
2678static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2679{
2680 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2681 (memcg && memcg_congested(pgdat, memcg));
2682}
2683
2684static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2685{
2686 struct reclaim_state *reclaim_state = current->reclaim_state;
2687 unsigned long nr_reclaimed, nr_scanned;
2688 bool reclaimable = false;
2689
2690 do {
2691 struct mem_cgroup *root = sc->target_mem_cgroup;
2692 struct mem_cgroup_reclaim_cookie reclaim = {
2693 .pgdat = pgdat,
2694 .priority = sc->priority,
2695 };
2696 unsigned long node_lru_pages = 0;
2697 struct mem_cgroup *memcg;
2698
2699 memset(&sc->nr, 0, sizeof(sc->nr));
2700
2701 nr_reclaimed = sc->nr_reclaimed;
2702 nr_scanned = sc->nr_scanned;
2703
2704 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2705 do {
2706 unsigned long lru_pages;
2707 unsigned long reclaimed;
2708 unsigned long scanned;
2709
2710 switch (mem_cgroup_protected(root, memcg)) {
2711 case MEMCG_PROT_MIN:
2712 /*
2713 * Hard protection.
2714 * If there is no reclaimable memory, OOM.
2715 */
2716 continue;
2717 case MEMCG_PROT_LOW:
2718 /*
2719 * Soft protection.
2720 * Respect the protection only as long as
2721 * there is an unprotected supply
2722 * of reclaimable memory from other cgroups.
2723 */
2724 if (!sc->memcg_low_reclaim) {
2725 sc->memcg_low_skipped = 1;
2726 continue;
2727 }
2728 memcg_memory_event(memcg, MEMCG_LOW);
2729 break;
2730 case MEMCG_PROT_NONE:
2731 break;
2732 }
2733
2734 reclaimed = sc->nr_reclaimed;
2735 scanned = sc->nr_scanned;
2736 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2737 node_lru_pages += lru_pages;
2738
2739 shrink_slab(sc->gfp_mask, pgdat->node_id,
2740 memcg, sc->priority);
2741
2742 /* Record the group's reclaim efficiency */
2743 vmpressure(sc->gfp_mask, memcg, false,
2744 sc->nr_scanned - scanned,
2745 sc->nr_reclaimed - reclaimed);
2746
2747 /*
2748 * Direct reclaim and kswapd have to scan all memory
2749 * cgroups to fulfill the overall scan target for the
2750 * node.
2751 *
2752 * Limit reclaim, on the other hand, only cares about
2753 * nr_to_reclaim pages to be reclaimed and it will
2754 * retry with decreasing priority if one round over the
2755 * whole hierarchy is not sufficient.
2756 */
2757 if (!global_reclaim(sc) &&
2758 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2759 mem_cgroup_iter_break(root, memcg);
2760 break;
2761 }
2762 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2763
2764 if (reclaim_state) {
2765 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2766 reclaim_state->reclaimed_slab = 0;
2767 }
2768
2769 /* Record the subtree's reclaim efficiency */
2770 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2771 sc->nr_scanned - nr_scanned,
2772 sc->nr_reclaimed - nr_reclaimed);
2773
2774 if (sc->nr_reclaimed - nr_reclaimed)
2775 reclaimable = true;
2776
2777 if (current_is_kswapd()) {
2778 /*
2779 * If reclaim is isolating dirty pages under writeback,
2780 * it implies that the long-lived page allocation rate
2781 * is exceeding the page laundering rate. Either the
2782 * global limits are not being effective at throttling
2783 * processes due to the page distribution throughout
2784 * zones or there is heavy usage of a slow backing
2785 * device. The only option is to throttle from reclaim
2786 * context which is not ideal as there is no guarantee
2787 * the dirtying process is throttled in the same way
2788 * balance_dirty_pages() manages.
2789 *
2790 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2791 * count the number of pages under pages flagged for
2792 * immediate reclaim and stall if any are encountered
2793 * in the nr_immediate check below.
2794 */
2795 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2796 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2797
2798 /*
2799 * Tag a node as congested if all the dirty pages
2800 * scanned were backed by a congested BDI and
2801 * wait_iff_congested will stall.
2802 */
2803 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2804 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2805
2806 /* Allow kswapd to start writing pages during reclaim.*/
2807 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2808 set_bit(PGDAT_DIRTY, &pgdat->flags);
2809
2810 /*
2811 * If kswapd scans pages marked marked for immediate
2812 * reclaim and under writeback (nr_immediate), it
2813 * implies that pages are cycling through the LRU
2814 * faster than they are written so also forcibly stall.
2815 */
2816 if (sc->nr.immediate)
2817 congestion_wait(BLK_RW_ASYNC, HZ/10);
2818 }
2819
2820 /*
2821 * Legacy memcg will stall in page writeback so avoid forcibly
2822 * stalling in wait_iff_congested().
2823 */
2824 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2825 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2826 set_memcg_congestion(pgdat, root, true);
2827
2828 /*
2829 * Stall direct reclaim for IO completions if underlying BDIs
2830 * and node is congested. Allow kswapd to continue until it
2831 * starts encountering unqueued dirty pages or cycling through
2832 * the LRU too quickly.
2833 */
2834 if (!sc->hibernation_mode && !current_is_kswapd() &&
2835 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2836 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2837
2838 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2839 sc->nr_scanned - nr_scanned, sc));
2840
2841 /*
2842 * Kswapd gives up on balancing particular nodes after too
2843 * many failures to reclaim anything from them and goes to
2844 * sleep. On reclaim progress, reset the failure counter. A
2845 * successful direct reclaim run will revive a dormant kswapd.
2846 */
2847 if (reclaimable)
2848 pgdat->kswapd_failures = 0;
2849
2850 return reclaimable;
2851}
2852
2853/*
2854 * Returns true if compaction should go ahead for a costly-order request, or
2855 * the allocation would already succeed without compaction. Return false if we
2856 * should reclaim first.
