| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. | 
 | 3 |  * Author: Marc Zyngier <marc.zyngier@arm.com> | 
 | 4 |  * | 
 | 5 |  * This program is free software; you can redistribute it and/or modify | 
 | 6 |  * it under the terms of the GNU General Public License version 2 as | 
 | 7 |  * published by the Free Software Foundation. | 
 | 8 |  * | 
 | 9 |  * This program is distributed in the hope that it will be useful, | 
 | 10 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 11 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 12 |  * GNU General Public License for more details. | 
 | 13 |  * | 
 | 14 |  * You should have received a copy of the GNU General Public License | 
 | 15 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 | 16 |  */ | 
 | 17 |  | 
 | 18 | #include <linux/acpi.h> | 
 | 19 | #include <linux/acpi_iort.h> | 
 | 20 | #include <linux/bitmap.h> | 
 | 21 | #include <linux/cpu.h> | 
 | 22 | #include <linux/delay.h> | 
 | 23 | #include <linux/dma-iommu.h> | 
 | 24 | #include <linux/interrupt.h> | 
 | 25 | #include <linux/irqdomain.h> | 
 | 26 | #include <linux/list.h> | 
 | 27 | #include <linux/list_sort.h> | 
 | 28 | #include <linux/log2.h> | 
 | 29 | #include <linux/mm.h> | 
 | 30 | #include <linux/msi.h> | 
 | 31 | #include <linux/of.h> | 
 | 32 | #include <linux/of_address.h> | 
 | 33 | #include <linux/of_irq.h> | 
 | 34 | #include <linux/of_pci.h> | 
 | 35 | #include <linux/of_platform.h> | 
 | 36 | #include <linux/percpu.h> | 
 | 37 | #include <linux/slab.h> | 
 | 38 | #include <linux/syscore_ops.h> | 
 | 39 |  | 
 | 40 | #include <linux/irqchip.h> | 
 | 41 | #include <linux/irqchip/arm-gic-v3.h> | 
 | 42 | #include <linux/irqchip/arm-gic-v4.h> | 
 | 43 |  | 
 | 44 | #include <asm/cputype.h> | 
 | 45 | #include <asm/exception.h> | 
 | 46 |  | 
 | 47 | #include "irq-gic-common.h" | 
 | 48 |  | 
 | 49 | #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0) | 
 | 50 | #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1) | 
 | 51 | #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2) | 
 | 52 | #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3) | 
 | 53 |  | 
 | 54 | #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0) | 
 | 55 |  | 
 | 56 | static u32 lpi_id_bits; | 
 | 57 |  | 
 | 58 | /* | 
 | 59 |  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to | 
 | 60 |  * deal with (one configuration byte per interrupt). PENDBASE has to | 
 | 61 |  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). | 
 | 62 |  */ | 
 | 63 | #define LPI_NRBITS		lpi_id_bits | 
 | 64 | #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K) | 
 | 65 | #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) | 
 | 66 |  | 
 | 67 | #define LPI_PROP_DEFAULT_PRIO	0xa0 | 
 | 68 |  | 
 | 69 | /* | 
 | 70 |  * Collection structure - just an ID, and a redistributor address to | 
 | 71 |  * ping. We use one per CPU as a bag of interrupts assigned to this | 
 | 72 |  * CPU. | 
 | 73 |  */ | 
 | 74 | struct its_collection { | 
 | 75 | 	u64			target_address; | 
 | 76 | 	u16			col_id; | 
 | 77 | }; | 
 | 78 |  | 
 | 79 | /* | 
 | 80 |  * The ITS_BASER structure - contains memory information, cached | 
 | 81 |  * value of BASER register configuration and ITS page size. | 
 | 82 |  */ | 
 | 83 | struct its_baser { | 
 | 84 | 	void		*base; | 
 | 85 | 	u64		val; | 
 | 86 | 	u32		order; | 
 | 87 | 	u32		psz; | 
 | 88 | }; | 
 | 89 |  | 
 | 90 | struct its_device; | 
 | 91 |  | 
 | 92 | /* | 
 | 93 |  * The ITS structure - contains most of the infrastructure, with the | 
 | 94 |  * top-level MSI domain, the command queue, the collections, and the | 
 | 95 |  * list of devices writing to it. | 
 | 96 |  * | 
 | 97 |  * dev_alloc_lock has to be taken for device allocations, while the | 
 | 98 |  * spinlock must be taken to parse data structures such as the device | 
 | 99 |  * list. | 
 | 100 |  */ | 
 | 101 | struct its_node { | 
 | 102 | 	raw_spinlock_t		lock; | 
 | 103 | 	struct mutex		dev_alloc_lock; | 
 | 104 | 	struct list_head	entry; | 
 | 105 | 	void __iomem		*base; | 
 | 106 | 	phys_addr_t		phys_base; | 
 | 107 | 	struct its_cmd_block	*cmd_base; | 
 | 108 | 	struct its_cmd_block	*cmd_write; | 
 | 109 | 	struct its_baser	tables[GITS_BASER_NR_REGS]; | 
 | 110 | 	struct its_collection	*collections; | 
 | 111 | 	struct fwnode_handle	*fwnode_handle; | 
 | 112 | 	u64			(*get_msi_base)(struct its_device *its_dev); | 
 | 113 | 	u64			cbaser_save; | 
 | 114 | 	u32			ctlr_save; | 
 | 115 | 	struct list_head	its_device_list; | 
 | 116 | 	u64			flags; | 
 | 117 | 	unsigned long		list_nr; | 
 | 118 | 	u32			ite_size; | 
 | 119 | 	u32			device_ids; | 
 | 120 | 	int			numa_node; | 
 | 121 | 	unsigned int		msi_domain_flags; | 
 | 122 | 	u32			pre_its_base; /* for Socionext Synquacer */ | 
 | 123 | 	bool			is_v4; | 
 | 124 | 	int			vlpi_redist_offset; | 
 | 125 | }; | 
 | 126 |  | 
 | 127 | #define ITS_ITT_ALIGN		SZ_256 | 
 | 128 |  | 
 | 129 | /* The maximum number of VPEID bits supported by VLPI commands */ | 
 | 130 | #define ITS_MAX_VPEID_BITS	(16) | 
 | 131 | #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS)) | 
 | 132 |  | 
 | 133 | /* Convert page order to size in bytes */ | 
 | 134 | #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o)) | 
 | 135 |  | 
 | 136 | struct event_lpi_map { | 
 | 137 | 	unsigned long		*lpi_map; | 
 | 138 | 	u16			*col_map; | 
 | 139 | 	irq_hw_number_t		lpi_base; | 
 | 140 | 	int			nr_lpis; | 
 | 141 | 	struct mutex		vlpi_lock; | 
 | 142 | 	struct its_vm		*vm; | 
 | 143 | 	struct its_vlpi_map	*vlpi_maps; | 
 | 144 | 	int			nr_vlpis; | 
 | 145 | }; | 
 | 146 |  | 
 | 147 | /* | 
 | 148 |  * The ITS view of a device - belongs to an ITS, owns an interrupt | 
 | 149 |  * translation table, and a list of interrupts.  If it some of its | 
 | 150 |  * LPIs are injected into a guest (GICv4), the event_map.vm field | 
 | 151 |  * indicates which one. | 
 | 152 |  */ | 
 | 153 | struct its_device { | 
 | 154 | 	struct list_head	entry; | 
 | 155 | 	struct its_node		*its; | 
 | 156 | 	struct event_lpi_map	event_map; | 
 | 157 | 	void			*itt; | 
 | 158 | 	u32			nr_ites; | 
 | 159 | 	u32			device_id; | 
 | 160 | 	bool			shared; | 
 | 161 | }; | 
 | 162 |  | 
 | 163 | static struct { | 
 | 164 | 	raw_spinlock_t		lock; | 
 | 165 | 	struct its_device	*dev; | 
 | 166 | 	struct its_vpe		**vpes; | 
 | 167 | 	int			next_victim; | 
 | 168 | } vpe_proxy; | 
 | 169 |  | 
 | 170 | static LIST_HEAD(its_nodes); | 
 | 171 | static DEFINE_RAW_SPINLOCK(its_lock); | 
 | 172 | static struct rdists *gic_rdists; | 
 | 173 | static struct irq_domain *its_parent; | 
 | 174 |  | 
 | 175 | static unsigned long its_list_map; | 
 | 176 | static u16 vmovp_seq_num; | 
 | 177 | static DEFINE_RAW_SPINLOCK(vmovp_lock); | 
 | 178 |  | 
 | 179 | static DEFINE_IDA(its_vpeid_ida); | 
 | 180 |  | 
 | 181 | #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist)) | 
 | 182 | #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base) | 
 | 183 | #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K) | 
 | 184 |  | 
 | 185 | static u16 get_its_list(struct its_vm *vm) | 
 | 186 | { | 
 | 187 | 	struct its_node *its; | 
 | 188 | 	unsigned long its_list = 0; | 
 | 189 |  | 
 | 190 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 191 | 		if (!its->is_v4) | 
 | 192 | 			continue; | 
 | 193 |  | 
 | 194 | 		if (vm->vlpi_count[its->list_nr]) | 
 | 195 | 			__set_bit(its->list_nr, &its_list); | 
 | 196 | 	} | 
 | 197 |  | 
 | 198 | 	return (u16)its_list; | 
 | 199 | } | 
 | 200 |  | 
 | 201 | static struct its_collection *dev_event_to_col(struct its_device *its_dev, | 
 | 202 | 					       u32 event) | 
 | 203 | { | 
 | 204 | 	struct its_node *its = its_dev->its; | 
 | 205 |  | 
 | 206 | 	return its->collections + its_dev->event_map.col_map[event]; | 
 | 207 | } | 
 | 208 |  | 
 | 209 | static struct its_collection *valid_col(struct its_collection *col) | 
 | 210 | { | 
 | 211 | 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15))) | 
 | 212 | 		return NULL; | 
 | 213 |  | 
 | 214 | 	return col; | 
 | 215 | } | 
 | 216 |  | 
 | 217 | static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) | 
 | 218 | { | 
 | 219 | 	if (valid_col(its->collections + vpe->col_idx)) | 
 | 220 | 		return vpe; | 
 | 221 |  | 
 | 222 | 	return NULL; | 
 | 223 | } | 
 | 224 |  | 
 | 225 | /* | 
 | 226 |  * ITS command descriptors - parameters to be encoded in a command | 
 | 227 |  * block. | 
 | 228 |  */ | 
 | 229 | struct its_cmd_desc { | 
 | 230 | 	union { | 
 | 231 | 		struct { | 
 | 232 | 			struct its_device *dev; | 
 | 233 | 			u32 event_id; | 
 | 234 | 		} its_inv_cmd; | 
 | 235 |  | 
 | 236 | 		struct { | 
 | 237 | 			struct its_device *dev; | 
 | 238 | 			u32 event_id; | 
 | 239 | 		} its_clear_cmd; | 
 | 240 |  | 
 | 241 | 		struct { | 
 | 242 | 			struct its_device *dev; | 
 | 243 | 			u32 event_id; | 
 | 244 | 		} its_int_cmd; | 
 | 245 |  | 
 | 246 | 		struct { | 
 | 247 | 			struct its_device *dev; | 
 | 248 | 			int valid; | 
 | 249 | 		} its_mapd_cmd; | 
 | 250 |  | 
 | 251 | 		struct { | 
 | 252 | 			struct its_collection *col; | 
 | 253 | 			int valid; | 
 | 254 | 		} its_mapc_cmd; | 
 | 255 |  | 
 | 256 | 		struct { | 
 | 257 | 			struct its_device *dev; | 
 | 258 | 			u32 phys_id; | 
 | 259 | 			u32 event_id; | 
 | 260 | 		} its_mapti_cmd; | 
 | 261 |  | 
 | 262 | 		struct { | 
 | 263 | 			struct its_device *dev; | 
 | 264 | 			struct its_collection *col; | 
 | 265 | 			u32 event_id; | 
 | 266 | 		} its_movi_cmd; | 
 | 267 |  | 
 | 268 | 		struct { | 
 | 269 | 			struct its_device *dev; | 
 | 270 | 			u32 event_id; | 
 | 271 | 		} its_discard_cmd; | 
 | 272 |  | 
 | 273 | 		struct { | 
 | 274 | 			struct its_collection *col; | 
 | 275 | 		} its_invall_cmd; | 
 | 276 |  | 
 | 277 | 		struct { | 
 | 278 | 			struct its_vpe *vpe; | 
 | 279 | 		} its_vinvall_cmd; | 
 | 280 |  | 
 | 281 | 		struct { | 
 | 282 | 			struct its_vpe *vpe; | 
 | 283 | 			struct its_collection *col; | 
 | 284 | 			bool valid; | 
 | 285 | 		} its_vmapp_cmd; | 
 | 286 |  | 
 | 287 | 		struct { | 
 | 288 | 			struct its_vpe *vpe; | 
 | 289 | 			struct its_device *dev; | 
 | 290 | 			u32 virt_id; | 
 | 291 | 			u32 event_id; | 
 | 292 | 			bool db_enabled; | 
 | 293 | 		} its_vmapti_cmd; | 
 | 294 |  | 
 | 295 | 		struct { | 
 | 296 | 			struct its_vpe *vpe; | 
 | 297 | 			struct its_device *dev; | 
 | 298 | 			u32 event_id; | 
 | 299 | 			bool db_enabled; | 
 | 300 | 		} its_vmovi_cmd; | 
 | 301 |  | 
 | 302 | 		struct { | 
 | 303 | 			struct its_vpe *vpe; | 
 | 304 | 			struct its_collection *col; | 
 | 305 | 			u16 seq_num; | 
 | 306 | 			u16 its_list; | 
 | 307 | 		} its_vmovp_cmd; | 
 | 308 | 	}; | 
 | 309 | }; | 
 | 310 |  | 
 | 311 | /* | 
 | 312 |  * The ITS command block, which is what the ITS actually parses. | 
 | 313 |  */ | 
 | 314 | struct its_cmd_block { | 
 | 315 | 	u64	raw_cmd[4]; | 
 | 316 | }; | 
 | 317 |  | 
 | 318 | #define ITS_CMD_QUEUE_SZ		SZ_64K | 
 | 319 | #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) | 
 | 320 |  | 
 | 321 | typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, | 
 | 322 | 						    struct its_cmd_block *, | 
 | 323 | 						    struct its_cmd_desc *); | 
 | 324 |  | 
 | 325 | typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, | 
 | 326 | 					      struct its_cmd_block *, | 
 | 327 | 					      struct its_cmd_desc *); | 
 | 328 |  | 
 | 329 | static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) | 
 | 330 | { | 
 | 331 | 	u64 mask = GENMASK_ULL(h, l); | 
 | 332 | 	*raw_cmd &= ~mask; | 
 | 333 | 	*raw_cmd |= (val << l) & mask; | 
 | 334 | } | 
 | 335 |  | 
 | 336 | static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) | 
 | 337 | { | 
 | 338 | 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); | 
 | 339 | } | 
 | 340 |  | 
 | 341 | static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) | 
 | 342 | { | 
 | 343 | 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); | 
 | 344 | } | 
 | 345 |  | 
 | 346 | static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) | 
 | 347 | { | 
 | 348 | 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); | 
 | 349 | } | 
 | 350 |  | 
 | 351 | static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) | 
 | 352 | { | 
 | 353 | 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); | 
 | 354 | } | 
 | 355 |  | 
 | 356 | static void its_encode_size(struct its_cmd_block *cmd, u8 size) | 
 | 357 | { | 
 | 358 | 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); | 
 | 359 | } | 
 | 360 |  | 
 | 361 | static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) | 
 | 362 | { | 
 | 363 | 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); | 
 | 364 | } | 
 | 365 |  | 
 | 366 | static void its_encode_valid(struct its_cmd_block *cmd, int valid) | 
 | 367 | { | 
 | 368 | 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); | 
 | 369 | } | 
 | 370 |  | 
 | 371 | static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) | 
 | 372 | { | 
 | 373 | 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); | 
 | 374 | } | 
 | 375 |  | 
 | 376 | static void its_encode_collection(struct its_cmd_block *cmd, u16 col) | 
 | 377 | { | 
 | 378 | 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); | 
 | 379 | } | 
 | 380 |  | 
 | 381 | static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) | 
 | 382 | { | 
 | 383 | 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); | 
 | 384 | } | 
 | 385 |  | 
 | 386 | static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) | 
 | 387 | { | 
 | 388 | 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); | 
 | 389 | } | 
 | 390 |  | 
 | 391 | static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) | 
 | 392 | { | 
 | 393 | 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); | 
 | 394 | } | 
 | 395 |  | 
 | 396 | static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) | 
 | 397 | { | 
 | 398 | 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); | 
 | 399 | } | 
 | 400 |  | 
 | 401 | static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) | 
 | 402 | { | 
 | 403 | 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); | 
 | 404 | } | 
 | 405 |  | 
 | 406 | static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) | 
 | 407 | { | 
 | 408 | 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); | 
 | 409 | } | 
 | 410 |  | 
 | 411 | static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) | 
 | 412 | { | 
 | 413 | 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); | 
 | 414 | } | 
 | 415 |  | 
 | 416 | static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) | 
 | 417 | { | 
 | 418 | 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); | 
 | 419 | } | 
 | 420 |  | 
 | 421 | static inline void its_fixup_cmd(struct its_cmd_block *cmd) | 
 | 422 | { | 
 | 423 | 	/* Let's fixup BE commands */ | 
 | 424 | 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); | 
 | 425 | 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); | 
 | 426 | 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); | 
 | 427 | 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); | 
 | 428 | } | 
 | 429 |  | 
 | 430 | static struct its_collection *its_build_mapd_cmd(struct its_node *its, | 
 | 431 | 						 struct its_cmd_block *cmd, | 
 | 432 | 						 struct its_cmd_desc *desc) | 
 | 433 | { | 
 | 434 | 	unsigned long itt_addr; | 
 | 435 | 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); | 
 | 436 |  | 
 | 437 | 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); | 
 | 438 | 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); | 
 | 439 |  | 
 | 440 | 	its_encode_cmd(cmd, GITS_CMD_MAPD); | 
 | 441 | 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); | 
 | 442 | 	its_encode_size(cmd, size - 1); | 
 | 443 | 	its_encode_itt(cmd, itt_addr); | 
 | 444 | 	its_encode_valid(cmd, desc->its_mapd_cmd.valid); | 
 | 445 |  | 
 | 446 | 	its_fixup_cmd(cmd); | 
 | 447 |  | 
 | 448 | 	return NULL; | 
 | 449 | } | 
 | 450 |  | 
 | 451 | static struct its_collection *its_build_mapc_cmd(struct its_node *its, | 
 | 452 | 						 struct its_cmd_block *cmd, | 
 | 453 | 						 struct its_cmd_desc *desc) | 
 | 454 | { | 
 | 455 | 	its_encode_cmd(cmd, GITS_CMD_MAPC); | 
 | 456 | 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); | 
 | 457 | 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); | 
 | 458 | 	its_encode_valid(cmd, desc->its_mapc_cmd.valid); | 
 | 459 |  | 
 | 460 | 	its_fixup_cmd(cmd); | 
 | 461 |  | 
 | 462 | 	return desc->its_mapc_cmd.col; | 
 | 463 | } | 
 | 464 |  | 
 | 465 | static struct its_collection *its_build_mapti_cmd(struct its_node *its, | 
 | 466 | 						  struct its_cmd_block *cmd, | 
 | 467 | 						  struct its_cmd_desc *desc) | 
 | 468 | { | 
 | 469 | 	struct its_collection *col; | 
 | 470 |  | 
 | 471 | 	col = dev_event_to_col(desc->its_mapti_cmd.dev, | 
 | 472 | 			       desc->its_mapti_cmd.event_id); | 
 | 473 |  | 
 | 474 | 	its_encode_cmd(cmd, GITS_CMD_MAPTI); | 
 | 475 | 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); | 
 | 476 | 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); | 
 | 477 | 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); | 
 | 478 | 	its_encode_collection(cmd, col->col_id); | 
 | 479 |  | 
 | 480 | 	its_fixup_cmd(cmd); | 
 | 481 |  | 
 | 482 | 	return valid_col(col); | 
 | 483 | } | 
 | 484 |  | 
 | 485 | static struct its_collection *its_build_movi_cmd(struct its_node *its, | 
 | 486 | 						 struct its_cmd_block *cmd, | 
 | 487 | 						 struct its_cmd_desc *desc) | 
 | 488 | { | 
 | 489 | 	struct its_collection *col; | 
 | 490 |  | 
 | 491 | 	col = dev_event_to_col(desc->its_movi_cmd.dev, | 
 | 492 | 			       desc->its_movi_cmd.event_id); | 
 | 493 |  | 
 | 494 | 	its_encode_cmd(cmd, GITS_CMD_MOVI); | 
 | 495 | 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); | 
 | 496 | 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id); | 
 | 497 | 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); | 
 | 498 |  | 
 | 499 | 	its_fixup_cmd(cmd); | 
 | 500 |  | 
 | 501 | 	return valid_col(col); | 
