| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * SLUB: A slab allocator that limits cache line use instead of queuing | 
|  | 4 | * objects in per cpu and per node lists. | 
|  | 5 | * | 
|  | 6 | * The allocator synchronizes using per slab locks or atomic operatios | 
|  | 7 | * and only uses a centralized lock to manage a pool of partial slabs. | 
|  | 8 | * | 
|  | 9 | * (C) 2007 SGI, Christoph Lameter | 
|  | 10 | * (C) 2011 Linux Foundation, Christoph Lameter | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | #include <linux/mm.h> | 
|  | 14 | #include <linux/swap.h> /* struct reclaim_state */ | 
|  | 15 | #include <linux/module.h> | 
|  | 16 | #include <linux/bit_spinlock.h> | 
|  | 17 | #include <linux/interrupt.h> | 
|  | 18 | #include <linux/bitops.h> | 
|  | 19 | #include <linux/slab.h> | 
|  | 20 | #include "slab.h" | 
|  | 21 | #include <linux/proc_fs.h> | 
|  | 22 | #include <linux/seq_file.h> | 
|  | 23 | #include <linux/kasan.h> | 
|  | 24 | #include <linux/cpu.h> | 
|  | 25 | #include <linux/cpuset.h> | 
|  | 26 | #include <linux/mempolicy.h> | 
|  | 27 | #include <linux/ctype.h> | 
|  | 28 | #include <linux/debugobjects.h> | 
|  | 29 | #include <linux/kallsyms.h> | 
|  | 30 | #include <linux/memory.h> | 
|  | 31 | #include <linux/math64.h> | 
|  | 32 | #include <linux/fault-inject.h> | 
|  | 33 | #include <linux/stacktrace.h> | 
|  | 34 | #include <linux/prefetch.h> | 
|  | 35 | #include <linux/memcontrol.h> | 
|  | 36 | #include <linux/random.h> | 
|  | 37 |  | 
|  | 38 | #include <trace/events/kmem.h> | 
|  | 39 |  | 
|  | 40 | #include "internal.h" | 
|  | 41 |  | 
|  | 42 | /* | 
|  | 43 | * Lock order: | 
|  | 44 | *   1. slab_mutex (Global Mutex) | 
|  | 45 | *   2. node->list_lock | 
|  | 46 | *   3. slab_lock(page) (Only on some arches and for debugging) | 
|  | 47 | * | 
|  | 48 | *   slab_mutex | 
|  | 49 | * | 
|  | 50 | *   The role of the slab_mutex is to protect the list of all the slabs | 
|  | 51 | *   and to synchronize major metadata changes to slab cache structures. | 
|  | 52 | * | 
|  | 53 | *   The slab_lock is only used for debugging and on arches that do not | 
|  | 54 | *   have the ability to do a cmpxchg_double. It only protects: | 
|  | 55 | *	A. page->freelist	-> List of object free in a page | 
|  | 56 | *	B. page->inuse		-> Number of objects in use | 
|  | 57 | *	C. page->objects	-> Number of objects in page | 
|  | 58 | *	D. page->frozen		-> frozen state | 
|  | 59 | * | 
|  | 60 | *   If a slab is frozen then it is exempt from list management. It is not | 
|  | 61 | *   on any list. The processor that froze the slab is the one who can | 
|  | 62 | *   perform list operations on the page. Other processors may put objects | 
|  | 63 | *   onto the freelist but the processor that froze the slab is the only | 
|  | 64 | *   one that can retrieve the objects from the page's freelist. | 
|  | 65 | * | 
|  | 66 | *   The list_lock protects the partial and full list on each node and | 
|  | 67 | *   the partial slab counter. If taken then no new slabs may be added or | 
|  | 68 | *   removed from the lists nor make the number of partial slabs be modified. | 
|  | 69 | *   (Note that the total number of slabs is an atomic value that may be | 
|  | 70 | *   modified without taking the list lock). | 
|  | 71 | * | 
|  | 72 | *   The list_lock is a centralized lock and thus we avoid taking it as | 
|  | 73 | *   much as possible. As long as SLUB does not have to handle partial | 
|  | 74 | *   slabs, operations can continue without any centralized lock. F.e. | 
|  | 75 | *   allocating a long series of objects that fill up slabs does not require | 
|  | 76 | *   the list lock. | 
|  | 77 | *   Interrupts are disabled during allocation and deallocation in order to | 
|  | 78 | *   make the slab allocator safe to use in the context of an irq. In addition | 
|  | 79 | *   interrupts are disabled to ensure that the processor does not change | 
|  | 80 | *   while handling per_cpu slabs, due to kernel preemption. | 
|  | 81 | * | 
|  | 82 | * SLUB assigns one slab for allocation to each processor. | 
|  | 83 | * Allocations only occur from these slabs called cpu slabs. | 
|  | 84 | * | 
|  | 85 | * Slabs with free elements are kept on a partial list and during regular | 
|  | 86 | * operations no list for full slabs is used. If an object in a full slab is | 
|  | 87 | * freed then the slab will show up again on the partial lists. | 
|  | 88 | * We track full slabs for debugging purposes though because otherwise we | 
|  | 89 | * cannot scan all objects. | 
|  | 90 | * | 
|  | 91 | * Slabs are freed when they become empty. Teardown and setup is | 
|  | 92 | * minimal so we rely on the page allocators per cpu caches for | 
|  | 93 | * fast frees and allocs. | 
|  | 94 | * | 
|  | 95 | * Overloading of page flags that are otherwise used for LRU management. | 
|  | 96 | * | 
|  | 97 | * PageActive 		The slab is frozen and exempt from list processing. | 
|  | 98 | * 			This means that the slab is dedicated to a purpose | 
|  | 99 | * 			such as satisfying allocations for a specific | 
|  | 100 | * 			processor. Objects may be freed in the slab while | 
|  | 101 | * 			it is frozen but slab_free will then skip the usual | 
|  | 102 | * 			list operations. It is up to the processor holding | 
|  | 103 | * 			the slab to integrate the slab into the slab lists | 
|  | 104 | * 			when the slab is no longer needed. | 
|  | 105 | * | 
|  | 106 | * 			One use of this flag is to mark slabs that are | 
|  | 107 | * 			used for allocations. Then such a slab becomes a cpu | 
|  | 108 | * 			slab. The cpu slab may be equipped with an additional | 
|  | 109 | * 			freelist that allows lockless access to | 
|  | 110 | * 			free objects in addition to the regular freelist | 
|  | 111 | * 			that requires the slab lock. | 
|  | 112 | * | 
|  | 113 | * PageError		Slab requires special handling due to debug | 
|  | 114 | * 			options set. This moves	slab handling out of | 
|  | 115 | * 			the fast path and disables lockless freelists. | 
|  | 116 | */ | 
|  | 117 |  | 
|  | 118 | static inline int kmem_cache_debug(struct kmem_cache *s) | 
|  | 119 | { | 
|  | 120 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 121 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); | 
|  | 122 | #else | 
|  | 123 | return 0; | 
|  | 124 | #endif | 
|  | 125 | } | 
|  | 126 |  | 
|  | 127 | void *fixup_red_left(struct kmem_cache *s, void *p) | 
|  | 128 | { | 
|  | 129 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | 
|  | 130 | p += s->red_left_pad; | 
|  | 131 |  | 
|  | 132 | return p; | 
|  | 133 | } | 
|  | 134 |  | 
|  | 135 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) | 
|  | 136 | { | 
|  | 137 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | 138 | return !kmem_cache_debug(s); | 
|  | 139 | #else | 
|  | 140 | return false; | 
|  | 141 | #endif | 
|  | 142 | } | 
|  | 143 |  | 
|  | 144 | /* | 
|  | 145 | * Issues still to be resolved: | 
|  | 146 | * | 
|  | 147 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
|  | 148 | * | 
|  | 149 | * - Variable sizing of the per node arrays | 
|  | 150 | */ | 
|  | 151 |  | 
|  | 152 | /* Enable to test recovery from slab corruption on boot */ | 
|  | 153 | #undef SLUB_RESILIENCY_TEST | 
|  | 154 |  | 
|  | 155 | /* Enable to log cmpxchg failures */ | 
|  | 156 | #undef SLUB_DEBUG_CMPXCHG | 
|  | 157 |  | 
|  | 158 | /* | 
|  | 159 | * Mininum number of partial slabs. These will be left on the partial | 
|  | 160 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
|  | 161 | */ | 
|  | 162 | #define MIN_PARTIAL 5 | 
|  | 163 |  | 
|  | 164 | /* | 
|  | 165 | * Maximum number of desirable partial slabs. | 
|  | 166 | * The existence of more partial slabs makes kmem_cache_shrink | 
|  | 167 | * sort the partial list by the number of objects in use. | 
|  | 168 | */ | 
|  | 169 | #define MAX_PARTIAL 10 | 
|  | 170 |  | 
|  | 171 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ | 
|  | 172 | SLAB_POISON | SLAB_STORE_USER) | 
|  | 173 |  | 
|  | 174 | /* | 
|  | 175 | * These debug flags cannot use CMPXCHG because there might be consistency | 
|  | 176 | * issues when checking or reading debug information | 
|  | 177 | */ | 
|  | 178 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | 
|  | 179 | SLAB_TRACE) | 
|  | 180 |  | 
|  | 181 |  | 
|  | 182 | /* | 
|  | 183 | * Debugging flags that require metadata to be stored in the slab.  These get | 
|  | 184 | * disabled when slub_debug=O is used and a cache's min order increases with | 
|  | 185 | * metadata. | 
|  | 186 | */ | 
|  | 187 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | 
|  | 188 |  | 
|  | 189 | #define OO_SHIFT	16 | 
|  | 190 | #define OO_MASK		((1 << OO_SHIFT) - 1) | 
|  | 191 | #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */ | 
|  | 192 |  | 
|  | 193 | /* Internal SLUB flags */ | 
|  | 194 | /* Poison object */ | 
|  | 195 | #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U) | 
|  | 196 | /* Use cmpxchg_double */ | 
|  | 197 | #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U) | 
|  | 198 |  | 
|  | 199 | /* | 
|  | 200 | * Tracking user of a slab. | 
|  | 201 | */ | 
|  | 202 | #define TRACK_ADDRS_COUNT 16 | 
|  | 203 | struct track { | 
|  | 204 | unsigned long addr;	/* Called from address */ | 
|  | 205 | #ifdef CONFIG_STACKTRACE | 
|  | 206 | unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */ | 
|  | 207 | #endif | 
|  | 208 | int cpu;		/* Was running on cpu */ | 
|  | 209 | int pid;		/* Pid context */ | 
|  | 210 | unsigned long when;	/* When did the operation occur */ | 
|  | 211 | }; | 
|  | 212 |  | 
|  | 213 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
|  | 214 |  | 
|  | 215 | #ifdef CONFIG_SYSFS | 
|  | 216 | static int sysfs_slab_add(struct kmem_cache *); | 
|  | 217 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
|  | 218 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); | 
|  | 219 | static void sysfs_slab_remove(struct kmem_cache *s); | 
|  | 220 | #else | 
|  | 221 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
|  | 222 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
|  | 223 | { return 0; } | 
|  | 224 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } | 
|  | 225 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } | 
|  | 226 | #endif | 
|  | 227 |  | 
|  | 228 | static inline void stat(const struct kmem_cache *s, enum stat_item si) | 
|  | 229 | { | 
|  | 230 | #ifdef CONFIG_SLUB_STATS | 
|  | 231 | /* | 
|  | 232 | * The rmw is racy on a preemptible kernel but this is acceptable, so | 
|  | 233 | * avoid this_cpu_add()'s irq-disable overhead. | 
|  | 234 | */ | 
|  | 235 | raw_cpu_inc(s->cpu_slab->stat[si]); | 
|  | 236 | #endif | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | /******************************************************************** | 
|  | 240 | * 			Core slab cache functions | 
|  | 241 | *******************************************************************/ | 
|  | 242 |  | 
|  | 243 | /* | 
|  | 244 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | 
|  | 245 | * with an XOR of the address where the pointer is held and a per-cache | 
|  | 246 | * random number. | 
|  | 247 | */ | 
|  | 248 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | 
|  | 249 | unsigned long ptr_addr) | 
|  | 250 | { | 
|  | 251 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
|  | 252 | /* | 
|  | 253 | * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. | 
|  | 254 | * Normally, this doesn't cause any issues, as both set_freepointer() | 
|  | 255 | * and get_freepointer() are called with a pointer with the same tag. | 
|  | 256 | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | 
|  | 257 | * example, when __free_slub() iterates over objects in a cache, it | 
|  | 258 | * passes untagged pointers to check_object(). check_object() in turns | 
|  | 259 | * calls get_freepointer() with an untagged pointer, which causes the | 
|  | 260 | * freepointer to be restored incorrectly. | 
|  | 261 | */ | 
|  | 262 | return (void *)((unsigned long)ptr ^ s->random ^ | 
|  | 263 | (unsigned long)kasan_reset_tag((void *)ptr_addr)); | 
|  | 264 | #else | 
|  | 265 | return ptr; | 
|  | 266 | #endif | 
|  | 267 | } | 
|  | 268 |  | 
|  | 269 | /* Returns the freelist pointer recorded at location ptr_addr. */ | 
|  | 270 | static inline void *freelist_dereference(const struct kmem_cache *s, | 
|  | 271 | void *ptr_addr) | 
|  | 272 | { | 
|  | 273 | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | 
|  | 274 | (unsigned long)ptr_addr); | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
|  | 278 | { | 
|  | 279 | return freelist_dereference(s, object + s->offset); | 
|  | 280 | } | 
|  | 281 |  | 
|  | 282 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) | 
|  | 283 | { | 
|  | 284 | prefetch(object + s->offset); | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) | 
|  | 288 | { | 
|  | 289 | unsigned long freepointer_addr; | 
|  | 290 | void *p; | 
|  | 291 |  | 
|  | 292 | if (!debug_pagealloc_enabled()) | 
|  | 293 | return get_freepointer(s, object); | 
|  | 294 |  | 
|  | 295 | freepointer_addr = (unsigned long)object + s->offset; | 
|  | 296 | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | 
|  | 297 | return freelist_ptr(s, p, freepointer_addr); | 
|  | 298 | } | 
|  | 299 |  | 
|  | 300 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
|  | 301 | { | 
|  | 302 | unsigned long freeptr_addr = (unsigned long)object + s->offset; | 
|  | 303 |  | 
|  | 304 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
|  | 305 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | 
|  | 306 | #endif | 
|  | 307 |  | 
|  | 308 | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); | 
|  | 309 | } | 
|  | 310 |  | 
|  | 311 | /* Loop over all objects in a slab */ | 
|  | 312 | #define for_each_object(__p, __s, __addr, __objects) \ | 
|  | 313 | for (__p = fixup_red_left(__s, __addr); \ | 
|  | 314 | __p < (__addr) + (__objects) * (__s)->size; \ | 
|  | 315 | __p += (__s)->size) | 
|  | 316 |  | 
|  | 317 | /* Determine object index from a given position */ | 
|  | 318 | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) | 
|  | 319 | { | 
|  | 320 | return (kasan_reset_tag(p) - addr) / s->size; | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | static inline unsigned int order_objects(unsigned int order, unsigned int size) | 
|  | 324 | { | 
|  | 325 | return ((unsigned int)PAGE_SIZE << order) / size; | 
|  | 326 | } | 
|  | 327 |  | 
|  | 328 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, | 
|  | 329 | unsigned int size) | 
|  | 330 | { | 
|  | 331 | struct kmem_cache_order_objects x = { | 
|  | 332 | (order << OO_SHIFT) + order_objects(order, size) | 
|  | 333 | }; | 
|  | 334 |  | 
|  | 335 | return x; | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) | 
|  | 339 | { | 
|  | 340 | return x.x >> OO_SHIFT; | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) | 
|  | 344 | { | 
|  | 345 | return x.x & OO_MASK; | 
|  | 346 | } | 
|  | 347 |  | 
|  | 348 | /* | 
|  | 349 | * Per slab locking using the pagelock | 
|  | 350 | */ | 
|  | 351 | static __always_inline void slab_lock(struct page *page) | 
|  | 352 | { | 
|  | 353 | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | 354 | bit_spin_lock(PG_locked, &page->flags); | 
|  | 355 | } | 
|  | 356 |  | 
|  | 357 | static __always_inline void slab_unlock(struct page *page) | 
|  | 358 | { | 
|  | 359 | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | 360 | __bit_spin_unlock(PG_locked, &page->flags); | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | /* Interrupts must be disabled (for the fallback code to work right) */ | 
|  | 364 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
|  | 365 | void *freelist_old, unsigned long counters_old, | 
|  | 366 | void *freelist_new, unsigned long counters_new, | 
|  | 367 | const char *n) | 
|  | 368 | { | 
|  | 369 | VM_BUG_ON(!irqs_disabled()); | 
|  | 370 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
|  | 371 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
|  | 372 | if (s->flags & __CMPXCHG_DOUBLE) { | 
|  | 373 | if (cmpxchg_double(&page->freelist, &page->counters, | 
|  | 374 | freelist_old, counters_old, | 
|  | 375 | freelist_new, counters_new)) | 
|  | 376 | return true; | 
|  | 377 | } else | 
|  | 378 | #endif | 
|  | 379 | { | 
|  | 380 | slab_lock(page); | 
|  | 381 | if (page->freelist == freelist_old && | 
|  | 382 | page->counters == counters_old) { | 
|  | 383 | page->freelist = freelist_new; | 
|  | 384 | page->counters = counters_new; | 
|  | 385 | slab_unlock(page); | 
|  | 386 | return true; | 
|  | 387 | } | 
|  | 388 | slab_unlock(page); | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | cpu_relax(); | 
|  | 392 | stat(s, CMPXCHG_DOUBLE_FAIL); | 
|  | 393 |  | 
|  | 394 | #ifdef SLUB_DEBUG_CMPXCHG | 
|  | 395 | pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
|  | 396 | #endif | 
|  | 397 |  | 
|  | 398 | return false; | 
|  | 399 | } | 
|  | 400 |  | 
|  | 401 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
|  | 402 | void *freelist_old, unsigned long counters_old, | 
|  | 403 | void *freelist_new, unsigned long counters_new, | 
|  | 404 | const char *n) | 
|  | 405 | { | 
|  | 406 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
|  | 407 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
|  | 408 | if (s->flags & __CMPXCHG_DOUBLE) { | 
|  | 409 | if (cmpxchg_double(&page->freelist, &page->counters, | 
|  | 410 | freelist_old, counters_old, | 
|  | 411 | freelist_new, counters_new)) | 
|  | 412 | return true; | 
|  | 413 | } else | 
|  | 414 | #endif | 
|  | 415 | { | 
|  | 416 | unsigned long flags; | 
|  | 417 |  | 
|  | 418 | local_irq_save(flags); | 
|  | 419 | slab_lock(page); | 
|  | 420 | if (page->freelist == freelist_old && | 
|  | 421 | page->counters == counters_old) { | 
|  | 422 | page->freelist = freelist_new; | 
|  | 423 | page->counters = counters_new; | 
|  | 424 | slab_unlock(page); | 
|  | 425 | local_irq_restore(flags); | 
|  | 426 | return true; | 
|  | 427 | } | 
|  | 428 | slab_unlock(page); | 
|  | 429 | local_irq_restore(flags); | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | cpu_relax(); | 
|  | 433 | stat(s, CMPXCHG_DOUBLE_FAIL); | 
|  | 434 |  | 
|  | 435 | #ifdef SLUB_DEBUG_CMPXCHG | 
|  | 436 | pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
|  | 437 | #endif | 
|  | 438 |  | 
|  | 439 | return false; | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 443 | /* | 
|  | 444 | * Determine a map of object in use on a page. | 
|  | 445 | * | 
|  | 446 | * Node listlock must be held to guarantee that the page does | 
|  | 447 | * not vanish from under us. | 
|  | 448 | */ | 
|  | 449 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | 
|  | 450 | { | 
|  | 451 | void *p; | 
|  | 452 | void *addr = page_address(page); | 
|  | 453 |  | 