2857 */
2858static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2859{
2860 unsigned long watermark;
2861 enum compact_result suitable;
2862
2863 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2864 if (suitable == COMPACT_SUCCESS)
2865 /* Allocation should succeed already. Don't reclaim. */
2866 return true;
2867 if (suitable == COMPACT_SKIPPED)
2868 /* Compaction cannot yet proceed. Do reclaim. */
2869 return false;
2870
2871 /*
2872 * Compaction is already possible, but it takes time to run and there
2873 * are potentially other callers using the pages just freed. So proceed
2874 * with reclaim to make a buffer of free pages available to give
2875 * compaction a reasonable chance of completing and allocating the page.
2876 * Note that we won't actually reclaim the whole buffer in one attempt
2877 * as the target watermark in should_continue_reclaim() is lower. But if
2878 * we are already above the high+gap watermark, don't reclaim at all.
2879 */
2880 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2881
2882 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2883}
2884
2885/*
2886 * This is the direct reclaim path, for page-allocating processes. We only
2887 * try to reclaim pages from zones which will satisfy the caller's allocation
2888 * request.
2889 *
2890 * If a zone is deemed to be full of pinned pages then just give it a light
2891 * scan then give up on it.
2892 */
2893static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2894{
2895 struct zoneref *z;
2896 struct zone *zone;
2897 unsigned long nr_soft_reclaimed;
2898 unsigned long nr_soft_scanned;
2899 gfp_t orig_mask;
2900 pg_data_t *last_pgdat = NULL;
2901
2902 /*
2903 * If the number of buffer_heads in the machine exceeds the maximum
2904 * allowed level, force direct reclaim to scan the highmem zone as
2905 * highmem pages could be pinning lowmem pages storing buffer_heads
2906 */
2907 orig_mask = sc->gfp_mask;
2908 if (buffer_heads_over_limit) {
2909 sc->gfp_mask |= __GFP_HIGHMEM;
2910 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2911 }
2912
2913 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2914 sc->reclaim_idx, sc->nodemask) {
2915 /*
2916 * Take care memory controller reclaiming has small influence
2917 * to global LRU.
2918 */
2919 if (global_reclaim(sc)) {
2920 if (!cpuset_zone_allowed(zone,
2921 GFP_KERNEL | __GFP_HARDWALL))
2922 continue;
2923
2924 /*
2925 * If we already have plenty of memory free for
2926 * compaction in this zone, don't free any more.
2927 * Even though compaction is invoked for any
2928 * non-zero order, only frequent costly order
2929 * reclamation is disruptive enough to become a
2930 * noticeable problem, like transparent huge
2931 * page allocations.
2932 */
2933 if (IS_ENABLED(CONFIG_COMPACTION) &&
2934 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2935 compaction_ready(zone, sc)) {
2936 sc->compaction_ready = true;
2937 continue;
2938 }
2939
2940 /*
2941 * Shrink each node in the zonelist once. If the
2942 * zonelist is ordered by zone (not the default) then a
2943 * node may be shrunk multiple times but in that case
2944 * the user prefers lower zones being preserved.
2945 */
2946 if (zone->zone_pgdat == last_pgdat)
2947 continue;
2948
2949 /*
2950 * This steals pages from memory cgroups over softlimit
2951 * and returns the number of reclaimed pages and
2952 * scanned pages. This works for global memory pressure
2953 * and balancing, not for a memcg's limit.
2954 */
2955 nr_soft_scanned = 0;
2956 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2957 sc->order, sc->gfp_mask,
2958 &nr_soft_scanned);
2959 sc->nr_reclaimed += nr_soft_reclaimed;
2960 sc->nr_scanned += nr_soft_scanned;
2961 /* need some check for avoid more shrink_zone() */
2962 }
2963
2964 /* See comment about same check for global reclaim above */
2965 if (zone->zone_pgdat == last_pgdat)
2966 continue;
2967 last_pgdat = zone->zone_pgdat;
2968 shrink_node(zone->zone_pgdat, sc);
2969 }
2970
2971 /*
2972 * Restore to original mask to avoid the impact on the caller if we
2973 * promoted it to __GFP_HIGHMEM.
2974 */
2975 sc->gfp_mask = orig_mask;
2976}
2977
2978static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2979{
2980 struct mem_cgroup *memcg;
2981
2982 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2983 do {
2984 unsigned long refaults;
2985 struct lruvec *lruvec;
2986
2987 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2988 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2989 lruvec->refaults = refaults;
2990 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2991}
2992
2993/*
2994 * This is the main entry point to direct page reclaim.
2995 *
2996 * If a full scan of the inactive list fails to free enough memory then we
2997 * are "out of memory" and something needs to be killed.
2998 *
2999 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000 * high - the zone may be full of dirty or under-writeback pages, which this
3001 * caller can't do much about. We kick the writeback threads and take explicit
3002 * naps in the hope that some of these pages can be written. But if the
3003 * allocating task holds filesystem locks which prevent writeout this might not
3004 * work, and the allocation attempt will fail.
3005 *
3006 * returns: 0, if no pages reclaimed
3007 * else, the number of pages reclaimed
3008 */
3009static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010 struct scan_control *sc)
3011{
3012 int initial_priority = sc->priority;
3013 pg_data_t *last_pgdat;
3014 struct zoneref *z;
3015 struct zone *zone;
3016retry:
3017 delayacct_freepages_start();
3018
3019 if (global_reclaim(sc))
3020 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021
3022 do {
3023 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024 sc->priority);
3025 sc->nr_scanned = 0;
3026 shrink_zones(zonelist, sc);
3027
3028 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029 break;
3030
3031 if (sc->compaction_ready)
3032 break;
3033
3034 /*
3035 * If we're getting trouble reclaiming, start doing
3036 * writepage even in laptop mode.