 | 502 | } | 
 | 503 |  | 
 | 504 | static struct its_collection *its_build_discard_cmd(struct its_node *its, | 
 | 505 | 						    struct its_cmd_block *cmd, | 
 | 506 | 						    struct its_cmd_desc *desc) | 
 | 507 | { | 
 | 508 | 	struct its_collection *col; | 
 | 509 |  | 
 | 510 | 	col = dev_event_to_col(desc->its_discard_cmd.dev, | 
 | 511 | 			       desc->its_discard_cmd.event_id); | 
 | 512 |  | 
 | 513 | 	its_encode_cmd(cmd, GITS_CMD_DISCARD); | 
 | 514 | 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); | 
 | 515 | 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id); | 
 | 516 |  | 
 | 517 | 	its_fixup_cmd(cmd); | 
 | 518 |  | 
 | 519 | 	return valid_col(col); | 
 | 520 | } | 
 | 521 |  | 
 | 522 | static struct its_collection *its_build_inv_cmd(struct its_node *its, | 
 | 523 | 						struct its_cmd_block *cmd, | 
 | 524 | 						struct its_cmd_desc *desc) | 
 | 525 | { | 
 | 526 | 	struct its_collection *col; | 
 | 527 |  | 
 | 528 | 	col = dev_event_to_col(desc->its_inv_cmd.dev, | 
 | 529 | 			       desc->its_inv_cmd.event_id); | 
 | 530 |  | 
 | 531 | 	its_encode_cmd(cmd, GITS_CMD_INV); | 
 | 532 | 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); | 
 | 533 | 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id); | 
 | 534 |  | 
 | 535 | 	its_fixup_cmd(cmd); | 
 | 536 |  | 
 | 537 | 	return valid_col(col); | 
 | 538 | } | 
 | 539 |  | 
 | 540 | static struct its_collection *its_build_int_cmd(struct its_node *its, | 
 | 541 | 						struct its_cmd_block *cmd, | 
 | 542 | 						struct its_cmd_desc *desc) | 
 | 543 | { | 
 | 544 | 	struct its_collection *col; | 
 | 545 |  | 
 | 546 | 	col = dev_event_to_col(desc->its_int_cmd.dev, | 
 | 547 | 			       desc->its_int_cmd.event_id); | 
 | 548 |  | 
 | 549 | 	its_encode_cmd(cmd, GITS_CMD_INT); | 
 | 550 | 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); | 
 | 551 | 	its_encode_event_id(cmd, desc->its_int_cmd.event_id); | 
 | 552 |  | 
 | 553 | 	its_fixup_cmd(cmd); | 
 | 554 |  | 
 | 555 | 	return valid_col(col); | 
 | 556 | } | 
 | 557 |  | 
 | 558 | static struct its_collection *its_build_clear_cmd(struct its_node *its, | 
 | 559 | 						  struct its_cmd_block *cmd, | 
 | 560 | 						  struct its_cmd_desc *desc) | 
 | 561 | { | 
 | 562 | 	struct its_collection *col; | 
 | 563 |  | 
 | 564 | 	col = dev_event_to_col(desc->its_clear_cmd.dev, | 
 | 565 | 			       desc->its_clear_cmd.event_id); | 
 | 566 |  | 
 | 567 | 	its_encode_cmd(cmd, GITS_CMD_CLEAR); | 
 | 568 | 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); | 
 | 569 | 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id); | 
 | 570 |  | 
 | 571 | 	its_fixup_cmd(cmd); | 
 | 572 |  | 
 | 573 | 	return valid_col(col); | 
 | 574 | } | 
 | 575 |  | 
 | 576 | static struct its_collection *its_build_invall_cmd(struct its_node *its, | 
 | 577 | 						   struct its_cmd_block *cmd, | 
 | 578 | 						   struct its_cmd_desc *desc) | 
 | 579 | { | 
 | 580 | 	its_encode_cmd(cmd, GITS_CMD_INVALL); | 
 | 581 | 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); | 
 | 582 |  | 
 | 583 | 	its_fixup_cmd(cmd); | 
 | 584 |  | 
 | 585 | 	return NULL; | 
 | 586 | } | 
 | 587 |  | 
 | 588 | static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, | 
 | 589 | 					     struct its_cmd_block *cmd, | 
 | 590 | 					     struct its_cmd_desc *desc) | 
 | 591 | { | 
 | 592 | 	its_encode_cmd(cmd, GITS_CMD_VINVALL); | 
 | 593 | 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); | 
 | 594 |  | 
 | 595 | 	its_fixup_cmd(cmd); | 
 | 596 |  | 
 | 597 | 	return valid_vpe(its, desc->its_vinvall_cmd.vpe); | 
 | 598 | } | 
 | 599 |  | 
 | 600 | static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, | 
 | 601 | 					   struct its_cmd_block *cmd, | 
 | 602 | 					   struct its_cmd_desc *desc) | 
 | 603 | { | 
 | 604 | 	unsigned long vpt_addr; | 
 | 605 | 	u64 target; | 
 | 606 |  | 
 | 607 | 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); | 
 | 608 | 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; | 
 | 609 |  | 
 | 610 | 	its_encode_cmd(cmd, GITS_CMD_VMAPP); | 
 | 611 | 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); | 
 | 612 | 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid); | 
 | 613 | 	its_encode_target(cmd, target); | 
 | 614 | 	its_encode_vpt_addr(cmd, vpt_addr); | 
 | 615 | 	its_encode_vpt_size(cmd, LPI_NRBITS - 1); | 
 | 616 |  | 
 | 617 | 	its_fixup_cmd(cmd); | 
 | 618 |  | 
 | 619 | 	return valid_vpe(its, desc->its_vmapp_cmd.vpe); | 
 | 620 | } | 
 | 621 |  | 
 | 622 | static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, | 
 | 623 | 					    struct its_cmd_block *cmd, | 
 | 624 | 					    struct its_cmd_desc *desc) | 
 | 625 | { | 
 | 626 | 	u32 db; | 
 | 627 |  | 
 | 628 | 	if (desc->its_vmapti_cmd.db_enabled) | 
 | 629 | 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; | 
 | 630 | 	else | 
 | 631 | 		db = 1023; | 
 | 632 |  | 
 | 633 | 	its_encode_cmd(cmd, GITS_CMD_VMAPTI); | 
 | 634 | 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); | 
 | 635 | 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); | 
 | 636 | 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); | 
 | 637 | 	its_encode_db_phys_id(cmd, db); | 
 | 638 | 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); | 
 | 639 |  | 
 | 640 | 	its_fixup_cmd(cmd); | 
 | 641 |  | 
 | 642 | 	return valid_vpe(its, desc->its_vmapti_cmd.vpe); | 
 | 643 | } | 
 | 644 |  | 
 | 645 | static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, | 
 | 646 | 					   struct its_cmd_block *cmd, | 
 | 647 | 					   struct its_cmd_desc *desc) | 
 | 648 | { | 
 | 649 | 	u32 db; | 
 | 650 |  | 
 | 651 | 	if (desc->its_vmovi_cmd.db_enabled) | 
 | 652 | 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; | 
 | 653 | 	else | 
 | 654 | 		db = 1023; | 
 | 655 |  | 
 | 656 | 	its_encode_cmd(cmd, GITS_CMD_VMOVI); | 
 | 657 | 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); | 
 | 658 | 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); | 
 | 659 | 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); | 
 | 660 | 	its_encode_db_phys_id(cmd, db); | 
 | 661 | 	its_encode_db_valid(cmd, true); | 
 | 662 |  | 
 | 663 | 	its_fixup_cmd(cmd); | 
 | 664 |  | 
 | 665 | 	return valid_vpe(its, desc->its_vmovi_cmd.vpe); | 
 | 666 | } | 
 | 667 |  | 
 | 668 | static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, | 
 | 669 | 					   struct its_cmd_block *cmd, | 
 | 670 | 					   struct its_cmd_desc *desc) | 
 | 671 | { | 
 | 672 | 	u64 target; | 
 | 673 |  | 
 | 674 | 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; | 
 | 675 | 	its_encode_cmd(cmd, GITS_CMD_VMOVP); | 
 | 676 | 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); | 
 | 677 | 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); | 
 | 678 | 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); | 
 | 679 | 	its_encode_target(cmd, target); | 
 | 680 |  | 
 | 681 | 	its_fixup_cmd(cmd); | 
 | 682 |  | 
 | 683 | 	return valid_vpe(its, desc->its_vmovp_cmd.vpe); | 
 | 684 | } | 
 | 685 |  | 
 | 686 | static u64 its_cmd_ptr_to_offset(struct its_node *its, | 
 | 687 | 				 struct its_cmd_block *ptr) | 
 | 688 | { | 
 | 689 | 	return (ptr - its->cmd_base) * sizeof(*ptr); | 
 | 690 | } | 
 | 691 |  | 
 | 692 | static int its_queue_full(struct its_node *its) | 
 | 693 | { | 
 | 694 | 	int widx; | 
 | 695 | 	int ridx; | 
 | 696 |  | 
 | 697 | 	widx = its->cmd_write - its->cmd_base; | 
 | 698 | 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); | 
 | 699 |  | 
 | 700 | 	/* This is incredibly unlikely to happen, unless the ITS locks up. */ | 
 | 701 | 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) | 
 | 702 | 		return 1; | 
 | 703 |  | 
 | 704 | 	return 0; | 
 | 705 | } | 
 | 706 |  | 
 | 707 | static struct its_cmd_block *its_allocate_entry(struct its_node *its) | 
 | 708 | { | 
 | 709 | 	struct its_cmd_block *cmd; | 
 | 710 | 	u32 count = 1000000;	/* 1s! */ | 
 | 711 |  | 
 | 712 | 	while (its_queue_full(its)) { | 
 | 713 | 		count--; | 
 | 714 | 		if (!count) { | 
 | 715 | 			pr_err_ratelimited("ITS queue not draining\n"); | 
 | 716 | 			return NULL; | 
 | 717 | 		} | 
 | 718 | 		cpu_relax(); | 
 | 719 | 		udelay(1); | 
 | 720 | 	} | 
 | 721 |  | 
 | 722 | 	cmd = its->cmd_write++; | 
 | 723 |  | 
 | 724 | 	/* Handle queue wrapping */ | 
 | 725 | 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) | 
 | 726 | 		its->cmd_write = its->cmd_base; | 
 | 727 |  | 
 | 728 | 	/* Clear command  */ | 
 | 729 | 	cmd->raw_cmd[0] = 0; | 
 | 730 | 	cmd->raw_cmd[1] = 0; | 
 | 731 | 	cmd->raw_cmd[2] = 0; | 
 | 732 | 	cmd->raw_cmd[3] = 0; | 
 | 733 |  | 
 | 734 | 	return cmd; | 
 | 735 | } | 
 | 736 |  | 
 | 737 | static struct its_cmd_block *its_post_commands(struct its_node *its) | 
 | 738 | { | 
 | 739 | 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); | 
 | 740 |  | 
 | 741 | 	writel_relaxed(wr, its->base + GITS_CWRITER); | 
 | 742 |  | 
 | 743 | 	return its->cmd_write; | 
 | 744 | } | 
 | 745 |  | 
 | 746 | static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) | 
 | 747 | { | 
 | 748 | 	/* | 
 | 749 | 	 * Make sure the commands written to memory are observable by | 
 | 750 | 	 * the ITS. | 
 | 751 | 	 */ | 
 | 752 | 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) | 
 | 753 | 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); | 
 | 754 | 	else | 
 | 755 | 		dsb(ishst); | 
 | 756 | } | 
 | 757 |  | 
 | 758 | static int its_wait_for_range_completion(struct its_node *its, | 
 | 759 | 					 u64	prev_idx, | 
 | 760 | 					 struct its_cmd_block *to) | 
 | 761 | { | 
 | 762 | 	u64 rd_idx, to_idx, linear_idx; | 
 | 763 | 	u32 count = 1000000;	/* 1s! */ | 
 | 764 |  | 
 | 765 | 	/* Linearize to_idx if the command set has wrapped around */ | 
 | 766 | 	to_idx = its_cmd_ptr_to_offset(its, to); | 
 | 767 | 	if (to_idx < prev_idx) | 
 | 768 | 		to_idx += ITS_CMD_QUEUE_SZ; | 
 | 769 |  | 
 | 770 | 	linear_idx = prev_idx; | 
 | 771 |  | 
 | 772 | 	while (1) { | 
 | 773 | 		s64 delta; | 
 | 774 |  | 
 | 775 | 		rd_idx = readl_relaxed(its->base + GITS_CREADR); | 
 | 776 |  | 
 | 777 | 		/* | 
 | 778 | 		 * Compute the read pointer progress, taking the | 
 | 779 | 		 * potential wrap-around into account. | 
 | 780 | 		 */ | 
 | 781 | 		delta = rd_idx - prev_idx; | 
 | 782 | 		if (rd_idx < prev_idx) | 
 | 783 | 			delta += ITS_CMD_QUEUE_SZ; | 
 | 784 |  | 
 | 785 | 		linear_idx += delta; | 
 | 786 | 		if (linear_idx >= to_idx) | 
 | 787 | 			break; | 
 | 788 |  | 
 | 789 | 		count--; | 
 | 790 | 		if (!count) { | 
 | 791 | 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", | 
 | 792 | 					   to_idx, linear_idx); | 
 | 793 | 			return -1; | 
 | 794 | 		} | 
 | 795 | 		prev_idx = rd_idx; | 
 | 796 | 		cpu_relax(); | 
 | 797 | 		udelay(1); | 
 | 798 | 	} | 
 | 799 |  | 
 | 800 | 	return 0; | 
 | 801 | } | 
 | 802 |  | 
 | 803 | /* Warning, macro hell follows */ | 
 | 804 | #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\ | 
 | 805 | void name(struct its_node *its,						\ | 
 | 806 | 	  buildtype builder,						\ | 
 | 807 | 	  struct its_cmd_desc *desc)					\ | 
 | 808 | {									\ | 
 | 809 | 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\ | 
 | 810 | 	synctype *sync_obj;						\ | 
 | 811 | 	unsigned long flags;						\ | 
 | 812 | 	u64 rd_idx;							\ | 
 | 813 | 									\ | 
 | 814 | 	raw_spin_lock_irqsave(&its->lock, flags);			\ | 
 | 815 | 									\ | 
 | 816 | 	cmd = its_allocate_entry(its);					\ | 
 | 817 | 	if (!cmd) {		/* We're soooooo screewed... */		\ | 
 | 818 | 		raw_spin_unlock_irqrestore(&its->lock, flags);		\ | 
 | 819 | 		return;							\ | 
 | 820 | 	}								\ | 
 | 821 | 	sync_obj = builder(its, cmd, desc);				\ | 
 | 822 | 	its_flush_cmd(its, cmd);					\ | 
 | 823 | 									\ | 
 | 824 | 	if (sync_obj) {							\ | 
 | 825 | 		sync_cmd = its_allocate_entry(its);			\ | 
 | 826 | 		if (!sync_cmd)						\ | 
 | 827 | 			goto post;					\ | 
 | 828 | 									\ | 
 | 829 | 		buildfn(its, sync_cmd, sync_obj);			\ | 
 | 830 | 		its_flush_cmd(its, sync_cmd);				\ | 
 | 831 | 	}								\ | 
 | 832 | 									\ | 
 | 833 | post:									\ | 
 | 834 | 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\ | 
 | 835 | 	next_cmd = its_post_commands(its);				\ | 
 | 836 | 	raw_spin_unlock_irqrestore(&its->lock, flags);			\ | 
 | 837 | 									\ | 
 | 838 | 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\ | 
 | 839 | 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\ | 
 | 840 | } | 
 | 841 |  | 
 | 842 | static void its_build_sync_cmd(struct its_node *its, | 
 | 843 | 			       struct its_cmd_block *sync_cmd, | 
 | 844 | 			       struct its_collection *sync_col) | 
 | 845 | { | 
 | 846 | 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC); | 
 | 847 | 	its_encode_target(sync_cmd, sync_col->target_address); | 
 | 848 |  | 
 | 849 | 	its_fixup_cmd(sync_cmd); | 
 | 850 | } | 
 | 851 |  | 
 | 852 | static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, | 
 | 853 | 			     struct its_collection, its_build_sync_cmd) | 
 | 854 |  | 
 | 855 | static void its_build_vsync_cmd(struct its_node *its, | 
 | 856 | 				struct its_cmd_block *sync_cmd, | 
 | 857 | 				struct its_vpe *sync_vpe) | 
 | 858 | { | 
 | 859 | 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); | 
 | 860 | 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); | 
 | 861 |  | 
 | 862 | 	its_fixup_cmd(sync_cmd); | 
 | 863 | } | 
 | 864 |  | 
 | 865 | static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, | 
 | 866 | 			     struct its_vpe, its_build_vsync_cmd) | 
 | 867 |  | 
 | 868 | static void its_send_int(struct its_device *dev, u32 event_id) | 
 | 869 | { | 
 | 870 | 	struct its_cmd_desc desc; | 
 | 871 |  | 
 | 872 | 	desc.its_int_cmd.dev = dev; | 
 | 873 | 	desc.its_int_cmd.event_id = event_id; | 
 | 874 |  | 
 | 875 | 	its_send_single_command(dev->its, its_build_int_cmd, &desc); | 
 | 876 | } | 
 | 877 |  | 
 | 878 | static void its_send_clear(struct its_device *dev, u32 event_id) | 
 | 879 | { | 
 | 880 | 	struct its_cmd_desc desc; | 
 | 881 |  | 
 | 882 | 	desc.its_clear_cmd.dev = dev; | 
 | 883 | 	desc.its_clear_cmd.event_id = event_id; | 
 | 884 |  | 
 | 885 | 	its_send_single_command(dev->its, its_build_clear_cmd, &desc); | 
 | 886 | } | 
 | 887 |  | 
 | 888 | static void its_send_inv(struct its_device *dev, u32 event_id) | 
 | 889 | { | 
 | 890 | 	struct its_cmd_desc desc; | 
 | 891 |  | 
 | 892 | 	desc.its_inv_cmd.dev = dev; | 
 | 893 | 	desc.its_inv_cmd.event_id = event_id; | 
 | 894 |  | 
 | 895 | 	its_send_single_command(dev->its, its_build_inv_cmd, &desc); | 
 | 896 | } | 
 | 897 |  | 
 | 898 | static void its_send_mapd(struct its_device *dev, int valid) | 
 | 899 | { | 
 | 900 | 	struct its_cmd_desc desc; | 
 | 901 |  | 
 | 902 | 	desc.its_mapd_cmd.dev = dev; | 
 | 903 | 	desc.its_mapd_cmd.valid = !!valid; | 
 | 904 |  | 
 | 905 | 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc); | 
 | 906 | } | 
 | 907 |  | 
 | 908 | static void its_send_mapc(struct its_node *its, struct its_collection *col, | 
 | 909 | 			  int valid) | 
 | 910 | { | 
 | 911 | 	struct its_cmd_desc desc; | 
 | 912 |  | 
 | 913 | 	desc.its_mapc_cmd.col = col; | 
 | 914 | 	desc.its_mapc_cmd.valid = !!valid; | 
 | 915 |  | 
 | 916 | 	its_send_single_command(its, its_build_mapc_cmd, &desc); | 
 | 917 | } | 
 | 918 |  | 
 | 919 | static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) | 
 | 920 | { | 
 | 921 | 	struct its_cmd_desc desc; | 
 | 922 |  | 
 | 923 | 	desc.its_mapti_cmd.dev = dev; | 
 | 924 | 	desc.its_mapti_cmd.phys_id = irq_id; | 
 | 925 | 	desc.its_mapti_cmd.event_id = id; | 
 | 926 |  | 
 | 927 | 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc); | 
 | 928 | } | 
 | 929 |  | 
 | 930 | static void its_send_movi(struct its_device *dev, | 
 | 931 | 			  struct its_collection *col, u32 id) | 
 | 932 | { | 
 | 933 | 	struct its_cmd_desc desc; | 
 | 934 |  | 
 | 935 | 	desc.its_movi_cmd.dev = dev; | 
 | 936 | 	desc.its_movi_cmd.col = col; | 
 | 937 | 	desc.its_movi_cmd.event_id = id; | 
 | 938 |  | 
 | 939 | 	its_send_single_command(dev->its, its_build_movi_cmd, &desc); | 
 | 940 | } | 
 | 941 |  | 
 | 942 | static void its_send_discard(struct its_device *dev, u32 id) | 
 | 943 | { | 
 | 944 | 	struct its_cmd_desc desc; | 
 | 945 |  | 
 | 946 | 	desc.its_discard_cmd.dev = dev; | 
 | 947 | 	desc.its_discard_cmd.event_id = id; | 
 | 948 |  | 
 | 949 | 	its_send_single_command(dev->its, its_build_discard_cmd, &desc); | 
 | 950 | } | 
 | 951 |  | 
 | 952 | static void its_send_invall(struct its_node *its, struct its_collection *col) | 
 | 953 | { | 
 | 954 | 	struct its_cmd_desc desc; | 
 | 955 |  | 
 | 956 | 	desc.its_invall_cmd.col = col; | 
 | 957 |  | 
 | 958 | 	its_send_single_command(its, its_build_invall_cmd, &desc); | 
 | 959 | } | 
 | 960 |  | 
 | 961 | static void its_send_vmapti(struct its_device *dev, u32 id) | 
 | 962 | { | 
 | 963 | 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; | 
 | 964 | 	struct its_cmd_desc desc; | 
 | 965 |  | 
 | 966 | 	desc.its_vmapti_cmd.vpe = map->vpe; | 
 | 967 | 	desc.its_vmapti_cmd.dev = dev; | 
 | 968 | 	desc.its_vmapti_cmd.virt_id = map->vintid; | 
 | 969 | 	desc.its_vmapti_cmd.event_id = id; | 
 | 970 | 	desc.its_vmapti_cmd.db_enabled = map->db_enabled; | 
 | 971 |  | 
 | 972 | 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); | 
 | 973 | } | 
 | 974 |  | 
 | 975 | static void its_send_vmovi(struct its_device *dev, u32 id) | 
 | 976 | { | 
 | 977 | 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; | 
 | 978 | 	struct its_cmd_desc desc; | 
 | 979 |  | 
 | 980 | 	desc.its_vmovi_cmd.vpe = map->vpe; | 
 | 981 | 	desc.its_vmovi_cmd.dev = dev; | 
 | 982 | 	desc.its_vmovi_cmd.event_id = id; | 
 | 983 | 	desc.its_vmovi_cmd.db_enabled = map->db_enabled; | 
 | 984 |  | 
 | 985 | 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); | 
 | 986 | } | 
 | 987 |  | 
 | 988 | static void its_send_vmapp(struct its_node *its, | 
 | 989 | 			   struct its_vpe *vpe, bool valid) | 
 | 990 | { | 
 | 991 | 	struct its_cmd_desc desc; | 
 | 992 |  | 
 | 993 | 	desc.its_vmapp_cmd.vpe = vpe; | 