|  | 454 | for (p = page->freelist; p; p = get_freepointer(s, p)) | 
|  | 455 | set_bit(slab_index(p, s, addr), map); | 
|  | 456 | } | 
|  | 457 |  | 
|  | 458 | static inline unsigned int size_from_object(struct kmem_cache *s) | 
|  | 459 | { | 
|  | 460 | if (s->flags & SLAB_RED_ZONE) | 
|  | 461 | return s->size - s->red_left_pad; | 
|  | 462 |  | 
|  | 463 | return s->size; | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | 
|  | 467 | { | 
|  | 468 | if (s->flags & SLAB_RED_ZONE) | 
|  | 469 | p -= s->red_left_pad; | 
|  | 470 |  | 
|  | 471 | return p; | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | /* | 
|  | 475 | * Debug settings: | 
|  | 476 | */ | 
|  | 477 | #if defined(CONFIG_SLUB_DEBUG_ON) | 
|  | 478 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | 479 | #else | 
|  | 480 | static slab_flags_t slub_debug; | 
|  | 481 | #endif | 
|  | 482 |  | 
|  | 483 | static char *slub_debug_slabs; | 
|  | 484 | static int disable_higher_order_debug; | 
|  | 485 |  | 
|  | 486 | /* | 
|  | 487 | * slub is about to manipulate internal object metadata.  This memory lies | 
|  | 488 | * outside the range of the allocated object, so accessing it would normally | 
|  | 489 | * be reported by kasan as a bounds error.  metadata_access_enable() is used | 
|  | 490 | * to tell kasan that these accesses are OK. | 
|  | 491 | */ | 
|  | 492 | static inline void metadata_access_enable(void) | 
|  | 493 | { | 
|  | 494 | kasan_disable_current(); | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | static inline void metadata_access_disable(void) | 
|  | 498 | { | 
|  | 499 | kasan_enable_current(); | 
|  | 500 | } | 
|  | 501 |  | 
|  | 502 | /* | 
|  | 503 | * Object debugging | 
|  | 504 | */ | 
|  | 505 |  | 
|  | 506 | /* Verify that a pointer has an address that is valid within a slab page */ | 
|  | 507 | static inline int check_valid_pointer(struct kmem_cache *s, | 
|  | 508 | struct page *page, void *object) | 
|  | 509 | { | 
|  | 510 | void *base; | 
|  | 511 |  | 
|  | 512 | if (!object) | 
|  | 513 | return 1; | 
|  | 514 |  | 
|  | 515 | base = page_address(page); | 
|  | 516 | object = kasan_reset_tag(object); | 
|  | 517 | object = restore_red_left(s, object); | 
|  | 518 | if (object < base || object >= base + page->objects * s->size || | 
|  | 519 | (object - base) % s->size) { | 
|  | 520 | return 0; | 
|  | 521 | } | 
|  | 522 |  | 
|  | 523 | return 1; | 
|  | 524 | } | 
|  | 525 |  | 
|  | 526 | static void print_section(char *level, char *text, u8 *addr, | 
|  | 527 | unsigned int length) | 
|  | 528 | { | 
|  | 529 | metadata_access_enable(); | 
|  | 530 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, | 
|  | 531 | length, 1); | 
|  | 532 | metadata_access_disable(); | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | static struct track *get_track(struct kmem_cache *s, void *object, | 
|  | 536 | enum track_item alloc) | 
|  | 537 | { | 
|  | 538 | struct track *p; | 
|  | 539 |  | 
|  | 540 | if (s->offset) | 
|  | 541 | p = object + s->offset + sizeof(void *); | 
|  | 542 | else | 
|  | 543 | p = object + s->inuse; | 
|  | 544 |  | 
|  | 545 | return p + alloc; | 
|  | 546 | } | 
|  | 547 |  | 
|  | 548 | static void set_track(struct kmem_cache *s, void *object, | 
|  | 549 | enum track_item alloc, unsigned long addr) | 
|  | 550 | { | 
|  | 551 | struct track *p = get_track(s, object, alloc); | 
|  | 552 |  | 
|  | 553 | if (addr) { | 
|  | 554 | #ifdef CONFIG_STACKTRACE | 
|  | 555 | struct stack_trace trace; | 
|  | 556 | int i; | 
|  | 557 |  | 
|  | 558 | trace.nr_entries = 0; | 
|  | 559 | trace.max_entries = TRACK_ADDRS_COUNT; | 
|  | 560 | trace.entries = p->addrs; | 
|  | 561 | trace.skip = 3; | 
|  | 562 | metadata_access_enable(); | 
|  | 563 | save_stack_trace(&trace); | 
|  | 564 | metadata_access_disable(); | 
|  | 565 |  | 
|  | 566 | /* See rant in lockdep.c */ | 
|  | 567 | if (trace.nr_entries != 0 && | 
|  | 568 | trace.entries[trace.nr_entries - 1] == ULONG_MAX) | 
|  | 569 | trace.nr_entries--; | 
|  | 570 |  | 
|  | 571 | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | 
|  | 572 | p->addrs[i] = 0; | 
|  | 573 | #endif | 
|  | 574 | p->addr = addr; | 
|  | 575 | p->cpu = smp_processor_id(); | 
|  | 576 | p->pid = current->pid; | 
|  | 577 | p->when = jiffies; | 
|  | 578 | } else | 
|  | 579 | memset(p, 0, sizeof(struct track)); | 
|  | 580 | } | 
|  | 581 |  | 
|  | 582 | static void init_tracking(struct kmem_cache *s, void *object) | 
|  | 583 | { | 
|  | 584 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 585 | return; | 
|  | 586 |  | 
|  | 587 | set_track(s, object, TRACK_FREE, 0UL); | 
|  | 588 | set_track(s, object, TRACK_ALLOC, 0UL); | 
|  | 589 | } | 
|  | 590 |  | 
|  | 591 | static void print_track(const char *s, struct track *t, unsigned long pr_time) | 
|  | 592 | { | 
|  | 593 | if (!t->addr) | 
|  | 594 | return; | 
|  | 595 |  | 
|  | 596 | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", | 
|  | 597 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); | 
|  | 598 | #ifdef CONFIG_STACKTRACE | 
|  | 599 | { | 
|  | 600 | int i; | 
|  | 601 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | 
|  | 602 | if (t->addrs[i]) | 
|  | 603 | pr_err("\t%pS\n", (void *)t->addrs[i]); | 
|  | 604 | else | 
|  | 605 | break; | 
|  | 606 | } | 
|  | 607 | #endif | 
|  | 608 | } | 
|  | 609 |  | 
|  | 610 | static void print_tracking(struct kmem_cache *s, void *object) | 
|  | 611 | { | 
|  | 612 | unsigned long pr_time = jiffies; | 
|  | 613 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 614 | return; | 
|  | 615 |  | 
|  | 616 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); | 
|  | 617 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | 
|  | 618 | } | 
|  | 619 |  | 
|  | 620 | static void print_page_info(struct page *page) | 
|  | 621 | { | 
|  | 622 | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", | 
|  | 623 | page, page->objects, page->inuse, page->freelist, page->flags); | 
|  | 624 |  | 
|  | 625 | } | 
|  | 626 |  | 
|  | 627 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
|  | 628 | { | 
|  | 629 | struct va_format vaf; | 
|  | 630 | va_list args; | 
|  | 631 |  | 
|  | 632 | va_start(args, fmt); | 
|  | 633 | vaf.fmt = fmt; | 
|  | 634 | vaf.va = &args; | 
|  | 635 | pr_err("=============================================================================\n"); | 
|  | 636 | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); | 
|  | 637 | pr_err("-----------------------------------------------------------------------------\n\n"); | 
|  | 638 |  | 
|  | 639 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  | 640 | va_end(args); | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
|  | 644 | { | 
|  | 645 | struct va_format vaf; | 
|  | 646 | va_list args; | 
|  | 647 |  | 
|  | 648 | va_start(args, fmt); | 
|  | 649 | vaf.fmt = fmt; | 
|  | 650 | vaf.va = &args; | 
|  | 651 | pr_err("FIX %s: %pV\n", s->name, &vaf); | 
|  | 652 | va_end(args); | 
|  | 653 | } | 
|  | 654 |  | 
|  | 655 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | 656 | { | 
|  | 657 | unsigned int off;	/* Offset of last byte */ | 
|  | 658 | u8 *addr = page_address(page); | 
|  | 659 |  | 
|  | 660 | print_tracking(s, p); | 
|  | 661 |  | 
|  | 662 | print_page_info(page); | 
|  | 663 |  | 
|  | 664 | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 
|  | 665 | p, p - addr, get_freepointer(s, p)); | 
|  | 666 |  | 
|  | 667 | if (s->flags & SLAB_RED_ZONE) | 
|  | 668 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, | 
|  | 669 | s->red_left_pad); | 
|  | 670 | else if (p > addr + 16) | 
|  | 671 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); | 
|  | 672 |  | 
|  | 673 | print_section(KERN_ERR, "Object ", p, | 
|  | 674 | min_t(unsigned int, s->object_size, PAGE_SIZE)); | 
|  | 675 | if (s->flags & SLAB_RED_ZONE) | 
|  | 676 | print_section(KERN_ERR, "Redzone ", p + s->object_size, | 
|  | 677 | s->inuse - s->object_size); | 
|  | 678 |  | 
|  | 679 | if (s->offset) | 
|  | 680 | off = s->offset + sizeof(void *); | 
|  | 681 | else | 
|  | 682 | off = s->inuse; | 
|  | 683 |  | 
|  | 684 | if (s->flags & SLAB_STORE_USER) | 
|  | 685 | off += 2 * sizeof(struct track); | 
|  | 686 |  | 
|  | 687 | off += kasan_metadata_size(s); | 
|  | 688 |  | 
|  | 689 | if (off != size_from_object(s)) | 
|  | 690 | /* Beginning of the filler is the free pointer */ | 
|  | 691 | print_section(KERN_ERR, "Padding ", p + off, | 
|  | 692 | size_from_object(s) - off); | 
|  | 693 |  | 
|  | 694 | WARN_ON(1); | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 | void object_err(struct kmem_cache *s, struct page *page, | 
|  | 698 | u8 *object, char *reason) | 
|  | 699 | { | 
|  | 700 | slab_bug(s, "%s", reason); | 
|  | 701 | print_trailer(s, page, object); | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, | 
|  | 705 | const char *fmt, ...) | 
|  | 706 | { | 
|  | 707 | va_list args; | 
|  | 708 | char buf[100]; | 
|  | 709 |  | 
|  | 710 | va_start(args, fmt); | 
|  | 711 | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | 712 | va_end(args); | 
|  | 713 | slab_bug(s, "%s", buf); | 
|  | 714 | print_page_info(page); | 
|  | 715 | WARN_ON(1); | 
|  | 716 | } | 
|  | 717 |  | 
|  | 718 | static void init_object(struct kmem_cache *s, void *object, u8 val) | 
|  | 719 | { | 
|  | 720 | u8 *p = object; | 
|  | 721 |  | 
|  | 722 | if (s->flags & SLAB_RED_ZONE) | 
|  | 723 | memset(p - s->red_left_pad, val, s->red_left_pad); | 
|  | 724 |  | 
|  | 725 | if (s->flags & __OBJECT_POISON) { | 
|  | 726 | memset(p, POISON_FREE, s->object_size - 1); | 
|  | 727 | p[s->object_size - 1] = POISON_END; | 
|  | 728 | } | 
|  | 729 |  | 
|  | 730 | if (s->flags & SLAB_RED_ZONE) | 
|  | 731 | memset(p + s->object_size, val, s->inuse - s->object_size); | 
|  | 732 | } | 
|  | 733 |  | 
|  | 734 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
|  | 735 | void *from, void *to) | 
|  | 736 | { | 
|  | 737 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
|  | 738 | memset(from, data, to - from); | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
|  | 742 | u8 *object, char *what, | 
|  | 743 | u8 *start, unsigned int value, unsigned int bytes) | 
|  | 744 | { | 
|  | 745 | u8 *fault; | 
|  | 746 | u8 *end; | 
|  | 747 |  | 
|  | 748 | metadata_access_enable(); | 
|  | 749 | fault = memchr_inv(start, value, bytes); | 
|  | 750 | metadata_access_disable(); | 
|  | 751 | if (!fault) | 
|  | 752 | return 1; | 
|  | 753 |  | 
|  | 754 | end = start + bytes; | 
|  | 755 | while (end > fault && end[-1] == value) | 
|  | 756 | end--; | 
|  | 757 |  | 
|  | 758 | slab_bug(s, "%s overwritten", what); | 
|  | 759 | pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 
|  | 760 | fault, end - 1, fault[0], value); | 
|  | 761 | print_trailer(s, page, object); | 
|  | 762 |  | 
|  | 763 | restore_bytes(s, what, value, fault, end); | 
|  | 764 | return 0; | 
|  | 765 | } | 
|  | 766 |  | 
|  | 767 | /* | 
|  | 768 | * Object layout: | 
|  | 769 | * | 
|  | 770 | * object address | 
|  | 771 | * 	Bytes of the object to be managed. | 
|  | 772 | * 	If the freepointer may overlay the object then the free | 
|  | 773 | * 	pointer is the first word of the object. | 
|  | 774 | * | 
|  | 775 | * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
|  | 776 | * 	0xa5 (POISON_END) | 
|  | 777 | * | 
|  | 778 | * object + s->object_size | 
|  | 779 | * 	Padding to reach word boundary. This is also used for Redzoning. | 
|  | 780 | * 	Padding is extended by another word if Redzoning is enabled and | 
|  | 781 | * 	object_size == inuse. | 
|  | 782 | * | 
|  | 783 | * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
|  | 784 | * 	0xcc (RED_ACTIVE) for objects in use. | 
|  | 785 | * | 
|  | 786 | * object + s->inuse | 
|  | 787 | * 	Meta data starts here. | 
|  | 788 | * | 
|  | 789 | * 	A. Free pointer (if we cannot overwrite object on free) | 
|  | 790 | * 	B. Tracking data for SLAB_STORE_USER | 
|  | 791 | * 	C. Padding to reach required alignment boundary or at mininum | 
|  | 792 | * 		one word if debugging is on to be able to detect writes | 
|  | 793 | * 		before the word boundary. | 
|  | 794 | * | 
|  | 795 | *	Padding is done using 0x5a (POISON_INUSE) | 
|  | 796 | * | 
|  | 797 | * object + s->size | 
|  | 798 | * 	Nothing is used beyond s->size. | 
|  | 799 | * | 
|  | 800 | * If slabcaches are merged then the object_size and inuse boundaries are mostly | 
|  | 801 | * ignored. And therefore no slab options that rely on these boundaries | 
|  | 802 | * may be used with merged slabcaches. | 
|  | 803 | */ | 
|  | 804 |  | 
|  | 805 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | 806 | { | 
|  | 807 | unsigned long off = s->inuse;	/* The end of info */ | 
|  | 808 |  | 
|  | 809 | if (s->offset) | 
|  | 810 | /* Freepointer is placed after the object. */ | 
|  | 811 | off += sizeof(void *); | 
|  | 812 |  | 
|  | 813 | if (s->flags & SLAB_STORE_USER) | 
|  | 814 | /* We also have user information there */ | 
|  | 815 | off += 2 * sizeof(struct track); | 
|  | 816 |  | 
|  | 817 | off += kasan_metadata_size(s); | 
|  | 818 |  | 
|  | 819 | if (size_from_object(s) == off) | 
|  | 820 | return 1; | 
|  | 821 |  | 
|  | 822 | return check_bytes_and_report(s, page, p, "Object padding", | 
|  | 823 | p + off, POISON_INUSE, size_from_object(s) - off); | 
|  | 824 | } | 
|  | 825 |  | 
|  | 826 | /* Check the pad bytes at the end of a slab page */ | 
|  | 827 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | 828 | { | 
|  | 829 | u8 *start; | 
|  | 830 | u8 *fault; | 
|  | 831 | u8 *end; | 
|  | 832 | u8 *pad; | 
|  | 833 | int length; | 
|  | 834 | int remainder; | 
|  | 835 |  | 
|  | 836 | if (!(s->flags & SLAB_POISON)) | 
|  | 837 | return 1; | 
|  | 838 |  | 
|  | 839 | start = page_address(page); | 
|  | 840 | length = PAGE_SIZE << compound_order(page); | 
|  | 841 | end = start + length; | 
|  | 842 | remainder = length % s->size; | 
|  | 843 | if (!remainder) | 
|  | 844 | return 1; | 
|  | 845 |  | 
|  | 846 | pad = end - remainder; | 
|  | 847 | metadata_access_enable(); | 
|  | 848 | fault = memchr_inv(pad, POISON_INUSE, remainder); | 
|  | 849 | metadata_access_disable(); | 
|  | 850 | if (!fault) | 
|  | 851 | return 1; | 
|  | 852 | while (end > fault && end[-1] == POISON_INUSE) | 
|  | 853 | end--; | 
|  | 854 |  | 
|  | 855 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 
|  | 856 | print_section(KERN_ERR, "Padding ", pad, remainder); | 
|  | 857 |  | 
|  | 858 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); | 
|  | 859 | return 0; | 
|  | 860 | } | 
|  | 861 |  | 
|  | 862 | static int check_object(struct kmem_cache *s, struct page *page, | 
|  | 863 | void *object, u8 val) | 
|  | 864 | { | 
|  | 865 | u8 *p = object; | 
|  | 866 | u8 *endobject = object + s->object_size; | 
|  | 867 |  | 
|  | 868 | if (s->flags & SLAB_RED_ZONE) { | 
|  | 869 | if (!check_bytes_and_report(s, page, object, "Redzone", | 
|  | 870 | object - s->red_left_pad, val, s->red_left_pad)) | 
|  | 871 | return 0; | 
|  | 872 |  | 
|  | 873 | if (!check_bytes_and_report(s, page, object, "Redzone", | 
|  | 874 | endobject, val, s->inuse - s->object_size)) | 
|  | 875 | return 0; | 
|  | 876 | } else { | 
|  | 877 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { | 
|  | 878 | check_bytes_and_report(s, page, p, "Alignment padding", | 
|  | 879 | endobject, POISON_INUSE, | 
|  | 880 | s->inuse - s->object_size); | 
|  | 881 | } | 
|  | 882 | } | 
|  | 883 |  | 
|  | 884 | if (s->flags & SLAB_POISON) { | 
|  | 885 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && | 
|  | 886 | (!check_bytes_and_report(s, page, p, "Poison", p, | 
|  | 887 | POISON_FREE, s->object_size - 1) || | 
|  | 888 | !check_bytes_and_report(s, page, p, "Poison", | 
|  | 889 | p + s->object_size - 1, POISON_END, 1))) | 
|  | 890 | return 0; | 
|  | 891 | /* | 
|  | 892 | * check_pad_bytes cleans up on its own. | 
|  | 893 | */ | 
|  | 894 | check_pad_bytes(s, page, p); | 
|  | 895 | } | 
|  | 896 |  | 
|  | 897 | if (!s->offset && val == SLUB_RED_ACTIVE) | 
|  | 898 | /* | 
|  | 899 | * Object and freepointer overlap. Cannot check | 
|  | 900 | * freepointer while object is allocated. | 
|  | 901 | */ | 
|  | 902 | return 1; | 
|  | 903 |  | 
|  | 904 | /* Check free pointer validity */ | 
|  | 905 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
|  | 906 | object_err(s, page, p, "Freepointer corrupt"); | 
|  | 907 | /* | 
|  | 908 | * No choice but to zap it and thus lose the remainder | 
|  | 909 | * of the free objects in this slab. May cause | 
|  | 910 | * another error because the object count is now wrong. | 
|  | 911 | */ | 
|  | 912 | set_freepointer(s, p, NULL); | 
|  | 913 | return 0; | 
|  | 914 | } | 
|  | 915 | return 1; | 
|  | 916 | } | 
|  | 917 |  | 
|  | 918 | static int check_slab(struct kmem_cache *s, struct page *page) | 
|  | 919 | { | 
|  | 920 | int maxobj; | 
|  | 921 |  | 
|  | 922 | VM_BUG_ON(!irqs_disabled()); | 
|  | 923 |  | 
|  | 924 | if (!PageSlab(page)) { | 
|  | 925 | slab_err(s, page, "Not a valid slab page"); | 
|  | 926 | return 0; | 
|  | 927 | } | 
|  | 928 |  | 
|  | 929 | maxobj = order_objects(compound_order(page), s->size); | 
|  | 930 | if (page->objects > maxobj) { | 
|  | 931 | slab_err(s, page, "objects %u > max %u", | 
|  | 932 | page->objects, maxobj); | 
|  | 933 | return 0; | 
|  | 934 | } | 
|  | 935 | if (page->inuse > page->objects) { | 
|  | 936 | slab_err(s, page, "inuse %u > max %u", | 
|  | 937 | page->inuse, page->objects); | 
|  | 938 | return 0; | 
|  | 939 | } | 
|  | 940 | /* Slab_pad_check fixes things up after itself */ | 
|  | 941 | slab_pad_check(s, page); | 
|  | 942 | return 1; | 
|  | 943 | } | 
|  | 944 |  | 
|  | 945 | /* | 
|  | 946 | * Determine if a certain object on a page is on the freelist. Must hold the | 
|  | 947 | * slab lock to guarantee that the chains are in a consistent state. | 
|  | 948 | */ | 
|  | 949 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
|  | 950 | { | 
|  | 951 | int nr = 0; | 
|  | 952 | void *fp; | 
|  | 953 | void *object = NULL; | 
|  | 954 | int max_objects; | 
|  | 955 |  | 
|  | 956 | fp = page->freelist; | 
|  | 957 | while (fp && nr <= page->objects) { | 
|  | 958 | if (fp == search) | 
|  | 959 | return 1; | 
|  | 960 | if (!check_valid_pointer(s, page, fp)) { | 
|  | 961 | if (object) { | 
|  | 962 | object_err(s, page, object, | 
|  | 963 | "Freechain corrupt"); | 
|  | 964 | set_freepointer(s, object, NULL); | 
|  | 965 | } else { | 
|  | 966 | slab_err(s, page, "Freepointer corrupt"); | 
|  | 967 | page->freelist = NULL; | 
|  | 968 | page->inuse = page->objects; | 
|  | 969 | slab_fix(s, "Freelist cleared"); | 
|  | 970 | return 0; | 
|  | 971 | } | 
|  | 972 | break; | 
|  | 973 | } | 
|  | 974 | object = fp; | 
|  | 975 | fp = get_freepointer(s, object); | 
|  | 976 | nr++; | 
|  | 977 | } | 
|  | 978 |  | 