3037 */
3038 if (sc->priority < DEF_PRIORITY - 2)
3039 sc->may_writepage = 1;
3040 } while (--sc->priority >= 0);
3041
3042 last_pgdat = NULL;
3043 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044 sc->nodemask) {
3045 if (zone->zone_pgdat == last_pgdat)
3046 continue;
3047 last_pgdat = zone->zone_pgdat;
3048 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3049 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3050 }
3051
3052 delayacct_freepages_end();
3053
3054 if (sc->nr_reclaimed)
3055 return sc->nr_reclaimed;
3056
3057 /* Aborted reclaim to try compaction? don't OOM, then */
3058 if (sc->compaction_ready)
3059 return 1;
3060
3061 /* Untapped cgroup reserves? Don't OOM, retry. */
3062 if (sc->memcg_low_skipped) {
3063 sc->priority = initial_priority;
3064 sc->memcg_low_reclaim = 1;
3065 sc->memcg_low_skipped = 0;
3066 goto retry;
3067 }
3068
3069 return 0;
3070}
3071
3072static bool allow_direct_reclaim(pg_data_t *pgdat)
3073{
3074 struct zone *zone;
3075 unsigned long pfmemalloc_reserve = 0;
3076 unsigned long free_pages = 0;
3077 int i;
3078 bool wmark_ok;
3079
3080 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3081 return true;
3082
3083 for (i = 0; i <= ZONE_NORMAL; i++) {
3084 zone = &pgdat->node_zones[i];
3085 if (!managed_zone(zone))
3086 continue;
3087
3088 if (!zone_reclaimable_pages(zone))
3089 continue;
3090
3091 pfmemalloc_reserve += min_wmark_pages(zone);
3092 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3093 }
3094
3095 /* If there are no reserves (unexpected config) then do not throttle */
3096 if (!pfmemalloc_reserve)
3097 return true;
3098
3099 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3100
3101 /* kswapd must be awake if processes are being throttled */
3102 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3103 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3104 (enum zone_type)ZONE_NORMAL);
3105 wake_up_interruptible(&pgdat->kswapd_wait);
3106 }
3107
3108 return wmark_ok;
3109}
3110
3111/*
3112 * Throttle direct reclaimers if backing storage is backed by the network
3113 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3114 * depleted. kswapd will continue to make progress and wake the processes
3115 * when the low watermark is reached.
3116 *
3117 * Returns true if a fatal signal was delivered during throttling. If this
3118 * happens, the page allocator should not consider triggering the OOM killer.
3119 */
3120static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3121 nodemask_t *nodemask)
3122{
3123 struct zoneref *z;
3124 struct zone *zone;
3125 pg_data_t *pgdat = NULL;
3126
3127 /*
3128 * Kernel threads should not be throttled as they may be indirectly
3129 * responsible for cleaning pages necessary for reclaim to make forward
3130 * progress. kjournald for example may enter direct reclaim while
3131 * committing a transaction where throttling it could forcing other
3132 * processes to block on log_wait_commit().
3133 */
3134 if (current->flags & PF_KTHREAD)
3135 goto out;
3136
3137 /*
3138 * If a fatal signal is pending, this process should not throttle.
3139 * It should return quickly so it can exit and free its memory
3140 */
3141 if (fatal_signal_pending(current))
3142 goto out;
3143
3144 /*
3145 * Check if the pfmemalloc reserves are ok by finding the first node
3146 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3147 * GFP_KERNEL will be required for allocating network buffers when
3148 * swapping over the network so ZONE_HIGHMEM is unusable.
3149 *
3150 * Throttling is based on the first usable node and throttled processes
3151 * wait on a queue until kswapd makes progress and wakes them. There
3152 * is an affinity then between processes waking up and where reclaim
3153 * progress has been made assuming the process wakes on the same node.
3154 * More importantly, processes running on remote nodes will not compete
3155 * for remote pfmemalloc reserves and processes on different nodes
3156 * should make reasonable progress.
3157 */
3158 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3159 gfp_zone(gfp_mask), nodemask) {
3160 if (zone_idx(zone) > ZONE_NORMAL)
3161 continue;
3162
3163 /* Throttle based on the first usable node */
3164 pgdat = zone->zone_pgdat;
3165 if (allow_direct_reclaim(pgdat))
3166 goto out;
3167 break;
3168 }
3169
3170 /* If no zone was usable by the allocation flags then do not throttle */
3171 if (!pgdat)
3172 goto out;
3173
3174 /* Account for the throttling */
3175 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3176
3177 /*
3178 * If the caller cannot enter the filesystem, it's possible that it
3179 * is due to the caller holding an FS lock or performing a journal
3180 * transaction in the case of a filesystem like ext[3|4]. In this case,
3181 * it is not safe to block on pfmemalloc_wait as kswapd could be
3182 * blocked waiting on the same lock. Instead, throttle for up to a
3183 * second before continuing.
3184 */
3185 if (!(gfp_mask & __GFP_FS)) {
3186 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3187 allow_direct_reclaim(pgdat), HZ);
3188
3189 goto check_pending;
3190 }
3191
3192 /* Throttle until kswapd wakes the process */
3193 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3194 allow_direct_reclaim(pgdat));
3195
3196check_pending:
3197 if (fatal_signal_pending(current))
3198 return true;
3199
3200out:
3201 return false;
3202}
3203
3204unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3205 gfp_t gfp_mask, nodemask_t *nodemask)
3206{
3207 unsigned long nr_reclaimed;
3208 struct scan_control sc = {
3209 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3210 .gfp_mask = current_gfp_context(gfp_mask),
3211 .reclaim_idx = gfp_zone(gfp_mask),
3212 .order = order,
3213 .nodemask = nodemask,
3214 .priority = DEF_PRIORITY,
3215 .may_writepage = !laptop_mode,
3216 .may_unmap = 1,
3217 .may_swap = 1,
3218 };
3219
3220 /*
3221 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3222 * Confirm they are large enough for max values.
3223 */
3224 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3225 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3226 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3227
3228 /*
3229 * Do not enter reclaim if fatal signal was delivered while throttled.
3230 * 1 is returned so that the page allocator does not OOM kill at this
3231 * point.