 | 994 | 	desc.its_vmapp_cmd.valid = valid; | 
 | 995 | 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; | 
 | 996 |  | 
 | 997 | 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); | 
 | 998 | } | 
 | 999 |  | 
 | 1000 | static void its_send_vmovp(struct its_vpe *vpe) | 
 | 1001 | { | 
 | 1002 | 	struct its_cmd_desc desc = {}; | 
 | 1003 | 	struct its_node *its; | 
 | 1004 | 	unsigned long flags; | 
 | 1005 | 	int col_id = vpe->col_idx; | 
 | 1006 |  | 
 | 1007 | 	desc.its_vmovp_cmd.vpe = vpe; | 
 | 1008 |  | 
 | 1009 | 	if (!its_list_map) { | 
 | 1010 | 		its = list_first_entry(&its_nodes, struct its_node, entry); | 
 | 1011 | 		desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
 | 1012 | 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
 | 1013 | 		return; | 
 | 1014 | 	} | 
 | 1015 |  | 
 | 1016 | 	/* | 
 | 1017 | 	 * Yet another marvel of the architecture. If using the | 
 | 1018 | 	 * its_list "feature", we need to make sure that all ITSs | 
 | 1019 | 	 * receive all VMOVP commands in the same order. The only way | 
 | 1020 | 	 * to guarantee this is to make vmovp a serialization point. | 
 | 1021 | 	 * | 
 | 1022 | 	 * Wall <-- Head. | 
 | 1023 | 	 */ | 
 | 1024 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 | 1025 |  | 
 | 1026 | 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; | 
 | 1027 | 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); | 
 | 1028 |  | 
 | 1029 | 	/* Emit VMOVPs */ | 
 | 1030 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 1031 | 		if (!its->is_v4) | 
 | 1032 | 			continue; | 
 | 1033 |  | 
 | 1034 | 		if (!vpe->its_vm->vlpi_count[its->list_nr]) | 
 | 1035 | 			continue; | 
 | 1036 |  | 
 | 1037 | 		desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
 | 1038 | 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
 | 1039 | 	} | 
 | 1040 |  | 
 | 1041 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | 1042 | } | 
 | 1043 |  | 
 | 1044 | static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) | 
 | 1045 | { | 
 | 1046 | 	struct its_cmd_desc desc; | 
 | 1047 |  | 
 | 1048 | 	desc.its_vinvall_cmd.vpe = vpe; | 
 | 1049 | 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); | 
 | 1050 | } | 
 | 1051 |  | 
 | 1052 | /* | 
 | 1053 |  * irqchip functions - assumes MSI, mostly. | 
 | 1054 |  */ | 
 | 1055 |  | 
 | 1056 | static inline u32 its_get_event_id(struct irq_data *d) | 
 | 1057 | { | 
 | 1058 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1059 | 	return d->hwirq - its_dev->event_map.lpi_base; | 
 | 1060 | } | 
 | 1061 |  | 
 | 1062 | static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) | 
 | 1063 | { | 
 | 1064 | 	irq_hw_number_t hwirq; | 
 | 1065 | 	struct page *prop_page; | 
 | 1066 | 	u8 *cfg; | 
 | 1067 |  | 
 | 1068 | 	if (irqd_is_forwarded_to_vcpu(d)) { | 
 | 1069 | 		struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1070 | 		u32 event = its_get_event_id(d); | 
 | 1071 | 		struct its_vlpi_map *map; | 
 | 1072 |  | 
 | 1073 | 		prop_page = its_dev->event_map.vm->vprop_page; | 
 | 1074 | 		map = &its_dev->event_map.vlpi_maps[event]; | 
 | 1075 | 		hwirq = map->vintid; | 
 | 1076 |  | 
 | 1077 | 		/* Remember the updated property */ | 
 | 1078 | 		map->properties &= ~clr; | 
 | 1079 | 		map->properties |= set | LPI_PROP_GROUP1; | 
 | 1080 | 	} else { | 
 | 1081 | 		prop_page = gic_rdists->prop_page; | 
 | 1082 | 		hwirq = d->hwirq; | 
 | 1083 | 	} | 
 | 1084 |  | 
 | 1085 | 	cfg = page_address(prop_page) + hwirq - 8192; | 
 | 1086 | 	*cfg &= ~clr; | 
 | 1087 | 	*cfg |= set | LPI_PROP_GROUP1; | 
 | 1088 |  | 
 | 1089 | 	/* | 
 | 1090 | 	 * Make the above write visible to the redistributors. | 
 | 1091 | 	 * And yes, we're flushing exactly: One. Single. Byte. | 
 | 1092 | 	 * Humpf... | 
 | 1093 | 	 */ | 
 | 1094 | 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) | 
 | 1095 | 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); | 
 | 1096 | 	else | 
 | 1097 | 		dsb(ishst); | 
 | 1098 | } | 
 | 1099 |  | 
 | 1100 | static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) | 
 | 1101 | { | 
 | 1102 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1103 |  | 
 | 1104 | 	lpi_write_config(d, clr, set); | 
 | 1105 | 	its_send_inv(its_dev, its_get_event_id(d)); | 
 | 1106 | } | 
 | 1107 |  | 
 | 1108 | static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) | 
 | 1109 | { | 
 | 1110 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1111 | 	u32 event = its_get_event_id(d); | 
 | 1112 |  | 
 | 1113 | 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) | 
 | 1114 | 		return; | 
 | 1115 |  | 
 | 1116 | 	its_dev->event_map.vlpi_maps[event].db_enabled = enable; | 
 | 1117 |  | 
 | 1118 | 	/* | 
 | 1119 | 	 * More fun with the architecture: | 
 | 1120 | 	 * | 
 | 1121 | 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI | 
 | 1122 | 	 * value or to 1023, depending on the enable bit. But that | 
 | 1123 | 	 * would be issueing a mapping for an /existing/ DevID+EventID | 
 | 1124 | 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI | 
 | 1125 | 	 * to the /same/ vPE, using this opportunity to adjust the | 
 | 1126 | 	 * doorbell. Mouahahahaha. We loves it, Precious. | 
 | 1127 | 	 */ | 
 | 1128 | 	its_send_vmovi(its_dev, event); | 
 | 1129 | } | 
 | 1130 |  | 
 | 1131 | static void its_mask_irq(struct irq_data *d) | 
 | 1132 | { | 
 | 1133 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 1134 | 		its_vlpi_set_doorbell(d, false); | 
 | 1135 |  | 
 | 1136 | 	lpi_update_config(d, LPI_PROP_ENABLED, 0); | 
 | 1137 | } | 
 | 1138 |  | 
 | 1139 | static void its_unmask_irq(struct irq_data *d) | 
 | 1140 | { | 
 | 1141 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 1142 | 		its_vlpi_set_doorbell(d, true); | 
 | 1143 |  | 
 | 1144 | 	lpi_update_config(d, 0, LPI_PROP_ENABLED); | 
 | 1145 | } | 
 | 1146 |  | 
 | 1147 | static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, | 
 | 1148 | 			    bool force) | 
 | 1149 | { | 
 | 1150 | 	unsigned int cpu; | 
 | 1151 | 	const struct cpumask *cpu_mask = cpu_online_mask; | 
 | 1152 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1153 | 	struct its_collection *target_col; | 
 | 1154 | 	u32 id = its_get_event_id(d); | 
 | 1155 |  | 
 | 1156 | 	/* A forwarded interrupt should use irq_set_vcpu_affinity */ | 
 | 1157 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 1158 | 		return -EINVAL; | 
 | 1159 |  | 
 | 1160 |        /* lpi cannot be routed to a redistributor that is on a foreign node */ | 
 | 1161 | 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { | 
 | 1162 | 		if (its_dev->its->numa_node >= 0) { | 
 | 1163 | 			cpu_mask = cpumask_of_node(its_dev->its->numa_node); | 
 | 1164 | 			if (!cpumask_intersects(mask_val, cpu_mask)) | 
 | 1165 | 				return -EINVAL; | 
 | 1166 | 		} | 
 | 1167 | 	} | 
 | 1168 |  | 
 | 1169 | 	cpu = cpumask_any_and(mask_val, cpu_mask); | 
 | 1170 |  | 
 | 1171 | 	if (cpu >= nr_cpu_ids) | 
 | 1172 | 		return -EINVAL; | 
 | 1173 |  | 
 | 1174 | 	/* don't set the affinity when the target cpu is same as current one */ | 
 | 1175 | 	if (cpu != its_dev->event_map.col_map[id]) { | 
 | 1176 | 		target_col = &its_dev->its->collections[cpu]; | 
 | 1177 | 		its_send_movi(its_dev, target_col, id); | 
 | 1178 | 		its_dev->event_map.col_map[id] = cpu; | 
 | 1179 | 		irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 | 1180 | 	} | 
 | 1181 |  | 
 | 1182 | 	return IRQ_SET_MASK_OK_DONE; | 
 | 1183 | } | 
 | 1184 |  | 
 | 1185 | static u64 its_irq_get_msi_base(struct its_device *its_dev) | 
 | 1186 | { | 
 | 1187 | 	struct its_node *its = its_dev->its; | 
 | 1188 |  | 
 | 1189 | 	return its->phys_base + GITS_TRANSLATER; | 
 | 1190 | } | 
 | 1191 |  | 
 | 1192 | static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) | 
 | 1193 | { | 
 | 1194 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1195 | 	struct its_node *its; | 
 | 1196 | 	u64 addr; | 
 | 1197 |  | 
 | 1198 | 	its = its_dev->its; | 
 | 1199 | 	addr = its->get_msi_base(its_dev); | 
 | 1200 |  | 
 | 1201 | 	msg->address_lo		= lower_32_bits(addr); | 
 | 1202 | 	msg->address_hi		= upper_32_bits(addr); | 
 | 1203 | 	msg->data		= its_get_event_id(d); | 
 | 1204 |  | 
 | 1205 | 	iommu_dma_map_msi_msg(d->irq, msg); | 
 | 1206 | } | 
 | 1207 |  | 
 | 1208 | static int its_irq_set_irqchip_state(struct irq_data *d, | 
 | 1209 | 				     enum irqchip_irq_state which, | 
 | 1210 | 				     bool state) | 
 | 1211 | { | 
 | 1212 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1213 | 	u32 event = its_get_event_id(d); | 
 | 1214 |  | 
 | 1215 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 1216 | 		return -EINVAL; | 
 | 1217 |  | 
 | 1218 | 	if (state) | 
 | 1219 | 		its_send_int(its_dev, event); | 
 | 1220 | 	else | 
 | 1221 | 		its_send_clear(its_dev, event); | 
 | 1222 |  | 
 | 1223 | 	return 0; | 
 | 1224 | } | 
 | 1225 |  | 
 | 1226 | static void its_map_vm(struct its_node *its, struct its_vm *vm) | 
 | 1227 | { | 
 | 1228 | 	unsigned long flags; | 
 | 1229 |  | 
 | 1230 | 	/* Not using the ITS list? Everything is always mapped. */ | 
 | 1231 | 	if (!its_list_map) | 
 | 1232 | 		return; | 
 | 1233 |  | 
 | 1234 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 | 1235 |  | 
 | 1236 | 	/* | 
 | 1237 | 	 * If the VM wasn't mapped yet, iterate over the vpes and get | 
 | 1238 | 	 * them mapped now. | 
 | 1239 | 	 */ | 
 | 1240 | 	vm->vlpi_count[its->list_nr]++; | 
 | 1241 |  | 
 | 1242 | 	if (vm->vlpi_count[its->list_nr] == 1) { | 
 | 1243 | 		int i; | 
 | 1244 |  | 
 | 1245 | 		for (i = 0; i < vm->nr_vpes; i++) { | 
 | 1246 | 			struct its_vpe *vpe = vm->vpes[i]; | 
 | 1247 | 			struct irq_data *d = irq_get_irq_data(vpe->irq); | 
 | 1248 |  | 
 | 1249 | 			/* Map the VPE to the first possible CPU */ | 
 | 1250 | 			vpe->col_idx = cpumask_first(cpu_online_mask); | 
 | 1251 | 			its_send_vmapp(its, vpe, true); | 
 | 1252 | 			its_send_vinvall(its, vpe); | 
 | 1253 | 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
 | 1254 | 		} | 
 | 1255 | 	} | 
 | 1256 |  | 
 | 1257 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | 1258 | } | 
 | 1259 |  | 
 | 1260 | static void its_unmap_vm(struct its_node *its, struct its_vm *vm) | 
 | 1261 | { | 
 | 1262 | 	unsigned long flags; | 
 | 1263 |  | 
 | 1264 | 	/* Not using the ITS list? Everything is always mapped. */ | 
 | 1265 | 	if (!its_list_map) | 
 | 1266 | 		return; | 
 | 1267 |  | 
 | 1268 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 | 1269 |  | 
 | 1270 | 	if (!--vm->vlpi_count[its->list_nr]) { | 
 | 1271 | 		int i; | 
 | 1272 |  | 
 | 1273 | 		for (i = 0; i < vm->nr_vpes; i++) | 
 | 1274 | 			its_send_vmapp(its, vm->vpes[i], false); | 
 | 1275 | 	} | 
 | 1276 |  | 
 | 1277 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | 1278 | } | 
 | 1279 |  | 
 | 1280 | static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) | 
 | 1281 | { | 
 | 1282 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1283 | 	u32 event = its_get_event_id(d); | 
 | 1284 | 	int ret = 0; | 
 | 1285 |  | 
 | 1286 | 	if (!info->map) | 
 | 1287 | 		return -EINVAL; | 
 | 1288 |  | 
 | 1289 | 	mutex_lock(&its_dev->event_map.vlpi_lock); | 
 | 1290 |  | 
 | 1291 | 	if (!its_dev->event_map.vm) { | 
 | 1292 | 		struct its_vlpi_map *maps; | 
 | 1293 |  | 
 | 1294 | 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), | 
 | 1295 | 			       GFP_KERNEL); | 
 | 1296 | 		if (!maps) { | 
 | 1297 | 			ret = -ENOMEM; | 
 | 1298 | 			goto out; | 
 | 1299 | 		} | 
 | 1300 |  | 
 | 1301 | 		its_dev->event_map.vm = info->map->vm; | 
 | 1302 | 		its_dev->event_map.vlpi_maps = maps; | 
 | 1303 | 	} else if (its_dev->event_map.vm != info->map->vm) { | 
 | 1304 | 		ret = -EINVAL; | 
 | 1305 | 		goto out; | 
 | 1306 | 	} | 
 | 1307 |  | 
 | 1308 | 	/* Get our private copy of the mapping information */ | 
 | 1309 | 	its_dev->event_map.vlpi_maps[event] = *info->map; | 
 | 1310 |  | 
 | 1311 | 	if (irqd_is_forwarded_to_vcpu(d)) { | 
 | 1312 | 		/* Already mapped, move it around */ | 
 | 1313 | 		its_send_vmovi(its_dev, event); | 
 | 1314 | 	} else { | 
 | 1315 | 		/* Ensure all the VPEs are mapped on this ITS */ | 
 | 1316 | 		its_map_vm(its_dev->its, info->map->vm); | 
 | 1317 |  | 
 | 1318 | 		/* | 
 | 1319 | 		 * Flag the interrupt as forwarded so that we can | 
 | 1320 | 		 * start poking the virtual property table. | 
 | 1321 | 		 */ | 
 | 1322 | 		irqd_set_forwarded_to_vcpu(d); | 
 | 1323 |  | 
 | 1324 | 		/* Write out the property to the prop table */ | 
 | 1325 | 		lpi_write_config(d, 0xff, info->map->properties); | 
 | 1326 |  | 
 | 1327 | 		/* Drop the physical mapping */ | 
 | 1328 | 		its_send_discard(its_dev, event); | 
 | 1329 |  | 
 | 1330 | 		/* and install the virtual one */ | 
 | 1331 | 		its_send_vmapti(its_dev, event); | 
 | 1332 |  | 
 | 1333 | 		/* Increment the number of VLPIs */ | 
 | 1334 | 		its_dev->event_map.nr_vlpis++; | 
 | 1335 | 	} | 
 | 1336 |  | 
 | 1337 | out: | 
 | 1338 | 	mutex_unlock(&its_dev->event_map.vlpi_lock); | 
 | 1339 | 	return ret; | 
 | 1340 | } | 
 | 1341 |  | 
 | 1342 | static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) | 
 | 1343 | { | 
 | 1344 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1345 | 	u32 event = its_get_event_id(d); | 
 | 1346 | 	int ret = 0; | 
 | 1347 |  | 
 | 1348 | 	mutex_lock(&its_dev->event_map.vlpi_lock); | 
 | 1349 |  | 
 | 1350 | 	if (!its_dev->event_map.vm || | 
 | 1351 | 	    !its_dev->event_map.vlpi_maps[event].vm) { | 
 | 1352 | 		ret = -EINVAL; | 
 | 1353 | 		goto out; | 
 | 1354 | 	} | 
 | 1355 |  | 
 | 1356 | 	/* Copy our mapping information to the incoming request */ | 
 | 1357 | 	*info->map = its_dev->event_map.vlpi_maps[event]; | 
 | 1358 |  | 
 | 1359 | out: | 
 | 1360 | 	mutex_unlock(&its_dev->event_map.vlpi_lock); | 
 | 1361 | 	return ret; | 
 | 1362 | } | 
 | 1363 |  | 
 | 1364 | static int its_vlpi_unmap(struct irq_data *d) | 
 | 1365 | { | 
 | 1366 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1367 | 	u32 event = its_get_event_id(d); | 
 | 1368 | 	int ret = 0; | 
 | 1369 |  | 
 | 1370 | 	mutex_lock(&its_dev->event_map.vlpi_lock); | 
 | 1371 |  | 
 | 1372 | 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { | 
 | 1373 | 		ret = -EINVAL; | 
 | 1374 | 		goto out; | 
 | 1375 | 	} | 
 | 1376 |  | 
 | 1377 | 	/* Drop the virtual mapping */ | 
 | 1378 | 	its_send_discard(its_dev, event); | 
 | 1379 |  | 
 | 1380 | 	/* and restore the physical one */ | 
 | 1381 | 	irqd_clr_forwarded_to_vcpu(d); | 
 | 1382 | 	its_send_mapti(its_dev, d->hwirq, event); | 
 | 1383 | 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | | 
 | 1384 | 				    LPI_PROP_ENABLED | | 
 | 1385 | 				    LPI_PROP_GROUP1)); | 
 | 1386 |  | 
 | 1387 | 	/* Potentially unmap the VM from this ITS */ | 
 | 1388 | 	its_unmap_vm(its_dev->its, its_dev->event_map.vm); | 
 | 1389 |  | 
 | 1390 | 	/* | 
 | 1391 | 	 * Drop the refcount and make the device available again if | 
 | 1392 | 	 * this was the last VLPI. | 
 | 1393 | 	 */ | 
 | 1394 | 	if (!--its_dev->event_map.nr_vlpis) { | 
 | 1395 | 		its_dev->event_map.vm = NULL; | 
 | 1396 | 		kfree(its_dev->event_map.vlpi_maps); | 
 | 1397 | 	} | 
 | 1398 |  | 
 | 1399 | out: | 
 | 1400 | 	mutex_unlock(&its_dev->event_map.vlpi_lock); | 
 | 1401 | 	return ret; | 
 | 1402 | } | 
 | 1403 |  | 
 | 1404 | static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) | 
 | 1405 | { | 
 | 1406 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1407 |  | 
 | 1408 | 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) | 
 | 1409 | 		return -EINVAL; | 
 | 1410 |  | 
 | 1411 | 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) | 
 | 1412 | 		lpi_update_config(d, 0xff, info->config); | 
 | 1413 | 	else | 
 | 1414 | 		lpi_write_config(d, 0xff, info->config); | 
 | 1415 | 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); | 
 | 1416 |  | 
 | 1417 | 	return 0; | 
 | 1418 | } | 
 | 1419 |  | 
 | 1420 | static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | 1421 | { | 
 | 1422 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 1423 | 	struct its_cmd_info *info = vcpu_info; | 
 | 1424 |  | 
 | 1425 | 	/* Need a v4 ITS */ | 
 | 1426 | 	if (!its_dev->its->is_v4) | 
 | 1427 | 		return -EINVAL; | 
 | 1428 |  | 
 | 1429 | 	/* Unmap request? */ | 
 | 1430 | 	if (!info) | 
 | 1431 | 		return its_vlpi_unmap(d); | 
 | 1432 |  | 
 | 1433 | 	switch (info->cmd_type) { | 
 | 1434 | 	case MAP_VLPI: | 
 | 1435 | 		return its_vlpi_map(d, info); | 
 | 1436 |  | 
 | 1437 | 	case GET_VLPI: | 
 | 1438 | 		return its_vlpi_get(d, info); | 
 | 1439 |  | 
 | 1440 | 	case PROP_UPDATE_VLPI: | 
 | 1441 | 	case PROP_UPDATE_AND_INV_VLPI: | 
 | 1442 | 		return its_vlpi_prop_update(d, info); | 
 | 1443 |  | 
 | 1444 | 	default: | 
 | 1445 | 		return -EINVAL; | 
 | 1446 | 	} | 
 | 1447 | } | 
 | 1448 |  | 
 | 1449 | static struct irq_chip its_irq_chip = { | 
 | 1450 | 	.name			= "ITS", | 
 | 1451 | 	.irq_mask		= its_mask_irq, | 
 | 1452 | 	.irq_unmask		= its_unmask_irq, | 
 | 1453 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | 1454 | 	.irq_set_affinity	= its_set_affinity, | 
 | 1455 | 	.irq_compose_msi_msg	= its_irq_compose_msi_msg, | 
 | 1456 | 	.irq_set_irqchip_state	= its_irq_set_irqchip_state, | 
 | 1457 | 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity, | 
 | 1458 | }; | 
 | 1459 |  | 
 | 1460 |  | 
 | 1461 | /* | 
 | 1462 |  * How we allocate LPIs: | 
 | 1463 |  * | 
 | 1464 |  * lpi_range_list contains ranges of LPIs that are to available to | 
 | 1465 |  * allocate from. To allocate LPIs, just pick the first range that | 
 | 1466 |  * fits the required allocation, and reduce it by the required | 
 | 1467 |  * amount. Once empty, remove the range from the list. | 
 | 1468 |  * | 
 | 1469 |  * To free a range of LPIs, add a free range to the list, sort it and | 
 | 1470 |  * merge the result if the new range happens to be adjacent to an | 
 | 1471 |  * already free block. | 
 | 1472 |  * | 
 | 1473 |  * The consequence of the above is that allocation is cost is low, but | 
 | 1474 |  * freeing is expensive. We assumes that freeing rarely occurs. | 