|  | 979 | max_objects = order_objects(compound_order(page), s->size); | 
|  | 980 | if (max_objects > MAX_OBJS_PER_PAGE) | 
|  | 981 | max_objects = MAX_OBJS_PER_PAGE; | 
|  | 982 |  | 
|  | 983 | if (page->objects != max_objects) { | 
|  | 984 | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", | 
|  | 985 | page->objects, max_objects); | 
|  | 986 | page->objects = max_objects; | 
|  | 987 | slab_fix(s, "Number of objects adjusted."); | 
|  | 988 | } | 
|  | 989 | if (page->inuse != page->objects - nr) { | 
|  | 990 | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", | 
|  | 991 | page->inuse, page->objects - nr); | 
|  | 992 | page->inuse = page->objects - nr; | 
|  | 993 | slab_fix(s, "Object count adjusted."); | 
|  | 994 | } | 
|  | 995 | return search == NULL; | 
|  | 996 | } | 
|  | 997 |  | 
|  | 998 | static void trace(struct kmem_cache *s, struct page *page, void *object, | 
|  | 999 | int alloc) | 
|  | 1000 | { | 
|  | 1001 | if (s->flags & SLAB_TRACE) { | 
|  | 1002 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
|  | 1003 | s->name, | 
|  | 1004 | alloc ? "alloc" : "free", | 
|  | 1005 | object, page->inuse, | 
|  | 1006 | page->freelist); | 
|  | 1007 |  | 
|  | 1008 | if (!alloc) | 
|  | 1009 | print_section(KERN_INFO, "Object ", (void *)object, | 
|  | 1010 | s->object_size); | 
|  | 1011 |  | 
|  | 1012 | WARN_ON(1); | 
|  | 1013 | } | 
|  | 1014 | } | 
|  | 1015 |  | 
|  | 1016 | /* | 
|  | 1017 | * Tracking of fully allocated slabs for debugging purposes. | 
|  | 1018 | */ | 
|  | 1019 | static void add_full(struct kmem_cache *s, | 
|  | 1020 | struct kmem_cache_node *n, struct page *page) | 
|  | 1021 | { | 
|  | 1022 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 1023 | return; | 
|  | 1024 |  | 
|  | 1025 | lockdep_assert_held(&n->list_lock); | 
|  | 1026 | list_add(&page->lru, &n->full); | 
|  | 1027 | } | 
|  | 1028 |  | 
|  | 1029 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) | 
|  | 1030 | { | 
|  | 1031 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 1032 | return; | 
|  | 1033 |  | 
|  | 1034 | lockdep_assert_held(&n->list_lock); | 
|  | 1035 | list_del(&page->lru); | 
|  | 1036 | } | 
|  | 1037 |  | 
|  | 1038 | /* Tracking of the number of slabs for debugging purposes */ | 
|  | 1039 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
|  | 1040 | { | 
|  | 1041 | struct kmem_cache_node *n = get_node(s, node); | 
|  | 1042 |  | 
|  | 1043 | return atomic_long_read(&n->nr_slabs); | 
|  | 1044 | } | 
|  | 1045 |  | 
|  | 1046 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
|  | 1047 | { | 
|  | 1048 | return atomic_long_read(&n->nr_slabs); | 
|  | 1049 | } | 
|  | 1050 |  | 
|  | 1051 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 
|  | 1052 | { | 
|  | 1053 | struct kmem_cache_node *n = get_node(s, node); | 
|  | 1054 |  | 
|  | 1055 | /* | 
|  | 1056 | * May be called early in order to allocate a slab for the | 
|  | 1057 | * kmem_cache_node structure. Solve the chicken-egg | 
|  | 1058 | * dilemma by deferring the increment of the count during | 
|  | 1059 | * bootstrap (see early_kmem_cache_node_alloc). | 
|  | 1060 | */ | 
|  | 1061 | if (likely(n)) { | 
|  | 1062 | atomic_long_inc(&n->nr_slabs); | 
|  | 1063 | atomic_long_add(objects, &n->total_objects); | 
|  | 1064 | } | 
|  | 1065 | } | 
|  | 1066 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 
|  | 1067 | { | 
|  | 1068 | struct kmem_cache_node *n = get_node(s, node); | 
|  | 1069 |  | 
|  | 1070 | atomic_long_dec(&n->nr_slabs); | 
|  | 1071 | atomic_long_sub(objects, &n->total_objects); | 
|  | 1072 | } | 
|  | 1073 |  | 
|  | 1074 | /* Object debug checks for alloc/free paths */ | 
|  | 1075 | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
|  | 1076 | void *object) | 
|  | 1077 | { | 
|  | 1078 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 
|  | 1079 | return; | 
|  | 1080 |  | 
|  | 1081 | init_object(s, object, SLUB_RED_INACTIVE); | 
|  | 1082 | init_tracking(s, object); | 
|  | 1083 | } | 
|  | 1084 |  | 
|  | 1085 | static void setup_page_debug(struct kmem_cache *s, void *addr, int order) | 
|  | 1086 | { | 
|  | 1087 | if (!(s->flags & SLAB_POISON)) | 
|  | 1088 | return; | 
|  | 1089 |  | 
|  | 1090 | metadata_access_enable(); | 
|  | 1091 | memset(addr, POISON_INUSE, PAGE_SIZE << order); | 
|  | 1092 | metadata_access_disable(); | 
|  | 1093 | } | 
|  | 1094 |  | 
|  | 1095 | static inline int alloc_consistency_checks(struct kmem_cache *s, | 
|  | 1096 | struct page *page, | 
|  | 1097 | void *object, unsigned long addr) | 
|  | 1098 | { | 
|  | 1099 | if (!check_slab(s, page)) | 
|  | 1100 | return 0; | 
|  | 1101 |  | 
|  | 1102 | if (!check_valid_pointer(s, page, object)) { | 
|  | 1103 | object_err(s, page, object, "Freelist Pointer check fails"); | 
|  | 1104 | return 0; | 
|  | 1105 | } | 
|  | 1106 |  | 
|  | 1107 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) | 
|  | 1108 | return 0; | 
|  | 1109 |  | 
|  | 1110 | return 1; | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | static noinline int alloc_debug_processing(struct kmem_cache *s, | 
|  | 1114 | struct page *page, | 
|  | 1115 | void *object, unsigned long addr) | 
|  | 1116 | { | 
|  | 1117 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | 1118 | if (!alloc_consistency_checks(s, page, object, addr)) | 
|  | 1119 | goto bad; | 
|  | 1120 | } | 
|  | 1121 |  | 
|  | 1122 | /* Success perform special debug activities for allocs */ | 
|  | 1123 | if (s->flags & SLAB_STORE_USER) | 
|  | 1124 | set_track(s, object, TRACK_ALLOC, addr); | 
|  | 1125 | trace(s, page, object, 1); | 
|  | 1126 | init_object(s, object, SLUB_RED_ACTIVE); | 
|  | 1127 | return 1; | 
|  | 1128 |  | 
|  | 1129 | bad: | 
|  | 1130 | if (PageSlab(page)) { | 
|  | 1131 | /* | 
|  | 1132 | * If this is a slab page then lets do the best we can | 
|  | 1133 | * to avoid issues in the future. Marking all objects | 
|  | 1134 | * as used avoids touching the remaining objects. | 
|  | 1135 | */ | 
|  | 1136 | slab_fix(s, "Marking all objects used"); | 
|  | 1137 | page->inuse = page->objects; | 
|  | 1138 | page->freelist = NULL; | 
|  | 1139 | } | 
|  | 1140 | return 0; | 
|  | 1141 | } | 
|  | 1142 |  | 
|  | 1143 | static inline int free_consistency_checks(struct kmem_cache *s, | 
|  | 1144 | struct page *page, void *object, unsigned long addr) | 
|  | 1145 | { | 
|  | 1146 | if (!check_valid_pointer(s, page, object)) { | 
|  | 1147 | slab_err(s, page, "Invalid object pointer 0x%p", object); | 
|  | 1148 | return 0; | 
|  | 1149 | } | 
|  | 1150 |  | 
|  | 1151 | if (on_freelist(s, page, object)) { | 
|  | 1152 | object_err(s, page, object, "Object already free"); | 
|  | 1153 | return 0; | 
|  | 1154 | } | 
|  | 1155 |  | 
|  | 1156 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) | 
|  | 1157 | return 0; | 
|  | 1158 |  | 
|  | 1159 | if (unlikely(s != page->slab_cache)) { | 
|  | 1160 | if (!PageSlab(page)) { | 
|  | 1161 | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", | 
|  | 1162 | object); | 
|  | 1163 | } else if (!page->slab_cache) { | 
|  | 1164 | pr_err("SLUB <none>: no slab for object 0x%p.\n", | 
|  | 1165 | object); | 
|  | 1166 | dump_stack(); | 
|  | 1167 | } else | 
|  | 1168 | object_err(s, page, object, | 
|  | 1169 | "page slab pointer corrupt."); | 
|  | 1170 | return 0; | 
|  | 1171 | } | 
|  | 1172 | return 1; | 
|  | 1173 | } | 
|  | 1174 |  | 
|  | 1175 | /* Supports checking bulk free of a constructed freelist */ | 
|  | 1176 | static noinline int free_debug_processing( | 
|  | 1177 | struct kmem_cache *s, struct page *page, | 
|  | 1178 | void *head, void *tail, int bulk_cnt, | 
|  | 1179 | unsigned long addr) | 
|  | 1180 | { | 
|  | 1181 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  | 1182 | void *object = head; | 
|  | 1183 | int cnt = 0; | 
|  | 1184 | unsigned long uninitialized_var(flags); | 
|  | 1185 | int ret = 0; | 
|  | 1186 |  | 
|  | 1187 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 1188 | slab_lock(page); | 
|  | 1189 |  | 
|  | 1190 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | 1191 | if (!check_slab(s, page)) | 
|  | 1192 | goto out; | 
|  | 1193 | } | 
|  | 1194 |  | 
|  | 1195 | next_object: | 
|  | 1196 | cnt++; | 
|  | 1197 |  | 
|  | 1198 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | 1199 | if (!free_consistency_checks(s, page, object, addr)) | 
|  | 1200 | goto out; | 
|  | 1201 | } | 
|  | 1202 |  | 
|  | 1203 | if (s->flags & SLAB_STORE_USER) | 
|  | 1204 | set_track(s, object, TRACK_FREE, addr); | 
|  | 1205 | trace(s, page, object, 0); | 
|  | 1206 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | 
|  | 1207 | init_object(s, object, SLUB_RED_INACTIVE); | 
|  | 1208 |  | 
|  | 1209 | /* Reached end of constructed freelist yet? */ | 
|  | 1210 | if (object != tail) { | 
|  | 1211 | object = get_freepointer(s, object); | 
|  | 1212 | goto next_object; | 
|  | 1213 | } | 
|  | 1214 | ret = 1; | 
|  | 1215 |  | 
|  | 1216 | out: | 
|  | 1217 | if (cnt != bulk_cnt) | 
|  | 1218 | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | 
|  | 1219 | bulk_cnt, cnt); | 
|  | 1220 |  | 
|  | 1221 | slab_unlock(page); | 
|  | 1222 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 1223 | if (!ret) | 
|  | 1224 | slab_fix(s, "Object at 0x%p not freed", object); | 
|  | 1225 | return ret; | 
|  | 1226 | } | 
|  | 1227 |  | 
|  | 1228 | static int __init setup_slub_debug(char *str) | 
|  | 1229 | { | 
|  | 1230 | slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | 1231 | if (*str++ != '=' || !*str) | 
|  | 1232 | /* | 
|  | 1233 | * No options specified. Switch on full debugging. | 
|  | 1234 | */ | 
|  | 1235 | goto out; | 
|  | 1236 |  | 
|  | 1237 | if (*str == ',') | 
|  | 1238 | /* | 
|  | 1239 | * No options but restriction on slabs. This means full | 
|  | 1240 | * debugging for slabs matching a pattern. | 
|  | 1241 | */ | 
|  | 1242 | goto check_slabs; | 
|  | 1243 |  | 
|  | 1244 | slub_debug = 0; | 
|  | 1245 | if (*str == '-') | 
|  | 1246 | /* | 
|  | 1247 | * Switch off all debugging measures. | 
|  | 1248 | */ | 
|  | 1249 | goto out; | 
|  | 1250 |  | 
|  | 1251 | /* | 
|  | 1252 | * Determine which debug features should be switched on | 
|  | 1253 | */ | 
|  | 1254 | for (; *str && *str != ','; str++) { | 
|  | 1255 | switch (tolower(*str)) { | 
|  | 1256 | case 'f': | 
|  | 1257 | slub_debug |= SLAB_CONSISTENCY_CHECKS; | 
|  | 1258 | break; | 
|  | 1259 | case 'z': | 
|  | 1260 | slub_debug |= SLAB_RED_ZONE; | 
|  | 1261 | break; | 
|  | 1262 | case 'p': | 
|  | 1263 | slub_debug |= SLAB_POISON; | 
|  | 1264 | break; | 
|  | 1265 | case 'u': | 
|  | 1266 | slub_debug |= SLAB_STORE_USER; | 
|  | 1267 | break; | 
|  | 1268 | case 't': | 
|  | 1269 | slub_debug |= SLAB_TRACE; | 
|  | 1270 | break; | 
|  | 1271 | case 'a': | 
|  | 1272 | slub_debug |= SLAB_FAILSLAB; | 
|  | 1273 | break; | 
|  | 1274 | case 'o': | 
|  | 1275 | /* | 
|  | 1276 | * Avoid enabling debugging on caches if its minimum | 
|  | 1277 | * order would increase as a result. | 
|  | 1278 | */ | 
|  | 1279 | disable_higher_order_debug = 1; | 
|  | 1280 | break; | 
|  | 1281 | default: | 
|  | 1282 | pr_err("slub_debug option '%c' unknown. skipped\n", | 
|  | 1283 | *str); | 
|  | 1284 | } | 
|  | 1285 | } | 
|  | 1286 |  | 
|  | 1287 | check_slabs: | 
|  | 1288 | if (*str == ',') | 
|  | 1289 | slub_debug_slabs = str + 1; | 
|  | 1290 | out: | 
|  | 1291 | if ((static_branch_unlikely(&init_on_alloc) || | 
|  | 1292 | static_branch_unlikely(&init_on_free)) && | 
|  | 1293 | (slub_debug & SLAB_POISON)) | 
|  | 1294 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | 
|  | 1295 | return 1; | 
|  | 1296 | } | 
|  | 1297 |  | 
|  | 1298 | __setup("slub_debug", setup_slub_debug); | 
|  | 1299 |  | 
|  | 1300 | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
|  | 1301 | slab_flags_t flags, const char *name, | 
|  | 1302 | void (*ctor)(void *)) | 
|  | 1303 | { | 
|  | 1304 | /* | 
|  | 1305 | * Enable debugging if selected on the kernel commandline. | 
|  | 1306 | */ | 
|  | 1307 | if (slub_debug && (!slub_debug_slabs || (name && | 
|  | 1308 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) | 
|  | 1309 | flags |= slub_debug; | 
|  | 1310 |  | 
|  | 1311 | return flags; | 
|  | 1312 | } | 
|  | 1313 | #else /* !CONFIG_SLUB_DEBUG */ | 
|  | 1314 | static inline void setup_object_debug(struct kmem_cache *s, | 
|  | 1315 | struct page *page, void *object) {} | 
|  | 1316 | static inline void setup_page_debug(struct kmem_cache *s, | 
|  | 1317 | void *addr, int order) {} | 
|  | 1318 |  | 
|  | 1319 | static inline int alloc_debug_processing(struct kmem_cache *s, | 
|  | 1320 | struct page *page, void *object, unsigned long addr) { return 0; } | 
|  | 1321 |  | 
|  | 1322 | static inline int free_debug_processing( | 
|  | 1323 | struct kmem_cache *s, struct page *page, | 
|  | 1324 | void *head, void *tail, int bulk_cnt, | 
|  | 1325 | unsigned long addr) { return 0; } | 
|  | 1326 |  | 
|  | 1327 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | 1328 | { return 1; } | 
|  | 1329 | static inline int check_object(struct kmem_cache *s, struct page *page, | 
|  | 1330 | void *object, u8 val) { return 1; } | 
|  | 1331 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | 1332 | struct page *page) {} | 
|  | 1333 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | 1334 | struct page *page) {} | 
|  | 1335 | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
|  | 1336 | slab_flags_t flags, const char *name, | 
|  | 1337 | void (*ctor)(void *)) | 
|  | 1338 | { | 
|  | 1339 | return flags; | 
|  | 1340 | } | 
|  | 1341 | #define slub_debug 0 | 
|  | 1342 |  | 
|  | 1343 | #define disable_higher_order_debug 0 | 
|  | 1344 |  | 
|  | 1345 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
|  | 1346 | { return 0; } | 
|  | 1347 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
|  | 1348 | { return 0; } | 
|  | 1349 | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 
|  | 1350 | int objects) {} | 
|  | 1351 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 
|  | 1352 | int objects) {} | 
|  | 1353 |  | 
|  | 1354 | #endif /* CONFIG_SLUB_DEBUG */ | 
|  | 1355 |  | 
|  | 1356 | /* | 
|  | 1357 | * Hooks for other subsystems that check memory allocations. In a typical | 
|  | 1358 | * production configuration these hooks all should produce no code at all. | 
|  | 1359 | */ | 
|  | 1360 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) | 
|  | 1361 | { | 
|  | 1362 | ptr = kasan_kmalloc_large(ptr, size, flags); | 
|  | 1363 | kmemleak_alloc(ptr, size, 1, flags); | 
|  | 1364 | return ptr; | 
|  | 1365 | } | 
|  | 1366 |  | 
|  | 1367 | static __always_inline void kfree_hook(void *x) | 
|  | 1368 | { | 
|  | 1369 | kmemleak_free(x); | 
|  | 1370 | kasan_kfree_large(x, _RET_IP_); | 
|  | 1371 | } | 
|  | 1372 |  | 
|  | 1373 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) | 
|  | 1374 | { | 
|  | 1375 | kmemleak_free_recursive(x, s->flags); | 
|  | 1376 |  | 
|  | 1377 | /* | 
|  | 1378 | * Trouble is that we may no longer disable interrupts in the fast path | 
|  | 1379 | * So in order to make the debug calls that expect irqs to be | 
|  | 1380 | * disabled we need to disable interrupts temporarily. | 
|  | 1381 | */ | 
|  | 1382 | #ifdef CONFIG_LOCKDEP | 
|  | 1383 | { | 
|  | 1384 | unsigned long flags; | 
|  | 1385 |  | 
|  | 1386 | local_irq_save(flags); | 
|  | 1387 | debug_check_no_locks_freed(x, s->object_size); | 
|  | 1388 | local_irq_restore(flags); | 
|  | 1389 | } | 
|  | 1390 | #endif | 
|  | 1391 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 
|  | 1392 | debug_check_no_obj_freed(x, s->object_size); | 
|  | 1393 |  | 
|  | 1394 | /* KASAN might put x into memory quarantine, delaying its reuse */ | 
|  | 1395 | return kasan_slab_free(s, x, _RET_IP_); | 
|  | 1396 | } | 
|  | 1397 |  | 
|  | 1398 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, | 
|  | 1399 | void **head, void **tail) | 
|  | 1400 | { | 
|  | 1401 |  | 
|  | 1402 | void *object; | 
|  | 1403 | void *next = *head; | 
|  | 1404 | void *old_tail = *tail ? *tail : *head; | 
|  | 1405 | int rsize; | 
|  | 1406 |  | 
|  | 1407 | /* Head and tail of the reconstructed freelist */ | 
|  | 1408 | *head = NULL; | 
|  | 1409 | *tail = NULL; | 
|  | 1410 |  | 
|  | 1411 | do { | 
|  | 1412 | object = next; | 
|  | 1413 | next = get_freepointer(s, object); | 
|  | 1414 |  | 
|  | 1415 | if (slab_want_init_on_free(s)) { | 
|  | 1416 | /* | 
|  | 1417 | * Clear the object and the metadata, but don't touch | 
|  | 1418 | * the redzone. | 
|  | 1419 | */ | 
|  | 1420 | memset(object, 0, s->object_size); | 
|  | 1421 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad | 
|  | 1422 | : 0; | 
|  | 1423 | memset((char *)object + s->inuse, 0, | 
|  | 1424 | s->size - s->inuse - rsize); | 
|  | 1425 |  | 
|  | 1426 | } | 
|  | 1427 | /* If object's reuse doesn't have to be delayed */ | 
|  | 1428 | if (!slab_free_hook(s, object)) { | 
|  | 1429 | /* Move object to the new freelist */ | 
|  | 1430 | set_freepointer(s, object, *head); | 
|  | 1431 | *head = object; | 
|  | 1432 | if (!*tail) | 
|  | 1433 | *tail = object; | 
|  | 1434 | } | 
|  | 1435 | } while (object != old_tail); | 
|  | 1436 |  | 
|  | 1437 | if (*head == *tail) | 
|  | 1438 | *tail = NULL; | 
|  | 1439 |  | 
|  | 1440 | return *head != NULL; | 
|  | 1441 | } | 
|  | 1442 |  | 
|  | 1443 | static void *setup_object(struct kmem_cache *s, struct page *page, | 
|  | 1444 | void *object) | 
|  | 1445 | { | 
|  | 1446 | setup_object_debug(s, page, object); | 
|  | 1447 | object = kasan_init_slab_obj(s, object); | 
|  | 1448 | if (unlikely(s->ctor)) { | 
|  | 1449 | kasan_unpoison_object_data(s, object); | 
|  | 1450 | s->ctor(object); | 
|  | 1451 | kasan_poison_object_data(s, object); | 
|  | 1452 | } | 
|  | 1453 | return object; | 
|  | 1454 | } | 
|  | 1455 |  | 
|  | 1456 | /* | 
|  | 1457 | * Slab allocation and freeing | 
|  | 1458 | */ | 
|  | 1459 | static inline struct page *alloc_slab_page(struct kmem_cache *s, | 
|  | 1460 | gfp_t flags, int node, struct kmem_cache_order_objects oo) | 
|  | 1461 | { | 
|  | 1462 | struct page *page; | 
|  | 1463 | unsigned int order = oo_order(oo); | 
|  | 1464 |  | 
|  | 1465 | if (node == NUMA_NO_NODE) | 
|  | 1466 | page = alloc_pages(flags, order); | 
|  | 1467 | else | 
|  | 1468 | page = __alloc_pages_node(node, flags, order); | 
|  | 1469 |  | 
|  | 1470 | if (page && memcg_charge_slab(page, flags, order, s)) { | 
|  | 1471 | __free_pages(page, order); | 
|  | 1472 | page = NULL; | 
|  | 1473 | } | 
|  | 1474 |  | 
|  | 1475 | return page; | 
|  | 1476 | } | 
|  | 1477 |  | 
|  | 1478 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
|  | 1479 | /* Pre-initialize the random sequence cache */ | 
|  | 1480 | static int init_cache_random_seq(struct kmem_cache *s) | 
|  | 1481 | { | 
|  | 1482 | unsigned int count = oo_objects(s->oo); | 
|  | 1483 | int err; | 
|  | 1484 |  | 