3232 */
3233 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3234 return 1;
3235
3236 trace_mm_vmscan_direct_reclaim_begin(order,
3237 sc.may_writepage,
3238 sc.gfp_mask,
3239 sc.reclaim_idx);
3240
3241 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3242
3243 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3244
3245 return nr_reclaimed;
3246}
3247
3248#ifdef CONFIG_MEMCG
3249
3250unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3251 gfp_t gfp_mask, bool noswap,
3252 pg_data_t *pgdat,
3253 unsigned long *nr_scanned)
3254{
3255 struct scan_control sc = {
3256 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3257 .target_mem_cgroup = memcg,
3258 .may_writepage = !laptop_mode,
3259 .may_unmap = 1,
3260 .reclaim_idx = MAX_NR_ZONES - 1,
3261 .may_swap = !noswap,
3262 };
3263 unsigned long lru_pages;
3264
3265 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3266 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3267
3268 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3269 sc.may_writepage,
3270 sc.gfp_mask,
3271 sc.reclaim_idx);
3272
3273 /*
3274 * NOTE: Although we can get the priority field, using it
3275 * here is not a good idea, since it limits the pages we can scan.
3276 * if we don't reclaim here, the shrink_node from balance_pgdat
3277 * will pick up pages from other mem cgroup's as well. We hack
3278 * the priority and make it zero.
3279 */
3280 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3281
3282 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3283
3284 *nr_scanned = sc.nr_scanned;
3285 return sc.nr_reclaimed;
3286}
3287
3288unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3289 unsigned long nr_pages,
3290 gfp_t gfp_mask,
3291 bool may_swap)
3292{
3293 struct zonelist *zonelist;
3294 unsigned long nr_reclaimed;
3295 unsigned long pflags;
3296 int nid;
3297 unsigned int noreclaim_flag;
3298 struct scan_control sc = {
3299 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3300 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3302 .reclaim_idx = MAX_NR_ZONES - 1,
3303 .target_mem_cgroup = memcg,
3304 .priority = DEF_PRIORITY,
3305 .may_writepage = !laptop_mode,
3306 .may_unmap = 1,
3307 .may_swap = may_swap,
3308 };
3309
3310 /*
3311 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3312 * take care of from where we get pages. So the node where we start the
3313 * scan does not need to be the current node.
3314 */
3315 nid = mem_cgroup_select_victim_node(memcg);
3316
3317 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3318
3319 trace_mm_vmscan_memcg_reclaim_begin(0,
3320 sc.may_writepage,
3321 sc.gfp_mask,
3322 sc.reclaim_idx);
3323
3324 psi_memstall_enter(&pflags);
3325 noreclaim_flag = memalloc_noreclaim_save();
3326
3327 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3328
3329 memalloc_noreclaim_restore(noreclaim_flag);
3330 psi_memstall_leave(&pflags);
3331
3332 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3333
3334 return nr_reclaimed;
3335}
3336#endif
3337
3338static void age_active_anon(struct pglist_data *pgdat,
3339 struct scan_control *sc)
3340{
3341 struct mem_cgroup *memcg;
3342
3343 if (!total_swap_pages)
3344 return;
3345
3346 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3347 do {
3348 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3349
3350 if (inactive_list_is_low(lruvec, false, sc, true))
3351 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3352 sc, LRU_ACTIVE_ANON);
3353
3354 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3355 } while (memcg);
3356}
3357
3358/*
3359 * Returns true if there is an eligible zone balanced for the request order
3360 * and classzone_idx
3361 */
3362static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3363{
3364 int i;
3365 unsigned long mark = -1;
3366 struct zone *zone;
3367
3368 for (i = 0; i <= classzone_idx; i++) {
3369 zone = pgdat->node_zones + i;
3370
3371 if (!managed_zone(zone))
3372 continue;
3373
3374 mark = high_wmark_pages(zone);
3375 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3376 return true;
3377 }
3378
3379 /*
3380 * If a node has no populated zone within classzone_idx, it does not
3381 * need balancing by definition. This can happen if a zone-restricted
3382 * allocation tries to wake a remote kswapd.
3383 */
3384 if (mark == -1)
3385 return true;
3386
3387 return false;
3388}
3389
3390/* Clear pgdat state for congested, dirty or under writeback. */
3391static void clear_pgdat_congested(pg_data_t *pgdat)
3392{
3393 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3394 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3395 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3396}
3397
3398/*
3399 * Prepare kswapd for sleeping. This verifies that there are no processes
3400 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3401 *
3402 * Returns true if kswapd is ready to sleep
3403 */
3404static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3405{
3406 /*
3407 * The throttled processes are normally woken up in balance_pgdat() as
3408 * soon as allow_direct_reclaim() is true. But there is a potential
3409 * race between when kswapd checks the watermarks and a process gets
3410 * throttled. There is also a potential race if processes get
3411 * throttled, kswapd wakes, a large process exits thereby balancing the
3412 * zones, which causes kswapd to exit balance_pgdat() before reaching
3413 * the wake up checks. If kswapd is going to sleep, no process should
3414 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3415 * the wake up is premature, processes will wake kswapd and get
3416 * throttled again. The difference from wake ups in balance_pgdat() is
3417 * that here we are under prepare_to_wait().
3418 */
3419 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3420 wake_up_all(&pgdat->pfmemalloc_wait);
3421
3422 /* Hopeless node, leave it to direct reclaim */
3423 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3424 return true;
3425
3426 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3427 clear_pgdat_congested(pgdat);
3428 return true;
3429 }
3430
3431 return false;
3432}
3433
3434/*
3435 * kswapd shrinks a node of pages that are at or below the highest usable
3436 * zone that is currently unbalanced.
3437 *
3438 * Returns true if kswapd scanned at least the requested number of pages to
3439 * reclaim or if the lack of progress was due to pages under writeback.
3440 * This is used to determine if the scanning priority needs to be raised.