 | 1475 |  */ | 
 | 1476 | #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */ | 
 | 1477 |  | 
 | 1478 | static DEFINE_MUTEX(lpi_range_lock); | 
 | 1479 | static LIST_HEAD(lpi_range_list); | 
 | 1480 |  | 
 | 1481 | struct lpi_range { | 
 | 1482 | 	struct list_head	entry; | 
 | 1483 | 	u32			base_id; | 
 | 1484 | 	u32			span; | 
 | 1485 | }; | 
 | 1486 |  | 
 | 1487 | static struct lpi_range *mk_lpi_range(u32 base, u32 span) | 
 | 1488 | { | 
 | 1489 | 	struct lpi_range *range; | 
 | 1490 |  | 
 | 1491 | 	range = kzalloc(sizeof(*range), GFP_KERNEL); | 
 | 1492 | 	if (range) { | 
 | 1493 | 		INIT_LIST_HEAD(&range->entry); | 
 | 1494 | 		range->base_id = base; | 
 | 1495 | 		range->span = span; | 
 | 1496 | 	} | 
 | 1497 |  | 
 | 1498 | 	return range; | 
 | 1499 | } | 
 | 1500 |  | 
 | 1501 | static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b) | 
 | 1502 | { | 
 | 1503 | 	struct lpi_range *ra, *rb; | 
 | 1504 |  | 
 | 1505 | 	ra = container_of(a, struct lpi_range, entry); | 
 | 1506 | 	rb = container_of(b, struct lpi_range, entry); | 
 | 1507 |  | 
 | 1508 | 	return ra->base_id - rb->base_id; | 
 | 1509 | } | 
 | 1510 |  | 
 | 1511 | static void merge_lpi_ranges(void) | 
 | 1512 | { | 
 | 1513 | 	struct lpi_range *range, *tmp; | 
 | 1514 |  | 
 | 1515 | 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { | 
 | 1516 | 		if (!list_is_last(&range->entry, &lpi_range_list) && | 
 | 1517 | 		    (tmp->base_id == (range->base_id + range->span))) { | 
 | 1518 | 			tmp->base_id = range->base_id; | 
 | 1519 | 			tmp->span += range->span; | 
 | 1520 | 			list_del(&range->entry); | 
 | 1521 | 			kfree(range); | 
 | 1522 | 		} | 
 | 1523 | 	} | 
 | 1524 | } | 
 | 1525 |  | 
 | 1526 | static int alloc_lpi_range(u32 nr_lpis, u32 *base) | 
 | 1527 | { | 
 | 1528 | 	struct lpi_range *range, *tmp; | 
 | 1529 | 	int err = -ENOSPC; | 
 | 1530 |  | 
 | 1531 | 	mutex_lock(&lpi_range_lock); | 
 | 1532 |  | 
 | 1533 | 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { | 
 | 1534 | 		if (range->span >= nr_lpis) { | 
 | 1535 | 			*base = range->base_id; | 
 | 1536 | 			range->base_id += nr_lpis; | 
 | 1537 | 			range->span -= nr_lpis; | 
 | 1538 |  | 
 | 1539 | 			if (range->span == 0) { | 
 | 1540 | 				list_del(&range->entry); | 
 | 1541 | 				kfree(range); | 
 | 1542 | 			} | 
 | 1543 |  | 
 | 1544 | 			err = 0; | 
 | 1545 | 			break; | 
 | 1546 | 		} | 
 | 1547 | 	} | 
 | 1548 |  | 
 | 1549 | 	mutex_unlock(&lpi_range_lock); | 
 | 1550 |  | 
 | 1551 | 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); | 
 | 1552 | 	return err; | 
 | 1553 | } | 
 | 1554 |  | 
 | 1555 | static int free_lpi_range(u32 base, u32 nr_lpis) | 
 | 1556 | { | 
 | 1557 | 	struct lpi_range *new; | 
 | 1558 | 	int err = 0; | 
 | 1559 |  | 
 | 1560 | 	mutex_lock(&lpi_range_lock); | 
 | 1561 |  | 
 | 1562 | 	new = mk_lpi_range(base, nr_lpis); | 
 | 1563 | 	if (!new) { | 
 | 1564 | 		err = -ENOMEM; | 
 | 1565 | 		goto out; | 
 | 1566 | 	} | 
 | 1567 |  | 
 | 1568 | 	list_add(&new->entry, &lpi_range_list); | 
 | 1569 | 	list_sort(NULL, &lpi_range_list, lpi_range_cmp); | 
 | 1570 | 	merge_lpi_ranges(); | 
 | 1571 | out: | 
 | 1572 | 	mutex_unlock(&lpi_range_lock); | 
 | 1573 | 	return err; | 
 | 1574 | } | 
 | 1575 |  | 
 | 1576 | static int __init its_lpi_init(u32 id_bits) | 
 | 1577 | { | 
 | 1578 | 	u32 lpis = (1UL << id_bits) - 8192; | 
 | 1579 | 	u32 numlpis; | 
 | 1580 | 	int err; | 
 | 1581 |  | 
 | 1582 | 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); | 
 | 1583 |  | 
 | 1584 | 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { | 
 | 1585 | 		lpis = numlpis; | 
 | 1586 | 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", | 
 | 1587 | 			lpis); | 
 | 1588 | 	} | 
 | 1589 |  | 
 | 1590 | 	/* | 
 | 1591 | 	 * Initializing the allocator is just the same as freeing the | 
 | 1592 | 	 * full range of LPIs. | 
 | 1593 | 	 */ | 
 | 1594 | 	err = free_lpi_range(8192, lpis); | 
 | 1595 | 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); | 
 | 1596 | 	return err; | 
 | 1597 | } | 
 | 1598 |  | 
 | 1599 | static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) | 
 | 1600 | { | 
 | 1601 | 	unsigned long *bitmap = NULL; | 
 | 1602 | 	int err = 0; | 
 | 1603 |  | 
 | 1604 | 	do { | 
 | 1605 | 		err = alloc_lpi_range(nr_irqs, base); | 
 | 1606 | 		if (!err) | 
 | 1607 | 			break; | 
 | 1608 |  | 
 | 1609 | 		nr_irqs /= 2; | 
 | 1610 | 	} while (nr_irqs > 0); | 
 | 1611 |  | 
 | 1612 | 	if (!nr_irqs) | 
 | 1613 | 		err = -ENOSPC; | 
 | 1614 |  | 
 | 1615 | 	if (err) | 
 | 1616 | 		goto out; | 
 | 1617 |  | 
 | 1618 | 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); | 
 | 1619 | 	if (!bitmap) | 
 | 1620 | 		goto out; | 
 | 1621 |  | 
 | 1622 | 	*nr_ids = nr_irqs; | 
 | 1623 |  | 
 | 1624 | out: | 
 | 1625 | 	if (!bitmap) | 
 | 1626 | 		*base = *nr_ids = 0; | 
 | 1627 |  | 
 | 1628 | 	return bitmap; | 
 | 1629 | } | 
 | 1630 |  | 
 | 1631 | static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) | 
 | 1632 | { | 
 | 1633 | 	WARN_ON(free_lpi_range(base, nr_ids)); | 
 | 1634 | 	kfree(bitmap); | 
 | 1635 | } | 
 | 1636 |  | 
 | 1637 | static struct page *its_allocate_prop_table(gfp_t gfp_flags) | 
 | 1638 | { | 
 | 1639 | 	struct page *prop_page; | 
 | 1640 |  | 
 | 1641 | 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); | 
 | 1642 | 	if (!prop_page) | 
 | 1643 | 		return NULL; | 
 | 1644 |  | 
 | 1645 | 	/* Priority 0xa0, Group-1, disabled */ | 
 | 1646 | 	memset(page_address(prop_page), | 
 | 1647 | 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, | 
 | 1648 | 	       LPI_PROPBASE_SZ); | 
 | 1649 |  | 
 | 1650 | 	/* Make sure the GIC will observe the written configuration */ | 
 | 1651 | 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); | 
 | 1652 |  | 
 | 1653 | 	return prop_page; | 
 | 1654 | } | 
 | 1655 |  | 
 | 1656 | static void its_free_prop_table(struct page *prop_page) | 
 | 1657 | { | 
 | 1658 | 	free_pages((unsigned long)page_address(prop_page), | 
 | 1659 | 		   get_order(LPI_PROPBASE_SZ)); | 
 | 1660 | } | 
 | 1661 |  | 
 | 1662 | static int __init its_alloc_lpi_tables(void) | 
 | 1663 | { | 
 | 1664 | 	phys_addr_t paddr; | 
 | 1665 |  | 
 | 1666 | 	lpi_id_bits = min_t(u32, GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), | 
 | 1667 | 				ITS_MAX_LPI_NRBITS); | 
 | 1668 | 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); | 
 | 1669 | 	if (!gic_rdists->prop_page) { | 
 | 1670 | 		pr_err("Failed to allocate PROPBASE\n"); | 
 | 1671 | 		return -ENOMEM; | 
 | 1672 | 	} | 
 | 1673 |  | 
 | 1674 | 	paddr = page_to_phys(gic_rdists->prop_page); | 
 | 1675 | 	pr_info("GIC: using LPI property table @%pa\n", &paddr); | 
 | 1676 |  | 
 | 1677 | 	return its_lpi_init(lpi_id_bits); | 
 | 1678 | } | 
 | 1679 |  | 
 | 1680 | static const char *its_base_type_string[] = { | 
 | 1681 | 	[GITS_BASER_TYPE_DEVICE]	= "Devices", | 
 | 1682 | 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs", | 
 | 1683 | 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)", | 
 | 1684 | 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections", | 
 | 1685 | 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)", | 
 | 1686 | 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)", | 
 | 1687 | 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)", | 
 | 1688 | }; | 
 | 1689 |  | 
 | 1690 | static u64 its_read_baser(struct its_node *its, struct its_baser *baser) | 
 | 1691 | { | 
 | 1692 | 	u32 idx = baser - its->tables; | 
 | 1693 |  | 
 | 1694 | 	return gits_read_baser(its->base + GITS_BASER + (idx << 3)); | 
 | 1695 | } | 
 | 1696 |  | 
 | 1697 | static void its_write_baser(struct its_node *its, struct its_baser *baser, | 
 | 1698 | 			    u64 val) | 
 | 1699 | { | 
 | 1700 | 	u32 idx = baser - its->tables; | 
 | 1701 |  | 
 | 1702 | 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); | 
 | 1703 | 	baser->val = its_read_baser(its, baser); | 
 | 1704 | } | 
 | 1705 |  | 
 | 1706 | static int its_setup_baser(struct its_node *its, struct its_baser *baser, | 
 | 1707 | 			   u64 cache, u64 shr, u32 psz, u32 order, | 
 | 1708 | 			   bool indirect) | 
 | 1709 | { | 
 | 1710 | 	u64 val = its_read_baser(its, baser); | 
 | 1711 | 	u64 esz = GITS_BASER_ENTRY_SIZE(val); | 
 | 1712 | 	u64 type = GITS_BASER_TYPE(val); | 
 | 1713 | 	u64 baser_phys, tmp; | 
 | 1714 | 	u32 alloc_pages; | 
 | 1715 | 	void *base; | 
 | 1716 |  | 
 | 1717 | retry_alloc_baser: | 
 | 1718 | 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); | 
 | 1719 | 	if (alloc_pages > GITS_BASER_PAGES_MAX) { | 
 | 1720 | 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", | 
 | 1721 | 			&its->phys_base, its_base_type_string[type], | 
 | 1722 | 			alloc_pages, GITS_BASER_PAGES_MAX); | 
 | 1723 | 		alloc_pages = GITS_BASER_PAGES_MAX; | 
 | 1724 | 		order = get_order(GITS_BASER_PAGES_MAX * psz); | 
 | 1725 | 	} | 
 | 1726 |  | 
 | 1727 | 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); | 
 | 1728 | 	if (!base) | 
 | 1729 | 		return -ENOMEM; | 
 | 1730 |  | 
 | 1731 | 	baser_phys = virt_to_phys(base); | 
 | 1732 |  | 
 | 1733 | 	/* Check if the physical address of the memory is above 48bits */ | 
 | 1734 | 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { | 
 | 1735 |  | 
 | 1736 | 		/* 52bit PA is supported only when PageSize=64K */ | 
 | 1737 | 		if (psz != SZ_64K) { | 
 | 1738 | 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz); | 
 | 1739 | 			free_pages((unsigned long)base, order); | 
 | 1740 | 			return -ENXIO; | 
 | 1741 | 		} | 
 | 1742 |  | 
 | 1743 | 		/* Convert 52bit PA to 48bit field */ | 
 | 1744 | 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); | 
 | 1745 | 	} | 
 | 1746 |  | 
 | 1747 | retry_baser: | 
 | 1748 | 	val = (baser_phys					 | | 
 | 1749 | 		(type << GITS_BASER_TYPE_SHIFT)			 | | 
 | 1750 | 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 | | 
 | 1751 | 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 | | 
 | 1752 | 		cache						 | | 
 | 1753 | 		shr						 | | 
 | 1754 | 		GITS_BASER_VALID); | 
 | 1755 |  | 
 | 1756 | 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0; | 
 | 1757 |  | 
 | 1758 | 	switch (psz) { | 
 | 1759 | 	case SZ_4K: | 
 | 1760 | 		val |= GITS_BASER_PAGE_SIZE_4K; | 
 | 1761 | 		break; | 
 | 1762 | 	case SZ_16K: | 
 | 1763 | 		val |= GITS_BASER_PAGE_SIZE_16K; | 
 | 1764 | 		break; | 
 | 1765 | 	case SZ_64K: | 
 | 1766 | 		val |= GITS_BASER_PAGE_SIZE_64K; | 
 | 1767 | 		break; | 
 | 1768 | 	} | 
 | 1769 |  | 
 | 1770 | 	its_write_baser(its, baser, val); | 
 | 1771 | 	tmp = baser->val; | 
 | 1772 |  | 
 | 1773 | 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { | 
 | 1774 | 		/* | 
 | 1775 | 		 * Shareability didn't stick. Just use | 
 | 1776 | 		 * whatever the read reported, which is likely | 
 | 1777 | 		 * to be the only thing this redistributor | 
 | 1778 | 		 * supports. If that's zero, make it | 
 | 1779 | 		 * non-cacheable as well. | 
 | 1780 | 		 */ | 
 | 1781 | 		shr = tmp & GITS_BASER_SHAREABILITY_MASK; | 
 | 1782 | 		if (!shr) { | 
 | 1783 | 			cache = GITS_BASER_nC; | 
 | 1784 | 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); | 
 | 1785 | 		} | 
 | 1786 | 		goto retry_baser; | 
 | 1787 | 	} | 
 | 1788 |  | 
 | 1789 | 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { | 
 | 1790 | 		/* | 
 | 1791 | 		 * Page size didn't stick. Let's try a smaller | 
 | 1792 | 		 * size and retry. If we reach 4K, then | 
 | 1793 | 		 * something is horribly wrong... | 
 | 1794 | 		 */ | 
 | 1795 | 		free_pages((unsigned long)base, order); | 
 | 1796 | 		baser->base = NULL; | 
 | 1797 |  | 
 | 1798 | 		switch (psz) { | 
 | 1799 | 		case SZ_16K: | 
 | 1800 | 			psz = SZ_4K; | 
 | 1801 | 			goto retry_alloc_baser; | 
 | 1802 | 		case SZ_64K: | 
 | 1803 | 			psz = SZ_16K; | 
 | 1804 | 			goto retry_alloc_baser; | 
 | 1805 | 		} | 
 | 1806 | 	} | 
 | 1807 |  | 
 | 1808 | 	if (val != tmp) { | 
 | 1809 | 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", | 
 | 1810 | 		       &its->phys_base, its_base_type_string[type], | 
 | 1811 | 		       val, tmp); | 
 | 1812 | 		free_pages((unsigned long)base, order); | 
 | 1813 | 		return -ENXIO; | 
 | 1814 | 	} | 
 | 1815 |  | 
 | 1816 | 	baser->order = order; | 
 | 1817 | 	baser->base = base; | 
 | 1818 | 	baser->psz = psz; | 
 | 1819 | 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; | 
 | 1820 |  | 
 | 1821 | 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", | 
 | 1822 | 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), | 
 | 1823 | 		its_base_type_string[type], | 
 | 1824 | 		(unsigned long)virt_to_phys(base), | 
 | 1825 | 		indirect ? "indirect" : "flat", (int)esz, | 
 | 1826 | 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); | 
 | 1827 |  | 
 | 1828 | 	return 0; | 
 | 1829 | } | 
 | 1830 |  | 
 | 1831 | static bool its_parse_indirect_baser(struct its_node *its, | 
 | 1832 | 				     struct its_baser *baser, | 
 | 1833 | 				     u32 psz, u32 *order, u32 ids) | 
 | 1834 | { | 
 | 1835 | 	u64 tmp = its_read_baser(its, baser); | 
 | 1836 | 	u64 type = GITS_BASER_TYPE(tmp); | 
 | 1837 | 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp); | 
 | 1838 | 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; | 
 | 1839 | 	u32 new_order = *order; | 
 | 1840 | 	bool indirect = false; | 
 | 1841 |  | 
 | 1842 | 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */ | 
 | 1843 | 	if ((esz << ids) > (psz * 2)) { | 
 | 1844 | 		/* | 
 | 1845 | 		 * Find out whether hw supports a single or two-level table by | 
 | 1846 | 		 * table by reading bit at offset '62' after writing '1' to it. | 
 | 1847 | 		 */ | 
 | 1848 | 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT); | 
 | 1849 | 		indirect = !!(baser->val & GITS_BASER_INDIRECT); | 
 | 1850 |  | 
 | 1851 | 		if (indirect) { | 
 | 1852 | 			/* | 
 | 1853 | 			 * The size of the lvl2 table is equal to ITS page size | 
 | 1854 | 			 * which is 'psz'. For computing lvl1 table size, | 
 | 1855 | 			 * subtract ID bits that sparse lvl2 table from 'ids' | 
 | 1856 | 			 * which is reported by ITS hardware times lvl1 table | 
 | 1857 | 			 * entry size. | 
 | 1858 | 			 */ | 
 | 1859 | 			ids -= ilog2(psz / (int)esz); | 
 | 1860 | 			esz = GITS_LVL1_ENTRY_SIZE; | 
 | 1861 | 		} | 
 | 1862 | 	} | 
 | 1863 |  | 
 | 1864 | 	/* | 
 | 1865 | 	 * Allocate as many entries as required to fit the | 
 | 1866 | 	 * range of device IDs that the ITS can grok... The ID | 
 | 1867 | 	 * space being incredibly sparse, this results in a | 
 | 1868 | 	 * massive waste of memory if two-level device table | 
 | 1869 | 	 * feature is not supported by hardware. | 
 | 1870 | 	 */ | 
 | 1871 | 	new_order = max_t(u32, get_order(esz << ids), new_order); | 
 | 1872 | 	if (new_order >= MAX_ORDER) { | 
 | 1873 | 		new_order = MAX_ORDER - 1; | 
 | 1874 | 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); | 
 | 1875 | 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", | 
 | 1876 | 			&its->phys_base, its_base_type_string[type], | 
 | 1877 | 			its->device_ids, ids); | 
 | 1878 | 	} | 
 | 1879 |  | 
 | 1880 | 	*order = new_order; | 
 | 1881 |  | 
 | 1882 | 	return indirect; | 
 | 1883 | } | 
 | 1884 |  | 
 | 1885 | static void its_free_tables(struct its_node *its) | 
 | 1886 | { | 
 | 1887 | 	int i; | 
 | 1888 |  | 
 | 1889 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 1890 | 		if (its->tables[i].base) { | 
 | 1891 | 			free_pages((unsigned long)its->tables[i].base, | 
 | 1892 | 				   its->tables[i].order); | 
 | 1893 | 			its->tables[i].base = NULL; | 
 | 1894 | 		} | 
 | 1895 | 	} | 
 | 1896 | } | 
 | 1897 |  | 
 | 1898 | static int its_alloc_tables(struct its_node *its) | 
 | 1899 | { | 
 | 1900 | 	u64 shr = GITS_BASER_InnerShareable; | 
 | 1901 | 	u64 cache = GITS_BASER_RaWaWb; | 
 | 1902 | 	u32 psz = SZ_64K; | 
 | 1903 | 	int err, i; | 
 | 1904 |  | 
 | 1905 | 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) | 
 | 1906 | 		/* erratum 24313: ignore memory access type */ | 
 | 1907 | 		cache = GITS_BASER_nCnB; | 
 | 1908 |  | 
 | 1909 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 1910 | 		struct its_baser *baser = its->tables + i; | 
 | 1911 | 		u64 val = its_read_baser(its, baser); | 
 | 1912 | 		u64 type = GITS_BASER_TYPE(val); | 
 | 1913 | 		u32 order = get_order(psz); | 
 | 1914 | 		bool indirect = false; | 
 | 1915 |  | 
 | 1916 | 		switch (type) { | 
 | 1917 | 		case GITS_BASER_TYPE_NONE: | 
 | 1918 | 			continue; | 
 | 1919 |  | 
 | 1920 | 		case GITS_BASER_TYPE_DEVICE: | 
 | 1921 | 			indirect = its_parse_indirect_baser(its, baser, | 
 | 1922 | 							    psz, &order, | 
 | 1923 | 							    its->device_ids); | 
 | 1924 | 			break; | 
 | 1925 |  | 
 | 1926 | 		case GITS_BASER_TYPE_VCPU: | 
 | 1927 | 			indirect = its_parse_indirect_baser(its, baser, | 
 | 1928 | 							    psz, &order, | 
 | 1929 | 							    ITS_MAX_VPEID_BITS); | 
 | 1930 | 			break; | 
 | 1931 | 		} | 
 | 1932 |  | 
 | 1933 | 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); | 
 | 1934 | 		if (err < 0) { | 
 | 1935 | 			its_free_tables(its); | 
 | 1936 | 			return err; | 
 | 1937 | 		} | 
 | 1938 |  | 
 | 1939 | 		/* Update settings which will be used for next BASERn */ | 
 | 1940 | 		psz = baser->psz; | 
 | 1941 | 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK; | 
 | 1942 | 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK; | 
 | 1943 | 	} | 
 | 1944 |  | 
 | 1945 | 	return 0; | 
 | 1946 | } | 
 | 1947 |  | 
 | 1948 | static int its_alloc_collections(struct its_node *its) | 
 | 1949 | { | 
 | 1950 | 	int i; | 
 | 1951 |  | 
 | 1952 | 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), | 
 | 1953 | 				   GFP_KERNEL); | 
 | 1954 | 	if (!its->collections) | 
 | 1955 | 		return -ENOMEM; | 
 | 1956 |  | 
 | 1957 | 	for (i = 0; i < nr_cpu_ids; i++) | 
 | 1958 | 		its->collections[i].target_address = ~0ULL; | 
 | 1959 |  | 
 | 1960 | 	return 0; | 
 | 1961 | } | 
 | 1962 |  | 
 | 1963 | static struct page *its_allocate_pending_table(gfp_t gfp_flags) | 
 | 1964 | { | 
 | 1965 | 	struct page *pend_page; | 
 | 1966 | 	/* | 