|  | 1485 | /* Bailout if already initialised */ | 
|  | 1486 | if (s->random_seq) | 
|  | 1487 | return 0; | 
|  | 1488 |  | 
|  | 1489 | err = cache_random_seq_create(s, count, GFP_KERNEL); | 
|  | 1490 | if (err) { | 
|  | 1491 | pr_err("SLUB: Unable to initialize free list for %s\n", | 
|  | 1492 | s->name); | 
|  | 1493 | return err; | 
|  | 1494 | } | 
|  | 1495 |  | 
|  | 1496 | /* Transform to an offset on the set of pages */ | 
|  | 1497 | if (s->random_seq) { | 
|  | 1498 | unsigned int i; | 
|  | 1499 |  | 
|  | 1500 | for (i = 0; i < count; i++) | 
|  | 1501 | s->random_seq[i] *= s->size; | 
|  | 1502 | } | 
|  | 1503 | return 0; | 
|  | 1504 | } | 
|  | 1505 |  | 
|  | 1506 | /* Initialize each random sequence freelist per cache */ | 
|  | 1507 | static void __init init_freelist_randomization(void) | 
|  | 1508 | { | 
|  | 1509 | struct kmem_cache *s; | 
|  | 1510 |  | 
|  | 1511 | mutex_lock(&slab_mutex); | 
|  | 1512 |  | 
|  | 1513 | list_for_each_entry(s, &slab_caches, list) | 
|  | 1514 | init_cache_random_seq(s); | 
|  | 1515 |  | 
|  | 1516 | mutex_unlock(&slab_mutex); | 
|  | 1517 | } | 
|  | 1518 |  | 
|  | 1519 | /* Get the next entry on the pre-computed freelist randomized */ | 
|  | 1520 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | 
|  | 1521 | unsigned long *pos, void *start, | 
|  | 1522 | unsigned long page_limit, | 
|  | 1523 | unsigned long freelist_count) | 
|  | 1524 | { | 
|  | 1525 | unsigned int idx; | 
|  | 1526 |  | 
|  | 1527 | /* | 
|  | 1528 | * If the target page allocation failed, the number of objects on the | 
|  | 1529 | * page might be smaller than the usual size defined by the cache. | 
|  | 1530 | */ | 
|  | 1531 | do { | 
|  | 1532 | idx = s->random_seq[*pos]; | 
|  | 1533 | *pos += 1; | 
|  | 1534 | if (*pos >= freelist_count) | 
|  | 1535 | *pos = 0; | 
|  | 1536 | } while (unlikely(idx >= page_limit)); | 
|  | 1537 |  | 
|  | 1538 | return (char *)start + idx; | 
|  | 1539 | } | 
|  | 1540 |  | 
|  | 1541 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | 
|  | 1542 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
|  | 1543 | { | 
|  | 1544 | void *start; | 
|  | 1545 | void *cur; | 
|  | 1546 | void *next; | 
|  | 1547 | unsigned long idx, pos, page_limit, freelist_count; | 
|  | 1548 |  | 
|  | 1549 | if (page->objects < 2 || !s->random_seq) | 
|  | 1550 | return false; | 
|  | 1551 |  | 
|  | 1552 | freelist_count = oo_objects(s->oo); | 
|  | 1553 | pos = get_random_int() % freelist_count; | 
|  | 1554 |  | 
|  | 1555 | page_limit = page->objects * s->size; | 
|  | 1556 | start = fixup_red_left(s, page_address(page)); | 
|  | 1557 |  | 
|  | 1558 | /* First entry is used as the base of the freelist */ | 
|  | 1559 | cur = next_freelist_entry(s, page, &pos, start, page_limit, | 
|  | 1560 | freelist_count); | 
|  | 1561 | cur = setup_object(s, page, cur); | 
|  | 1562 | page->freelist = cur; | 
|  | 1563 |  | 
|  | 1564 | for (idx = 1; idx < page->objects; idx++) { | 
|  | 1565 | next = next_freelist_entry(s, page, &pos, start, page_limit, | 
|  | 1566 | freelist_count); | 
|  | 1567 | next = setup_object(s, page, next); | 
|  | 1568 | set_freepointer(s, cur, next); | 
|  | 1569 | cur = next; | 
|  | 1570 | } | 
|  | 1571 | set_freepointer(s, cur, NULL); | 
|  | 1572 |  | 
|  | 1573 | return true; | 
|  | 1574 | } | 
|  | 1575 | #else | 
|  | 1576 | static inline int init_cache_random_seq(struct kmem_cache *s) | 
|  | 1577 | { | 
|  | 1578 | return 0; | 
|  | 1579 | } | 
|  | 1580 | static inline void init_freelist_randomization(void) { } | 
|  | 1581 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
|  | 1582 | { | 
|  | 1583 | return false; | 
|  | 1584 | } | 
|  | 1585 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
|  | 1586 |  | 
|  | 1587 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | 1588 | { | 
|  | 1589 | struct page *page; | 
|  | 1590 | struct kmem_cache_order_objects oo = s->oo; | 
|  | 1591 | gfp_t alloc_gfp; | 
|  | 1592 | void *start, *p, *next; | 
|  | 1593 | int idx, order; | 
|  | 1594 | bool shuffle; | 
|  | 1595 |  | 
|  | 1596 | flags &= gfp_allowed_mask; | 
|  | 1597 |  | 
|  | 1598 | if (gfpflags_allow_blocking(flags)) | 
|  | 1599 | local_irq_enable(); | 
|  | 1600 |  | 
|  | 1601 | flags |= s->allocflags; | 
|  | 1602 |  | 
|  | 1603 | /* | 
|  | 1604 | * Let the initial higher-order allocation fail under memory pressure | 
|  | 1605 | * so we fall-back to the minimum order allocation. | 
|  | 1606 | */ | 
|  | 1607 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | 
|  | 1608 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) | 
|  | 1609 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); | 
|  | 1610 |  | 
|  | 1611 | page = alloc_slab_page(s, alloc_gfp, node, oo); | 
|  | 1612 | if (unlikely(!page)) { | 
|  | 1613 | oo = s->min; | 
|  | 1614 | alloc_gfp = flags; | 
|  | 1615 | /* | 
|  | 1616 | * Allocation may have failed due to fragmentation. | 
|  | 1617 | * Try a lower order alloc if possible | 
|  | 1618 | */ | 
|  | 1619 | page = alloc_slab_page(s, alloc_gfp, node, oo); | 
|  | 1620 | if (unlikely(!page)) | 
|  | 1621 | goto out; | 
|  | 1622 | stat(s, ORDER_FALLBACK); | 
|  | 1623 | } | 
|  | 1624 |  | 
|  | 1625 | page->objects = oo_objects(oo); | 
|  | 1626 |  | 
|  | 1627 | order = compound_order(page); | 
|  | 1628 | page->slab_cache = s; | 
|  | 1629 | __SetPageSlab(page); | 
|  | 1630 | if (page_is_pfmemalloc(page)) | 
|  | 1631 | SetPageSlabPfmemalloc(page); | 
|  | 1632 |  | 
|  | 1633 | kasan_poison_slab(page); | 
|  | 1634 |  | 
|  | 1635 | start = page_address(page); | 
|  | 1636 |  | 
|  | 1637 | setup_page_debug(s, start, order); | 
|  | 1638 |  | 
|  | 1639 | shuffle = shuffle_freelist(s, page); | 
|  | 1640 |  | 
|  | 1641 | if (!shuffle) { | 
|  | 1642 | start = fixup_red_left(s, start); | 
|  | 1643 | start = setup_object(s, page, start); | 
|  | 1644 | page->freelist = start; | 
|  | 1645 | for (idx = 0, p = start; idx < page->objects - 1; idx++) { | 
|  | 1646 | next = p + s->size; | 
|  | 1647 | next = setup_object(s, page, next); | 
|  | 1648 | set_freepointer(s, p, next); | 
|  | 1649 | p = next; | 
|  | 1650 | } | 
|  | 1651 | set_freepointer(s, p, NULL); | 
|  | 1652 | } | 
|  | 1653 |  | 
|  | 1654 | page->inuse = page->objects; | 
|  | 1655 | page->frozen = 1; | 
|  | 1656 |  | 
|  | 1657 | out: | 
|  | 1658 | if (gfpflags_allow_blocking(flags)) | 
|  | 1659 | local_irq_disable(); | 
|  | 1660 | if (!page) | 
|  | 1661 | return NULL; | 
|  | 1662 |  | 
|  | 1663 | mod_lruvec_page_state(page, | 
|  | 1664 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | 1665 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | 1666 | 1 << oo_order(oo)); | 
|  | 1667 |  | 
|  | 1668 | inc_slabs_node(s, page_to_nid(page), page->objects); | 
|  | 1669 |  | 
|  | 1670 | return page; | 
|  | 1671 | } | 
|  | 1672 |  | 
|  | 1673 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | 1674 | { | 
|  | 1675 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | 
|  | 1676 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | 
|  | 1677 | flags &= ~GFP_SLAB_BUG_MASK; | 
|  | 1678 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | 
|  | 1679 | invalid_mask, &invalid_mask, flags, &flags); | 
|  | 1680 | dump_stack(); | 
|  | 1681 | } | 
|  | 1682 |  | 
|  | 1683 | return allocate_slab(s, | 
|  | 1684 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
|  | 1685 | } | 
|  | 1686 |  | 
|  | 1687 | static void __free_slab(struct kmem_cache *s, struct page *page) | 
|  | 1688 | { | 
|  | 1689 | int order = compound_order(page); | 
|  | 1690 | int pages = 1 << order; | 
|  | 1691 |  | 
|  | 1692 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | 1693 | void *p; | 
|  | 1694 |  | 
|  | 1695 | slab_pad_check(s, page); | 
|  | 1696 | for_each_object(p, s, page_address(page), | 
|  | 1697 | page->objects) | 
|  | 1698 | check_object(s, page, p, SLUB_RED_INACTIVE); | 
|  | 1699 | } | 
|  | 1700 |  | 
|  | 1701 | mod_lruvec_page_state(page, | 
|  | 1702 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | 1703 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | 1704 | -pages); | 
|  | 1705 |  | 
|  | 1706 | __ClearPageSlabPfmemalloc(page); | 
|  | 1707 | __ClearPageSlab(page); | 
|  | 1708 |  | 
|  | 1709 | page->mapping = NULL; | 
|  | 1710 | if (current->reclaim_state) | 
|  | 1711 | current->reclaim_state->reclaimed_slab += pages; | 
|  | 1712 | memcg_uncharge_slab(page, order, s); | 
|  | 1713 | __free_pages(page, order); | 
|  | 1714 | } | 
|  | 1715 |  | 
|  | 1716 | static void rcu_free_slab(struct rcu_head *h) | 
|  | 1717 | { | 
|  | 1718 | struct page *page = container_of(h, struct page, rcu_head); | 
|  | 1719 |  | 
|  | 1720 | __free_slab(page->slab_cache, page); | 
|  | 1721 | } | 
|  | 1722 |  | 
|  | 1723 | static void free_slab(struct kmem_cache *s, struct page *page) | 
|  | 1724 | { | 
|  | 1725 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { | 
|  | 1726 | call_rcu(&page->rcu_head, rcu_free_slab); | 
|  | 1727 | } else | 
|  | 1728 | __free_slab(s, page); | 
|  | 1729 | } | 
|  | 1730 |  | 
|  | 1731 | static void discard_slab(struct kmem_cache *s, struct page *page) | 
|  | 1732 | { | 
|  | 1733 | dec_slabs_node(s, page_to_nid(page), page->objects); | 
|  | 1734 | free_slab(s, page); | 
|  | 1735 | } | 
|  | 1736 |  | 
|  | 1737 | /* | 
|  | 1738 | * Management of partially allocated slabs. | 
|  | 1739 | */ | 
|  | 1740 | static inline void | 
|  | 1741 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | 
|  | 1742 | { | 
|  | 1743 | n->nr_partial++; | 
|  | 1744 | if (tail == DEACTIVATE_TO_TAIL) | 
|  | 1745 | list_add_tail(&page->lru, &n->partial); | 
|  | 1746 | else | 
|  | 1747 | list_add(&page->lru, &n->partial); | 
|  | 1748 | } | 
|  | 1749 |  | 
|  | 1750 | static inline void add_partial(struct kmem_cache_node *n, | 
|  | 1751 | struct page *page, int tail) | 
|  | 1752 | { | 
|  | 1753 | lockdep_assert_held(&n->list_lock); | 
|  | 1754 | __add_partial(n, page, tail); | 
|  | 1755 | } | 
|  | 1756 |  | 
|  | 1757 | static inline void remove_partial(struct kmem_cache_node *n, | 
|  | 1758 | struct page *page) | 
|  | 1759 | { | 
|  | 1760 | lockdep_assert_held(&n->list_lock); | 
|  | 1761 | list_del(&page->lru); | 
|  | 1762 | n->nr_partial--; | 
|  | 1763 | } | 
|  | 1764 |  | 
|  | 1765 | /* | 
|  | 1766 | * Remove slab from the partial list, freeze it and | 
|  | 1767 | * return the pointer to the freelist. | 
|  | 1768 | * | 
|  | 1769 | * Returns a list of objects or NULL if it fails. | 
|  | 1770 | */ | 
|  | 1771 | static inline void *acquire_slab(struct kmem_cache *s, | 
|  | 1772 | struct kmem_cache_node *n, struct page *page, | 
|  | 1773 | int mode, int *objects) | 
|  | 1774 | { | 
|  | 1775 | void *freelist; | 
|  | 1776 | unsigned long counters; | 
|  | 1777 | struct page new; | 
|  | 1778 |  | 
|  | 1779 | lockdep_assert_held(&n->list_lock); | 
|  | 1780 |  | 
|  | 1781 | /* | 
|  | 1782 | * Zap the freelist and set the frozen bit. | 
|  | 1783 | * The old freelist is the list of objects for the | 
|  | 1784 | * per cpu allocation list. | 
|  | 1785 | */ | 
|  | 1786 | freelist = page->freelist; | 
|  | 1787 | counters = page->counters; | 
|  | 1788 | new.counters = counters; | 
|  | 1789 | *objects = new.objects - new.inuse; | 
|  | 1790 | if (mode) { | 
|  | 1791 | new.inuse = page->objects; | 
|  | 1792 | new.freelist = NULL; | 
|  | 1793 | } else { | 
|  | 1794 | new.freelist = freelist; | 
|  | 1795 | } | 
|  | 1796 |  | 
|  | 1797 | VM_BUG_ON(new.frozen); | 
|  | 1798 | new.frozen = 1; | 
|  | 1799 |  | 
|  | 1800 | if (!__cmpxchg_double_slab(s, page, | 
|  | 1801 | freelist, counters, | 
|  | 1802 | new.freelist, new.counters, | 
|  | 1803 | "acquire_slab")) | 
|  | 1804 | return NULL; | 
|  | 1805 |  | 
|  | 1806 | remove_partial(n, page); | 
|  | 1807 | WARN_ON(!freelist); | 
|  | 1808 | return freelist; | 
|  | 1809 | } | 
|  | 1810 |  | 
|  | 1811 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); | 
|  | 1812 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); | 
|  | 1813 |  | 
|  | 1814 | /* | 
|  | 1815 | * Try to allocate a partial slab from a specific node. | 
|  | 1816 | */ | 
|  | 1817 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | 1818 | struct kmem_cache_cpu *c, gfp_t flags) | 
|  | 1819 | { | 
|  | 1820 | struct page *page, *page2; | 
|  | 1821 | void *object = NULL; | 
|  | 1822 | unsigned int available = 0; | 
|  | 1823 | int objects; | 
|  | 1824 |  | 
|  | 1825 | /* | 
|  | 1826 | * Racy check. If we mistakenly see no partial slabs then we | 
|  | 1827 | * just allocate an empty slab. If we mistakenly try to get a | 
|  | 1828 | * partial slab and there is none available then get_partials() | 
|  | 1829 | * will return NULL. | 
|  | 1830 | */ | 
|  | 1831 | if (!n || !n->nr_partial) | 
|  | 1832 | return NULL; | 
|  | 1833 |  | 
|  | 1834 | spin_lock(&n->list_lock); | 
|  | 1835 | list_for_each_entry_safe(page, page2, &n->partial, lru) { | 
|  | 1836 | void *t; | 
|  | 1837 |  | 
|  | 1838 | if (!pfmemalloc_match(page, flags)) | 
|  | 1839 | continue; | 
|  | 1840 |  | 
|  | 1841 | t = acquire_slab(s, n, page, object == NULL, &objects); | 
|  | 1842 | if (!t) | 
|  | 1843 | break; | 
|  | 1844 |  | 
|  | 1845 | available += objects; | 
|  | 1846 | if (!object) { | 
|  | 1847 | c->page = page; | 
|  | 1848 | stat(s, ALLOC_FROM_PARTIAL); | 
|  | 1849 | object = t; | 
|  | 1850 | } else { | 
|  | 1851 | put_cpu_partial(s, page, 0); | 
|  | 1852 | stat(s, CPU_PARTIAL_NODE); | 
|  | 1853 | } | 
|  | 1854 | if (!kmem_cache_has_cpu_partial(s) | 
|  | 1855 | || available > slub_cpu_partial(s) / 2) | 
|  | 1856 | break; | 
|  | 1857 |  | 
|  | 1858 | } | 
|  | 1859 | spin_unlock(&n->list_lock); | 
|  | 1860 | return object; | 
|  | 1861 | } | 
|  | 1862 |  | 
|  | 1863 | /* | 
|  | 1864 | * Get a page from somewhere. Search in increasing NUMA distances. | 
|  | 1865 | */ | 
|  | 1866 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, | 
|  | 1867 | struct kmem_cache_cpu *c) | 
|  | 1868 | { | 
|  | 1869 | #ifdef CONFIG_NUMA | 
|  | 1870 | struct zonelist *zonelist; | 
|  | 1871 | struct zoneref *z; | 
|  | 1872 | struct zone *zone; | 
|  | 1873 | enum zone_type high_zoneidx = gfp_zone(flags); | 
|  | 1874 | void *object; | 
|  | 1875 | unsigned int cpuset_mems_cookie; | 
|  | 1876 |  | 
|  | 1877 | /* | 
|  | 1878 | * The defrag ratio allows a configuration of the tradeoffs between | 
|  | 1879 | * inter node defragmentation and node local allocations. A lower | 
|  | 1880 | * defrag_ratio increases the tendency to do local allocations | 
|  | 1881 | * instead of attempting to obtain partial slabs from other nodes. | 
|  | 1882 | * | 
|  | 1883 | * If the defrag_ratio is set to 0 then kmalloc() always | 
|  | 1884 | * returns node local objects. If the ratio is higher then kmalloc() | 
|  | 1885 | * may return off node objects because partial slabs are obtained | 
|  | 1886 | * from other nodes and filled up. | 
|  | 1887 | * | 
|  | 1888 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 | 
|  | 1889 | * (which makes defrag_ratio = 1000) then every (well almost) | 
|  | 1890 | * allocation will first attempt to defrag slab caches on other nodes. | 
|  | 1891 | * This means scanning over all nodes to look for partial slabs which | 
|  | 1892 | * may be expensive if we do it every time we are trying to find a slab | 
|  | 1893 | * with available objects. | 
|  | 1894 | */ | 
|  | 1895 | if (!s->remote_node_defrag_ratio || | 
|  | 1896 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | 
|  | 1897 | return NULL; | 
|  | 1898 |  | 
|  | 1899 | do { | 
|  | 1900 | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | 1901 | zonelist = node_zonelist(mempolicy_slab_node(), flags); | 
|  | 1902 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
|  | 1903 | struct kmem_cache_node *n; | 
|  | 1904 |  | 
|  | 1905 | n = get_node(s, zone_to_nid(zone)); | 
|  | 1906 |  | 
|  | 1907 | if (n && cpuset_zone_allowed(zone, flags) && | 
|  | 1908 | n->nr_partial > s->min_partial) { | 
|  | 1909 | object = get_partial_node(s, n, c, flags); | 
|  | 1910 | if (object) { | 
|  | 1911 | /* | 
|  | 1912 | * Don't check read_mems_allowed_retry() | 
|  | 1913 | * here - if mems_allowed was updated in | 
|  | 1914 | * parallel, that was a harmless race | 
|  | 1915 | * between allocation and the cpuset | 
|  | 1916 | * update | 
|  | 1917 | */ | 
|  | 1918 | return object; | 
|  | 1919 | } | 
|  | 1920 | } | 
|  | 1921 | } | 
|  | 1922 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
|  | 1923 | #endif | 
|  | 1924 | return NULL; | 
|  | 1925 | } | 
|  | 1926 |  | 
|  | 1927 | /* | 
|  | 1928 | * Get a partial page, lock it and return it. | 
|  | 1929 | */ | 
|  | 1930 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, | 
|  | 1931 | struct kmem_cache_cpu *c) | 
|  | 1932 | { | 
|  | 1933 | void *object; | 
|  | 1934 | int searchnode = node; | 
|  | 1935 |  | 
|  | 1936 | if (node == NUMA_NO_NODE) | 
|  | 1937 | searchnode = numa_mem_id(); | 
|  | 1938 | else if (!node_present_pages(node)) | 
|  | 1939 | searchnode = node_to_mem_node(node); | 
|  | 1940 |  | 
|  | 1941 | object = get_partial_node(s, get_node(s, searchnode), c, flags); | 
|  | 1942 | if (object || node != NUMA_NO_NODE) | 
|  | 1943 | return object; | 
|  | 1944 |  | 
|  | 1945 | return get_any_partial(s, flags, c); | 
|  | 1946 | } | 
|  | 1947 |  | 
|  | 1948 | #ifdef CONFIG_PREEMPT | 
|  | 1949 | /* | 
|  | 1950 | * Calculate the next globally unique transaction for disambiguiation | 
|  | 1951 | * during cmpxchg. The transactions start with the cpu number and are then | 
|  | 1952 | * incremented by CONFIG_NR_CPUS. | 
|  | 1953 | */ | 
|  | 1954 | #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS) | 
|  | 1955 | #else | 
|  | 1956 | /* | 
|  | 1957 | * No preemption supported therefore also no need to check for | 
|  | 1958 | * different cpus. | 
|  | 1959 | */ | 
|  | 1960 | #define TID_STEP 1 | 
|  | 1961 | #endif | 
|  | 1962 |  | 
|  | 1963 | static inline unsigned long next_tid(unsigned long tid) | 
|  | 1964 | { | 
|  | 1965 | return tid + TID_STEP; | 
|  | 1966 | } | 
|  | 1967 |  | 
|  | 1968 | static inline unsigned int tid_to_cpu(unsigned long tid) | 
|  | 1969 | { | 
|  | 1970 | return tid % TID_STEP; | 
|  | 1971 | } | 
|  | 1972 |  | 
|  | 1973 | static inline unsigned long tid_to_event(unsigned long tid) | 
|  | 1974 | { | 
|  | 1975 | return tid / TID_STEP; | 
|  | 1976 | } | 
|  | 1977 |  | 
|  | 1978 | static inline unsigned int init_tid(int cpu) | 
|  | 1979 | { | 
|  | 1980 | return cpu; | 
|  | 1981 | } | 
|  | 1982 |  | 
|  | 1983 | static inline void note_cmpxchg_failure(const char *n, | 
|  | 1984 | const struct kmem_cache *s, unsigned long tid) | 
|  | 1985 | { | 
|  | 1986 | #ifdef SLUB_DEBUG_CMPXCHG | 
|  | 1987 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | 
|  | 1988 |  | 
|  | 1989 | pr_info("%s %s: cmpxchg redo ", n, s->name); | 