3441 */
3442static bool kswapd_shrink_node(pg_data_t *pgdat,
3443 struct scan_control *sc)
3444{
3445 struct zone *zone;
3446 int z;
3447
3448 /* Reclaim a number of pages proportional to the number of zones */
3449 sc->nr_to_reclaim = 0;
3450 for (z = 0; z <= sc->reclaim_idx; z++) {
3451 zone = pgdat->node_zones + z;
3452 if (!managed_zone(zone))
3453 continue;
3454
3455 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3456 }
3457
3458 /*
3459 * Historically care was taken to put equal pressure on all zones but
3460 * now pressure is applied based on node LRU order.
3461 */
3462 shrink_node(pgdat, sc);
3463
3464 /*
3465 * Fragmentation may mean that the system cannot be rebalanced for
3466 * high-order allocations. If twice the allocation size has been
3467 * reclaimed then recheck watermarks only at order-0 to prevent
3468 * excessive reclaim. Assume that a process requested a high-order
3469 * can direct reclaim/compact.
3470 */
3471 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3472 sc->order = 0;
3473
3474 return sc->nr_scanned >= sc->nr_to_reclaim;
3475}
3476
3477/*
3478 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3479 * that are eligible for use by the caller until at least one zone is
3480 * balanced.
3481 *
3482 * Returns the order kswapd finished reclaiming at.
3483 *
3484 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3485 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3486 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3487 * or lower is eligible for reclaim until at least one usable zone is
3488 * balanced.
3489 */
3490static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3491{
3492 int i;
3493 unsigned long nr_soft_reclaimed;
3494 unsigned long nr_soft_scanned;
3495 unsigned long pflags;
3496 struct zone *zone;
3497 struct scan_control sc = {
3498 .gfp_mask = GFP_KERNEL,
3499 .order = order,
3500 .priority = DEF_PRIORITY,
3501 .may_writepage = !laptop_mode,
3502 .may_unmap = 1,
3503 .may_swap = 1,
3504 };
3505
3506 psi_memstall_enter(&pflags);
3507 __fs_reclaim_acquire();
3508
3509 count_vm_event(PAGEOUTRUN);
3510
3511 do {
3512 unsigned long nr_reclaimed = sc.nr_reclaimed;
3513 bool raise_priority = true;
3514 bool ret;
3515
3516 sc.reclaim_idx = classzone_idx;
3517
3518 /*
3519 * If the number of buffer_heads exceeds the maximum allowed
3520 * then consider reclaiming from all zones. This has a dual
3521 * purpose -- on 64-bit systems it is expected that
3522 * buffer_heads are stripped during active rotation. On 32-bit
3523 * systems, highmem pages can pin lowmem memory and shrinking
3524 * buffers can relieve lowmem pressure. Reclaim may still not
3525 * go ahead if all eligible zones for the original allocation
3526 * request are balanced to avoid excessive reclaim from kswapd.
3527 */
3528 if (buffer_heads_over_limit) {
3529 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3530 zone = pgdat->node_zones + i;
3531 if (!managed_zone(zone))
3532 continue;
3533
3534 sc.reclaim_idx = i;
3535 break;
3536 }
3537 }
3538
3539 /*
3540 * Only reclaim if there are no eligible zones. Note that
3541 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3542 * have adjusted it.
3543 */
3544 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3545 goto out;
3546
3547 /*
3548 * Do some background aging of the anon list, to give
3549 * pages a chance to be referenced before reclaiming. All
3550 * pages are rotated regardless of classzone as this is
3551 * about consistent aging.
3552 */
3553 age_active_anon(pgdat, &sc);
3554
3555 /*
3556 * If we're getting trouble reclaiming, start doing writepage
3557 * even in laptop mode.
3558 */
3559 if (sc.priority < DEF_PRIORITY - 2)
3560 sc.may_writepage = 1;
3561
3562 /* Call soft limit reclaim before calling shrink_node. */
3563 sc.nr_scanned = 0;
3564 nr_soft_scanned = 0;
3565 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3566 sc.gfp_mask, &nr_soft_scanned);
3567 sc.nr_reclaimed += nr_soft_reclaimed;
3568
3569 /*
3570 * There should be no need to raise the scanning priority if
3571 * enough pages are already being scanned that that high
3572 * watermark would be met at 100% efficiency.
3573 */
3574 if (kswapd_shrink_node(pgdat, &sc))
3575 raise_priority = false;
3576
3577 /*
3578 * If the low watermark is met there is no need for processes
3579 * to be throttled on pfmemalloc_wait as they should not be
3580 * able to safely make forward progress. Wake them
3581 */
3582 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3583 allow_direct_reclaim(pgdat))
3584 wake_up_all(&pgdat->pfmemalloc_wait);
3585
3586 /* Check if kswapd should be suspending */
3587 __fs_reclaim_release();
3588 ret = try_to_freeze();
3589 __fs_reclaim_acquire();
3590 if (ret || kthread_should_stop())
3591 break;
3592
3593 /*
3594 * Raise priority if scanning rate is too low or there was no
3595 * progress in reclaiming pages
3596 */
3597 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3598 if (raise_priority || !nr_reclaimed)
3599 sc.priority--;
3600 } while (sc.priority >= 1);
3601
3602 if (!sc.nr_reclaimed)
3603 pgdat->kswapd_failures++;
3604
3605out:
3606 snapshot_refaults(NULL, pgdat);
3607 __fs_reclaim_release();
3608 psi_memstall_leave(&pflags);
3609 /*
3610 * Return the order kswapd stopped reclaiming at as
3611 * prepare_kswapd_sleep() takes it into account. If another caller
3612 * entered the allocator slow path while kswapd was awake, order will
3613 * remain at the higher level.
3614 */
3615 return sc.order;
3616}
3617
3618/*
3619 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3620 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3621 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3622 * after previous reclaim attempt (node is still unbalanced). In that case
3623 * return the zone index of the previous kswapd reclaim cycle.