 | 1967 | 	 * The pending pages have to be at least 64kB aligned, | 
 | 1968 | 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. | 
 | 1969 | 	 */ | 
 | 1970 | 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO, | 
 | 1971 | 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); | 
 | 1972 | 	if (!pend_page) | 
 | 1973 | 		return NULL; | 
 | 1974 |  | 
 | 1975 | 	/* Make sure the GIC will observe the zero-ed page */ | 
 | 1976 | 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); | 
 | 1977 |  | 
 | 1978 | 	return pend_page; | 
 | 1979 | } | 
 | 1980 |  | 
 | 1981 | static void its_free_pending_table(struct page *pt) | 
 | 1982 | { | 
 | 1983 | 	free_pages((unsigned long)page_address(pt), | 
 | 1984 | 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); | 
 | 1985 | } | 
 | 1986 |  | 
 | 1987 | static u64 its_clear_vpend_valid(void __iomem *vlpi_base) | 
 | 1988 | { | 
 | 1989 | 	u32 count = 1000000;	/* 1s! */ | 
 | 1990 | 	bool clean; | 
 | 1991 | 	u64 val; | 
 | 1992 |  | 
 | 1993 | 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); | 
 | 1994 | 	val &= ~GICR_VPENDBASER_Valid; | 
 | 1995 | 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
 | 1996 |  | 
 | 1997 | 	do { | 
 | 1998 | 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); | 
 | 1999 | 		clean = !(val & GICR_VPENDBASER_Dirty); | 
 | 2000 | 		if (!clean) { | 
 | 2001 | 			count--; | 
 | 2002 | 			cpu_relax(); | 
 | 2003 | 			udelay(1); | 
 | 2004 | 		} | 
 | 2005 | 	} while (!clean && count); | 
 | 2006 |  | 
 | 2007 | 	return val; | 
 | 2008 | } | 
 | 2009 |  | 
 | 2010 | static void its_cpu_init_lpis(void) | 
 | 2011 | { | 
 | 2012 | 	void __iomem *rbase = gic_data_rdist_rd_base(); | 
 | 2013 | 	struct page *pend_page; | 
 | 2014 | 	u64 val, tmp; | 
 | 2015 |  | 
 | 2016 | 	/* If we didn't allocate the pending table yet, do it now */ | 
 | 2017 | 	pend_page = gic_data_rdist()->pend_page; | 
 | 2018 | 	if (!pend_page) { | 
 | 2019 | 		phys_addr_t paddr; | 
 | 2020 |  | 
 | 2021 | 		pend_page = its_allocate_pending_table(GFP_NOWAIT); | 
 | 2022 | 		if (!pend_page) { | 
 | 2023 | 			pr_err("Failed to allocate PENDBASE for CPU%d\n", | 
 | 2024 | 			       smp_processor_id()); | 
 | 2025 | 			return; | 
 | 2026 | 		} | 
 | 2027 |  | 
 | 2028 | 		paddr = page_to_phys(pend_page); | 
 | 2029 | 		pr_info("CPU%d: using LPI pending table @%pa\n", | 
 | 2030 | 			smp_processor_id(), &paddr); | 
 | 2031 | 		gic_data_rdist()->pend_page = pend_page; | 
 | 2032 | 	} | 
 | 2033 |  | 
 | 2034 | 	/* set PROPBASE */ | 
 | 2035 | 	val = (page_to_phys(gic_rdists->prop_page) | | 
 | 2036 | 	       GICR_PROPBASER_InnerShareable | | 
 | 2037 | 	       GICR_PROPBASER_RaWaWb | | 
 | 2038 | 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); | 
 | 2039 |  | 
 | 2040 | 	gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
 | 2041 | 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); | 
 | 2042 |  | 
 | 2043 | 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { | 
 | 2044 | 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { | 
 | 2045 | 			/* | 
 | 2046 | 			 * The HW reports non-shareable, we must | 
 | 2047 | 			 * remove the cacheability attributes as | 
 | 2048 | 			 * well. | 
 | 2049 | 			 */ | 
 | 2050 | 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | | 
 | 2051 | 				 GICR_PROPBASER_CACHEABILITY_MASK); | 
 | 2052 | 			val |= GICR_PROPBASER_nC; | 
 | 2053 | 			gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
 | 2054 | 		} | 
 | 2055 | 		pr_info_once("GIC: using cache flushing for LPI property table\n"); | 
 | 2056 | 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; | 
 | 2057 | 	} | 
 | 2058 |  | 
 | 2059 | 	/* set PENDBASE */ | 
 | 2060 | 	val = (page_to_phys(pend_page) | | 
 | 2061 | 	       GICR_PENDBASER_InnerShareable | | 
 | 2062 | 	       GICR_PENDBASER_RaWaWb); | 
 | 2063 |  | 
 | 2064 | 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
 | 2065 | 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); | 
 | 2066 |  | 
 | 2067 | 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { | 
 | 2068 | 		/* | 
 | 2069 | 		 * The HW reports non-shareable, we must remove the | 
 | 2070 | 		 * cacheability attributes as well. | 
 | 2071 | 		 */ | 
 | 2072 | 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | | 
 | 2073 | 			 GICR_PENDBASER_CACHEABILITY_MASK); | 
 | 2074 | 		val |= GICR_PENDBASER_nC; | 
 | 2075 | 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
 | 2076 | 	} | 
 | 2077 |  | 
 | 2078 | 	/* Enable LPIs */ | 
 | 2079 | 	val = readl_relaxed(rbase + GICR_CTLR); | 
 | 2080 | 	val |= GICR_CTLR_ENABLE_LPIS; | 
 | 2081 | 	writel_relaxed(val, rbase + GICR_CTLR); | 
 | 2082 |  | 
 | 2083 | 	if (gic_rdists->has_vlpis) { | 
 | 2084 | 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 2085 |  | 
 | 2086 | 		/* | 
 | 2087 | 		 * It's possible for CPU to receive VLPIs before it is | 
 | 2088 | 		 * sheduled as a vPE, especially for the first CPU, and the | 
 | 2089 | 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered | 
 | 2090 | 		 * as out of range and dropped by GIC. | 
 | 2091 | 		 * So we initialize IDbits to known value to avoid VLPI drop. | 
 | 2092 | 		 */ | 
 | 2093 | 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; | 
 | 2094 | 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", | 
 | 2095 | 			smp_processor_id(), val); | 
 | 2096 | 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
 | 2097 |  | 
 | 2098 | 		/* | 
 | 2099 | 		 * Also clear Valid bit of GICR_VPENDBASER, in case some | 
 | 2100 | 		 * ancient programming gets left in and has possibility of | 
 | 2101 | 		 * corrupting memory. | 
 | 2102 | 		 */ | 
 | 2103 | 		val = its_clear_vpend_valid(vlpi_base); | 
 | 2104 | 		WARN_ON(val & GICR_VPENDBASER_Dirty); | 
 | 2105 | 	} | 
 | 2106 |  | 
 | 2107 | 	/* Make sure the GIC has seen the above */ | 
 | 2108 | 	dsb(sy); | 
 | 2109 | } | 
 | 2110 |  | 
 | 2111 | static void its_cpu_init_collection(struct its_node *its) | 
 | 2112 | { | 
 | 2113 | 	int cpu = smp_processor_id(); | 
 | 2114 | 	u64 target; | 
 | 2115 |  | 
 | 2116 | 	/* avoid cross node collections and its mapping */ | 
 | 2117 | 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { | 
 | 2118 | 		struct device_node *cpu_node; | 
 | 2119 |  | 
 | 2120 | 		cpu_node = of_get_cpu_node(cpu, NULL); | 
 | 2121 | 		if (its->numa_node != NUMA_NO_NODE && | 
 | 2122 | 			its->numa_node != of_node_to_nid(cpu_node)) | 
 | 2123 | 			return; | 
 | 2124 | 	} | 
 | 2125 |  | 
 | 2126 | 	/* | 
 | 2127 | 	 * We now have to bind each collection to its target | 
 | 2128 | 	 * redistributor. | 
 | 2129 | 	 */ | 
 | 2130 | 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { | 
 | 2131 | 		/* | 
 | 2132 | 		 * This ITS wants the physical address of the | 
 | 2133 | 		 * redistributor. | 
 | 2134 | 		 */ | 
 | 2135 | 		target = gic_data_rdist()->phys_base; | 
 | 2136 | 	} else { | 
 | 2137 | 		/* This ITS wants a linear CPU number. */ | 
 | 2138 | 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
 | 2139 | 		target = GICR_TYPER_CPU_NUMBER(target) << 16; | 
 | 2140 | 	} | 
 | 2141 |  | 
 | 2142 | 	/* Perform collection mapping */ | 
 | 2143 | 	its->collections[cpu].target_address = target; | 
 | 2144 | 	its->collections[cpu].col_id = cpu; | 
 | 2145 |  | 
 | 2146 | 	its_send_mapc(its, &its->collections[cpu], 1); | 
 | 2147 | 	its_send_invall(its, &its->collections[cpu]); | 
 | 2148 | } | 
 | 2149 |  | 
 | 2150 | static void its_cpu_init_collections(void) | 
 | 2151 | { | 
 | 2152 | 	struct its_node *its; | 
 | 2153 |  | 
 | 2154 | 	raw_spin_lock(&its_lock); | 
 | 2155 |  | 
 | 2156 | 	list_for_each_entry(its, &its_nodes, entry) | 
 | 2157 | 		its_cpu_init_collection(its); | 
 | 2158 |  | 
 | 2159 | 	raw_spin_unlock(&its_lock); | 
 | 2160 | } | 
 | 2161 |  | 
 | 2162 | static struct its_device *its_find_device(struct its_node *its, u32 dev_id) | 
 | 2163 | { | 
 | 2164 | 	struct its_device *its_dev = NULL, *tmp; | 
 | 2165 | 	unsigned long flags; | 
 | 2166 |  | 
 | 2167 | 	raw_spin_lock_irqsave(&its->lock, flags); | 
 | 2168 |  | 
 | 2169 | 	list_for_each_entry(tmp, &its->its_device_list, entry) { | 
 | 2170 | 		if (tmp->device_id == dev_id) { | 
 | 2171 | 			its_dev = tmp; | 
 | 2172 | 			break; | 
 | 2173 | 		} | 
 | 2174 | 	} | 
 | 2175 |  | 
 | 2176 | 	raw_spin_unlock_irqrestore(&its->lock, flags); | 
 | 2177 |  | 
 | 2178 | 	return its_dev; | 
 | 2179 | } | 
 | 2180 |  | 
 | 2181 | static struct its_baser *its_get_baser(struct its_node *its, u32 type) | 
 | 2182 | { | 
 | 2183 | 	int i; | 
 | 2184 |  | 
 | 2185 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 2186 | 		if (GITS_BASER_TYPE(its->tables[i].val) == type) | 
 | 2187 | 			return &its->tables[i]; | 
 | 2188 | 	} | 
 | 2189 |  | 
 | 2190 | 	return NULL; | 
 | 2191 | } | 
 | 2192 |  | 
 | 2193 | static bool its_alloc_table_entry(struct its_baser *baser, u32 id) | 
 | 2194 | { | 
 | 2195 | 	struct page *page; | 
 | 2196 | 	u32 esz, idx; | 
 | 2197 | 	__le64 *table; | 
 | 2198 |  | 
 | 2199 | 	/* Don't allow device id that exceeds single, flat table limit */ | 
 | 2200 | 	esz = GITS_BASER_ENTRY_SIZE(baser->val); | 
 | 2201 | 	if (!(baser->val & GITS_BASER_INDIRECT)) | 
 | 2202 | 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); | 
 | 2203 |  | 
 | 2204 | 	/* Compute 1st level table index & check if that exceeds table limit */ | 
 | 2205 | 	idx = id >> ilog2(baser->psz / esz); | 
 | 2206 | 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) | 
 | 2207 | 		return false; | 
 | 2208 |  | 
 | 2209 | 	table = baser->base; | 
 | 2210 |  | 
 | 2211 | 	/* Allocate memory for 2nd level table */ | 
 | 2212 | 	if (!table[idx]) { | 
 | 2213 | 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); | 
 | 2214 | 		if (!page) | 
 | 2215 | 			return false; | 
 | 2216 |  | 
 | 2217 | 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */ | 
 | 2218 | 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
 | 2219 | 			gic_flush_dcache_to_poc(page_address(page), baser->psz); | 
 | 2220 |  | 
 | 2221 | 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); | 
 | 2222 |  | 
 | 2223 | 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */ | 
 | 2224 | 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
 | 2225 | 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); | 
 | 2226 |  | 
 | 2227 | 		/* Ensure updated table contents are visible to ITS hardware */ | 
 | 2228 | 		dsb(sy); | 
 | 2229 | 	} | 
 | 2230 |  | 
 | 2231 | 	return true; | 
 | 2232 | } | 
 | 2233 |  | 
 | 2234 | static bool its_alloc_device_table(struct its_node *its, u32 dev_id) | 
 | 2235 | { | 
 | 2236 | 	struct its_baser *baser; | 
 | 2237 |  | 
 | 2238 | 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); | 
 | 2239 |  | 
 | 2240 | 	/* Don't allow device id that exceeds ITS hardware limit */ | 
 | 2241 | 	if (!baser) | 
 | 2242 | 		return (ilog2(dev_id) < its->device_ids); | 
 | 2243 |  | 
 | 2244 | 	return its_alloc_table_entry(baser, dev_id); | 
 | 2245 | } | 
 | 2246 |  | 
 | 2247 | static bool its_alloc_vpe_table(u32 vpe_id) | 
 | 2248 | { | 
 | 2249 | 	struct its_node *its; | 
 | 2250 |  | 
 | 2251 | 	/* | 
 | 2252 | 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We | 
 | 2253 | 	 * could try and only do it on ITSs corresponding to devices | 
 | 2254 | 	 * that have interrupts targeted at this VPE, but the | 
 | 2255 | 	 * complexity becomes crazy (and you have tons of memory | 
 | 2256 | 	 * anyway, right?). | 
 | 2257 | 	 */ | 
 | 2258 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 2259 | 		struct its_baser *baser; | 
 | 2260 |  | 
 | 2261 | 		if (!its->is_v4) | 
 | 2262 | 			continue; | 
 | 2263 |  | 
 | 2264 | 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); | 
 | 2265 | 		if (!baser) | 
 | 2266 | 			return false; | 
 | 2267 |  | 
 | 2268 | 		if (!its_alloc_table_entry(baser, vpe_id)) | 
 | 2269 | 			return false; | 
 | 2270 | 	} | 
 | 2271 |  | 
 | 2272 | 	return true; | 
 | 2273 | } | 
 | 2274 |  | 
 | 2275 | static struct its_device *its_create_device(struct its_node *its, u32 dev_id, | 
 | 2276 | 					    int nvecs, bool alloc_lpis) | 
 | 2277 | { | 
 | 2278 | 	struct its_device *dev; | 
 | 2279 | 	unsigned long *lpi_map = NULL; | 
 | 2280 | 	unsigned long flags; | 
 | 2281 | 	u16 *col_map = NULL; | 
 | 2282 | 	void *itt; | 
 | 2283 | 	int lpi_base; | 
 | 2284 | 	int nr_lpis; | 
 | 2285 | 	int nr_ites; | 
 | 2286 | 	int sz; | 
 | 2287 |  | 
 | 2288 | 	if (!its_alloc_device_table(its, dev_id)) | 
 | 2289 | 		return NULL; | 
 | 2290 |  | 
 | 2291 | 	if (WARN_ON(!is_power_of_2(nvecs))) | 
 | 2292 | 		nvecs = roundup_pow_of_two(nvecs); | 
 | 2293 |  | 
 | 2294 | 	dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
 | 2295 | 	/* | 
 | 2296 | 	 * Even if the device wants a single LPI, the ITT must be | 
 | 2297 | 	 * sized as a power of two (and you need at least one bit...). | 
 | 2298 | 	 */ | 
 | 2299 | 	nr_ites = max(2, nvecs); | 
 | 2300 | 	sz = nr_ites * its->ite_size; | 
 | 2301 | 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; | 
 | 2302 | 	itt = kzalloc(sz, GFP_KERNEL); | 
 | 2303 | 	if (alloc_lpis) { | 
 | 2304 | 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); | 
 | 2305 | 		if (lpi_map) | 
 | 2306 | 			col_map = kcalloc(nr_lpis, sizeof(*col_map), | 
 | 2307 | 					  GFP_KERNEL); | 
 | 2308 | 	} else { | 
 | 2309 | 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); | 
 | 2310 | 		nr_lpis = 0; | 
 | 2311 | 		lpi_base = 0; | 
 | 2312 | 	} | 
 | 2313 |  | 
 | 2314 | 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) { | 
 | 2315 | 		kfree(dev); | 
 | 2316 | 		kfree(itt); | 
 | 2317 | 		kfree(lpi_map); | 
 | 2318 | 		kfree(col_map); | 
 | 2319 | 		return NULL; | 
 | 2320 | 	} | 
 | 2321 |  | 
 | 2322 | 	gic_flush_dcache_to_poc(itt, sz); | 
 | 2323 |  | 
 | 2324 | 	dev->its = its; | 
 | 2325 | 	dev->itt = itt; | 
 | 2326 | 	dev->nr_ites = nr_ites; | 
 | 2327 | 	dev->event_map.lpi_map = lpi_map; | 
 | 2328 | 	dev->event_map.col_map = col_map; | 
 | 2329 | 	dev->event_map.lpi_base = lpi_base; | 
 | 2330 | 	dev->event_map.nr_lpis = nr_lpis; | 
 | 2331 | 	mutex_init(&dev->event_map.vlpi_lock); | 
 | 2332 | 	dev->device_id = dev_id; | 
 | 2333 | 	INIT_LIST_HEAD(&dev->entry); | 
 | 2334 |  | 
 | 2335 | 	raw_spin_lock_irqsave(&its->lock, flags); | 
 | 2336 | 	list_add(&dev->entry, &its->its_device_list); | 
 | 2337 | 	raw_spin_unlock_irqrestore(&its->lock, flags); | 
 | 2338 |  | 
 | 2339 | 	/* Map device to its ITT */ | 
 | 2340 | 	its_send_mapd(dev, 1); | 
 | 2341 |  | 
 | 2342 | 	return dev; | 
 | 2343 | } | 
 | 2344 |  | 
 | 2345 | static void its_free_device(struct its_device *its_dev) | 
 | 2346 | { | 
 | 2347 | 	unsigned long flags; | 
 | 2348 |  | 
 | 2349 | 	raw_spin_lock_irqsave(&its_dev->its->lock, flags); | 
 | 2350 | 	list_del(&its_dev->entry); | 
 | 2351 | 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); | 
 | 2352 | 	kfree(its_dev->itt); | 
 | 2353 | 	kfree(its_dev); | 
 | 2354 | } | 
 | 2355 |  | 
 | 2356 | static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) | 
 | 2357 | { | 
 | 2358 | 	int idx; | 
 | 2359 |  | 
 | 2360 | 	idx = bitmap_find_free_region(dev->event_map.lpi_map, | 
 | 2361 | 				      dev->event_map.nr_lpis, | 
 | 2362 | 				      get_count_order(nvecs)); | 
 | 2363 | 	if (idx < 0) | 
 | 2364 | 		return -ENOSPC; | 
 | 2365 |  | 
 | 2366 | 	*hwirq = dev->event_map.lpi_base + idx; | 
 | 2367 | 	set_bit(idx, dev->event_map.lpi_map); | 
 | 2368 |  | 
 | 2369 | 	return 0; | 
 | 2370 | } | 
 | 2371 |  | 
 | 2372 | static int its_msi_prepare(struct irq_domain *domain, struct device *dev, | 
 | 2373 | 			   int nvec, msi_alloc_info_t *info) | 
 | 2374 | { | 
 | 2375 | 	struct its_node *its; | 
 | 2376 | 	struct its_device *its_dev; | 
 | 2377 | 	struct msi_domain_info *msi_info; | 
 | 2378 | 	u32 dev_id; | 
 | 2379 | 	int err = 0; | 
 | 2380 |  | 
 | 2381 | 	/* | 
 | 2382 | 	 * We ignore "dev" entierely, and rely on the dev_id that has | 
 | 2383 | 	 * been passed via the scratchpad. This limits this domain's | 
 | 2384 | 	 * usefulness to upper layers that definitely know that they | 
 | 2385 | 	 * are built on top of the ITS. | 
 | 2386 | 	 */ | 
 | 2387 | 	dev_id = info->scratchpad[0].ul; | 
 | 2388 |  | 
 | 2389 | 	msi_info = msi_get_domain_info(domain); | 
 | 2390 | 	its = msi_info->data; | 
 | 2391 |  | 
 | 2392 | 	if (!gic_rdists->has_direct_lpi && | 
 | 2393 | 	    vpe_proxy.dev && | 
 | 2394 | 	    vpe_proxy.dev->its == its && | 
 | 2395 | 	    dev_id == vpe_proxy.dev->device_id) { | 
 | 2396 | 		/* Bad luck. Get yourself a better implementation */ | 
 | 2397 | 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", | 
 | 2398 | 			  dev_id); | 
 | 2399 | 		return -EINVAL; | 
 | 2400 | 	} | 
 | 2401 |  | 
 | 2402 | 	mutex_lock(&its->dev_alloc_lock); | 
 | 2403 | 	its_dev = its_find_device(its, dev_id); | 
 | 2404 | 	if (its_dev) { | 
 | 2405 | 		/* | 
 | 2406 | 		 * We already have seen this ID, probably through | 
 | 2407 | 		 * another alias (PCI bridge of some sort). No need to | 
 | 2408 | 		 * create the device. | 
 | 2409 | 		 */ | 
 | 2410 | 		its_dev->shared = true; | 
 | 2411 | 		pr_debug("Reusing ITT for devID %x\n", dev_id); | 
 | 2412 | 		goto out; | 
 | 2413 | 	} | 
 | 2414 |  | 
 | 2415 | 	its_dev = its_create_device(its, dev_id, nvec, true); | 
 | 2416 | 	if (!its_dev) { | 
 | 2417 | 		err = -ENOMEM; | 
 | 2418 | 		goto out; | 
 | 2419 | 	} | 
 | 2420 |  | 
 | 2421 | 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); | 
 | 2422 | out: | 
 | 2423 | 	mutex_unlock(&its->dev_alloc_lock); | 
 | 2424 | 	info->scratchpad[0].ptr = its_dev; | 
 | 2425 | 	return err; | 
 | 2426 | } | 
 | 2427 |  | 
 | 2428 | static struct msi_domain_ops its_msi_domain_ops = { | 
 | 2429 | 	.msi_prepare	= its_msi_prepare, | 
 | 2430 | }; | 
 | 2431 |  | 
 | 2432 | static int its_irq_gic_domain_alloc(struct irq_domain *domain, | 
 | 2433 | 				    unsigned int virq, | 
 | 2434 | 				    irq_hw_number_t hwirq) | 
 | 2435 | { | 
 | 2436 | 	struct irq_fwspec fwspec; | 
 | 2437 |  | 
 | 2438 | 	if (irq_domain_get_of_node(domain->parent)) { | 