|  | 1990 |  | 
|  | 1991 | #ifdef CONFIG_PREEMPT | 
|  | 1992 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | 
|  | 1993 | pr_warn("due to cpu change %d -> %d\n", | 
|  | 1994 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); | 
|  | 1995 | else | 
|  | 1996 | #endif | 
|  | 1997 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | 
|  | 1998 | pr_warn("due to cpu running other code. Event %ld->%ld\n", | 
|  | 1999 | tid_to_event(tid), tid_to_event(actual_tid)); | 
|  | 2000 | else | 
|  | 2001 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", | 
|  | 2002 | actual_tid, tid, next_tid(tid)); | 
|  | 2003 | #endif | 
|  | 2004 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); | 
|  | 2005 | } | 
|  | 2006 |  | 
|  | 2007 | static void init_kmem_cache_cpus(struct kmem_cache *s) | 
|  | 2008 | { | 
|  | 2009 | int cpu; | 
|  | 2010 |  | 
|  | 2011 | for_each_possible_cpu(cpu) { | 
|  | 2012 | #ifdef CONFIG_MTK_MM_DEBUG | 
|  | 2013 | pr_info("s=%s, pcpuptr=%p\n", s->name, | 
|  | 2014 | per_cpu_ptr(s->cpu_slab, cpu)); | 
|  | 2015 | #endif | 
|  | 2016 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | 
|  | 2017 | } | 
|  | 2018 | } | 
|  | 2019 |  | 
|  | 2020 | /* | 
|  | 2021 | * Remove the cpu slab | 
|  | 2022 | */ | 
|  | 2023 | static void deactivate_slab(struct kmem_cache *s, struct page *page, | 
|  | 2024 | void *freelist, struct kmem_cache_cpu *c) | 
|  | 2025 | { | 
|  | 2026 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; | 
|  | 2027 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  | 2028 | int lock = 0; | 
|  | 2029 | enum slab_modes l = M_NONE, m = M_NONE; | 
|  | 2030 | void *nextfree; | 
|  | 2031 | int tail = DEACTIVATE_TO_HEAD; | 
|  | 2032 | struct page new; | 
|  | 2033 | struct page old; | 
|  | 2034 |  | 
|  | 2035 | if (page->freelist) { | 
|  | 2036 | stat(s, DEACTIVATE_REMOTE_FREES); | 
|  | 2037 | tail = DEACTIVATE_TO_TAIL; | 
|  | 2038 | } | 
|  | 2039 |  | 
|  | 2040 | /* | 
|  | 2041 | * Stage one: Free all available per cpu objects back | 
|  | 2042 | * to the page freelist while it is still frozen. Leave the | 
|  | 2043 | * last one. | 
|  | 2044 | * | 
|  | 2045 | * There is no need to take the list->lock because the page | 
|  | 2046 | * is still frozen. | 
|  | 2047 | */ | 
|  | 2048 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | 
|  | 2049 | void *prior; | 
|  | 2050 | unsigned long counters; | 
|  | 2051 |  | 
|  | 2052 | do { | 
|  | 2053 | prior = page->freelist; | 
|  | 2054 | counters = page->counters; | 
|  | 2055 | set_freepointer(s, freelist, prior); | 
|  | 2056 | new.counters = counters; | 
|  | 2057 | new.inuse--; | 
|  | 2058 | VM_BUG_ON(!new.frozen); | 
|  | 2059 |  | 
|  | 2060 | } while (!__cmpxchg_double_slab(s, page, | 
|  | 2061 | prior, counters, | 
|  | 2062 | freelist, new.counters, | 
|  | 2063 | "drain percpu freelist")); | 
|  | 2064 |  | 
|  | 2065 | freelist = nextfree; | 
|  | 2066 | } | 
|  | 2067 |  | 
|  | 2068 | /* | 
|  | 2069 | * Stage two: Ensure that the page is unfrozen while the | 
|  | 2070 | * list presence reflects the actual number of objects | 
|  | 2071 | * during unfreeze. | 
|  | 2072 | * | 
|  | 2073 | * We setup the list membership and then perform a cmpxchg | 
|  | 2074 | * with the count. If there is a mismatch then the page | 
|  | 2075 | * is not unfrozen but the page is on the wrong list. | 
|  | 2076 | * | 
|  | 2077 | * Then we restart the process which may have to remove | 
|  | 2078 | * the page from the list that we just put it on again | 
|  | 2079 | * because the number of objects in the slab may have | 
|  | 2080 | * changed. | 
|  | 2081 | */ | 
|  | 2082 | redo: | 
|  | 2083 |  | 
|  | 2084 | old.freelist = page->freelist; | 
|  | 2085 | old.counters = page->counters; | 
|  | 2086 | VM_BUG_ON(!old.frozen); | 
|  | 2087 |  | 
|  | 2088 | /* Determine target state of the slab */ | 
|  | 2089 | new.counters = old.counters; | 
|  | 2090 | if (freelist) { | 
|  | 2091 | new.inuse--; | 
|  | 2092 | set_freepointer(s, freelist, old.freelist); | 
|  | 2093 | new.freelist = freelist; | 
|  | 2094 | } else | 
|  | 2095 | new.freelist = old.freelist; | 
|  | 2096 |  | 
|  | 2097 | new.frozen = 0; | 
|  | 2098 |  | 
|  | 2099 | if (!new.inuse && n->nr_partial >= s->min_partial) | 
|  | 2100 | m = M_FREE; | 
|  | 2101 | else if (new.freelist) { | 
|  | 2102 | m = M_PARTIAL; | 
|  | 2103 | if (!lock) { | 
|  | 2104 | lock = 1; | 
|  | 2105 | /* | 
|  | 2106 | * Taking the spinlock removes the possiblity | 
|  | 2107 | * that acquire_slab() will see a slab page that | 
|  | 2108 | * is frozen | 
|  | 2109 | */ | 
|  | 2110 | spin_lock(&n->list_lock); | 
|  | 2111 | } | 
|  | 2112 | } else { | 
|  | 2113 | m = M_FULL; | 
|  | 2114 | if (kmem_cache_debug(s) && !lock) { | 
|  | 2115 | lock = 1; | 
|  | 2116 | /* | 
|  | 2117 | * This also ensures that the scanning of full | 
|  | 2118 | * slabs from diagnostic functions will not see | 
|  | 2119 | * any frozen slabs. | 
|  | 2120 | */ | 
|  | 2121 | spin_lock(&n->list_lock); | 
|  | 2122 | } | 
|  | 2123 | } | 
|  | 2124 |  | 
|  | 2125 | if (l != m) { | 
|  | 2126 |  | 
|  | 2127 | if (l == M_PARTIAL) | 
|  | 2128 |  | 
|  | 2129 | remove_partial(n, page); | 
|  | 2130 |  | 
|  | 2131 | else if (l == M_FULL) | 
|  | 2132 |  | 
|  | 2133 | remove_full(s, n, page); | 
|  | 2134 |  | 
|  | 2135 | if (m == M_PARTIAL) { | 
|  | 2136 |  | 
|  | 2137 | add_partial(n, page, tail); | 
|  | 2138 | stat(s, tail); | 
|  | 2139 |  | 
|  | 2140 | } else if (m == M_FULL) { | 
|  | 2141 |  | 
|  | 2142 | stat(s, DEACTIVATE_FULL); | 
|  | 2143 | add_full(s, n, page); | 
|  | 2144 |  | 
|  | 2145 | } | 
|  | 2146 | } | 
|  | 2147 |  | 
|  | 2148 | l = m; | 
|  | 2149 | if (!__cmpxchg_double_slab(s, page, | 
|  | 2150 | old.freelist, old.counters, | 
|  | 2151 | new.freelist, new.counters, | 
|  | 2152 | "unfreezing slab")) | 
|  | 2153 | goto redo; | 
|  | 2154 |  | 
|  | 2155 | if (lock) | 
|  | 2156 | spin_unlock(&n->list_lock); | 
|  | 2157 |  | 
|  | 2158 | if (m == M_FREE) { | 
|  | 2159 | stat(s, DEACTIVATE_EMPTY); | 
|  | 2160 | discard_slab(s, page); | 
|  | 2161 | stat(s, FREE_SLAB); | 
|  | 2162 | } | 
|  | 2163 |  | 
|  | 2164 | c->page = NULL; | 
|  | 2165 | c->freelist = NULL; | 
|  | 2166 | } | 
|  | 2167 |  | 
|  | 2168 | /* | 
|  | 2169 | * Unfreeze all the cpu partial slabs. | 
|  | 2170 | * | 
|  | 2171 | * This function must be called with interrupts disabled | 
|  | 2172 | * for the cpu using c (or some other guarantee must be there | 
|  | 2173 | * to guarantee no concurrent accesses). | 
|  | 2174 | */ | 
|  | 2175 | static void unfreeze_partials(struct kmem_cache *s, | 
|  | 2176 | struct kmem_cache_cpu *c) | 
|  | 2177 | { | 
|  | 2178 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | 2179 | struct kmem_cache_node *n = NULL, *n2 = NULL; | 
|  | 2180 | struct page *page, *discard_page = NULL; | 
|  | 2181 |  | 
|  | 2182 | while ((page = c->partial)) { | 
|  | 2183 | struct page new; | 
|  | 2184 | struct page old; | 
|  | 2185 |  | 
|  | 2186 | c->partial = page->next; | 
|  | 2187 |  | 
|  | 2188 | n2 = get_node(s, page_to_nid(page)); | 
|  | 2189 | if (n != n2) { | 
|  | 2190 | if (n) | 
|  | 2191 | spin_unlock(&n->list_lock); | 
|  | 2192 |  | 
|  | 2193 | n = n2; | 
|  | 2194 | spin_lock(&n->list_lock); | 
|  | 2195 | } | 
|  | 2196 |  | 
|  | 2197 | do { | 
|  | 2198 |  | 
|  | 2199 | old.freelist = page->freelist; | 
|  | 2200 | old.counters = page->counters; | 
|  | 2201 | VM_BUG_ON(!old.frozen); | 
|  | 2202 |  | 
|  | 2203 | new.counters = old.counters; | 
|  | 2204 | new.freelist = old.freelist; | 
|  | 2205 |  | 
|  | 2206 | new.frozen = 0; | 
|  | 2207 |  | 
|  | 2208 | } while (!__cmpxchg_double_slab(s, page, | 
|  | 2209 | old.freelist, old.counters, | 
|  | 2210 | new.freelist, new.counters, | 
|  | 2211 | "unfreezing slab")); | 
|  | 2212 |  | 
|  | 2213 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { | 
|  | 2214 | page->next = discard_page; | 
|  | 2215 | discard_page = page; | 
|  | 2216 | } else { | 
|  | 2217 | add_partial(n, page, DEACTIVATE_TO_TAIL); | 
|  | 2218 | stat(s, FREE_ADD_PARTIAL); | 
|  | 2219 | } | 
|  | 2220 | } | 
|  | 2221 |  | 
|  | 2222 | if (n) | 
|  | 2223 | spin_unlock(&n->list_lock); | 
|  | 2224 |  | 
|  | 2225 | while (discard_page) { | 
|  | 2226 | page = discard_page; | 
|  | 2227 | discard_page = discard_page->next; | 
|  | 2228 |  | 
|  | 2229 | stat(s, DEACTIVATE_EMPTY); | 
|  | 2230 | discard_slab(s, page); | 
|  | 2231 | stat(s, FREE_SLAB); | 
|  | 2232 | } | 
|  | 2233 | #endif | 
|  | 2234 | } | 
|  | 2235 |  | 
|  | 2236 | /* | 
|  | 2237 | * Put a page that was just frozen (in __slab_free) into a partial page | 
|  | 2238 | * slot if available. | 
|  | 2239 | * | 
|  | 2240 | * If we did not find a slot then simply move all the partials to the | 
|  | 2241 | * per node partial list. | 
|  | 2242 | */ | 
|  | 2243 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) | 
|  | 2244 | { | 
|  | 2245 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | 2246 | struct page *oldpage; | 
|  | 2247 | int pages; | 
|  | 2248 | int pobjects; | 
|  | 2249 |  | 
|  | 2250 | preempt_disable(); | 
|  | 2251 | do { | 
|  | 2252 | pages = 0; | 
|  | 2253 | pobjects = 0; | 
|  | 2254 | oldpage = this_cpu_read(s->cpu_slab->partial); | 
|  | 2255 |  | 
|  | 2256 | if (oldpage) { | 
|  | 2257 | pobjects = oldpage->pobjects; | 
|  | 2258 | pages = oldpage->pages; | 
|  | 2259 | if (drain && pobjects > s->cpu_partial) { | 
|  | 2260 | unsigned long flags; | 
|  | 2261 | /* | 
|  | 2262 | * partial array is full. Move the existing | 
|  | 2263 | * set to the per node partial list. | 
|  | 2264 | */ | 
|  | 2265 | local_irq_save(flags); | 
|  | 2266 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
|  | 2267 | local_irq_restore(flags); | 
|  | 2268 | oldpage = NULL; | 
|  | 2269 | pobjects = 0; | 
|  | 2270 | pages = 0; | 
|  | 2271 | stat(s, CPU_PARTIAL_DRAIN); | 
|  | 2272 | } | 
|  | 2273 | } | 
|  | 2274 |  | 
|  | 2275 | pages++; | 
|  | 2276 | pobjects += page->objects - page->inuse; | 
|  | 2277 |  | 
|  | 2278 | page->pages = pages; | 
|  | 2279 | page->pobjects = pobjects; | 
|  | 2280 | page->next = oldpage; | 
|  | 2281 |  | 
|  | 2282 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) | 
|  | 2283 | != oldpage); | 
|  | 2284 | if (unlikely(!s->cpu_partial)) { | 
|  | 2285 | unsigned long flags; | 
|  | 2286 |  | 
|  | 2287 | local_irq_save(flags); | 
|  | 2288 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
|  | 2289 | local_irq_restore(flags); | 
|  | 2290 | } | 
|  | 2291 | preempt_enable(); | 
|  | 2292 | #endif | 
|  | 2293 | } | 
|  | 2294 |  | 
|  | 2295 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
|  | 2296 | { | 
|  | 2297 | stat(s, CPUSLAB_FLUSH); | 
|  | 2298 | deactivate_slab(s, c->page, c->freelist, c); | 
|  | 2299 |  | 
|  | 2300 | c->tid = next_tid(c->tid); | 
|  | 2301 | } | 
|  | 2302 |  | 
|  | 2303 | /* | 
|  | 2304 | * Flush cpu slab. | 
|  | 2305 | * | 
|  | 2306 | * Called from IPI handler with interrupts disabled. | 
|  | 2307 | */ | 
|  | 2308 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
|  | 2309 | { | 
|  | 2310 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
|  | 2311 |  | 
|  | 2312 | if (likely(c)) { | 
|  | 2313 | if (c->page) | 
|  | 2314 | flush_slab(s, c); | 
|  | 2315 |  | 
|  | 2316 | unfreeze_partials(s, c); | 
|  | 2317 | } | 
|  | 2318 | } | 
|  | 2319 |  | 
|  | 2320 | static void flush_cpu_slab(void *d) | 
|  | 2321 | { | 
|  | 2322 | struct kmem_cache *s = d; | 
|  | 2323 |  | 
|  | 2324 | __flush_cpu_slab(s, smp_processor_id()); | 
|  | 2325 | } | 
|  | 2326 |  | 
|  | 2327 | static bool has_cpu_slab(int cpu, void *info) | 
|  | 2328 | { | 
|  | 2329 | struct kmem_cache *s = info; | 
|  | 2330 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
|  | 2331 |  | 
|  | 2332 | return c->page || slub_percpu_partial(c); | 
|  | 2333 | } | 
|  | 2334 |  | 
|  | 2335 | static void flush_all(struct kmem_cache *s) | 
|  | 2336 | { | 
|  | 2337 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); | 
|  | 2338 | } | 
|  | 2339 |  | 
|  | 2340 | /* | 
|  | 2341 | * Use the cpu notifier to insure that the cpu slabs are flushed when | 
|  | 2342 | * necessary. | 
|  | 2343 | */ | 
|  | 2344 | static int slub_cpu_dead(unsigned int cpu) | 
|  | 2345 | { | 
|  | 2346 | struct kmem_cache *s; | 
|  | 2347 | unsigned long flags; | 
|  | 2348 |  | 
|  | 2349 | mutex_lock(&slab_mutex); | 
|  | 2350 | list_for_each_entry(s, &slab_caches, list) { | 
|  | 2351 | local_irq_save(flags); | 
|  | 2352 | __flush_cpu_slab(s, cpu); | 
|  | 2353 | local_irq_restore(flags); | 
|  | 2354 | } | 
|  | 2355 | mutex_unlock(&slab_mutex); | 
|  | 2356 | return 0; | 
|  | 2357 | } | 
|  | 2358 |  | 
|  | 2359 | /* | 
|  | 2360 | * Check if the objects in a per cpu structure fit numa | 
|  | 2361 | * locality expectations. | 
|  | 2362 | */ | 
|  | 2363 | static inline int node_match(struct page *page, int node) | 
|  | 2364 | { | 
|  | 2365 | #ifdef CONFIG_NUMA | 
|  | 2366 | if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) | 
|  | 2367 | return 0; | 
|  | 2368 | #endif | 
|  | 2369 | return 1; | 
|  | 2370 | } | 
|  | 2371 |  | 
|  | 2372 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 2373 | static int count_free(struct page *page) | 
|  | 2374 | { | 
|  | 2375 | return page->objects - page->inuse; | 
|  | 2376 | } | 
|  | 2377 |  | 
|  | 2378 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) | 
|  | 2379 | { | 
|  | 2380 | return atomic_long_read(&n->total_objects); | 
|  | 2381 | } | 
|  | 2382 | #endif /* CONFIG_SLUB_DEBUG */ | 
|  | 2383 |  | 
|  | 2384 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | 
|  | 2385 | static unsigned long count_partial(struct kmem_cache_node *n, | 
|  | 2386 | int (*get_count)(struct page *)) | 
|  | 2387 | { | 
|  | 2388 | unsigned long flags; | 
|  | 2389 | unsigned long x = 0; | 
|  | 2390 | struct page *page; | 
|  | 2391 |  | 
|  | 2392 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 2393 | list_for_each_entry(page, &n->partial, lru) | 
|  | 2394 | x += get_count(page); | 
|  | 2395 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 2396 | return x; | 
|  | 2397 | } | 
|  | 2398 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ | 
|  | 2399 |  | 
|  | 2400 | static noinline void | 
|  | 2401 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | 
|  | 2402 | { | 
|  | 2403 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 2404 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | 2405 | DEFAULT_RATELIMIT_BURST); | 
|  | 2406 | int node; | 
|  | 2407 | struct kmem_cache_node *n; | 
|  | 2408 |  | 
|  | 2409 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) | 
|  | 2410 | return; | 
|  | 2411 |  | 
|  | 2412 | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", | 
|  | 2413 | nid, gfpflags, &gfpflags); | 
|  | 2414 | pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", | 
|  | 2415 | s->name, s->object_size, s->size, oo_order(s->oo), | 
|  | 2416 | oo_order(s->min)); | 
|  | 2417 |  | 
|  | 2418 | if (oo_order(s->min) > get_order(s->object_size)) | 
|  | 2419 | pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n", | 
|  | 2420 | s->name); | 
|  | 2421 |  | 
|  | 2422 | for_each_kmem_cache_node(s, node, n) { | 
|  | 2423 | unsigned long nr_slabs; | 
|  | 2424 | unsigned long nr_objs; | 
|  | 2425 | unsigned long nr_free; | 
|  | 2426 |  | 
|  | 2427 | nr_free  = count_partial(n, count_free); | 
|  | 2428 | nr_slabs = node_nr_slabs(n); | 
|  | 2429 | nr_objs  = node_nr_objs(n); | 
|  | 2430 |  | 
|  | 2431 | pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n", | 
|  | 2432 | node, nr_slabs, nr_objs, nr_free); | 
|  | 2433 | } | 
|  | 2434 | #endif | 
|  | 2435 | } | 
|  | 2436 |  | 
|  | 2437 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, | 
|  | 2438 | int node, struct kmem_cache_cpu **pc) | 
|  | 2439 | { | 
|  | 2440 | void *freelist; | 
|  | 2441 | struct kmem_cache_cpu *c = *pc; | 
|  | 2442 | struct page *page; | 
|  | 2443 |  | 
|  | 2444 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); | 
|  | 2445 |  | 
|  | 2446 | freelist = get_partial(s, flags, node, c); | 
|  | 2447 |  | 
|  | 2448 | if (freelist) | 
|  | 2449 | return freelist; | 
|  | 2450 |  | 
|  | 2451 | page = new_slab(s, flags, node); | 
|  | 2452 | if (page) { | 
|  | 2453 | c = raw_cpu_ptr(s->cpu_slab); | 
|  | 2454 | if (c->page) | 
|  | 2455 | flush_slab(s, c); | 
|  | 2456 |  | 
|  | 2457 | /* | 
|  | 2458 | * No other reference to the page yet so we can | 
|  | 2459 | * muck around with it freely without cmpxchg | 
|  | 2460 | */ | 
|  | 2461 | freelist = page->freelist; | 
|  | 2462 | page->freelist = NULL; | 
|  | 2463 |  | 
|  | 2464 | stat(s, ALLOC_SLAB); | 
|  | 2465 | c->page = page; | 
|  | 2466 | *pc = c; | 
|  | 2467 | } else | 
|  | 2468 | freelist = NULL; | 
|  | 2469 |  | 
|  | 2470 | return freelist; | 
|  | 2471 | } | 
|  | 2472 |  | 
|  | 2473 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) | 
|  | 2474 | { | 
|  | 2475 | if (unlikely(PageSlabPfmemalloc(page))) | 
|  | 2476 | return gfp_pfmemalloc_allowed(gfpflags); | 
|  | 2477 |  | 
|  | 2478 | return true; | 
|  | 2479 | } | 
|  | 2480 |  | 
|  | 2481 | /* | 
|  | 2482 | * Check the page->freelist of a page and either transfer the freelist to the | 
|  | 2483 | * per cpu freelist or deactivate the page. | 
|  | 2484 | * | 
|  | 2485 | * The page is still frozen if the return value is not NULL. | 
|  | 2486 | * | 
|  | 2487 | * If this function returns NULL then the page has been unfrozen. | 
|  | 2488 | * | 
|  | 2489 | * This function must be called with interrupt disabled. | 
|  | 2490 | */ | 
|  | 2491 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | 
|  | 2492 | { | 
|  | 2493 | struct page new; | 
|  | 2494 | unsigned long counters; | 
|  | 2495 | void *freelist; | 
|  | 2496 |  | 
|  | 2497 | do { | 
|  | 2498 | freelist = page->freelist; | 
|  | 2499 | counters = page->counters; | 
|  | 2500 |  | 
|  | 2501 | new.counters = counters; | 
|  | 2502 | VM_BUG_ON(!new.frozen); | 
|  | 2503 |  | 
|  | 2504 | new.inuse = page->objects; | 
|  | 2505 | new.frozen = freelist != NULL; | 
|  | 2506 |  | 
|  | 2507 | } while (!__cmpxchg_double_slab(s, page, | 
|  | 2508 | freelist, counters, | 
|  | 2509 | NULL, new.counters, | 
|  | 2510 | "get_freelist")); | 
|  | 2511 |  | 
|  | 2512 | return freelist; | 
|  | 2513 | } | 
|  | 2514 |  | 
|  | 2515 | /* | 
|  | 2516 | * Slow path. The lockless freelist is empty or we need to perform | 
|  | 2517 | * debugging duties. | 
|  | 2518 | * | 
|  | 2519 | * Processing is still very fast if new objects have been freed to the | 
|  | 2520 | * regular freelist. In that case we simply take over the regular freelist | 
|  | 2521 | * as the lockless freelist and zap the regular freelist. | 
|  | 2522 | * | 
|  | 2523 | * If that is not working then we fall back to the partial lists. We take the | 