3624 */
3625static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3626 enum zone_type prev_classzone_idx)
3627{
3628 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3629 return prev_classzone_idx;
3630 return pgdat->kswapd_classzone_idx;
3631}
3632
3633static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3634 unsigned int classzone_idx)
3635{
3636 long remaining = 0;
3637 DEFINE_WAIT(wait);
3638
3639 if (freezing(current) || kthread_should_stop())
3640 return;
3641
3642 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3643
3644 /*
3645 * Try to sleep for a short interval. Note that kcompactd will only be
3646 * woken if it is possible to sleep for a short interval. This is
3647 * deliberate on the assumption that if reclaim cannot keep an
3648 * eligible zone balanced that it's also unlikely that compaction will
3649 * succeed.
3650 */
3651 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3652 /*
3653 * Compaction records what page blocks it recently failed to
3654 * isolate pages from and skips them in the future scanning.
3655 * When kswapd is going to sleep, it is reasonable to assume
3656 * that pages and compaction may succeed so reset the cache.
3657 */
3658 reset_isolation_suitable(pgdat);
3659
3660 /*
3661 * We have freed the memory, now we should compact it to make
3662 * allocation of the requested order possible.
3663 */
3664 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3665
3666 remaining = schedule_timeout(HZ/10);
3667
3668 /*
3669 * If woken prematurely then reset kswapd_classzone_idx and
3670 * order. The values will either be from a wakeup request or
3671 * the previous request that slept prematurely.
3672 */
3673 if (remaining) {
3674 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3675 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3676 }
3677
3678 finish_wait(&pgdat->kswapd_wait, &wait);
3679 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3680 }
3681
3682 /*
3683 * After a short sleep, check if it was a premature sleep. If not, then
3684 * go fully to sleep until explicitly woken up.
3685 */
3686 if (!remaining &&
3687 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3688 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3689
3690 /*
3691 * vmstat counters are not perfectly accurate and the estimated
3692 * value for counters such as NR_FREE_PAGES can deviate from the
3693 * true value by nr_online_cpus * threshold. To avoid the zone
3694 * watermarks being breached while under pressure, we reduce the
3695 * per-cpu vmstat threshold while kswapd is awake and restore
3696 * them before going back to sleep.
3697 */
3698 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3699
3700 if (!kthread_should_stop())
3701 schedule();
3702
3703 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3704 } else {
3705 if (remaining)
3706 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3707 else
3708 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3709 }
3710 finish_wait(&pgdat->kswapd_wait, &wait);
3711}
3712
3713/*
3714 * The background pageout daemon, started as a kernel thread
3715 * from the init process.
3716 *
3717 * This basically trickles out pages so that we have _some_
3718 * free memory available even if there is no other activity
3719 * that frees anything up. This is needed for things like routing
3720 * etc, where we otherwise might have all activity going on in
3721 * asynchronous contexts that cannot page things out.
3722 *
3723 * If there are applications that are active memory-allocators
3724 * (most normal use), this basically shouldn't matter.
3725 */
3726static int kswapd(void *p)
3727{
3728 unsigned int alloc_order, reclaim_order;
3729 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3730 pg_data_t *pgdat = (pg_data_t*)p;
3731 struct task_struct *tsk = current;
3732
3733 struct reclaim_state reclaim_state = {
3734 .reclaimed_slab = 0,
3735 };
3736 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3737
3738 if (!cpumask_empty(cpumask))
3739 set_cpus_allowed_ptr(tsk, cpumask);
3740 current->reclaim_state = &reclaim_state;
3741
3742 /*
3743 * Tell the memory management that we're a "memory allocator",
3744 * and that if we need more memory we should get access to it
3745 * regardless (see "__alloc_pages()"). "kswapd" should
3746 * never get caught in the normal page freeing logic.
3747 *
3748 * (Kswapd normally doesn't need memory anyway, but sometimes
3749 * you need a small amount of memory in order to be able to
3750 * page out something else, and this flag essentially protects
3751 * us from recursively trying to free more memory as we're
3752 * trying to free the first piece of memory in the first place).
3753 */
3754 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3755 set_freezable();
3756
3757 pgdat->kswapd_order = 0;
3758 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3759 for ( ; ; ) {
3760 bool ret;
3761
3762 alloc_order = reclaim_order = pgdat->kswapd_order;
3763 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3764
3765kswapd_try_sleep:
3766 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3767 classzone_idx);
3768
3769 /* Read the new order and classzone_idx */
3770 alloc_order = reclaim_order = pgdat->kswapd_order;
3771 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3772 pgdat->kswapd_order = 0;
3773 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3774
3775 ret = try_to_freeze();
3776 if (kthread_should_stop())
3777 break;
3778
3779 /*
3780 * We can speed up thawing tasks if we don't call balance_pgdat
3781 * after returning from the refrigerator
3782 */
3783 if (ret)
3784 continue;
3785
3786 /*
3787 * Reclaim begins at the requested order but if a high-order
3788 * reclaim fails then kswapd falls back to reclaiming for
3789 * order-0. If that happens, kswapd will consider sleeping
3790 * for the order it finished reclaiming at (reclaim_order)
3791 * but kcompactd is woken to compact for the original
3792 * request (alloc_order).
3793 */
3794 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3795 alloc_order);
3796 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3797 if (reclaim_order < alloc_order)
3798 goto kswapd_try_sleep;
3799 }
3800
3801 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3802 current->reclaim_state = NULL;
3803
3804 return 0;
3805}
3806
3807/*
3808 * A zone is low on free memory or too fragmented for high-order memory. If
3809 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3810 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3811 * has failed or is not needed, still wake up kcompactd if only compaction is
3812 * needed.