 | 2439 | 		fwspec.fwnode = domain->parent->fwnode; | 
 | 2440 | 		fwspec.param_count = 3; | 
 | 2441 | 		fwspec.param[0] = GIC_IRQ_TYPE_LPI; | 
 | 2442 | 		fwspec.param[1] = hwirq; | 
 | 2443 | 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING; | 
 | 2444 | 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) { | 
 | 2445 | 		fwspec.fwnode = domain->parent->fwnode; | 
 | 2446 | 		fwspec.param_count = 2; | 
 | 2447 | 		fwspec.param[0] = hwirq; | 
 | 2448 | 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING; | 
 | 2449 | 	} else { | 
 | 2450 | 		return -EINVAL; | 
 | 2451 | 	} | 
 | 2452 |  | 
 | 2453 | 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); | 
 | 2454 | } | 
 | 2455 |  | 
 | 2456 | static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 2457 | 				unsigned int nr_irqs, void *args) | 
 | 2458 | { | 
 | 2459 | 	msi_alloc_info_t *info = args; | 
 | 2460 | 	struct its_device *its_dev = info->scratchpad[0].ptr; | 
 | 2461 | 	irq_hw_number_t hwirq; | 
 | 2462 | 	int err; | 
 | 2463 | 	int i; | 
 | 2464 |  | 
 | 2465 | 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); | 
 | 2466 | 	if (err) | 
 | 2467 | 		return err; | 
 | 2468 |  | 
 | 2469 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 2470 | 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); | 
 | 2471 | 		if (err) | 
 | 2472 | 			return err; | 
 | 2473 |  | 
 | 2474 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, | 
 | 2475 | 					      hwirq + i, &its_irq_chip, its_dev); | 
 | 2476 | 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); | 
 | 2477 | 		pr_debug("ID:%d pID:%d vID:%d\n", | 
 | 2478 | 			 (int)(hwirq + i - its_dev->event_map.lpi_base), | 
 | 2479 | 			 (int)(hwirq + i), virq + i); | 
 | 2480 | 	} | 
 | 2481 |  | 
 | 2482 | 	return 0; | 
 | 2483 | } | 
 | 2484 |  | 
 | 2485 | static int its_irq_domain_activate(struct irq_domain *domain, | 
 | 2486 | 				   struct irq_data *d, bool reserve) | 
 | 2487 | { | 
 | 2488 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 2489 | 	u32 event = its_get_event_id(d); | 
 | 2490 | 	const struct cpumask *cpu_mask = cpu_online_mask; | 
 | 2491 | 	int cpu; | 
 | 2492 |  | 
 | 2493 | 	/* get the cpu_mask of local node */ | 
 | 2494 | 	if (its_dev->its->numa_node >= 0) | 
 | 2495 | 		cpu_mask = cpumask_of_node(its_dev->its->numa_node); | 
 | 2496 |  | 
 | 2497 | 	/* Bind the LPI to the first possible CPU */ | 
 | 2498 | 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask); | 
 | 2499 | 	if (cpu >= nr_cpu_ids) { | 
 | 2500 | 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) | 
 | 2501 | 			return -EINVAL; | 
 | 2502 |  | 
 | 2503 | 		cpu = cpumask_first(cpu_online_mask); | 
 | 2504 | 	} | 
 | 2505 |  | 
 | 2506 | 	its_dev->event_map.col_map[event] = cpu; | 
 | 2507 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 | 2508 |  | 
 | 2509 | 	/* Map the GIC IRQ and event to the device */ | 
 | 2510 | 	its_send_mapti(its_dev, d->hwirq, event); | 
 | 2511 | 	return 0; | 
 | 2512 | } | 
 | 2513 |  | 
 | 2514 | static void its_irq_domain_deactivate(struct irq_domain *domain, | 
 | 2515 | 				      struct irq_data *d) | 
 | 2516 | { | 
 | 2517 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 2518 | 	u32 event = its_get_event_id(d); | 
 | 2519 |  | 
 | 2520 | 	/* Stop the delivery of interrupts */ | 
 | 2521 | 	its_send_discard(its_dev, event); | 
 | 2522 | } | 
 | 2523 |  | 
 | 2524 | static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, | 
 | 2525 | 				unsigned int nr_irqs) | 
 | 2526 | { | 
 | 2527 | 	struct irq_data *d = irq_domain_get_irq_data(domain, virq); | 
 | 2528 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 2529 | 	struct its_node *its = its_dev->its; | 
 | 2530 | 	int i; | 
 | 2531 |  | 
 | 2532 | 	bitmap_release_region(its_dev->event_map.lpi_map, | 
 | 2533 | 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)), | 
 | 2534 | 			      get_count_order(nr_irqs)); | 
 | 2535 |  | 
 | 2536 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 2537 | 		struct irq_data *data = irq_domain_get_irq_data(domain, | 
 | 2538 | 								virq + i); | 
 | 2539 | 		/* Nuke the entry in the domain */ | 
 | 2540 | 		irq_domain_reset_irq_data(data); | 
 | 2541 | 	} | 
 | 2542 |  | 
 | 2543 | 	mutex_lock(&its->dev_alloc_lock); | 
 | 2544 |  | 
 | 2545 | 	/* | 
 | 2546 | 	 * If all interrupts have been freed, start mopping the | 
 | 2547 | 	 * floor. This is conditionned on the device not being shared. | 
 | 2548 | 	 */ | 
 | 2549 | 	if (!its_dev->shared && | 
 | 2550 | 	    bitmap_empty(its_dev->event_map.lpi_map, | 
 | 2551 | 			 its_dev->event_map.nr_lpis)) { | 
 | 2552 | 		its_lpi_free(its_dev->event_map.lpi_map, | 
 | 2553 | 			     its_dev->event_map.lpi_base, | 
 | 2554 | 			     its_dev->event_map.nr_lpis); | 
 | 2555 | 		kfree(its_dev->event_map.col_map); | 
 | 2556 |  | 
 | 2557 | 		/* Unmap device/itt */ | 
 | 2558 | 		its_send_mapd(its_dev, 0); | 
 | 2559 | 		its_free_device(its_dev); | 
 | 2560 | 	} | 
 | 2561 |  | 
 | 2562 | 	mutex_unlock(&its->dev_alloc_lock); | 
 | 2563 |  | 
 | 2564 | 	irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
 | 2565 | } | 
 | 2566 |  | 
 | 2567 | static const struct irq_domain_ops its_domain_ops = { | 
 | 2568 | 	.alloc			= its_irq_domain_alloc, | 
 | 2569 | 	.free			= its_irq_domain_free, | 
 | 2570 | 	.activate		= its_irq_domain_activate, | 
 | 2571 | 	.deactivate		= its_irq_domain_deactivate, | 
 | 2572 | }; | 
 | 2573 |  | 
 | 2574 | /* | 
 | 2575 |  * This is insane. | 
 | 2576 |  * | 
 | 2577 |  * If a GICv4 doesn't implement Direct LPIs (which is extremely | 
 | 2578 |  * likely), the only way to perform an invalidate is to use a fake | 
 | 2579 |  * device to issue an INV command, implying that the LPI has first | 
 | 2580 |  * been mapped to some event on that device. Since this is not exactly | 
 | 2581 |  * cheap, we try to keep that mapping around as long as possible, and | 
 | 2582 |  * only issue an UNMAP if we're short on available slots. | 
 | 2583 |  * | 
 | 2584 |  * Broken by design(tm). | 
 | 2585 |  */ | 
 | 2586 | static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) | 
 | 2587 | { | 
 | 2588 | 	/* Already unmapped? */ | 
 | 2589 | 	if (vpe->vpe_proxy_event == -1) | 
 | 2590 | 		return; | 
 | 2591 |  | 
 | 2592 | 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); | 
 | 2593 | 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; | 
 | 2594 |  | 
 | 2595 | 	/* | 
 | 2596 | 	 * We don't track empty slots at all, so let's move the | 
 | 2597 | 	 * next_victim pointer if we can quickly reuse that slot | 
 | 2598 | 	 * instead of nuking an existing entry. Not clear that this is | 
 | 2599 | 	 * always a win though, and this might just generate a ripple | 
 | 2600 | 	 * effect... Let's just hope VPEs don't migrate too often. | 
 | 2601 | 	 */ | 
 | 2602 | 	if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
 | 2603 | 		vpe_proxy.next_victim = vpe->vpe_proxy_event; | 
 | 2604 |  | 
 | 2605 | 	vpe->vpe_proxy_event = -1; | 
 | 2606 | } | 
 | 2607 |  | 
 | 2608 | static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) | 
 | 2609 | { | 
 | 2610 | 	if (!gic_rdists->has_direct_lpi) { | 
 | 2611 | 		unsigned long flags; | 
 | 2612 |  | 
 | 2613 | 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 | 2614 | 		its_vpe_db_proxy_unmap_locked(vpe); | 
 | 2615 | 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | 2616 | 	} | 
 | 2617 | } | 
 | 2618 |  | 
 | 2619 | static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) | 
 | 2620 | { | 
 | 2621 | 	/* Already mapped? */ | 
 | 2622 | 	if (vpe->vpe_proxy_event != -1) | 
 | 2623 | 		return; | 
 | 2624 |  | 
 | 2625 | 	/* This slot was already allocated. Kick the other VPE out. */ | 
 | 2626 | 	if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
 | 2627 | 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); | 
 | 2628 |  | 
 | 2629 | 	/* Map the new VPE instead */ | 
 | 2630 | 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; | 
 | 2631 | 	vpe->vpe_proxy_event = vpe_proxy.next_victim; | 
 | 2632 | 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; | 
 | 2633 |  | 
 | 2634 | 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; | 
 | 2635 | 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); | 
 | 2636 | } | 
 | 2637 |  | 
 | 2638 | static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) | 
 | 2639 | { | 
 | 2640 | 	unsigned long flags; | 
 | 2641 | 	struct its_collection *target_col; | 
 | 2642 |  | 
 | 2643 | 	if (gic_rdists->has_direct_lpi) { | 
 | 2644 | 		void __iomem *rdbase; | 
 | 2645 |  | 
 | 2646 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; | 
 | 2647 | 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
 | 2648 | 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) | 
 | 2649 | 			cpu_relax(); | 
 | 2650 |  | 
 | 2651 | 		return; | 
 | 2652 | 	} | 
 | 2653 |  | 
 | 2654 | 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 | 2655 |  | 
 | 2656 | 	its_vpe_db_proxy_map_locked(vpe); | 
 | 2657 |  | 
 | 2658 | 	target_col = &vpe_proxy.dev->its->collections[to]; | 
 | 2659 | 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); | 
 | 2660 | 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; | 
 | 2661 |  | 
 | 2662 | 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | 2663 | } | 
 | 2664 |  | 
 | 2665 | static int its_vpe_set_affinity(struct irq_data *d, | 
 | 2666 | 				const struct cpumask *mask_val, | 
 | 2667 | 				bool force) | 
 | 2668 | { | 
 | 2669 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 2670 | 	int cpu = cpumask_first(mask_val); | 
 | 2671 |  | 
 | 2672 | 	/* | 
 | 2673 | 	 * Changing affinity is mega expensive, so let's be as lazy as | 
 | 2674 | 	 * we can and only do it if we really have to. Also, if mapped | 
 | 2675 | 	 * into the proxy device, we need to move the doorbell | 
 | 2676 | 	 * interrupt to its new location. | 
 | 2677 | 	 */ | 
 | 2678 | 	if (vpe->col_idx != cpu) { | 
 | 2679 | 		int from = vpe->col_idx; | 
 | 2680 |  | 
 | 2681 | 		vpe->col_idx = cpu; | 
 | 2682 | 		its_send_vmovp(vpe); | 
 | 2683 | 		its_vpe_db_proxy_move(vpe, from, cpu); | 
 | 2684 | 	} | 
 | 2685 |  | 
 | 2686 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 | 2687 |  | 
 | 2688 | 	return IRQ_SET_MASK_OK_DONE; | 
 | 2689 | } | 
 | 2690 |  | 
 | 2691 | static void its_vpe_schedule(struct its_vpe *vpe) | 
 | 2692 | { | 
 | 2693 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 2694 | 	u64 val; | 
 | 2695 |  | 
 | 2696 | 	/* Schedule the VPE */ | 
 | 2697 | 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & | 
 | 2698 | 		GENMASK_ULL(51, 12); | 
 | 2699 | 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; | 
 | 2700 | 	val |= GICR_VPROPBASER_RaWb; | 
 | 2701 | 	val |= GICR_VPROPBASER_InnerShareable; | 
 | 2702 | 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
 | 2703 |  | 
 | 2704 | 	val  = virt_to_phys(page_address(vpe->vpt_page)) & | 
 | 2705 | 		GENMASK_ULL(51, 16); | 
 | 2706 | 	val |= GICR_VPENDBASER_RaWaWb; | 
 | 2707 | 	val |= GICR_VPENDBASER_NonShareable; | 
 | 2708 | 	/* | 
 | 2709 | 	 * There is no good way of finding out if the pending table is | 
 | 2710 | 	 * empty as we can race against the doorbell interrupt very | 
 | 2711 | 	 * easily. So in the end, vpe->pending_last is only an | 
 | 2712 | 	 * indication that the vcpu has something pending, not one | 
 | 2713 | 	 * that the pending table is empty. A good implementation | 
 | 2714 | 	 * would be able to read its coarse map pretty quickly anyway, | 
 | 2715 | 	 * making this a tolerable issue. | 
 | 2716 | 	 */ | 
 | 2717 | 	val |= GICR_VPENDBASER_PendingLast; | 
 | 2718 | 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; | 
 | 2719 | 	val |= GICR_VPENDBASER_Valid; | 
 | 2720 | 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
 | 2721 | } | 
 | 2722 |  | 
 | 2723 | static void its_vpe_deschedule(struct its_vpe *vpe) | 
 | 2724 | { | 
 | 2725 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 2726 | 	u64 val; | 
 | 2727 |  | 
 | 2728 | 	val = its_clear_vpend_valid(vlpi_base); | 
 | 2729 |  | 
 | 2730 | 	if (unlikely(val & GICR_VPENDBASER_Dirty)) { | 
 | 2731 | 		pr_err_ratelimited("ITS virtual pending table not cleaning\n"); | 
 | 2732 | 		vpe->idai = false; | 
 | 2733 | 		vpe->pending_last = true; | 
 | 2734 | 	} else { | 
 | 2735 | 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI); | 
 | 2736 | 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); | 
 | 2737 | 	} | 
 | 2738 | } | 
 | 2739 |  | 
 | 2740 | static void its_vpe_invall(struct its_vpe *vpe) | 
 | 2741 | { | 
 | 2742 | 	struct its_node *its; | 
 | 2743 |  | 
 | 2744 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 2745 | 		if (!its->is_v4) | 
 | 2746 | 			continue; | 
 | 2747 |  | 
 | 2748 | 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) | 
 | 2749 | 			continue; | 
 | 2750 |  | 
 | 2751 | 		/* | 
 | 2752 | 		 * Sending a VINVALL to a single ITS is enough, as all | 
 | 2753 | 		 * we need is to reach the redistributors. | 
 | 2754 | 		 */ | 
 | 2755 | 		its_send_vinvall(its, vpe); | 
 | 2756 | 		return; | 
 | 2757 | 	} | 
 | 2758 | } | 
 | 2759 |  | 
 | 2760 | static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | 2761 | { | 
 | 2762 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 2763 | 	struct its_cmd_info *info = vcpu_info; | 
 | 2764 |  | 
 | 2765 | 	switch (info->cmd_type) { | 
 | 2766 | 	case SCHEDULE_VPE: | 
 | 2767 | 		its_vpe_schedule(vpe); | 
 | 2768 | 		return 0; | 
 | 2769 |  | 
 | 2770 | 	case DESCHEDULE_VPE: | 
 | 2771 | 		its_vpe_deschedule(vpe); | 
 | 2772 | 		return 0; | 
 | 2773 |  | 
 | 2774 | 	case INVALL_VPE: | 
 | 2775 | 		its_vpe_invall(vpe); | 
 | 2776 | 		return 0; | 
 | 2777 |  | 
 | 2778 | 	default: | 
 | 2779 | 		return -EINVAL; | 
 | 2780 | 	} | 
 | 2781 | } | 
 | 2782 |  | 
 | 2783 | static void its_vpe_send_cmd(struct its_vpe *vpe, | 
 | 2784 | 			     void (*cmd)(struct its_device *, u32)) | 
 | 2785 | { | 
 | 2786 | 	unsigned long flags; | 
 | 2787 |  | 
 | 2788 | 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 | 2789 |  | 
 | 2790 | 	its_vpe_db_proxy_map_locked(vpe); | 
 | 2791 | 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event); | 
 | 2792 |  | 
 | 2793 | 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | 2794 | } | 
 | 2795 |  | 
 | 2796 | static void its_vpe_send_inv(struct irq_data *d) | 
 | 2797 | { | 
 | 2798 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 2799 |  | 
 | 2800 | 	if (gic_rdists->has_direct_lpi) { | 
 | 2801 | 		void __iomem *rdbase; | 
 | 2802 |  | 
 | 2803 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; | 
 | 2804 | 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); | 
 | 2805 | 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) | 
 | 2806 | 			cpu_relax(); | 
 | 2807 | 	} else { | 
 | 2808 | 		its_vpe_send_cmd(vpe, its_send_inv); | 
 | 2809 | 	} | 
 | 2810 | } | 
 | 2811 |  | 
 | 2812 | static void its_vpe_mask_irq(struct irq_data *d) | 
 | 2813 | { | 
 | 2814 | 	/* | 
 | 2815 | 	 * We need to unmask the LPI, which is described by the parent | 
 | 2816 | 	 * irq_data. Instead of calling into the parent (which won't | 
 | 2817 | 	 * exactly do the right thing, let's simply use the | 
 | 2818 | 	 * parent_data pointer. Yes, I'm naughty. | 
 | 2819 | 	 */ | 
 | 2820 | 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); | 
 | 2821 | 	its_vpe_send_inv(d); | 
 | 2822 | } | 
 | 2823 |  | 
 | 2824 | static void its_vpe_unmask_irq(struct irq_data *d) | 
 | 2825 | { | 
 | 2826 | 	/* Same hack as above... */ | 
 | 2827 | 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); | 
 | 2828 | 	its_vpe_send_inv(d); | 
 | 2829 | } | 
 | 2830 |  | 
 | 2831 | static int its_vpe_set_irqchip_state(struct irq_data *d, | 
 | 2832 | 				     enum irqchip_irq_state which, | 
 | 2833 | 				     bool state) | 
 | 2834 | { | 
 | 2835 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 2836 |  | 
 | 2837 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 2838 | 		return -EINVAL; | 
 | 2839 |  | 
 | 2840 | 	if (gic_rdists->has_direct_lpi) { | 
 | 2841 | 		void __iomem *rdbase; | 
 | 2842 |  | 
 | 2843 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; | 
 | 2844 | 		if (state) { | 
 | 2845 | 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); | 
 | 2846 | 		} else { | 
 | 2847 | 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
 | 2848 | 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) | 
 | 2849 | 				cpu_relax(); | 
 | 2850 | 		} | 
 | 2851 | 	} else { | 
 | 2852 | 		if (state) | 
 | 2853 | 			its_vpe_send_cmd(vpe, its_send_int); | 
 | 2854 | 		else | 
 | 2855 | 			its_vpe_send_cmd(vpe, its_send_clear); | 
 | 2856 | 	} | 
 | 2857 |  | 
 | 2858 | 	return 0; | 
 | 2859 | } | 
 | 2860 |  | 
 | 2861 | static struct irq_chip its_vpe_irq_chip = { | 
 | 2862 | 	.name			= "GICv4-vpe", | 
 | 2863 | 	.irq_mask		= its_vpe_mask_irq, | 
 | 2864 | 	.irq_unmask		= its_vpe_unmask_irq, | 
 | 2865 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | 2866 | 	.irq_set_affinity	= its_vpe_set_affinity, | 
 | 2867 | 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state, | 
 | 2868 | 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity, | 
 | 2869 | }; | 
 | 2870 |  | 
 | 2871 | static int its_vpe_id_alloc(void) | 
 | 2872 | { | 
 | 2873 | 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); | 
 | 2874 | } | 
 | 2875 |  | 
 | 2876 | static void its_vpe_id_free(u16 id) | 
 | 2877 | { | 
 | 2878 | 	ida_simple_remove(&its_vpeid_ida, id); | 
 | 2879 | } | 
 | 2880 |  | 
 | 2881 | static int its_vpe_init(struct its_vpe *vpe) | 
 | 2882 | { | 
 | 2883 | 	struct page *vpt_page; | 
 | 2884 | 	int vpe_id; | 
 | 2885 |  | 
 | 2886 | 	/* Allocate vpe_id */ | 
 | 2887 | 	vpe_id = its_vpe_id_alloc(); | 
 | 2888 | 	if (vpe_id < 0) | 
 | 2889 | 		return vpe_id; | 
 | 2890 |  | 
 | 2891 | 	/* Allocate VPT */ | 
 | 2892 | 	vpt_page = its_allocate_pending_table(GFP_KERNEL); | 
 | 2893 | 	if (!vpt_page) { | 
 | 2894 | 		its_vpe_id_free(vpe_id); | 
 | 2895 | 		return -ENOMEM; | 
 | 2896 | 	} | 
 | 2897 |  | 
 | 2898 | 	if (!its_alloc_vpe_table(vpe_id)) { | 