|  | 2524 | * first element of the freelist as the object to allocate now and move the | 
|  | 2525 | * rest of the freelist to the lockless freelist. | 
|  | 2526 | * | 
|  | 2527 | * And if we were unable to get a new slab from the partial slab lists then | 
|  | 2528 | * we need to allocate a new slab. This is the slowest path since it involves | 
|  | 2529 | * a call to the page allocator and the setup of a new slab. | 
|  | 2530 | * | 
|  | 2531 | * Version of __slab_alloc to use when we know that interrupts are | 
|  | 2532 | * already disabled (which is the case for bulk allocation). | 
|  | 2533 | */ | 
|  | 2534 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
|  | 2535 | unsigned long addr, struct kmem_cache_cpu *c) | 
|  | 2536 | { | 
|  | 2537 | void *freelist; | 
|  | 2538 | struct page *page; | 
|  | 2539 |  | 
|  | 2540 | page = c->page; | 
|  | 2541 | if (!page) | 
|  | 2542 | goto new_slab; | 
|  | 2543 | redo: | 
|  | 2544 |  | 
|  | 2545 | if (unlikely(!node_match(page, node))) { | 
|  | 2546 | int searchnode = node; | 
|  | 2547 |  | 
|  | 2548 | if (node != NUMA_NO_NODE && !node_present_pages(node)) | 
|  | 2549 | searchnode = node_to_mem_node(node); | 
|  | 2550 |  | 
|  | 2551 | if (unlikely(!node_match(page, searchnode))) { | 
|  | 2552 | stat(s, ALLOC_NODE_MISMATCH); | 
|  | 2553 | deactivate_slab(s, page, c->freelist, c); | 
|  | 2554 | goto new_slab; | 
|  | 2555 | } | 
|  | 2556 | } | 
|  | 2557 |  | 
|  | 2558 | /* | 
|  | 2559 | * By rights, we should be searching for a slab page that was | 
|  | 2560 | * PFMEMALLOC but right now, we are losing the pfmemalloc | 
|  | 2561 | * information when the page leaves the per-cpu allocator | 
|  | 2562 | */ | 
|  | 2563 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | 
|  | 2564 | deactivate_slab(s, page, c->freelist, c); | 
|  | 2565 | goto new_slab; | 
|  | 2566 | } | 
|  | 2567 |  | 
|  | 2568 | /* must check again c->freelist in case of cpu migration or IRQ */ | 
|  | 2569 | freelist = c->freelist; | 
|  | 2570 | if (freelist) | 
|  | 2571 | goto load_freelist; | 
|  | 2572 |  | 
|  | 2573 | freelist = get_freelist(s, page); | 
|  | 2574 |  | 
|  | 2575 | if (!freelist) { | 
|  | 2576 | c->page = NULL; | 
|  | 2577 | stat(s, DEACTIVATE_BYPASS); | 
|  | 2578 | goto new_slab; | 
|  | 2579 | } | 
|  | 2580 |  | 
|  | 2581 | stat(s, ALLOC_REFILL); | 
|  | 2582 |  | 
|  | 2583 | load_freelist: | 
|  | 2584 | /* | 
|  | 2585 | * freelist is pointing to the list of objects to be used. | 
|  | 2586 | * page is pointing to the page from which the objects are obtained. | 
|  | 2587 | * That page must be frozen for per cpu allocations to work. | 
|  | 2588 | */ | 
|  | 2589 | VM_BUG_ON(!c->page->frozen); | 
|  | 2590 | c->freelist = get_freepointer(s, freelist); | 
|  | 2591 | c->tid = next_tid(c->tid); | 
|  | 2592 | return freelist; | 
|  | 2593 |  | 
|  | 2594 | new_slab: | 
|  | 2595 |  | 
|  | 2596 | if (slub_percpu_partial(c)) { | 
|  | 2597 | page = c->page = slub_percpu_partial(c); | 
|  | 2598 | slub_set_percpu_partial(c, page); | 
|  | 2599 | stat(s, CPU_PARTIAL_ALLOC); | 
|  | 2600 | goto redo; | 
|  | 2601 | } | 
|  | 2602 |  | 
|  | 2603 | freelist = new_slab_objects(s, gfpflags, node, &c); | 
|  | 2604 |  | 
|  | 2605 | if (unlikely(!freelist)) { | 
|  | 2606 | slab_out_of_memory(s, gfpflags, node); | 
|  | 2607 | return NULL; | 
|  | 2608 | } | 
|  | 2609 |  | 
|  | 2610 | page = c->page; | 
|  | 2611 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) | 
|  | 2612 | goto load_freelist; | 
|  | 2613 |  | 
|  | 2614 | /* Only entered in the debug case */ | 
|  | 2615 | if (kmem_cache_debug(s) && | 
|  | 2616 | !alloc_debug_processing(s, page, freelist, addr)) | 
|  | 2617 | goto new_slab;	/* Slab failed checks. Next slab needed */ | 
|  | 2618 |  | 
|  | 2619 | deactivate_slab(s, page, get_freepointer(s, freelist), c); | 
|  | 2620 | return freelist; | 
|  | 2621 | } | 
|  | 2622 |  | 
|  | 2623 | /* | 
|  | 2624 | * Another one that disabled interrupt and compensates for possible | 
|  | 2625 | * cpu changes by refetching the per cpu area pointer. | 
|  | 2626 | */ | 
|  | 2627 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
|  | 2628 | unsigned long addr, struct kmem_cache_cpu *c) | 
|  | 2629 | { | 
|  | 2630 | void *p; | 
|  | 2631 | unsigned long flags; | 
|  | 2632 |  | 
|  | 2633 | local_irq_save(flags); | 
|  | 2634 | #ifdef CONFIG_PREEMPT | 
|  | 2635 | /* | 
|  | 2636 | * We may have been preempted and rescheduled on a different | 
|  | 2637 | * cpu before disabling interrupts. Need to reload cpu area | 
|  | 2638 | * pointer. | 
|  | 2639 | */ | 
|  | 2640 | c = this_cpu_ptr(s->cpu_slab); | 
|  | 2641 | #endif | 
|  | 2642 |  | 
|  | 2643 | p = ___slab_alloc(s, gfpflags, node, addr, c); | 
|  | 2644 | local_irq_restore(flags); | 
|  | 2645 | return p; | 
|  | 2646 | } | 
|  | 2647 |  | 
|  | 2648 | /* | 
|  | 2649 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
|  | 2650 | * have the fastpath folded into their functions. So no function call | 
|  | 2651 | * overhead for requests that can be satisfied on the fastpath. | 
|  | 2652 | * | 
|  | 2653 | * The fastpath works by first checking if the lockless freelist can be used. | 
|  | 2654 | * If not then __slab_alloc is called for slow processing. | 
|  | 2655 | * | 
|  | 2656 | * Otherwise we can simply pick the next object from the lockless free list. | 
|  | 2657 | */ | 
|  | 2658 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, | 
|  | 2659 | gfp_t gfpflags, int node, unsigned long addr) | 
|  | 2660 | { | 
|  | 2661 | void *object; | 
|  | 2662 | struct kmem_cache_cpu *c; | 
|  | 2663 | struct page *page; | 
|  | 2664 | unsigned long tid; | 
|  | 2665 |  | 
|  | 2666 | s = slab_pre_alloc_hook(s, gfpflags); | 
|  | 2667 | if (!s) | 
|  | 2668 | return NULL; | 
|  | 2669 | redo: | 
|  | 2670 | /* | 
|  | 2671 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | 
|  | 2672 | * enabled. We may switch back and forth between cpus while | 
|  | 2673 | * reading from one cpu area. That does not matter as long | 
|  | 2674 | * as we end up on the original cpu again when doing the cmpxchg. | 
|  | 2675 | * | 
|  | 2676 | * We should guarantee that tid and kmem_cache are retrieved on | 
|  | 2677 | * the same cpu. It could be different if CONFIG_PREEMPT so we need | 
|  | 2678 | * to check if it is matched or not. | 
|  | 2679 | */ | 
|  | 2680 | do { | 
|  | 2681 | tid = this_cpu_read(s->cpu_slab->tid); | 
|  | 2682 | c = raw_cpu_ptr(s->cpu_slab); | 
|  | 2683 | } while (IS_ENABLED(CONFIG_PREEMPT) && | 
|  | 2684 | unlikely(tid != READ_ONCE(c->tid))); | 
|  | 2685 |  | 
|  | 2686 | /* | 
|  | 2687 | * Irqless object alloc/free algorithm used here depends on sequence | 
|  | 2688 | * of fetching cpu_slab's data. tid should be fetched before anything | 
|  | 2689 | * on c to guarantee that object and page associated with previous tid | 
|  | 2690 | * won't be used with current tid. If we fetch tid first, object and | 
|  | 2691 | * page could be one associated with next tid and our alloc/free | 
|  | 2692 | * request will be failed. In this case, we will retry. So, no problem. | 
|  | 2693 | */ | 
|  | 2694 | barrier(); | 
|  | 2695 |  | 
|  | 2696 | /* | 
|  | 2697 | * The transaction ids are globally unique per cpu and per operation on | 
|  | 2698 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | 
|  | 2699 | * occurs on the right processor and that there was no operation on the | 
|  | 2700 | * linked list in between. | 
|  | 2701 | */ | 
|  | 2702 |  | 
|  | 2703 | object = c->freelist; | 
|  | 2704 | page = c->page; | 
|  | 2705 | if (unlikely(!object || !node_match(page, node))) { | 
|  | 2706 | object = __slab_alloc(s, gfpflags, node, addr, c); | 
|  | 2707 | stat(s, ALLOC_SLOWPATH); | 
|  | 2708 | } else { | 
|  | 2709 | void *next_object = get_freepointer_safe(s, object); | 
|  | 2710 |  | 
|  | 2711 | /* | 
|  | 2712 | * The cmpxchg will only match if there was no additional | 
|  | 2713 | * operation and if we are on the right processor. | 
|  | 2714 | * | 
|  | 2715 | * The cmpxchg does the following atomically (without lock | 
|  | 2716 | * semantics!) | 
|  | 2717 | * 1. Relocate first pointer to the current per cpu area. | 
|  | 2718 | * 2. Verify that tid and freelist have not been changed | 
|  | 2719 | * 3. If they were not changed replace tid and freelist | 
|  | 2720 | * | 
|  | 2721 | * Since this is without lock semantics the protection is only | 
|  | 2722 | * against code executing on this cpu *not* from access by | 
|  | 2723 | * other cpus. | 
|  | 2724 | */ | 
|  | 2725 | if (unlikely(!this_cpu_cmpxchg_double( | 
|  | 2726 | s->cpu_slab->freelist, s->cpu_slab->tid, | 
|  | 2727 | object, tid, | 
|  | 2728 | next_object, next_tid(tid)))) { | 
|  | 2729 |  | 
|  | 2730 | note_cmpxchg_failure("slab_alloc", s, tid); | 
|  | 2731 | goto redo; | 
|  | 2732 | } | 
|  | 2733 | prefetch_freepointer(s, next_object); | 
|  | 2734 | stat(s, ALLOC_FASTPATH); | 
|  | 2735 | } | 
|  | 2736 | /* | 
|  | 2737 | * If the object has been wiped upon free, make sure it's fully | 
|  | 2738 | * initialized by zeroing out freelist pointer. | 
|  | 2739 | */ | 
|  | 2740 | if (unlikely(slab_want_init_on_free(s)) && object) | 
|  | 2741 | memset(object + s->offset, 0, sizeof(void *)); | 
|  | 2742 |  | 
|  | 2743 | if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) | 
|  | 2744 | memset(object, 0, s->object_size); | 
|  | 2745 |  | 
|  | 2746 | slab_post_alloc_hook(s, gfpflags, 1, &object); | 
|  | 2747 |  | 
|  | 2748 | return object; | 
|  | 2749 | } | 
|  | 2750 |  | 
|  | 2751 | static __always_inline void *slab_alloc(struct kmem_cache *s, | 
|  | 2752 | gfp_t gfpflags, unsigned long addr) | 
|  | 2753 | { | 
|  | 2754 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | 
|  | 2755 | } | 
|  | 2756 |  | 
|  | 2757 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
|  | 2758 | { | 
|  | 2759 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); | 
|  | 2760 |  | 
|  | 2761 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, | 
|  | 2762 | s->size, gfpflags); | 
|  | 2763 |  | 
|  | 2764 | return ret; | 
|  | 2765 | } | 
|  | 2766 | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  | 2767 |  | 
|  | 2768 | #ifdef CONFIG_TRACING | 
|  | 2769 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | 
|  | 2770 | { | 
|  | 2771 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); | 
|  | 2772 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); | 
|  | 2773 | ret = kasan_kmalloc(s, ret, size, gfpflags); | 
|  | 2774 | return ret; | 
|  | 2775 | } | 
|  | 2776 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
|  | 2777 | #endif | 
|  | 2778 |  | 
|  | 2779 | #ifdef CONFIG_NUMA | 
|  | 2780 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
|  | 2781 | { | 
|  | 2782 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); | 
|  | 2783 |  | 
|  | 2784 | trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
|  | 2785 | s->object_size, s->size, gfpflags, node); | 
|  | 2786 |  | 
|  | 2787 | return ret; | 
|  | 2788 | } | 
|  | 2789 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  | 2790 |  | 
|  | 2791 | #ifdef CONFIG_TRACING | 
|  | 2792 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
|  | 2793 | gfp_t gfpflags, | 
|  | 2794 | int node, size_t size) | 
|  | 2795 | { | 
|  | 2796 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); | 
|  | 2797 |  | 
|  | 2798 | trace_kmalloc_node(_RET_IP_, ret, | 
|  | 2799 | size, s->size, gfpflags, node); | 
|  | 2800 |  | 
|  | 2801 | ret = kasan_kmalloc(s, ret, size, gfpflags); | 
|  | 2802 | return ret; | 
|  | 2803 | } | 
|  | 2804 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
|  | 2805 | #endif | 
|  | 2806 | #endif | 
|  | 2807 |  | 
|  | 2808 | /* | 
|  | 2809 | * Slow path handling. This may still be called frequently since objects | 
|  | 2810 | * have a longer lifetime than the cpu slabs in most processing loads. | 
|  | 2811 | * | 
|  | 2812 | * So we still attempt to reduce cache line usage. Just take the slab | 
|  | 2813 | * lock and free the item. If there is no additional partial page | 
|  | 2814 | * handling required then we can return immediately. | 
|  | 2815 | */ | 
|  | 2816 | static void __slab_free(struct kmem_cache *s, struct page *page, | 
|  | 2817 | void *head, void *tail, int cnt, | 
|  | 2818 | unsigned long addr) | 
|  | 2819 |  | 
|  | 2820 | { | 
|  | 2821 | void *prior; | 
|  | 2822 | int was_frozen; | 
|  | 2823 | struct page new; | 
|  | 2824 | unsigned long counters; | 
|  | 2825 | struct kmem_cache_node *n = NULL; | 
|  | 2826 | unsigned long uninitialized_var(flags); | 
|  | 2827 |  | 
|  | 2828 | stat(s, FREE_SLOWPATH); | 
|  | 2829 |  | 
|  | 2830 | if (kmem_cache_debug(s) && | 
|  | 2831 | !free_debug_processing(s, page, head, tail, cnt, addr)) | 
|  | 2832 | return; | 
|  | 2833 |  | 
|  | 2834 | do { | 
|  | 2835 | if (unlikely(n)) { | 
|  | 2836 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 2837 | n = NULL; | 
|  | 2838 | } | 
|  | 2839 | prior = page->freelist; | 
|  | 2840 | counters = page->counters; | 
|  | 2841 | set_freepointer(s, tail, prior); | 
|  | 2842 | new.counters = counters; | 
|  | 2843 | was_frozen = new.frozen; | 
|  | 2844 | new.inuse -= cnt; | 
|  | 2845 | if ((!new.inuse || !prior) && !was_frozen) { | 
|  | 2846 |  | 
|  | 2847 | if (kmem_cache_has_cpu_partial(s) && !prior) { | 
|  | 2848 |  | 
|  | 2849 | /* | 
|  | 2850 | * Slab was on no list before and will be | 
|  | 2851 | * partially empty | 
|  | 2852 | * We can defer the list move and instead | 
|  | 2853 | * freeze it. | 
|  | 2854 | */ | 
|  | 2855 | new.frozen = 1; | 
|  | 2856 |  | 
|  | 2857 | } else { /* Needs to be taken off a list */ | 
|  | 2858 |  | 
|  | 2859 | n = get_node(s, page_to_nid(page)); | 
|  | 2860 | /* | 
|  | 2861 | * Speculatively acquire the list_lock. | 
|  | 2862 | * If the cmpxchg does not succeed then we may | 
|  | 2863 | * drop the list_lock without any processing. | 
|  | 2864 | * | 
|  | 2865 | * Otherwise the list_lock will synchronize with | 
|  | 2866 | * other processors updating the list of slabs. | 
|  | 2867 | */ | 
|  | 2868 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 2869 |  | 
|  | 2870 | } | 
|  | 2871 | } | 
|  | 2872 |  | 
|  | 2873 | } while (!cmpxchg_double_slab(s, page, | 
|  | 2874 | prior, counters, | 
|  | 2875 | head, new.counters, | 
|  | 2876 | "__slab_free")); | 
|  | 2877 |  | 
|  | 2878 | if (likely(!n)) { | 
|  | 2879 |  | 
|  | 2880 | /* | 
|  | 2881 | * If we just froze the page then put it onto the | 
|  | 2882 | * per cpu partial list. | 
|  | 2883 | */ | 
|  | 2884 | if (new.frozen && !was_frozen) { | 
|  | 2885 | put_cpu_partial(s, page, 1); | 
|  | 2886 | stat(s, CPU_PARTIAL_FREE); | 
|  | 2887 | } | 
|  | 2888 | /* | 
|  | 2889 | * The list lock was not taken therefore no list | 
|  | 2890 | * activity can be necessary. | 
|  | 2891 | */ | 
|  | 2892 | if (was_frozen) | 
|  | 2893 | stat(s, FREE_FROZEN); | 
|  | 2894 | return; | 
|  | 2895 | } | 
|  | 2896 |  | 
|  | 2897 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) | 
|  | 2898 | goto slab_empty; | 
|  | 2899 |  | 
|  | 2900 | /* | 
|  | 2901 | * Objects left in the slab. If it was not on the partial list before | 
|  | 2902 | * then add it. | 
|  | 2903 | */ | 
|  | 2904 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { | 
|  | 2905 | if (kmem_cache_debug(s)) | 
|  | 2906 | remove_full(s, n, page); | 
|  | 2907 | add_partial(n, page, DEACTIVATE_TO_TAIL); | 
|  | 2908 | stat(s, FREE_ADD_PARTIAL); | 
|  | 2909 | } | 
|  | 2910 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 2911 | return; | 
|  | 2912 |  | 
|  | 2913 | slab_empty: | 
|  | 2914 | if (prior) { | 
|  | 2915 | /* | 
|  | 2916 | * Slab on the partial list. | 
|  | 2917 | */ | 
|  | 2918 | remove_partial(n, page); | 
|  | 2919 | stat(s, FREE_REMOVE_PARTIAL); | 
|  | 2920 | } else { | 
|  | 2921 | /* Slab must be on the full list */ | 
|  | 2922 | remove_full(s, n, page); | 
|  | 2923 | } | 
|  | 2924 |  | 
|  | 2925 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 2926 | stat(s, FREE_SLAB); | 
|  | 2927 | discard_slab(s, page); | 
|  | 2928 | } | 
|  | 2929 |  | 
|  | 2930 | /* | 
|  | 2931 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
|  | 2932 | * can perform fastpath freeing without additional function calls. | 
|  | 2933 | * | 
|  | 2934 | * The fastpath is only possible if we are freeing to the current cpu slab | 
|  | 2935 | * of this processor. This typically the case if we have just allocated | 
|  | 2936 | * the item before. | 
|  | 2937 | * | 
|  | 2938 | * If fastpath is not possible then fall back to __slab_free where we deal | 
|  | 2939 | * with all sorts of special processing. | 
|  | 2940 | * | 
|  | 2941 | * Bulk free of a freelist with several objects (all pointing to the | 
|  | 2942 | * same page) possible by specifying head and tail ptr, plus objects | 
|  | 2943 | * count (cnt). Bulk free indicated by tail pointer being set. | 
|  | 2944 | */ | 
|  | 2945 | static __always_inline void do_slab_free(struct kmem_cache *s, | 
|  | 2946 | struct page *page, void *head, void *tail, | 
|  | 2947 | int cnt, unsigned long addr) | 
|  | 2948 | { | 
|  | 2949 | void *tail_obj = tail ? : head; | 
|  | 2950 | struct kmem_cache_cpu *c; | 
|  | 2951 | unsigned long tid; | 
|  | 2952 | redo: | 
|  | 2953 | /* | 
|  | 2954 | * Determine the currently cpus per cpu slab. | 
|  | 2955 | * The cpu may change afterward. However that does not matter since | 
|  | 2956 | * data is retrieved via this pointer. If we are on the same cpu | 
|  | 2957 | * during the cmpxchg then the free will succeed. | 
|  | 2958 | */ | 
|  | 2959 | do { | 
|  | 2960 | tid = this_cpu_read(s->cpu_slab->tid); | 
|  | 2961 | c = raw_cpu_ptr(s->cpu_slab); | 
|  | 2962 | } while (IS_ENABLED(CONFIG_PREEMPT) && | 
|  | 2963 | unlikely(tid != READ_ONCE(c->tid))); | 
|  | 2964 |  | 
|  | 2965 | /* Same with comment on barrier() in slab_alloc_node() */ | 
|  | 2966 | barrier(); | 
|  | 2967 |  | 
|  | 2968 | if (likely(page == c->page)) { | 
|  | 2969 | set_freepointer(s, tail_obj, c->freelist); | 
|  | 2970 |  | 
|  | 2971 | if (unlikely(!this_cpu_cmpxchg_double( | 
|  | 2972 | s->cpu_slab->freelist, s->cpu_slab->tid, | 
|  | 2973 | c->freelist, tid, | 
|  | 2974 | head, next_tid(tid)))) { | 
|  | 2975 |  | 
|  | 2976 | note_cmpxchg_failure("slab_free", s, tid); | 
|  | 2977 | goto redo; | 
|  | 2978 | } | 
|  | 2979 | stat(s, FREE_FASTPATH); | 
|  | 2980 | } else | 
|  | 2981 | __slab_free(s, page, head, tail_obj, cnt, addr); | 
|  | 2982 |  | 
|  | 2983 | } | 
|  | 2984 |  | 
|  | 2985 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, | 
|  | 2986 | void *head, void *tail, int cnt, | 
|  | 2987 | unsigned long addr) | 
|  | 2988 | { | 
|  | 2989 | /* | 
|  | 2990 | * With KASAN enabled slab_free_freelist_hook modifies the freelist | 