3813 */
3814void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3815 enum zone_type classzone_idx)
3816{
3817 pg_data_t *pgdat;
3818
3819 if (!managed_zone(zone))
3820 return;
3821
3822 if (!cpuset_zone_allowed(zone, gfp_flags))
3823 return;
3824 pgdat = zone->zone_pgdat;
3825
3826 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3827 pgdat->kswapd_classzone_idx = classzone_idx;
3828 else
3829 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3830 classzone_idx);
3831 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3832 if (!waitqueue_active(&pgdat->kswapd_wait))
3833 return;
3834
3835 /* Hopeless node, leave it to direct reclaim if possible */
3836 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3837 pgdat_balanced(pgdat, order, classzone_idx)) {
3838 /*
3839 * There may be plenty of free memory available, but it's too
3840 * fragmented for high-order allocations. Wake up kcompactd
3841 * and rely on compaction_suitable() to determine if it's
3842 * needed. If it fails, it will defer subsequent attempts to
3843 * ratelimit its work.
3844 */
3845 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3846 wakeup_kcompactd(pgdat, order, classzone_idx);
3847 return;
3848 }
3849
3850 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3851 gfp_flags);
3852 wake_up_interruptible(&pgdat->kswapd_wait);
3853}
3854
3855#ifdef CONFIG_HIBERNATION
3856/*
3857 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3858 * freed pages.
3859 *
3860 * Rather than trying to age LRUs the aim is to preserve the overall
3861 * LRU order by reclaiming preferentially
3862 * inactive > active > active referenced > active mapped
3863 */
3864unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3865{
3866 struct reclaim_state reclaim_state;
3867 struct scan_control sc = {
3868 .nr_to_reclaim = nr_to_reclaim,
3869 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3870 .reclaim_idx = MAX_NR_ZONES - 1,
3871 .priority = DEF_PRIORITY,
3872 .may_writepage = 1,
3873 .may_unmap = 1,
3874 .may_swap = 1,
3875 .hibernation_mode = 1,
3876 };
3877 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3878 struct task_struct *p = current;
3879 unsigned long nr_reclaimed;
3880 unsigned int noreclaim_flag;
3881
3882 fs_reclaim_acquire(sc.gfp_mask);
3883 noreclaim_flag = memalloc_noreclaim_save();
3884 reclaim_state.reclaimed_slab = 0;
3885 p->reclaim_state = &reclaim_state;
3886
3887 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3888
3889 p->reclaim_state = NULL;
3890 memalloc_noreclaim_restore(noreclaim_flag);
3891 fs_reclaim_release(sc.gfp_mask);
3892
3893 return nr_reclaimed;
3894}
3895#endif /* CONFIG_HIBERNATION */
3896
3897/* It's optimal to keep kswapds on the same CPUs as their memory, but
3898 not required for correctness. So if the last cpu in a node goes
3899 away, we get changed to run anywhere: as the first one comes back,
3900 restore their cpu bindings. */
3901static int kswapd_cpu_online(unsigned int cpu)
3902{
3903 int nid;
3904
3905 for_each_node_state(nid, N_MEMORY) {
3906 pg_data_t *pgdat = NODE_DATA(nid);
3907 const struct cpumask *mask;
3908
3909 mask = cpumask_of_node(pgdat->node_id);
3910
3911 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3912 /* One of our CPUs online: restore mask */
3913 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3914 }
3915 return 0;
3916}
3917
3918/*
3919 * This kswapd start function will be called by init and node-hot-add.
3920 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3921 */
3922int kswapd_run(int nid)
3923{
3924 pg_data_t *pgdat = NODE_DATA(nid);
3925 int ret = 0;
3926
3927 if (pgdat->kswapd)
3928 return 0;
3929
3930 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3931 if (IS_ERR(pgdat->kswapd)) {
3932 /* failure at boot is fatal */
3933 BUG_ON(system_state < SYSTEM_RUNNING);
3934 pr_err("Failed to start kswapd on node %d\n", nid);
3935 ret = PTR_ERR(pgdat->kswapd);
3936 pgdat->kswapd = NULL;
3937 }
3938 return ret;
3939}
3940
3941/*
3942 * Called by memory hotplug when all memory in a node is offlined. Caller must
3943 * hold mem_hotplug_begin/end().
3944 */
3945void kswapd_stop(int nid)
3946{
3947 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3948
3949 if (kswapd) {
3950 kthread_stop(kswapd);
3951 NODE_DATA(nid)->kswapd = NULL;
3952 }
3953}
3954
3955static int __init kswapd_init(void)
3956{
3957 int nid, ret;
3958
3959 swap_setup();
3960 for_each_node_state(nid, N_MEMORY)
3961 kswapd_run(nid);
3962 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3963 "mm/vmscan:online", kswapd_cpu_online,
3964 NULL);
3965 WARN_ON(ret < 0);
3966 return 0;
3967}
3968
3969module_init(kswapd_init)
3970
3971#ifdef CONFIG_NUMA
3972/*
3973 * Node reclaim mode
3974 *
3975 * If non-zero call node_reclaim when the number of free pages falls below
3976 * the watermarks.
3977 */
3978int node_reclaim_mode __read_mostly;
3979
3980#define RECLAIM_OFF 0
3981#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3982#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3983#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3984
3985/*
3986 * Priority for NODE_RECLAIM. This determines the fraction of pages
3987 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3988 * a zone.
3989 */
3990#define NODE_RECLAIM_PRIORITY 4
3991
3992/*
3993 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3994 * occur.
3995 */
3996int sysctl_min_unmapped_ratio = 1;
3997
3998/*
3999 * If the number of slab pages in a zone grows beyond this percentage then
4000 * slab reclaim needs to occur.