 | 2899 | 		its_vpe_id_free(vpe_id); | 
 | 2900 | 		its_free_pending_table(vpt_page); | 
 | 2901 | 		return -ENOMEM; | 
 | 2902 | 	} | 
 | 2903 |  | 
 | 2904 | 	vpe->vpe_id = vpe_id; | 
 | 2905 | 	vpe->vpt_page = vpt_page; | 
 | 2906 | 	vpe->vpe_proxy_event = -1; | 
 | 2907 |  | 
 | 2908 | 	return 0; | 
 | 2909 | } | 
 | 2910 |  | 
 | 2911 | static void its_vpe_teardown(struct its_vpe *vpe) | 
 | 2912 | { | 
 | 2913 | 	its_vpe_db_proxy_unmap(vpe); | 
 | 2914 | 	its_vpe_id_free(vpe->vpe_id); | 
 | 2915 | 	its_free_pending_table(vpe->vpt_page); | 
 | 2916 | } | 
 | 2917 |  | 
 | 2918 | static void its_vpe_irq_domain_free(struct irq_domain *domain, | 
 | 2919 | 				    unsigned int virq, | 
 | 2920 | 				    unsigned int nr_irqs) | 
 | 2921 | { | 
 | 2922 | 	struct its_vm *vm = domain->host_data; | 
 | 2923 | 	int i; | 
 | 2924 |  | 
 | 2925 | 	irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
 | 2926 |  | 
 | 2927 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 2928 | 		struct irq_data *data = irq_domain_get_irq_data(domain, | 
 | 2929 | 								virq + i); | 
 | 2930 | 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data); | 
 | 2931 |  | 
 | 2932 | 		BUG_ON(vm != vpe->its_vm); | 
 | 2933 |  | 
 | 2934 | 		clear_bit(data->hwirq, vm->db_bitmap); | 
 | 2935 | 		its_vpe_teardown(vpe); | 
 | 2936 | 		irq_domain_reset_irq_data(data); | 
 | 2937 | 	} | 
 | 2938 |  | 
 | 2939 | 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { | 
 | 2940 | 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); | 
 | 2941 | 		its_free_prop_table(vm->vprop_page); | 
 | 2942 | 	} | 
 | 2943 | } | 
 | 2944 |  | 
 | 2945 | static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 2946 | 				    unsigned int nr_irqs, void *args) | 
 | 2947 | { | 
 | 2948 | 	struct its_vm *vm = args; | 
 | 2949 | 	unsigned long *bitmap; | 
 | 2950 | 	struct page *vprop_page; | 
 | 2951 | 	int base, nr_ids, i, err = 0; | 
 | 2952 |  | 
 | 2953 | 	BUG_ON(!vm); | 
 | 2954 |  | 
 | 2955 | 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); | 
 | 2956 | 	if (!bitmap) | 
 | 2957 | 		return -ENOMEM; | 
 | 2958 |  | 
 | 2959 | 	if (nr_ids < nr_irqs) { | 
 | 2960 | 		its_lpi_free(bitmap, base, nr_ids); | 
 | 2961 | 		return -ENOMEM; | 
 | 2962 | 	} | 
 | 2963 |  | 
 | 2964 | 	vprop_page = its_allocate_prop_table(GFP_KERNEL); | 
 | 2965 | 	if (!vprop_page) { | 
 | 2966 | 		its_lpi_free(bitmap, base, nr_ids); | 
 | 2967 | 		return -ENOMEM; | 
 | 2968 | 	} | 
 | 2969 |  | 
 | 2970 | 	vm->db_bitmap = bitmap; | 
 | 2971 | 	vm->db_lpi_base = base; | 
 | 2972 | 	vm->nr_db_lpis = nr_ids; | 
 | 2973 | 	vm->vprop_page = vprop_page; | 
 | 2974 |  | 
 | 2975 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 2976 | 		vm->vpes[i]->vpe_db_lpi = base + i; | 
 | 2977 | 		err = its_vpe_init(vm->vpes[i]); | 
 | 2978 | 		if (err) | 
 | 2979 | 			break; | 
 | 2980 | 		err = its_irq_gic_domain_alloc(domain, virq + i, | 
 | 2981 | 					       vm->vpes[i]->vpe_db_lpi); | 
 | 2982 | 		if (err) | 
 | 2983 | 			break; | 
 | 2984 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, i, | 
 | 2985 | 					      &its_vpe_irq_chip, vm->vpes[i]); | 
 | 2986 | 		set_bit(i, bitmap); | 
 | 2987 | 	} | 
 | 2988 |  | 
 | 2989 | 	if (err) { | 
 | 2990 | 		if (i > 0) | 
 | 2991 | 			its_vpe_irq_domain_free(domain, virq, i - 1); | 
 | 2992 |  | 
 | 2993 | 		its_lpi_free(bitmap, base, nr_ids); | 
 | 2994 | 		its_free_prop_table(vprop_page); | 
 | 2995 | 	} | 
 | 2996 |  | 
 | 2997 | 	return err; | 
 | 2998 | } | 
 | 2999 |  | 
 | 3000 | static int its_vpe_irq_domain_activate(struct irq_domain *domain, | 
 | 3001 | 				       struct irq_data *d, bool reserve) | 
 | 3002 | { | 
 | 3003 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 3004 | 	struct its_node *its; | 
 | 3005 |  | 
 | 3006 | 	/* If we use the list map, we issue VMAPP on demand... */ | 
 | 3007 | 	if (its_list_map) | 
 | 3008 | 		return 0; | 
 | 3009 |  | 
 | 3010 | 	/* Map the VPE to the first possible CPU */ | 
 | 3011 | 	vpe->col_idx = cpumask_first(cpu_online_mask); | 
 | 3012 |  | 
 | 3013 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 3014 | 		if (!its->is_v4) | 
 | 3015 | 			continue; | 
 | 3016 |  | 
 | 3017 | 		its_send_vmapp(its, vpe, true); | 
 | 3018 | 		its_send_vinvall(its, vpe); | 
 | 3019 | 	} | 
 | 3020 |  | 
 | 3021 | 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
 | 3022 |  | 
 | 3023 | 	return 0; | 
 | 3024 | } | 
 | 3025 |  | 
 | 3026 | static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, | 
 | 3027 | 					  struct irq_data *d) | 
 | 3028 | { | 
 | 3029 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 3030 | 	struct its_node *its; | 
 | 3031 |  | 
 | 3032 | 	/* | 
 | 3033 | 	 * If we use the list map, we unmap the VPE once no VLPIs are | 
 | 3034 | 	 * associated with the VM. | 
 | 3035 | 	 */ | 
 | 3036 | 	if (its_list_map) | 
 | 3037 | 		return; | 
 | 3038 |  | 
 | 3039 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 3040 | 		if (!its->is_v4) | 
 | 3041 | 			continue; | 
 | 3042 |  | 
 | 3043 | 		its_send_vmapp(its, vpe, false); | 
 | 3044 | 	} | 
 | 3045 | } | 
 | 3046 |  | 
 | 3047 | static const struct irq_domain_ops its_vpe_domain_ops = { | 
 | 3048 | 	.alloc			= its_vpe_irq_domain_alloc, | 
 | 3049 | 	.free			= its_vpe_irq_domain_free, | 
 | 3050 | 	.activate		= its_vpe_irq_domain_activate, | 
 | 3051 | 	.deactivate		= its_vpe_irq_domain_deactivate, | 
 | 3052 | }; | 
 | 3053 |  | 
 | 3054 | static int its_force_quiescent(void __iomem *base) | 
 | 3055 | { | 
 | 3056 | 	u32 count = 1000000;	/* 1s */ | 
 | 3057 | 	u32 val; | 
 | 3058 |  | 
 | 3059 | 	val = readl_relaxed(base + GITS_CTLR); | 
 | 3060 | 	/* | 
 | 3061 | 	 * GIC architecture specification requires the ITS to be both | 
 | 3062 | 	 * disabled and quiescent for writes to GITS_BASER<n> or | 
 | 3063 | 	 * GITS_CBASER to not have UNPREDICTABLE results. | 
 | 3064 | 	 */ | 
 | 3065 | 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) | 
 | 3066 | 		return 0; | 
 | 3067 |  | 
 | 3068 | 	/* Disable the generation of all interrupts to this ITS */ | 
 | 3069 | 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); | 
 | 3070 | 	writel_relaxed(val, base + GITS_CTLR); | 
 | 3071 |  | 
 | 3072 | 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */ | 
 | 3073 | 	while (1) { | 
 | 3074 | 		val = readl_relaxed(base + GITS_CTLR); | 
 | 3075 | 		if (val & GITS_CTLR_QUIESCENT) | 
 | 3076 | 			return 0; | 
 | 3077 |  | 
 | 3078 | 		count--; | 
 | 3079 | 		if (!count) | 
 | 3080 | 			return -EBUSY; | 
 | 3081 |  | 
 | 3082 | 		cpu_relax(); | 
 | 3083 | 		udelay(1); | 
 | 3084 | 	} | 
 | 3085 | } | 
 | 3086 |  | 
 | 3087 | static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) | 
 | 3088 | { | 
 | 3089 | 	struct its_node *its = data; | 
 | 3090 |  | 
 | 3091 | 	/* erratum 22375: only alloc 8MB table size */ | 
 | 3092 | 	its->device_ids = 0x14;		/* 20 bits, 8MB */ | 
 | 3093 | 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; | 
 | 3094 |  | 
 | 3095 | 	return true; | 
 | 3096 | } | 
 | 3097 |  | 
 | 3098 | static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) | 
 | 3099 | { | 
 | 3100 | 	struct its_node *its = data; | 
 | 3101 |  | 
 | 3102 | 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; | 
 | 3103 |  | 
 | 3104 | 	return true; | 
 | 3105 | } | 
 | 3106 |  | 
 | 3107 | static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) | 
 | 3108 | { | 
 | 3109 | 	struct its_node *its = data; | 
 | 3110 |  | 
 | 3111 | 	/* On QDF2400, the size of the ITE is 16Bytes */ | 
 | 3112 | 	its->ite_size = 16; | 
 | 3113 |  | 
 | 3114 | 	return true; | 
 | 3115 | } | 
 | 3116 |  | 
 | 3117 | static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) | 
 | 3118 | { | 
 | 3119 | 	struct its_node *its = its_dev->its; | 
 | 3120 |  | 
 | 3121 | 	/* | 
 | 3122 | 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS', | 
 | 3123 | 	 * which maps 32-bit writes targeted at a separate window of | 
 | 3124 | 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER | 
 | 3125 | 	 * with device ID taken from bits [device_id_bits + 1:2] of | 
 | 3126 | 	 * the window offset. | 
 | 3127 | 	 */ | 
 | 3128 | 	return its->pre_its_base + (its_dev->device_id << 2); | 
 | 3129 | } | 
 | 3130 |  | 
 | 3131 | static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) | 
 | 3132 | { | 
 | 3133 | 	struct its_node *its = data; | 
 | 3134 | 	u32 pre_its_window[2]; | 
 | 3135 | 	u32 ids; | 
 | 3136 |  | 
 | 3137 | 	if (!fwnode_property_read_u32_array(its->fwnode_handle, | 
 | 3138 | 					   "socionext,synquacer-pre-its", | 
 | 3139 | 					   pre_its_window, | 
 | 3140 | 					   ARRAY_SIZE(pre_its_window))) { | 
 | 3141 |  | 
 | 3142 | 		its->pre_its_base = pre_its_window[0]; | 
 | 3143 | 		its->get_msi_base = its_irq_get_msi_base_pre_its; | 
 | 3144 |  | 
 | 3145 | 		ids = ilog2(pre_its_window[1]) - 2; | 
 | 3146 | 		if (its->device_ids > ids) | 
 | 3147 | 			its->device_ids = ids; | 
 | 3148 |  | 
 | 3149 | 		/* the pre-ITS breaks isolation, so disable MSI remapping */ | 
 | 3150 | 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; | 
 | 3151 | 		return true; | 
 | 3152 | 	} | 
 | 3153 | 	return false; | 
 | 3154 | } | 
 | 3155 |  | 
 | 3156 | static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) | 
 | 3157 | { | 
 | 3158 | 	struct its_node *its = data; | 
 | 3159 |  | 
 | 3160 | 	/* | 
 | 3161 | 	 * Hip07 insists on using the wrong address for the VLPI | 
 | 3162 | 	 * page. Trick it into doing the right thing... | 
 | 3163 | 	 */ | 
 | 3164 | 	its->vlpi_redist_offset = SZ_128K; | 
 | 3165 | 	return true; | 
 | 3166 | } | 
 | 3167 |  | 
 | 3168 | static const struct gic_quirk its_quirks[] = { | 
 | 3169 | #ifdef CONFIG_CAVIUM_ERRATUM_22375 | 
 | 3170 | 	{ | 
 | 3171 | 		.desc	= "ITS: Cavium errata 22375, 24313", | 
 | 3172 | 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
 | 3173 | 		.mask	= 0xffff0fff, | 
 | 3174 | 		.init	= its_enable_quirk_cavium_22375, | 
 | 3175 | 	}, | 
 | 3176 | #endif | 
 | 3177 | #ifdef CONFIG_CAVIUM_ERRATUM_23144 | 
 | 3178 | 	{ | 
 | 3179 | 		.desc	= "ITS: Cavium erratum 23144", | 
 | 3180 | 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
 | 3181 | 		.mask	= 0xffff0fff, | 
 | 3182 | 		.init	= its_enable_quirk_cavium_23144, | 
 | 3183 | 	}, | 
 | 3184 | #endif | 
 | 3185 | #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 | 
 | 3186 | 	{ | 
 | 3187 | 		.desc	= "ITS: QDF2400 erratum 0065", | 
 | 3188 | 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */ | 
 | 3189 | 		.mask	= 0xffffffff, | 
 | 3190 | 		.init	= its_enable_quirk_qdf2400_e0065, | 
 | 3191 | 	}, | 
 | 3192 | #endif | 
 | 3193 | #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS | 
 | 3194 | 	{ | 
 | 3195 | 		/* | 
 | 3196 | 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 | 
 | 3197 | 		 * implementation, but with a 'pre-ITS' added that requires | 
 | 3198 | 		 * special handling in software. | 
 | 3199 | 		 */ | 
 | 3200 | 		.desc	= "ITS: Socionext Synquacer pre-ITS", | 
 | 3201 | 		.iidr	= 0x0001143b, | 
 | 3202 | 		.mask	= 0xffffffff, | 
 | 3203 | 		.init	= its_enable_quirk_socionext_synquacer, | 
 | 3204 | 	}, | 
 | 3205 | #endif | 
 | 3206 | #ifdef CONFIG_HISILICON_ERRATUM_161600802 | 
 | 3207 | 	{ | 
 | 3208 | 		.desc	= "ITS: Hip07 erratum 161600802", | 
 | 3209 | 		.iidr	= 0x00000004, | 
 | 3210 | 		.mask	= 0xffffffff, | 
 | 3211 | 		.init	= its_enable_quirk_hip07_161600802, | 
 | 3212 | 	}, | 
 | 3213 | #endif | 
 | 3214 | 	{ | 
 | 3215 | 	} | 
 | 3216 | }; | 
 | 3217 |  | 
 | 3218 | static void its_enable_quirks(struct its_node *its) | 
 | 3219 | { | 
 | 3220 | 	u32 iidr = readl_relaxed(its->base + GITS_IIDR); | 
 | 3221 |  | 
 | 3222 | 	gic_enable_quirks(iidr, its_quirks, its); | 
 | 3223 | } | 
 | 3224 |  | 
 | 3225 | static int its_save_disable(void) | 
 | 3226 | { | 
 | 3227 | 	struct its_node *its; | 
 | 3228 | 	int err = 0; | 
 | 3229 |  | 
 | 3230 | 	raw_spin_lock(&its_lock); | 
 | 3231 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 3232 | 		void __iomem *base; | 
 | 3233 |  | 
 | 3234 | 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) | 
 | 3235 | 			continue; | 
 | 3236 |  | 
 | 3237 | 		base = its->base; | 
 | 3238 | 		its->ctlr_save = readl_relaxed(base + GITS_CTLR); | 
 | 3239 | 		err = its_force_quiescent(base); | 
 | 3240 | 		if (err) { | 
 | 3241 | 			pr_err("ITS@%pa: failed to quiesce: %d\n", | 
 | 3242 | 			       &its->phys_base, err); | 
 | 3243 | 			writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
 | 3244 | 			goto err; | 
 | 3245 | 		} | 
 | 3246 |  | 
 | 3247 | 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); | 
 | 3248 | 	} | 
 | 3249 |  | 
 | 3250 | err: | 
 | 3251 | 	if (err) { | 
 | 3252 | 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) { | 
 | 3253 | 			void __iomem *base; | 
 | 3254 |  | 
 | 3255 | 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) | 
 | 3256 | 				continue; | 
 | 3257 |  | 
 | 3258 | 			base = its->base; | 
 | 3259 | 			writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
 | 3260 | 		} | 
 | 3261 | 	} | 
 | 3262 | 	raw_spin_unlock(&its_lock); | 
 | 3263 |  | 
 | 3264 | 	return err; | 
 | 3265 | } | 
 | 3266 |  | 
 | 3267 | static void its_restore_enable(void) | 
 | 3268 | { | 
 | 3269 | 	struct its_node *its; | 
 | 3270 | 	int ret; | 
 | 3271 |  | 
 | 3272 | 	raw_spin_lock(&its_lock); | 
 | 3273 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 3274 | 		void __iomem *base; | 
 | 3275 | 		int i; | 
 | 3276 |  | 
 | 3277 | 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) | 
 | 3278 | 			continue; | 
 | 3279 |  | 
 | 3280 | 		base = its->base; | 
 | 3281 |  | 
 | 3282 | 		/* | 
 | 3283 | 		 * Make sure that the ITS is disabled. If it fails to quiesce, | 
 | 3284 | 		 * don't restore it since writing to CBASER or BASER<n> | 
 | 3285 | 		 * registers is undefined according to the GIC v3 ITS | 
 | 3286 | 		 * Specification. | 
 | 3287 | 		 */ | 
 | 3288 | 		ret = its_force_quiescent(base); | 
 | 3289 | 		if (ret) { | 
 | 3290 | 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n", | 
 | 3291 | 			       &its->phys_base, ret); | 
 | 3292 | 			continue; | 
 | 3293 | 		} | 
 | 3294 |  | 
 | 3295 | 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); | 
 | 3296 |  | 
 | 3297 | 		/* | 
 | 3298 | 		 * Writing CBASER resets CREADR to 0, so make CWRITER and | 
 | 3299 | 		 * cmd_write line up with it. | 
 | 3300 | 		 */ | 
 | 3301 | 		its->cmd_write = its->cmd_base; | 
 | 3302 | 		gits_write_cwriter(0, base + GITS_CWRITER); | 
 | 3303 |  | 
 | 3304 | 		/* Restore GITS_BASER from the value cache. */ | 
 | 3305 | 		for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 3306 | 			struct its_baser *baser = &its->tables[i]; | 
 | 3307 |  | 
 | 3308 | 			if (!(baser->val & GITS_BASER_VALID)) | 
 | 3309 | 				continue; | 
 | 3310 |  | 
 | 3311 | 			its_write_baser(its, baser, baser->val); | 
 | 3312 | 		} | 
 | 3313 | 		writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
 | 3314 |  | 
 | 3315 | 		/* | 
 | 3316 | 		 * Reinit the collection if it's stored in the ITS. This is | 
 | 3317 | 		 * indicated by the col_id being less than the HCC field. | 
 | 3318 | 		 * CID < HCC as specified in the GIC v3 Documentation. | 
 | 3319 | 		 */ | 
 | 3320 | 		if (its->collections[smp_processor_id()].col_id < | 
 | 3321 | 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) | 
 | 3322 | 			its_cpu_init_collection(its); | 
 | 3323 | 	} | 
 | 3324 | 	raw_spin_unlock(&its_lock); | 
 | 3325 | } | 
 | 3326 |  | 
 | 3327 | static struct syscore_ops its_syscore_ops = { | 
 | 3328 | 	.suspend = its_save_disable, | 
 | 3329 | 	.resume = its_restore_enable, | 
 | 3330 | }; | 
 | 3331 |  | 
 | 3332 | static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) | 
 | 3333 | { | 
 | 3334 | 	struct irq_domain *inner_domain; | 
 | 3335 | 	struct msi_domain_info *info; | 
 | 3336 |  | 
 | 3337 | 	info = kzalloc(sizeof(*info), GFP_KERNEL); | 
 | 3338 | 	if (!info) | 
 | 3339 | 		return -ENOMEM; | 
 | 3340 |  | 
 | 3341 | 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); | 
 | 3342 | 	if (!inner_domain) { | 
 | 3343 | 		kfree(info); | 
 | 3344 | 		return -ENOMEM; | 
 | 3345 | 	} | 
 | 3346 |  | 
 | 3347 | 	inner_domain->parent = its_parent; | 
 | 3348 | 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); | 
 | 3349 | 	inner_domain->flags |= its->msi_domain_flags; | 
 | 3350 | 	info->ops = &its_msi_domain_ops; | 
 | 3351 | 	info->data = its; | 
 | 3352 | 	inner_domain->host_data = info; | 
 | 3353 |  | 
 | 3354 | 	return 0; | 
 | 3355 | } | 
 | 3356 |  | 
 | 3357 | static int its_init_vpe_domain(void) | 
 | 3358 | { | 
 | 3359 | 	struct its_node *its; | 
 | 3360 | 	u32 devid; | 
 | 3361 | 	int entries; | 
 | 3362 |  | 
 | 3363 | 	if (gic_rdists->has_direct_lpi) { | 
 | 3364 | 		pr_info("ITS: Using DirectLPI for VPE invalidation\n"); | 
 | 3365 | 		return 0; | 
 | 3366 | 	} | 
 | 3367 |  | 
 | 3368 | 	/* Any ITS will do, even if not v4 */ | 
 | 3369 | 	its = list_first_entry(&its_nodes, struct its_node, entry); | 
 | 3370 |  | 
 | 3371 | 	entries = roundup_pow_of_two(nr_cpu_ids); | 
 | 3372 | 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), | 
 | 3373 | 				 GFP_KERNEL); | 
 | 3374 | 	if (!vpe_proxy.vpes) { | 
 | 3375 | 		pr_err("ITS: Can't allocate GICv4 proxy device array\n"); | 
 | 3376 | 		return -ENOMEM; | 
 | 3377 | 	} | 
 | 3378 |  | 
 | 3379 | 	/* Use the last possible DevID */ | 
 | 3380 | 	devid = GENMASK(its->device_ids - 1, 0); | 
 | 3381 | 	vpe_proxy.dev = its_create_device(its, devid, entries, false); | 
 | 3382 | 	if (!vpe_proxy.dev) { | 
 | 3383 | 		kfree(vpe_proxy.vpes); | 
 | 3384 | 		pr_err("ITS: Can't allocate GICv4 proxy device\n"); | 
 | 3385 | 		return -ENOMEM; | 
 | 3386 | 	} | 
 | 3387 |  | 
 | 3388 | 	BUG_ON(entries > vpe_proxy.dev->nr_ites); | 
 | 3389 |  | 
 | 3390 | 	raw_spin_lock_init(&vpe_proxy.lock); | 
 | 3391 | 	vpe_proxy.next_victim = 0; | 
 | 3392 | 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", | 
 | 3393 | 		devid, vpe_proxy.dev->nr_ites); | 
 | 3394 |  | 