|  | 2991 | * to remove objects, whose reuse must be delayed. | 
|  | 2992 | */ | 
|  | 2993 | if (slab_free_freelist_hook(s, &head, &tail)) | 
|  | 2994 | do_slab_free(s, page, head, tail, cnt, addr); | 
|  | 2995 | } | 
|  | 2996 |  | 
|  | 2997 | #ifdef CONFIG_KASAN_GENERIC | 
|  | 2998 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) | 
|  | 2999 | { | 
|  | 3000 | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | 
|  | 3001 | } | 
|  | 3002 | #endif | 
|  | 3003 |  | 
|  | 3004 | void kmem_cache_free(struct kmem_cache *s, void *x) | 
|  | 3005 | { | 
|  | 3006 | s = cache_from_obj(s, x); | 
|  | 3007 | if (!s) | 
|  | 3008 | return; | 
|  | 3009 | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); | 
|  | 3010 | trace_kmem_cache_free(_RET_IP_, x); | 
|  | 3011 | } | 
|  | 3012 | EXPORT_SYMBOL(kmem_cache_free); | 
|  | 3013 |  | 
|  | 3014 | struct detached_freelist { | 
|  | 3015 | struct page *page; | 
|  | 3016 | void *tail; | 
|  | 3017 | void *freelist; | 
|  | 3018 | int cnt; | 
|  | 3019 | struct kmem_cache *s; | 
|  | 3020 | }; | 
|  | 3021 |  | 
|  | 3022 | /* | 
|  | 3023 | * This function progressively scans the array with free objects (with | 
|  | 3024 | * a limited look ahead) and extract objects belonging to the same | 
|  | 3025 | * page.  It builds a detached freelist directly within the given | 
|  | 3026 | * page/objects.  This can happen without any need for | 
|  | 3027 | * synchronization, because the objects are owned by running process. | 
|  | 3028 | * The freelist is build up as a single linked list in the objects. | 
|  | 3029 | * The idea is, that this detached freelist can then be bulk | 
|  | 3030 | * transferred to the real freelist(s), but only requiring a single | 
|  | 3031 | * synchronization primitive.  Look ahead in the array is limited due | 
|  | 3032 | * to performance reasons. | 
|  | 3033 | */ | 
|  | 3034 | static inline | 
|  | 3035 | int build_detached_freelist(struct kmem_cache *s, size_t size, | 
|  | 3036 | void **p, struct detached_freelist *df) | 
|  | 3037 | { | 
|  | 3038 | size_t first_skipped_index = 0; | 
|  | 3039 | int lookahead = 3; | 
|  | 3040 | void *object; | 
|  | 3041 | struct page *page; | 
|  | 3042 |  | 
|  | 3043 | /* Always re-init detached_freelist */ | 
|  | 3044 | df->page = NULL; | 
|  | 3045 |  | 
|  | 3046 | do { | 
|  | 3047 | object = p[--size]; | 
|  | 3048 | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ | 
|  | 3049 | } while (!object && size); | 
|  | 3050 |  | 
|  | 3051 | if (!object) | 
|  | 3052 | return 0; | 
|  | 3053 |  | 
|  | 3054 | page = virt_to_head_page(object); | 
|  | 3055 | if (!s) { | 
|  | 3056 | /* Handle kalloc'ed objects */ | 
|  | 3057 | if (unlikely(!PageSlab(page))) { | 
|  | 3058 | BUG_ON(!PageCompound(page)); | 
|  | 3059 | kfree_hook(object); | 
|  | 3060 | __free_pages(page, compound_order(page)); | 
|  | 3061 | p[size] = NULL; /* mark object processed */ | 
|  | 3062 | return size; | 
|  | 3063 | } | 
|  | 3064 | /* Derive kmem_cache from object */ | 
|  | 3065 | df->s = page->slab_cache; | 
|  | 3066 | } else { | 
|  | 3067 | df->s = cache_from_obj(s, object); /* Support for memcg */ | 
|  | 3068 | } | 
|  | 3069 |  | 
|  | 3070 | /* Start new detached freelist */ | 
|  | 3071 | df->page = page; | 
|  | 3072 | set_freepointer(df->s, object, NULL); | 
|  | 3073 | df->tail = object; | 
|  | 3074 | df->freelist = object; | 
|  | 3075 | p[size] = NULL; /* mark object processed */ | 
|  | 3076 | df->cnt = 1; | 
|  | 3077 |  | 
|  | 3078 | while (size) { | 
|  | 3079 | object = p[--size]; | 
|  | 3080 | if (!object) | 
|  | 3081 | continue; /* Skip processed objects */ | 
|  | 3082 |  | 
|  | 3083 | /* df->page is always set at this point */ | 
|  | 3084 | if (df->page == virt_to_head_page(object)) { | 
|  | 3085 | /* Opportunity build freelist */ | 
|  | 3086 | set_freepointer(df->s, object, df->freelist); | 
|  | 3087 | df->freelist = object; | 
|  | 3088 | df->cnt++; | 
|  | 3089 | p[size] = NULL; /* mark object processed */ | 
|  | 3090 |  | 
|  | 3091 | continue; | 
|  | 3092 | } | 
|  | 3093 |  | 
|  | 3094 | /* Limit look ahead search */ | 
|  | 3095 | if (!--lookahead) | 
|  | 3096 | break; | 
|  | 3097 |  | 
|  | 3098 | if (!first_skipped_index) | 
|  | 3099 | first_skipped_index = size + 1; | 
|  | 3100 | } | 
|  | 3101 |  | 
|  | 3102 | return first_skipped_index; | 
|  | 3103 | } | 
|  | 3104 |  | 
|  | 3105 | /* Note that interrupts must be enabled when calling this function. */ | 
|  | 3106 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | 
|  | 3107 | { | 
|  | 3108 | if (WARN_ON(!size)) | 
|  | 3109 | return; | 
|  | 3110 |  | 
|  | 3111 | do { | 
|  | 3112 | struct detached_freelist df; | 
|  | 3113 |  | 
|  | 3114 | size = build_detached_freelist(s, size, p, &df); | 
|  | 3115 | if (!df.page) | 
|  | 3116 | continue; | 
|  | 3117 |  | 
|  | 3118 | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); | 
|  | 3119 | } while (likely(size)); | 
|  | 3120 | } | 
|  | 3121 | EXPORT_SYMBOL(kmem_cache_free_bulk); | 
|  | 3122 |  | 
|  | 3123 | /* Note that interrupts must be enabled when calling this function. */ | 
|  | 3124 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | 
|  | 3125 | void **p) | 
|  | 3126 | { | 
|  | 3127 | struct kmem_cache_cpu *c; | 
|  | 3128 | int i; | 
|  | 3129 |  | 
|  | 3130 | /* memcg and kmem_cache debug support */ | 
|  | 3131 | s = slab_pre_alloc_hook(s, flags); | 
|  | 3132 | if (unlikely(!s)) | 
|  | 3133 | return false; | 
|  | 3134 | /* | 
|  | 3135 | * Drain objects in the per cpu slab, while disabling local | 
|  | 3136 | * IRQs, which protects against PREEMPT and interrupts | 
|  | 3137 | * handlers invoking normal fastpath. | 
|  | 3138 | */ | 
|  | 3139 | local_irq_disable(); | 
|  | 3140 | c = this_cpu_ptr(s->cpu_slab); | 
|  | 3141 |  | 
|  | 3142 | for (i = 0; i < size; i++) { | 
|  | 3143 | void *object = c->freelist; | 
|  | 3144 |  | 
|  | 3145 | if (unlikely(!object)) { | 
|  | 3146 | /* | 
|  | 3147 | * Invoking slow path likely have side-effect | 
|  | 3148 | * of re-populating per CPU c->freelist | 
|  | 3149 | */ | 
|  | 3150 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, | 
|  | 3151 | _RET_IP_, c); | 
|  | 3152 | if (unlikely(!p[i])) | 
|  | 3153 | goto error; | 
|  | 3154 |  | 
|  | 3155 | c = this_cpu_ptr(s->cpu_slab); | 
|  | 3156 | continue; /* goto for-loop */ | 
|  | 3157 | } | 
|  | 3158 | c->freelist = get_freepointer(s, object); | 
|  | 3159 | p[i] = object; | 
|  | 3160 | } | 
|  | 3161 | c->tid = next_tid(c->tid); | 
|  | 3162 | local_irq_enable(); | 
|  | 3163 |  | 
|  | 3164 | /* Clear memory outside IRQ disabled fastpath loop */ | 
|  | 3165 | if (unlikely(slab_want_init_on_alloc(flags, s))) { | 
|  | 3166 | int j; | 
|  | 3167 |  | 
|  | 3168 | for (j = 0; j < i; j++) | 
|  | 3169 | memset(p[j], 0, s->object_size); | 
|  | 3170 | } | 
|  | 3171 |  | 
|  | 3172 | /* memcg and kmem_cache debug support */ | 
|  | 3173 | slab_post_alloc_hook(s, flags, size, p); | 
|  | 3174 | return i; | 
|  | 3175 | error: | 
|  | 3176 | local_irq_enable(); | 
|  | 3177 | slab_post_alloc_hook(s, flags, i, p); | 
|  | 3178 | __kmem_cache_free_bulk(s, i, p); | 
|  | 3179 | return 0; | 
|  | 3180 | } | 
|  | 3181 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | 
|  | 3182 |  | 
|  | 3183 |  | 
|  | 3184 | /* | 
|  | 3185 | * Object placement in a slab is made very easy because we always start at | 
|  | 3186 | * offset 0. If we tune the size of the object to the alignment then we can | 
|  | 3187 | * get the required alignment by putting one properly sized object after | 
|  | 3188 | * another. | 
|  | 3189 | * | 
|  | 3190 | * Notice that the allocation order determines the sizes of the per cpu | 
|  | 3191 | * caches. Each processor has always one slab available for allocations. | 
|  | 3192 | * Increasing the allocation order reduces the number of times that slabs | 
|  | 3193 | * must be moved on and off the partial lists and is therefore a factor in | 
|  | 3194 | * locking overhead. | 
|  | 3195 | */ | 
|  | 3196 |  | 
|  | 3197 | /* | 
|  | 3198 | * Mininum / Maximum order of slab pages. This influences locking overhead | 
|  | 3199 | * and slab fragmentation. A higher order reduces the number of partial slabs | 
|  | 3200 | * and increases the number of allocations possible without having to | 
|  | 3201 | * take the list_lock. | 
|  | 3202 | */ | 
|  | 3203 | static unsigned int slub_min_order; | 
|  | 3204 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 
|  | 3205 | static unsigned int slub_min_objects; | 
|  | 3206 |  | 
|  | 3207 | /* | 
|  | 3208 | * Calculate the order of allocation given an slab object size. | 
|  | 3209 | * | 
|  | 3210 | * The order of allocation has significant impact on performance and other | 
|  | 3211 | * system components. Generally order 0 allocations should be preferred since | 
|  | 3212 | * order 0 does not cause fragmentation in the page allocator. Larger objects | 
|  | 3213 | * be problematic to put into order 0 slabs because there may be too much | 
|  | 3214 | * unused space left. We go to a higher order if more than 1/16th of the slab | 
|  | 3215 | * would be wasted. | 
|  | 3216 | * | 
|  | 3217 | * In order to reach satisfactory performance we must ensure that a minimum | 
|  | 3218 | * number of objects is in one slab. Otherwise we may generate too much | 
|  | 3219 | * activity on the partial lists which requires taking the list_lock. This is | 
|  | 3220 | * less a concern for large slabs though which are rarely used. | 
|  | 3221 | * | 
|  | 3222 | * slub_max_order specifies the order where we begin to stop considering the | 
|  | 3223 | * number of objects in a slab as critical. If we reach slub_max_order then | 
|  | 3224 | * we try to keep the page order as low as possible. So we accept more waste | 
|  | 3225 | * of space in favor of a small page order. | 
|  | 3226 | * | 
|  | 3227 | * Higher order allocations also allow the placement of more objects in a | 
|  | 3228 | * slab and thereby reduce object handling overhead. If the user has | 
|  | 3229 | * requested a higher mininum order then we start with that one instead of | 
|  | 3230 | * the smallest order which will fit the object. | 
|  | 3231 | */ | 
|  | 3232 | static inline unsigned int slab_order(unsigned int size, | 
|  | 3233 | unsigned int min_objects, unsigned int max_order, | 
|  | 3234 | unsigned int fract_leftover) | 
|  | 3235 | { | 
|  | 3236 | unsigned int min_order = slub_min_order; | 
|  | 3237 | unsigned int order; | 
|  | 3238 |  | 
|  | 3239 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) | 
|  | 3240 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | 
|  | 3241 |  | 
|  | 3242 | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); | 
|  | 3243 | order <= max_order; order++) { | 
|  | 3244 |  | 
|  | 3245 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; | 
|  | 3246 | unsigned int rem; | 
|  | 3247 |  | 
|  | 3248 | rem = slab_size % size; | 
|  | 3249 |  | 
|  | 3250 | if (rem <= slab_size / fract_leftover) | 
|  | 3251 | break; | 
|  | 3252 | } | 
|  | 3253 |  | 
|  | 3254 | return order; | 
|  | 3255 | } | 
|  | 3256 |  | 
|  | 3257 | static inline int calculate_order(unsigned int size) | 
|  | 3258 | { | 
|  | 3259 | unsigned int order; | 
|  | 3260 | unsigned int min_objects; | 
|  | 3261 | unsigned int max_objects; | 
|  | 3262 |  | 
|  | 3263 | /* | 
|  | 3264 | * Attempt to find best configuration for a slab. This | 
|  | 3265 | * works by first attempting to generate a layout with | 
|  | 3266 | * the best configuration and backing off gradually. | 
|  | 3267 | * | 
|  | 3268 | * First we increase the acceptable waste in a slab. Then | 
|  | 3269 | * we reduce the minimum objects required in a slab. | 
|  | 3270 | */ | 
|  | 3271 | min_objects = slub_min_objects; | 
|  | 3272 | if (!min_objects) | 
|  | 3273 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | 
|  | 3274 | max_objects = order_objects(slub_max_order, size); | 
|  | 3275 | min_objects = min(min_objects, max_objects); | 
|  | 3276 |  | 
|  | 3277 | while (min_objects > 1) { | 
|  | 3278 | unsigned int fraction; | 
|  | 3279 |  | 
|  | 3280 | fraction = 16; | 
|  | 3281 | while (fraction >= 4) { | 
|  | 3282 | order = slab_order(size, min_objects, | 
|  | 3283 | slub_max_order, fraction); | 
|  | 3284 | if (order <= slub_max_order) | 
|  | 3285 | return order; | 
|  | 3286 | fraction /= 2; | 
|  | 3287 | } | 
|  | 3288 | min_objects--; | 
|  | 3289 | } | 
|  | 3290 |  | 
|  | 3291 | /* | 
|  | 3292 | * We were unable to place multiple objects in a slab. Now | 
|  | 3293 | * lets see if we can place a single object there. | 
|  | 3294 | */ | 
|  | 3295 | order = slab_order(size, 1, slub_max_order, 1); | 
|  | 3296 | if (order <= slub_max_order) | 
|  | 3297 | return order; | 
|  | 3298 |  | 
|  | 3299 | /* | 
|  | 3300 | * Doh this slab cannot be placed using slub_max_order. | 
|  | 3301 | */ | 
|  | 3302 | order = slab_order(size, 1, MAX_ORDER, 1); | 
|  | 3303 | if (order < MAX_ORDER) | 
|  | 3304 | return order; | 
|  | 3305 | return -ENOSYS; | 
|  | 3306 | } | 
|  | 3307 |  | 
|  | 3308 | static void | 
|  | 3309 | init_kmem_cache_node(struct kmem_cache_node *n) | 
|  | 3310 | { | 
|  | 3311 | n->nr_partial = 0; | 
|  | 3312 | spin_lock_init(&n->list_lock); | 
|  | 3313 | INIT_LIST_HEAD(&n->partial); | 
|  | 3314 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 3315 | atomic_long_set(&n->nr_slabs, 0); | 
|  | 3316 | atomic_long_set(&n->total_objects, 0); | 
|  | 3317 | INIT_LIST_HEAD(&n->full); | 
|  | 3318 | #endif | 
|  | 3319 | } | 
|  | 3320 |  | 
|  | 3321 | #ifdef CONFIG_MTK_MM_DEBUG | 
|  | 3322 | struct kmem_cache debug_kmem_cache = { | 
|  | 3323 | .name = "debug_kmem_cache", | 
|  | 3324 | }; | 
|  | 3325 | #endif | 
|  | 3326 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | 
|  | 3327 | { | 
|  | 3328 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | 
|  | 3329 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); | 
|  | 3330 |  | 
|  | 3331 | /* | 
|  | 3332 | * Must align to double word boundary for the double cmpxchg | 
|  | 3333 | * instructions to work; see __pcpu_double_call_return_bool(). | 
|  | 3334 | */ | 
|  | 3335 | #ifdef CONFIG_MTK_MM_DEBUG | 
|  | 3336 | if (!strcmp(s->name, "kmalloc-256")) { | 
|  | 3337 | debug_kmem_cache.cpu_slab = __alloc_percpu( | 
|  | 3338 | sizeof(struct kmem_cache_cpu), | 
|  | 3339 | 2 * sizeof(void *)); | 
|  | 3340 | init_kmem_cache_cpus(&debug_kmem_cache); | 
|  | 3341 | } | 
|  | 3342 | #endif | 
|  | 3343 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), | 
|  | 3344 | 2 * sizeof(void *)); | 
|  | 3345 |  | 
|  | 3346 | if (!s->cpu_slab) | 
|  | 3347 | return 0; | 
|  | 3348 |  | 
|  | 3349 | init_kmem_cache_cpus(s); | 
|  | 3350 |  | 
|  | 3351 | return 1; | 
|  | 3352 | } | 
|  | 3353 |  | 
|  | 3354 | static struct kmem_cache *kmem_cache_node; | 
|  | 3355 |  | 
|  | 3356 | /* | 
|  | 3357 | * No kmalloc_node yet so do it by hand. We know that this is the first | 
|  | 3358 | * slab on the node for this slabcache. There are no concurrent accesses | 
|  | 3359 | * possible. | 
|  | 3360 | * | 
|  | 3361 | * Note that this function only works on the kmem_cache_node | 
|  | 3362 | * when allocating for the kmem_cache_node. This is used for bootstrapping | 
|  | 3363 | * memory on a fresh node that has no slab structures yet. | 
|  | 3364 | */ | 
|  | 3365 | static void early_kmem_cache_node_alloc(int node) | 
|  | 3366 | { | 
|  | 3367 | struct page *page; | 
|  | 3368 | struct kmem_cache_node *n; | 
|  | 3369 |  | 
|  | 3370 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); | 
|  | 3371 |  | 
|  | 3372 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); | 
|  | 3373 |  | 
|  | 3374 | BUG_ON(!page); | 
|  | 3375 | if (page_to_nid(page) != node) { | 
|  | 3376 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); | 
|  | 3377 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | 
|  | 3378 | } | 
|  | 3379 |  | 
|  | 3380 | n = page->freelist; | 
|  | 3381 | BUG_ON(!n); | 
|  | 3382 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 3383 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); | 
|  | 3384 | init_tracking(kmem_cache_node, n); | 
|  | 3385 | #endif | 
|  | 3386 | n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), | 
|  | 3387 | GFP_KERNEL); | 
|  | 3388 | page->freelist = get_freepointer(kmem_cache_node, n); | 
|  | 3389 | page->inuse = 1; | 
|  | 3390 | page->frozen = 0; | 
|  | 3391 | kmem_cache_node->node[node] = n; | 
|  | 3392 | init_kmem_cache_node(n); | 
|  | 3393 | inc_slabs_node(kmem_cache_node, node, page->objects); | 
|  | 3394 |  | 
|  | 3395 | /* | 
|  | 3396 | * No locks need to be taken here as it has just been | 
|  | 3397 | * initialized and there is no concurrent access. | 
|  | 3398 | */ | 
|  | 3399 | __add_partial(n, page, DEACTIVATE_TO_HEAD); | 
|  | 3400 | } | 
|  | 3401 |  | 
|  | 3402 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
|  | 3403 | { | 
|  | 3404 | int node; | 
|  | 3405 | struct kmem_cache_node *n; | 
|  | 3406 |  | 
|  | 3407 | for_each_kmem_cache_node(s, node, n) { | 
|  | 3408 | s->node[node] = NULL; | 
|  | 3409 | kmem_cache_free(kmem_cache_node, n); | 
|  | 3410 | } | 
|  | 3411 | } | 
|  | 3412 |  | 
|  | 3413 | void __kmem_cache_release(struct kmem_cache *s) | 
|  | 3414 | { | 
|  | 3415 | cache_random_seq_destroy(s); | 
|  | 3416 | free_percpu(s->cpu_slab); | 
|  | 3417 | free_kmem_cache_nodes(s); | 
|  | 3418 | } | 
|  | 3419 |  | 
|  | 3420 | static int init_kmem_cache_nodes(struct kmem_cache *s) | 
|  | 3421 | { | 
|  | 3422 | int node; | 
|  | 3423 |  | 
|  | 3424 | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | 3425 | struct kmem_cache_node *n; | 
|  | 3426 |  | 
|  | 3427 | if (slab_state == DOWN) { | 
|  | 3428 | early_kmem_cache_node_alloc(node); | 
|  | 3429 | continue; | 
|  | 3430 | } | 
|  | 3431 | n = kmem_cache_alloc_node(kmem_cache_node, | 
|  | 3432 | GFP_KERNEL, node); | 
|  | 3433 |  | 
|  | 3434 | if (!n) { | 
|  | 3435 | free_kmem_cache_nodes(s); | 
|  | 3436 | return 0; | 
|  | 3437 | } | 
|  | 3438 |  | 
|  | 3439 | init_kmem_cache_node(n); | 
|  | 3440 | s->node[node] = n; | 
|  | 3441 | } | 
|  | 3442 | return 1; | 
|  | 3443 | } | 
|  | 3444 |  | 
|  | 3445 | static void set_min_partial(struct kmem_cache *s, unsigned long min) | 
|  | 3446 | { | 
|  | 3447 | if (min < MIN_PARTIAL) | 
|  | 3448 | min = MIN_PARTIAL; | 
|  | 3449 | else if (min > MAX_PARTIAL) | 
|  | 3450 | min = MAX_PARTIAL; | 
|  | 3451 | s->min_partial = min; | 
|  | 3452 | } | 
|  | 3453 |  | 
|  | 3454 | static void set_cpu_partial(struct kmem_cache *s) | 
|  | 3455 | { | 
|  | 3456 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | 3457 | /* | 
|  | 3458 | * cpu_partial determined the maximum number of objects kept in the | 
|  | 3459 | * per cpu partial lists of a processor. | 
|  | 3460 | * | 