4001 */
4002int sysctl_min_slab_ratio = 5;
4003
4004static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4005{
4006 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4007 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4008 node_page_state(pgdat, NR_ACTIVE_FILE);
4009
4010 /*
4011 * It's possible for there to be more file mapped pages than
4012 * accounted for by the pages on the file LRU lists because
4013 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4014 */
4015 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4016}
4017
4018/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4019static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4020{
4021 unsigned long nr_pagecache_reclaimable;
4022 unsigned long delta = 0;
4023
4024 /*
4025 * If RECLAIM_UNMAP is set, then all file pages are considered
4026 * potentially reclaimable. Otherwise, we have to worry about
4027 * pages like swapcache and node_unmapped_file_pages() provides
4028 * a better estimate
4029 */
4030 if (node_reclaim_mode & RECLAIM_UNMAP)
4031 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4032 else
4033 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4034
4035 /* If we can't clean pages, remove dirty pages from consideration */
4036 if (!(node_reclaim_mode & RECLAIM_WRITE))
4037 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4038
4039 /* Watch for any possible underflows due to delta */
4040 if (unlikely(delta > nr_pagecache_reclaimable))
4041 delta = nr_pagecache_reclaimable;
4042
4043 return nr_pagecache_reclaimable - delta;
4044}
4045
4046/*
4047 * Try to free up some pages from this node through reclaim.
4048 */
4049static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4050{
4051 /* Minimum pages needed in order to stay on node */
4052 const unsigned long nr_pages = 1 << order;
4053 struct task_struct *p = current;
4054 struct reclaim_state reclaim_state;
4055 unsigned int noreclaim_flag;
4056 struct scan_control sc = {
4057 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4058 .gfp_mask = current_gfp_context(gfp_mask),
4059 .order = order,
4060 .priority = NODE_RECLAIM_PRIORITY,
4061 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4062 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4063 .may_swap = 1,
4064 .reclaim_idx = gfp_zone(gfp_mask),
4065 };
4066
4067 cond_resched();
4068 fs_reclaim_acquire(sc.gfp_mask);
4069 /*
4070 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4071 * and we also need to be able to write out pages for RECLAIM_WRITE
4072 * and RECLAIM_UNMAP.
4073 */
4074 noreclaim_flag = memalloc_noreclaim_save();
4075 p->flags |= PF_SWAPWRITE;
4076 reclaim_state.reclaimed_slab = 0;
4077 p->reclaim_state = &reclaim_state;
4078
4079 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4080 /*
4081 * Free memory by calling shrink node with increasing
4082 * priorities until we have enough memory freed.
4083 */
4084 do {
4085 shrink_node(pgdat, &sc);
4086 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4087 }
4088
4089 p->reclaim_state = NULL;
4090 current->flags &= ~PF_SWAPWRITE;
4091 memalloc_noreclaim_restore(noreclaim_flag);
4092 fs_reclaim_release(sc.gfp_mask);
4093 return sc.nr_reclaimed >= nr_pages;
4094}
4095
4096int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4097{
4098 int ret;
4099
4100 /*
4101 * Node reclaim reclaims unmapped file backed pages and
4102 * slab pages if we are over the defined limits.
4103 *
4104 * A small portion of unmapped file backed pages is needed for
4105 * file I/O otherwise pages read by file I/O will be immediately
4106 * thrown out if the node is overallocated. So we do not reclaim
4107 * if less than a specified percentage of the node is used by
4108 * unmapped file backed pages.
4109 */
4110 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4111 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4112 return NODE_RECLAIM_FULL;
4113
4114 /*
4115 * Do not scan if the allocation should not be delayed.
4116 */
4117 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4118 return NODE_RECLAIM_NOSCAN;
4119
4120 /*
4121 * Only run node reclaim on the local node or on nodes that do not
4122 * have associated processors. This will favor the local processor
4123 * over remote processors and spread off node memory allocations
4124 * as wide as possible.
4125 */
4126 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4127 return NODE_RECLAIM_NOSCAN;
4128
4129 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4130 return NODE_RECLAIM_NOSCAN;
4131
4132 ret = __node_reclaim(pgdat, gfp_mask, order);
4133 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4134
4135 if (!ret)
4136 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4137
4138 return ret;
4139}
4140#endif
4141
4142/*
4143 * page_evictable - test whether a page is evictable
4144 * @page: the page to test
4145 *
4146 * Test whether page is evictable--i.e., should be placed on active/inactive
4147 * lists vs unevictable list.
4148 *
4149 * Reasons page might not be evictable:
4150 * (1) page's mapping marked unevictable
4151 * (2) page is part of an mlocked VMA
4152 *
4153 */
4154int page_evictable(struct page *page)
4155{
4156 int ret;
4157
4158 /* Prevent address_space of inode and swap cache from being freed */
4159 rcu_read_lock();
4160 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4161 rcu_read_unlock();
4162 return ret;
4163}
4164
4165#ifdef CONFIG_SHMEM
4166/**
4167 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4168 * @pages: array of pages to check
4169 * @nr_pages: number of pages to check
4170 *
4171 * Checks pages for evictability and moves them to the appropriate lru list.
4172 *
4173 * This function is only used for SysV IPC SHM_UNLOCK.
4174 */
4175void check_move_unevictable_pages(struct page **pages, int nr_pages)
4176{
4177 struct lruvec *lruvec;
4178 struct pglist_data *pgdat = NULL;
4179 int pgscanned = 0;
4180 int pgrescued = 0;
4181 int i;
4182
4183 for (i = 0; i < nr_pages; i++) {
4184 struct page *page = pages[i];
4185 struct pglist_data *pagepgdat = page_pgdat(page);
4186
4187 pgscanned++;
4188 if (pagepgdat != pgdat) {
4189 if (pgdat)
4190 spin_unlock_irq(&pgdat->lru_lock);
4191 pgdat = pagepgdat;
4192 spin_lock_irq(&pgdat->lru_lock);
4193 }
4194 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4195
4196 if (!PageLRU(page) || !PageUnevictable(page))
4197 continue;
4198
4199 if (page_evictable(page)) {
4200 enum lru_list lru = page_lru_base_type(page);
4201
4202 VM_BUG_ON_PAGE(PageActive(page), page);
4203 ClearPageUnevictable(page);
4204 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4205 add_page_to_lru_list(page, lruvec, lru);
4206 pgrescued++;
4207 }
4208 }
4209
4210 if (pgdat) {
4211 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4212 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4213 spin_unlock_irq(&pgdat->lru_lock);
4214 }
4215}
4216#endif /* CONFIG_SHMEM */