 | 3395 | 	return 0; | 
 | 3396 | } | 
 | 3397 |  | 
 | 3398 | static int __init its_compute_its_list_map(struct resource *res, | 
 | 3399 | 					   void __iomem *its_base) | 
 | 3400 | { | 
 | 3401 | 	int its_number; | 
 | 3402 | 	u32 ctlr; | 
 | 3403 |  | 
 | 3404 | 	/* | 
 | 3405 | 	 * This is assumed to be done early enough that we're | 
 | 3406 | 	 * guaranteed to be single-threaded, hence no | 
 | 3407 | 	 * locking. Should this change, we should address | 
 | 3408 | 	 * this. | 
 | 3409 | 	 */ | 
 | 3410 | 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); | 
 | 3411 | 	if (its_number >= GICv4_ITS_LIST_MAX) { | 
 | 3412 | 		pr_err("ITS@%pa: No ITSList entry available!\n", | 
 | 3413 | 		       &res->start); | 
 | 3414 | 		return -EINVAL; | 
 | 3415 | 	} | 
 | 3416 |  | 
 | 3417 | 	ctlr = readl_relaxed(its_base + GITS_CTLR); | 
 | 3418 | 	ctlr &= ~GITS_CTLR_ITS_NUMBER; | 
 | 3419 | 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; | 
 | 3420 | 	writel_relaxed(ctlr, its_base + GITS_CTLR); | 
 | 3421 | 	ctlr = readl_relaxed(its_base + GITS_CTLR); | 
 | 3422 | 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { | 
 | 3423 | 		its_number = ctlr & GITS_CTLR_ITS_NUMBER; | 
 | 3424 | 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; | 
 | 3425 | 	} | 
 | 3426 |  | 
 | 3427 | 	if (test_and_set_bit(its_number, &its_list_map)) { | 
 | 3428 | 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n", | 
 | 3429 | 		       &res->start, its_number); | 
 | 3430 | 		return -EINVAL; | 
 | 3431 | 	} | 
 | 3432 |  | 
 | 3433 | 	return its_number; | 
 | 3434 | } | 
 | 3435 |  | 
 | 3436 | static int __init its_probe_one(struct resource *res, | 
 | 3437 | 				struct fwnode_handle *handle, int numa_node) | 
 | 3438 | { | 
 | 3439 | 	struct its_node *its; | 
 | 3440 | 	void __iomem *its_base; | 
 | 3441 | 	u32 val, ctlr; | 
 | 3442 | 	u64 baser, tmp, typer; | 
 | 3443 | 	int err; | 
 | 3444 |  | 
 | 3445 | 	its_base = ioremap(res->start, resource_size(res)); | 
 | 3446 | 	if (!its_base) { | 
 | 3447 | 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); | 
 | 3448 | 		return -ENOMEM; | 
 | 3449 | 	} | 
 | 3450 |  | 
 | 3451 | 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; | 
 | 3452 | 	if (val != 0x30 && val != 0x40) { | 
 | 3453 | 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); | 
 | 3454 | 		err = -ENODEV; | 
 | 3455 | 		goto out_unmap; | 
 | 3456 | 	} | 
 | 3457 |  | 
 | 3458 | 	err = its_force_quiescent(its_base); | 
 | 3459 | 	if (err) { | 
 | 3460 | 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); | 
 | 3461 | 		goto out_unmap; | 
 | 3462 | 	} | 
 | 3463 |  | 
 | 3464 | 	pr_info("ITS %pR\n", res); | 
 | 3465 |  | 
 | 3466 | 	its = kzalloc(sizeof(*its), GFP_KERNEL); | 
 | 3467 | 	if (!its) { | 
 | 3468 | 		err = -ENOMEM; | 
 | 3469 | 		goto out_unmap; | 
 | 3470 | 	} | 
 | 3471 |  | 
 | 3472 | 	raw_spin_lock_init(&its->lock); | 
 | 3473 | 	mutex_init(&its->dev_alloc_lock); | 
 | 3474 | 	INIT_LIST_HEAD(&its->entry); | 
 | 3475 | 	INIT_LIST_HEAD(&its->its_device_list); | 
 | 3476 | 	typer = gic_read_typer(its_base + GITS_TYPER); | 
 | 3477 | 	its->base = its_base; | 
 | 3478 | 	its->phys_base = res->start; | 
 | 3479 | 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); | 
 | 3480 | 	its->device_ids = GITS_TYPER_DEVBITS(typer); | 
 | 3481 | 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS); | 
 | 3482 | 	if (its->is_v4) { | 
 | 3483 | 		if (!(typer & GITS_TYPER_VMOVP)) { | 
 | 3484 | 			err = its_compute_its_list_map(res, its_base); | 
 | 3485 | 			if (err < 0) | 
 | 3486 | 				goto out_free_its; | 
 | 3487 |  | 
 | 3488 | 			its->list_nr = err; | 
 | 3489 |  | 
 | 3490 | 			pr_info("ITS@%pa: Using ITS number %d\n", | 
 | 3491 | 				&res->start, err); | 
 | 3492 | 		} else { | 
 | 3493 | 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); | 
 | 3494 | 		} | 
 | 3495 | 	} | 
 | 3496 |  | 
 | 3497 | 	its->numa_node = numa_node; | 
 | 3498 |  | 
 | 3499 | 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, | 
 | 3500 | 						get_order(ITS_CMD_QUEUE_SZ)); | 
 | 3501 | 	if (!its->cmd_base) { | 
 | 3502 | 		err = -ENOMEM; | 
 | 3503 | 		goto out_free_its; | 
 | 3504 | 	} | 
 | 3505 | 	its->cmd_write = its->cmd_base; | 
 | 3506 | 	its->fwnode_handle = handle; | 
 | 3507 | 	its->get_msi_base = its_irq_get_msi_base; | 
 | 3508 | 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; | 
 | 3509 |  | 
 | 3510 | 	its_enable_quirks(its); | 
 | 3511 |  | 
 | 3512 | 	err = its_alloc_tables(its); | 
 | 3513 | 	if (err) | 
 | 3514 | 		goto out_free_cmd; | 
 | 3515 |  | 
 | 3516 | 	err = its_alloc_collections(its); | 
 | 3517 | 	if (err) | 
 | 3518 | 		goto out_free_tables; | 
 | 3519 |  | 
 | 3520 | 	baser = (virt_to_phys(its->cmd_base)	| | 
 | 3521 | 		 GITS_CBASER_RaWaWb		| | 
 | 3522 | 		 GITS_CBASER_InnerShareable	| | 
 | 3523 | 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	| | 
 | 3524 | 		 GITS_CBASER_VALID); | 
 | 3525 |  | 
 | 3526 | 	gits_write_cbaser(baser, its->base + GITS_CBASER); | 
 | 3527 | 	tmp = gits_read_cbaser(its->base + GITS_CBASER); | 
 | 3528 |  | 
 | 3529 | 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { | 
 | 3530 | 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { | 
 | 3531 | 			/* | 
 | 3532 | 			 * The HW reports non-shareable, we must | 
 | 3533 | 			 * remove the cacheability attributes as | 
 | 3534 | 			 * well. | 
 | 3535 | 			 */ | 
 | 3536 | 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK | | 
 | 3537 | 				   GITS_CBASER_CACHEABILITY_MASK); | 
 | 3538 | 			baser |= GITS_CBASER_nC; | 
 | 3539 | 			gits_write_cbaser(baser, its->base + GITS_CBASER); | 
 | 3540 | 		} | 
 | 3541 | 		pr_info("ITS: using cache flushing for cmd queue\n"); | 
 | 3542 | 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; | 
 | 3543 | 	} | 
 | 3544 |  | 
 | 3545 | 	gits_write_cwriter(0, its->base + GITS_CWRITER); | 
 | 3546 | 	ctlr = readl_relaxed(its->base + GITS_CTLR); | 
 | 3547 | 	ctlr |= GITS_CTLR_ENABLE; | 
 | 3548 | 	if (its->is_v4) | 
 | 3549 | 		ctlr |= GITS_CTLR_ImDe; | 
 | 3550 | 	writel_relaxed(ctlr, its->base + GITS_CTLR); | 
 | 3551 |  | 
 | 3552 | 	if (GITS_TYPER_HCC(typer)) | 
 | 3553 | 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; | 
 | 3554 |  | 
 | 3555 | 	err = its_init_domain(handle, its); | 
 | 3556 | 	if (err) | 
 | 3557 | 		goto out_free_tables; | 
 | 3558 |  | 
 | 3559 | 	raw_spin_lock(&its_lock); | 
 | 3560 | 	list_add(&its->entry, &its_nodes); | 
 | 3561 | 	raw_spin_unlock(&its_lock); | 
 | 3562 |  | 
 | 3563 | 	return 0; | 
 | 3564 |  | 
 | 3565 | out_free_tables: | 
 | 3566 | 	its_free_tables(its); | 
 | 3567 | out_free_cmd: | 
 | 3568 | 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); | 
 | 3569 | out_free_its: | 
 | 3570 | 	kfree(its); | 
 | 3571 | out_unmap: | 
 | 3572 | 	iounmap(its_base); | 
 | 3573 | 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); | 
 | 3574 | 	return err; | 
 | 3575 | } | 
 | 3576 |  | 
 | 3577 | static bool gic_rdists_supports_plpis(void) | 
 | 3578 | { | 
 | 3579 | 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); | 
 | 3580 | } | 
 | 3581 |  | 
 | 3582 | static int redist_disable_lpis(void) | 
 | 3583 | { | 
 | 3584 | 	void __iomem *rbase = gic_data_rdist_rd_base(); | 
 | 3585 | 	u64 timeout = USEC_PER_SEC; | 
 | 3586 | 	u64 val; | 
 | 3587 |  | 
 | 3588 | 	/* | 
 | 3589 | 	 * If coming via a CPU hotplug event, we don't need to disable | 
 | 3590 | 	 * LPIs before trying to re-enable them. They are already | 
 | 3591 | 	 * configured and all is well in the world. Detect this case | 
 | 3592 | 	 * by checking the allocation of the pending table for the | 
 | 3593 | 	 * current CPU. | 
 | 3594 | 	 */ | 
 | 3595 | 	if (gic_data_rdist()->pend_page) | 
 | 3596 | 		return 0; | 
 | 3597 |  | 
 | 3598 | 	if (!gic_rdists_supports_plpis()) { | 
 | 3599 | 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); | 
 | 3600 | 		return -ENXIO; | 
 | 3601 | 	} | 
 | 3602 |  | 
 | 3603 | 	val = readl_relaxed(rbase + GICR_CTLR); | 
 | 3604 | 	if (!(val & GICR_CTLR_ENABLE_LPIS)) | 
 | 3605 | 		return 0; | 
 | 3606 |  | 
 | 3607 | 	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n", | 
 | 3608 | 		smp_processor_id()); | 
 | 3609 | 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); | 
 | 3610 |  | 
 | 3611 | 	/* Disable LPIs */ | 
 | 3612 | 	val &= ~GICR_CTLR_ENABLE_LPIS; | 
 | 3613 | 	writel_relaxed(val, rbase + GICR_CTLR); | 
 | 3614 |  | 
 | 3615 | 	/* Make sure any change to GICR_CTLR is observable by the GIC */ | 
 | 3616 | 	dsb(sy); | 
 | 3617 |  | 
 | 3618 | 	/* | 
 | 3619 | 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs | 
 | 3620 | 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. | 
 | 3621 | 	 * Error out if we time out waiting for RWP to clear. | 
 | 3622 | 	 */ | 
 | 3623 | 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { | 
 | 3624 | 		if (!timeout) { | 
 | 3625 | 			pr_err("CPU%d: Timeout while disabling LPIs\n", | 
 | 3626 | 			       smp_processor_id()); | 
 | 3627 | 			return -ETIMEDOUT; | 
 | 3628 | 		} | 
 | 3629 | 		udelay(1); | 
 | 3630 | 		timeout--; | 
 | 3631 | 	} | 
 | 3632 |  | 
 | 3633 | 	/* | 
 | 3634 | 	 * After it has been written to 1, it is IMPLEMENTATION | 
 | 3635 | 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be | 
 | 3636 | 	 * cleared to 0. Error out if clearing the bit failed. | 
 | 3637 | 	 */ | 
 | 3638 | 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { | 
 | 3639 | 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); | 
 | 3640 | 		return -EBUSY; | 
 | 3641 | 	} | 
 | 3642 |  | 
 | 3643 | 	return 0; | 
 | 3644 | } | 
 | 3645 |  | 
 | 3646 | int its_cpu_init(void) | 
 | 3647 | { | 
 | 3648 | 	if (!list_empty(&its_nodes)) { | 
 | 3649 | 		int ret; | 
 | 3650 |  | 
 | 3651 | 		ret = redist_disable_lpis(); | 
 | 3652 | 		if (ret) | 
 | 3653 | 			return ret; | 
 | 3654 |  | 
 | 3655 | 		its_cpu_init_lpis(); | 
 | 3656 | 		its_cpu_init_collections(); | 
 | 3657 | 	} | 
 | 3658 |  | 
 | 3659 | 	return 0; | 
 | 3660 | } | 
 | 3661 |  | 
 | 3662 | static const struct of_device_id its_device_id[] = { | 
 | 3663 | 	{	.compatible	= "arm,gic-v3-its",	}, | 
 | 3664 | 	{}, | 
 | 3665 | }; | 
 | 3666 |  | 
 | 3667 | static int __init its_of_probe(struct device_node *node) | 
 | 3668 | { | 
 | 3669 | 	struct device_node *np; | 
 | 3670 | 	struct resource res; | 
 | 3671 |  | 
 | 3672 | 	for (np = of_find_matching_node(node, its_device_id); np; | 
 | 3673 | 	     np = of_find_matching_node(np, its_device_id)) { | 
 | 3674 | 		if (!of_device_is_available(np)) | 
 | 3675 | 			continue; | 
 | 3676 | 		if (!of_property_read_bool(np, "msi-controller")) { | 
 | 3677 | 			pr_warn("%pOF: no msi-controller property, ITS ignored\n", | 
 | 3678 | 				np); | 
 | 3679 | 			continue; | 
 | 3680 | 		} | 
 | 3681 |  | 
 | 3682 | 		if (of_address_to_resource(np, 0, &res)) { | 
 | 3683 | 			pr_warn("%pOF: no regs?\n", np); | 
 | 3684 | 			continue; | 
 | 3685 | 		} | 
 | 3686 |  | 
 | 3687 | 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); | 
 | 3688 | 	} | 
 | 3689 | 	return 0; | 
 | 3690 | } | 
 | 3691 |  | 
 | 3692 | #ifdef CONFIG_ACPI | 
 | 3693 |  | 
 | 3694 | #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) | 
 | 3695 |  | 
 | 3696 | #ifdef CONFIG_ACPI_NUMA | 
 | 3697 | struct its_srat_map { | 
 | 3698 | 	/* numa node id */ | 
 | 3699 | 	u32	numa_node; | 
 | 3700 | 	/* GIC ITS ID */ | 
 | 3701 | 	u32	its_id; | 
 | 3702 | }; | 
 | 3703 |  | 
 | 3704 | static struct its_srat_map *its_srat_maps __initdata; | 
 | 3705 | static int its_in_srat __initdata; | 
 | 3706 |  | 
 | 3707 | static int __init acpi_get_its_numa_node(u32 its_id) | 
 | 3708 | { | 
 | 3709 | 	int i; | 
 | 3710 |  | 
 | 3711 | 	for (i = 0; i < its_in_srat; i++) { | 
 | 3712 | 		if (its_id == its_srat_maps[i].its_id) | 
 | 3713 | 			return its_srat_maps[i].numa_node; | 
 | 3714 | 	} | 
 | 3715 | 	return NUMA_NO_NODE; | 
 | 3716 | } | 
 | 3717 |  | 
 | 3718 | static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, | 
 | 3719 | 					  const unsigned long end) | 
 | 3720 | { | 
 | 3721 | 	return 0; | 
 | 3722 | } | 
 | 3723 |  | 
 | 3724 | static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, | 
 | 3725 | 			 const unsigned long end) | 
 | 3726 | { | 
 | 3727 | 	int node; | 
 | 3728 | 	struct acpi_srat_gic_its_affinity *its_affinity; | 
 | 3729 |  | 
 | 3730 | 	its_affinity = (struct acpi_srat_gic_its_affinity *)header; | 
 | 3731 | 	if (!its_affinity) | 
 | 3732 | 		return -EINVAL; | 
 | 3733 |  | 
 | 3734 | 	if (its_affinity->header.length < sizeof(*its_affinity)) { | 
 | 3735 | 		pr_err("SRAT: Invalid header length %d in ITS affinity\n", | 
 | 3736 | 			its_affinity->header.length); | 
 | 3737 | 		return -EINVAL; | 
 | 3738 | 	} | 
 | 3739 |  | 
 | 3740 | 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain); | 
 | 3741 |  | 
 | 3742 | 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { | 
 | 3743 | 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); | 
 | 3744 | 		return 0; | 
 | 3745 | 	} | 
 | 3746 |  | 
 | 3747 | 	its_srat_maps[its_in_srat].numa_node = node; | 
 | 3748 | 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id; | 
 | 3749 | 	its_in_srat++; | 
 | 3750 | 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", | 
 | 3751 | 		its_affinity->proximity_domain, its_affinity->its_id, node); | 
 | 3752 |  | 
 | 3753 | 	return 0; | 
 | 3754 | } | 
 | 3755 |  | 
 | 3756 | static void __init acpi_table_parse_srat_its(void) | 
 | 3757 | { | 
 | 3758 | 	int count; | 
 | 3759 |  | 
 | 3760 | 	count = acpi_table_parse_entries(ACPI_SIG_SRAT, | 
 | 3761 | 			sizeof(struct acpi_table_srat), | 
 | 3762 | 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
 | 3763 | 			gic_acpi_match_srat_its, 0); | 
 | 3764 | 	if (count <= 0) | 
 | 3765 | 		return; | 
 | 3766 |  | 
 | 3767 | 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), | 
 | 3768 | 				      GFP_KERNEL); | 
 | 3769 | 	if (!its_srat_maps) { | 
 | 3770 | 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); | 
 | 3771 | 		return; | 
 | 3772 | 	} | 
 | 3773 |  | 
 | 3774 | 	acpi_table_parse_entries(ACPI_SIG_SRAT, | 
 | 3775 | 			sizeof(struct acpi_table_srat), | 
 | 3776 | 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
 | 3777 | 			gic_acpi_parse_srat_its, 0); | 
 | 3778 | } | 
 | 3779 |  | 
 | 3780 | /* free the its_srat_maps after ITS probing */ | 
 | 3781 | static void __init acpi_its_srat_maps_free(void) | 
 | 3782 | { | 
 | 3783 | 	kfree(its_srat_maps); | 
 | 3784 | } | 
 | 3785 | #else | 
 | 3786 | static void __init acpi_table_parse_srat_its(void)	{ } | 
 | 3787 | static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } | 
 | 3788 | static void __init acpi_its_srat_maps_free(void) { } | 
 | 3789 | #endif | 
 | 3790 |  | 
 | 3791 | static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, | 
 | 3792 | 					  const unsigned long end) | 
 | 3793 | { | 
 | 3794 | 	struct acpi_madt_generic_translator *its_entry; | 
 | 3795 | 	struct fwnode_handle *dom_handle; | 
 | 3796 | 	struct resource res; | 
 | 3797 | 	int err; | 
 | 3798 |  | 
 | 3799 | 	its_entry = (struct acpi_madt_generic_translator *)header; | 
 | 3800 | 	memset(&res, 0, sizeof(res)); | 
 | 3801 | 	res.start = its_entry->base_address; | 
 | 3802 | 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; | 
 | 3803 | 	res.flags = IORESOURCE_MEM; | 
 | 3804 |  | 
 | 3805 | 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); | 
 | 3806 | 	if (!dom_handle) { | 
 | 3807 | 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", | 
 | 3808 | 		       &res.start); | 
 | 3809 | 		return -ENOMEM; | 
 | 3810 | 	} | 
 | 3811 |  | 
 | 3812 | 	err = iort_register_domain_token(its_entry->translation_id, res.start, | 
 | 3813 | 					 dom_handle); | 
 | 3814 | 	if (err) { | 
 | 3815 | 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", | 
 | 3816 | 		       &res.start, its_entry->translation_id); | 
 | 3817 | 		goto dom_err; | 
 | 3818 | 	} | 
 | 3819 |  | 
 | 3820 | 	err = its_probe_one(&res, dom_handle, | 
 | 3821 | 			acpi_get_its_numa_node(its_entry->translation_id)); | 
 | 3822 | 	if (!err) | 
 | 3823 | 		return 0; | 
 | 3824 |  | 
 | 3825 | 	iort_deregister_domain_token(its_entry->translation_id); | 
 | 3826 | dom_err: | 
 | 3827 | 	irq_domain_free_fwnode(dom_handle); | 
 | 3828 | 	return err; | 
 | 3829 | } | 
 | 3830 |  | 
 | 3831 | static void __init its_acpi_probe(void) | 
 | 3832 | { | 
 | 3833 | 	acpi_table_parse_srat_its(); | 
 | 3834 | 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, | 
 | 3835 | 			      gic_acpi_parse_madt_its, 0); | 
 | 3836 | 	acpi_its_srat_maps_free(); | 
 | 3837 | } | 
 | 3838 | #else | 
 | 3839 | static void __init its_acpi_probe(void) { } | 
 | 3840 | #endif | 
 | 3841 |  | 
 | 3842 | int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, | 
 | 3843 | 		    struct irq_domain *parent_domain) | 
 | 3844 | { | 
 | 3845 | 	struct device_node *of_node; | 
 | 3846 | 	struct its_node *its; | 
 | 3847 | 	bool has_v4 = false; | 
 | 3848 | 	int err; | 
 | 3849 |  | 
 | 3850 | 	its_parent = parent_domain; | 
 | 3851 | 	of_node = to_of_node(handle); | 
 | 3852 | 	if (of_node) | 
 | 3853 | 		its_of_probe(of_node); | 
 | 3854 | 	else | 
 | 3855 | 		its_acpi_probe(); | 
 | 3856 |  | 
 | 3857 | 	if (list_empty(&its_nodes)) { | 
 | 3858 | 		pr_warn("ITS: No ITS available, not enabling LPIs\n"); | 
 | 3859 | 		return -ENXIO; | 
 | 3860 | 	} | 
 | 3861 |  | 
 | 3862 | 	gic_rdists = rdists; | 
 | 3863 | 	err = its_alloc_lpi_tables(); | 
 | 3864 | 	if (err) | 
 | 3865 | 		return err; | 
 | 3866 |  | 
 | 3867 | 	list_for_each_entry(its, &its_nodes, entry) | 
 | 3868 | 		has_v4 |= its->is_v4; | 
 | 3869 |  | 
 | 3870 | 	if (has_v4 & rdists->has_vlpis) { | 
 | 3871 | 		if (its_init_vpe_domain() || | 
 | 3872 | 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) { | 
 | 3873 | 			rdists->has_vlpis = false; | 
 | 3874 | 			pr_err("ITS: Disabling GICv4 support\n"); | 
 | 3875 | 		} | 
 | 3876 | 	} | 
 | 3877 |  | 
 | 3878 | 	register_syscore_ops(&its_syscore_ops); | 
 | 3879 |  | 
 | 3880 | 	return 0; | 
 | 3881 | } |