|  | 3461 | * Per cpu partial lists mainly contain slabs that just have one | 
|  | 3462 | * object freed. If they are used for allocation then they can be | 
|  | 3463 | * filled up again with minimal effort. The slab will never hit the | 
|  | 3464 | * per node partial lists and therefore no locking will be required. | 
|  | 3465 | * | 
|  | 3466 | * This setting also determines | 
|  | 3467 | * | 
|  | 3468 | * A) The number of objects from per cpu partial slabs dumped to the | 
|  | 3469 | *    per node list when we reach the limit. | 
|  | 3470 | * B) The number of objects in cpu partial slabs to extract from the | 
|  | 3471 | *    per node list when we run out of per cpu objects. We only fetch | 
|  | 3472 | *    50% to keep some capacity around for frees. | 
|  | 3473 | */ | 
|  | 3474 | if (!kmem_cache_has_cpu_partial(s)) | 
|  | 3475 | s->cpu_partial = 0; | 
|  | 3476 | else if (s->size >= PAGE_SIZE) | 
|  | 3477 | s->cpu_partial = 2; | 
|  | 3478 | else if (s->size >= 1024) | 
|  | 3479 | s->cpu_partial = 6; | 
|  | 3480 | else if (s->size >= 256) | 
|  | 3481 | s->cpu_partial = 13; | 
|  | 3482 | else | 
|  | 3483 | s->cpu_partial = 30; | 
|  | 3484 | #endif | 
|  | 3485 | } | 
|  | 3486 |  | 
|  | 3487 | /* | 
|  | 3488 | * calculate_sizes() determines the order and the distribution of data within | 
|  | 3489 | * a slab object. | 
|  | 3490 | */ | 
|  | 3491 | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 
|  | 3492 | { | 
|  | 3493 | slab_flags_t flags = s->flags; | 
|  | 3494 | unsigned int size = s->object_size; | 
|  | 3495 | unsigned int order; | 
|  | 3496 |  | 
|  | 3497 | /* | 
|  | 3498 | * Round up object size to the next word boundary. We can only | 
|  | 3499 | * place the free pointer at word boundaries and this determines | 
|  | 3500 | * the possible location of the free pointer. | 
|  | 3501 | */ | 
|  | 3502 | size = ALIGN(size, sizeof(void *)); | 
|  | 3503 |  | 
|  | 3504 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 3505 | /* | 
|  | 3506 | * Determine if we can poison the object itself. If the user of | 
|  | 3507 | * the slab may touch the object after free or before allocation | 
|  | 3508 | * then we should never poison the object itself. | 
|  | 3509 | */ | 
|  | 3510 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && | 
|  | 3511 | !s->ctor) | 
|  | 3512 | s->flags |= __OBJECT_POISON; | 
|  | 3513 | else | 
|  | 3514 | s->flags &= ~__OBJECT_POISON; | 
|  | 3515 |  | 
|  | 3516 |  | 
|  | 3517 | /* | 
|  | 3518 | * If we are Redzoning then check if there is some space between the | 
|  | 3519 | * end of the object and the free pointer. If not then add an | 
|  | 3520 | * additional word to have some bytes to store Redzone information. | 
|  | 3521 | */ | 
|  | 3522 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) | 
|  | 3523 | size += sizeof(void *); | 
|  | 3524 | #endif | 
|  | 3525 |  | 
|  | 3526 | /* | 
|  | 3527 | * With that we have determined the number of bytes in actual use | 
|  | 3528 | * by the object. This is the potential offset to the free pointer. | 
|  | 3529 | */ | 
|  | 3530 | s->inuse = size; | 
|  | 3531 |  | 
|  | 3532 | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || | 
|  | 3533 | s->ctor)) { | 
|  | 3534 | /* | 
|  | 3535 | * Relocate free pointer after the object if it is not | 
|  | 3536 | * permitted to overwrite the first word of the object on | 
|  | 3537 | * kmem_cache_free. | 
|  | 3538 | * | 
|  | 3539 | * This is the case if we do RCU, have a constructor or | 
|  | 3540 | * destructor or are poisoning the objects. | 
|  | 3541 | */ | 
|  | 3542 | s->offset = size; | 
|  | 3543 | size += sizeof(void *); | 
|  | 3544 | } | 
|  | 3545 |  | 
|  | 3546 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 3547 | if (flags & SLAB_STORE_USER) | 
|  | 3548 | /* | 
|  | 3549 | * Need to store information about allocs and frees after | 
|  | 3550 | * the object. | 
|  | 3551 | */ | 
|  | 3552 | size += 2 * sizeof(struct track); | 
|  | 3553 | #endif | 
|  | 3554 |  | 
|  | 3555 | kasan_cache_create(s, &size, &s->flags); | 
|  | 3556 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 3557 | if (flags & SLAB_RED_ZONE) { | 
|  | 3558 | /* | 
|  | 3559 | * Add some empty padding so that we can catch | 
|  | 3560 | * overwrites from earlier objects rather than let | 
|  | 3561 | * tracking information or the free pointer be | 
|  | 3562 | * corrupted if a user writes before the start | 
|  | 3563 | * of the object. | 
|  | 3564 | */ | 
|  | 3565 | size += sizeof(void *); | 
|  | 3566 |  | 
|  | 3567 | s->red_left_pad = sizeof(void *); | 
|  | 3568 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | 
|  | 3569 | size += s->red_left_pad; | 
|  | 3570 | } | 
|  | 3571 | #endif | 
|  | 3572 |  | 
|  | 3573 | /* | 
|  | 3574 | * SLUB stores one object immediately after another beginning from | 
|  | 3575 | * offset 0. In order to align the objects we have to simply size | 
|  | 3576 | * each object to conform to the alignment. | 
|  | 3577 | */ | 
|  | 3578 | size = ALIGN(size, s->align); | 
|  | 3579 | s->size = size; | 
|  | 3580 | if (forced_order >= 0) | 
|  | 3581 | order = forced_order; | 
|  | 3582 | else | 
|  | 3583 | order = calculate_order(size); | 
|  | 3584 |  | 
|  | 3585 | if ((int)order < 0) | 
|  | 3586 | return 0; | 
|  | 3587 |  | 
|  | 3588 | s->allocflags = 0; | 
|  | 3589 | if (order) | 
|  | 3590 | s->allocflags |= __GFP_COMP; | 
|  | 3591 |  | 
|  | 3592 | if (s->flags & SLAB_CACHE_DMA) | 
|  | 3593 | s->allocflags |= GFP_DMA; | 
|  | 3594 |  | 
|  | 3595 | if (s->flags & SLAB_CACHE_DMA32) | 
|  | 3596 | s->allocflags |= GFP_DMA32; | 
|  | 3597 |  | 
|  | 3598 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | 3599 | s->allocflags |= __GFP_RECLAIMABLE; | 
|  | 3600 |  | 
|  | 3601 | /* | 
|  | 3602 | * Determine the number of objects per slab | 
|  | 3603 | */ | 
|  | 3604 | s->oo = oo_make(order, size); | 
|  | 3605 | s->min = oo_make(get_order(size), size); | 
|  | 3606 | if (oo_objects(s->oo) > oo_objects(s->max)) | 
|  | 3607 | s->max = s->oo; | 
|  | 3608 |  | 
|  | 3609 | return !!oo_objects(s->oo); | 
|  | 3610 | } | 
|  | 3611 |  | 
|  | 3612 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) | 
|  | 3613 | { | 
|  | 3614 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); | 
|  | 3615 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
|  | 3616 | s->random = get_random_long(); | 
|  | 3617 | #endif | 
|  | 3618 |  | 
|  | 3619 | if (!calculate_sizes(s, -1)) | 
|  | 3620 | goto error; | 
|  | 3621 | if (disable_higher_order_debug) { | 
|  | 3622 | /* | 
|  | 3623 | * Disable debugging flags that store metadata if the min slab | 
|  | 3624 | * order increased. | 
|  | 3625 | */ | 
|  | 3626 | if (get_order(s->size) > get_order(s->object_size)) { | 
|  | 3627 | s->flags &= ~DEBUG_METADATA_FLAGS; | 
|  | 3628 | s->offset = 0; | 
|  | 3629 | if (!calculate_sizes(s, -1)) | 
|  | 3630 | goto error; | 
|  | 3631 | } | 
|  | 3632 | } | 
|  | 3633 |  | 
|  | 3634 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
|  | 3635 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
|  | 3636 | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) | 
|  | 3637 | /* Enable fast mode */ | 
|  | 3638 | s->flags |= __CMPXCHG_DOUBLE; | 
|  | 3639 | #endif | 
|  | 3640 |  | 
|  | 3641 | /* | 
|  | 3642 | * The larger the object size is, the more pages we want on the partial | 
|  | 3643 | * list to avoid pounding the page allocator excessively. | 
|  | 3644 | */ | 
|  | 3645 | set_min_partial(s, ilog2(s->size) / 2); | 
|  | 3646 |  | 
|  | 3647 | set_cpu_partial(s); | 
|  | 3648 |  | 
|  | 3649 | #ifdef CONFIG_NUMA | 
|  | 3650 | s->remote_node_defrag_ratio = 1000; | 
|  | 3651 | #endif | 
|  | 3652 |  | 
|  | 3653 | /* Initialize the pre-computed randomized freelist if slab is up */ | 
|  | 3654 | if (slab_state >= UP) { | 
|  | 3655 | if (init_cache_random_seq(s)) | 
|  | 3656 | goto error; | 
|  | 3657 | } | 
|  | 3658 |  | 
|  | 3659 | if (!init_kmem_cache_nodes(s)) | 
|  | 3660 | goto error; | 
|  | 3661 |  | 
|  | 3662 | if (alloc_kmem_cache_cpus(s)) | 
|  | 3663 | return 0; | 
|  | 3664 |  | 
|  | 3665 | free_kmem_cache_nodes(s); | 
|  | 3666 | error: | 
|  | 3667 | if (flags & SLAB_PANIC) | 
|  | 3668 | panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", | 
|  | 3669 | s->name, s->size, s->size, | 
|  | 3670 | oo_order(s->oo), s->offset, (unsigned long)flags); | 
|  | 3671 | return -EINVAL; | 
|  | 3672 | } | 
|  | 3673 |  | 
|  | 3674 | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 
|  | 3675 | const char *text) | 
|  | 3676 | { | 
|  | 3677 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 3678 | void *addr = page_address(page); | 
|  | 3679 | void *p; | 
|  | 3680 | unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects), | 
|  | 3681 | sizeof(long), | 
|  | 3682 | GFP_ATOMIC); | 
|  | 3683 | if (!map) | 
|  | 3684 | return; | 
|  | 3685 | slab_err(s, page, text, s->name); | 
|  | 3686 | slab_lock(page); | 
|  | 3687 |  | 
|  | 3688 | get_map(s, page, map); | 
|  | 3689 | for_each_object(p, s, addr, page->objects) { | 
|  | 3690 |  | 
|  | 3691 | if (!test_bit(slab_index(p, s, addr), map)) { | 
|  | 3692 | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); | 
|  | 3693 | print_tracking(s, p); | 
|  | 3694 | } | 
|  | 3695 | } | 
|  | 3696 | slab_unlock(page); | 
|  | 3697 | kfree(map); | 
|  | 3698 | #endif | 
|  | 3699 | } | 
|  | 3700 |  | 
|  | 3701 | /* | 
|  | 3702 | * Attempt to free all partial slabs on a node. | 
|  | 3703 | * This is called from __kmem_cache_shutdown(). We must take list_lock | 
|  | 3704 | * because sysfs file might still access partial list after the shutdowning. | 
|  | 3705 | */ | 
|  | 3706 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 
|  | 3707 | { | 
|  | 3708 | LIST_HEAD(discard); | 
|  | 3709 | struct page *page, *h; | 
|  | 3710 |  | 
|  | 3711 | BUG_ON(irqs_disabled()); | 
|  | 3712 | spin_lock_irq(&n->list_lock); | 
|  | 3713 | list_for_each_entry_safe(page, h, &n->partial, lru) { | 
|  | 3714 | if (!page->inuse) { | 
|  | 3715 | remove_partial(n, page); | 
|  | 3716 | list_add(&page->lru, &discard); | 
|  | 3717 | } else { | 
|  | 3718 | list_slab_objects(s, page, | 
|  | 3719 | "Objects remaining in %s on __kmem_cache_shutdown()"); | 
|  | 3720 | } | 
|  | 3721 | } | 
|  | 3722 | spin_unlock_irq(&n->list_lock); | 
|  | 3723 |  | 
|  | 3724 | list_for_each_entry_safe(page, h, &discard, lru) | 
|  | 3725 | discard_slab(s, page); | 
|  | 3726 | } | 
|  | 3727 |  | 
|  | 3728 | bool __kmem_cache_empty(struct kmem_cache *s) | 
|  | 3729 | { | 
|  | 3730 | int node; | 
|  | 3731 | struct kmem_cache_node *n; | 
|  | 3732 |  | 
|  | 3733 | for_each_kmem_cache_node(s, node, n) | 
|  | 3734 | if (n->nr_partial || slabs_node(s, node)) | 
|  | 3735 | return false; | 
|  | 3736 | return true; | 
|  | 3737 | } | 
|  | 3738 |  | 
|  | 3739 | /* | 
|  | 3740 | * Release all resources used by a slab cache. | 
|  | 3741 | */ | 
|  | 3742 | int __kmem_cache_shutdown(struct kmem_cache *s) | 
|  | 3743 | { | 
|  | 3744 | int node; | 
|  | 3745 | struct kmem_cache_node *n; | 
|  | 3746 |  | 
|  | 3747 | flush_all(s); | 
|  | 3748 | /* Attempt to free all objects */ | 
|  | 3749 | for_each_kmem_cache_node(s, node, n) { | 
|  | 3750 | free_partial(s, n); | 
|  | 3751 | if (n->nr_partial || slabs_node(s, node)) | 
|  | 3752 | return 1; | 
|  | 3753 | } | 
|  | 3754 | sysfs_slab_remove(s); | 
|  | 3755 | return 0; | 
|  | 3756 | } | 
|  | 3757 |  | 
|  | 3758 | /******************************************************************** | 
|  | 3759 | *		Kmalloc subsystem | 
|  | 3760 | *******************************************************************/ | 
|  | 3761 |  | 
|  | 3762 | static int __init setup_slub_min_order(char *str) | 
|  | 3763 | { | 
|  | 3764 | get_option(&str, (int *)&slub_min_order); | 
|  | 3765 |  | 
|  | 3766 | return 1; | 
|  | 3767 | } | 
|  | 3768 |  | 
|  | 3769 | __setup("slub_min_order=", setup_slub_min_order); | 
|  | 3770 |  | 
|  | 3771 | static int __init setup_slub_max_order(char *str) | 
|  | 3772 | { | 
|  | 3773 | get_option(&str, (int *)&slub_max_order); | 
|  | 3774 | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | 
|  | 3775 |  | 
|  | 3776 | return 1; | 
|  | 3777 | } | 
|  | 3778 |  | 
|  | 3779 | __setup("slub_max_order=", setup_slub_max_order); | 
|  | 3780 |  | 
|  | 3781 | static int __init setup_slub_min_objects(char *str) | 
|  | 3782 | { | 
|  | 3783 | get_option(&str, (int *)&slub_min_objects); | 
|  | 3784 |  | 
|  | 3785 | return 1; | 
|  | 3786 | } | 
|  | 3787 |  | 
|  | 3788 | __setup("slub_min_objects=", setup_slub_min_objects); | 
|  | 3789 |  | 
|  | 3790 | void *__kmalloc(size_t size, gfp_t flags) | 
|  | 3791 | { | 
|  | 3792 | struct kmem_cache *s; | 
|  | 3793 | void *ret; | 
|  | 3794 |  | 
|  | 3795 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
|  | 3796 | return kmalloc_large(size, flags); | 
|  | 3797 |  | 
|  | 3798 | s = kmalloc_slab(size, flags); | 
|  | 3799 |  | 
|  | 3800 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | 3801 | return s; | 
|  | 3802 |  | 
|  | 3803 | ret = slab_alloc(s, flags, _RET_IP_); | 
|  | 3804 |  | 
|  | 3805 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 
|  | 3806 |  | 
|  | 3807 | ret = kasan_kmalloc(s, ret, size, flags); | 
|  | 3808 |  | 
|  | 3809 | return ret; | 
|  | 3810 | } | 
|  | 3811 | EXPORT_SYMBOL(__kmalloc); | 
|  | 3812 |  | 
|  | 3813 | #ifdef CONFIG_NUMA | 
|  | 3814 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 
|  | 3815 | { | 
|  | 3816 | struct page *page; | 
|  | 3817 | void *ptr = NULL; | 
|  | 3818 |  | 
|  | 3819 | flags |= __GFP_COMP; | 
|  | 3820 | page = alloc_pages_node(node, flags, get_order(size)); | 
|  | 3821 | if (page) | 
|  | 3822 | ptr = page_address(page); | 
|  | 3823 |  | 
|  | 3824 | return kmalloc_large_node_hook(ptr, size, flags); | 
|  | 3825 | } | 
|  | 3826 |  | 
|  | 3827 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | 3828 | { | 
|  | 3829 | struct kmem_cache *s; | 
|  | 3830 | void *ret; | 
|  | 3831 |  | 
|  | 3832 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
|  | 3833 | ret = kmalloc_large_node(size, flags, node); | 
|  | 3834 |  | 
|  | 3835 | trace_kmalloc_node(_RET_IP_, ret, | 
|  | 3836 | size, PAGE_SIZE << get_order(size), | 
|  | 3837 | flags, node); | 
|  | 3838 |  | 
|  | 3839 | return ret; | 
|  | 3840 | } | 
|  | 3841 |  | 
|  | 3842 | s = kmalloc_slab(size, flags); | 
|  | 3843 |  | 
|  | 3844 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | 3845 | return s; | 
|  | 3846 |  | 
|  | 3847 | ret = slab_alloc_node(s, flags, node, _RET_IP_); | 
|  | 3848 |  | 
|  | 3849 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); | 
|  | 3850 |  | 
|  | 3851 | ret = kasan_kmalloc(s, ret, size, flags); | 
|  | 3852 |  | 
|  | 3853 | return ret; | 
|  | 3854 | } | 
|  | 3855 | EXPORT_SYMBOL(__kmalloc_node); | 
|  | 3856 | #endif | 
|  | 3857 |  | 
|  | 3858 | #ifdef CONFIG_HARDENED_USERCOPY | 
|  | 3859 | /* | 
|  | 3860 | * Rejects incorrectly sized objects and objects that are to be copied | 
|  | 3861 | * to/from userspace but do not fall entirely within the containing slab | 
|  | 3862 | * cache's usercopy region. | 
|  | 3863 | * | 
|  | 3864 | * Returns NULL if check passes, otherwise const char * to name of cache | 
|  | 3865 | * to indicate an error. | 
|  | 3866 | */ | 
|  | 3867 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, | 
|  | 3868 | bool to_user) | 
|  | 3869 | { | 
|  | 3870 | struct kmem_cache *s; | 
|  | 3871 | unsigned int offset; | 
|  | 3872 | size_t object_size; | 
|  | 3873 |  | 
|  | 3874 | ptr = kasan_reset_tag(ptr); | 
|  | 3875 |  | 
|  | 3876 | /* Find object and usable object size. */ | 
|  | 3877 | s = page->slab_cache; | 
|  | 3878 |  | 
|  | 3879 | /* Reject impossible pointers. */ | 
|  | 3880 | if (ptr < page_address(page)) | 
|  | 3881 | usercopy_abort("SLUB object not in SLUB page?!", NULL, | 
|  | 3882 | to_user, 0, n); | 
|  | 3883 |  | 
|  | 3884 | /* Find offset within object. */ | 
|  | 3885 | offset = (ptr - page_address(page)) % s->size; | 
|  | 3886 |  | 
|  | 3887 | /* Adjust for redzone and reject if within the redzone. */ | 
|  | 3888 | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | 
|  | 3889 | if (offset < s->red_left_pad) | 
|  | 3890 | usercopy_abort("SLUB object in left red zone", | 
|  | 3891 | s->name, to_user, offset, n); | 
|  | 3892 | offset -= s->red_left_pad; | 
|  | 3893 | } | 
|  | 3894 |  | 
|  | 3895 | /* Allow address range falling entirely within usercopy region. */ | 
|  | 3896 | if (offset >= s->useroffset && | 
|  | 3897 | offset - s->useroffset <= s->usersize && | 
|  | 3898 | n <= s->useroffset - offset + s->usersize) | 
|  | 3899 | return; | 
|  | 3900 |  | 
|  | 3901 | /* | 
|  | 3902 | * If the copy is still within the allocated object, produce | 
|  | 3903 | * a warning instead of rejecting the copy. This is intended | 
|  | 3904 | * to be a temporary method to find any missing usercopy | 
|  | 3905 | * whitelists. | 
|  | 3906 | */ | 
|  | 3907 | object_size = slab_ksize(s); | 
|  | 3908 | if (usercopy_fallback && | 
|  | 3909 | offset <= object_size && n <= object_size - offset) { | 
|  | 3910 | usercopy_warn("SLUB object", s->name, to_user, offset, n); | 
|  | 3911 | return; | 
|  | 3912 | } | 
|  | 3913 |  | 
|  | 3914 | usercopy_abort("SLUB object", s->name, to_user, offset, n); | 
|  | 3915 | } | 
|  | 3916 | #endif /* CONFIG_HARDENED_USERCOPY */ | 
|  | 3917 |  | 
|  | 3918 | static size_t __ksize(const void *object) | 
|  | 3919 | { | 
|  | 3920 | struct page *page; | 
|  | 3921 |  | 
|  | 3922 | if (unlikely(object == ZERO_SIZE_PTR)) | 
|  | 3923 | return 0; | 
|  | 3924 |  | 
|  | 3925 | page = virt_to_head_page(object); | 
|  | 3926 |  | 
|  | 3927 | if (unlikely(!PageSlab(page))) { | 
|  | 3928 | WARN_ON(!PageCompound(page)); | 
|  | 3929 | return PAGE_SIZE << compound_order(page); | 
|  | 3930 | } | 
|  | 3931 |  | 
|  | 3932 | return slab_ksize(page->slab_cache); | 
|  | 3933 | } | 
|  | 3934 |  | 
|  | 3935 | size_t ksize(const void *object) | 
|  | 3936 | { | 
|  | 3937 | size_t size = __ksize(object); | 
|  | 3938 | /* We assume that ksize callers could use whole allocated area, | 
|  | 3939 | * so we need to unpoison this area. | 
|  | 3940 | */ | 
|  | 3941 | kasan_unpoison_shadow(object, size); | 
|  | 3942 | return size; | 
|  | 3943 | } | 
|  | 3944 | EXPORT_SYMBOL(ksize); | 
|  | 3945 |  | 
|  | 3946 | void kfree(const void *x) | 
|  | 3947 | { | 
|  | 3948 | struct page *page; | 
|  | 3949 | void *object = (void *)x; | 
|  | 3950 |  | 
|  | 3951 | trace_kfree(_RET_IP_, x); | 
|  | 3952 |  | 
|  | 3953 | if (unlikely(ZERO_OR_NULL_PTR(x))) | 
|  | 3954 | return; | 
|  | 3955 |  | 
|  | 3956 | page = virt_to_head_page(x); | 
|  | 3957 | if (unlikely(!PageSlab(page))) { | 
|  | 3958 | BUG_ON(!PageCompound(page)); | 
|  | 3959 | kfree_hook(object); | 
|  | 3960 | __free_pages(page, compound_order(page)); | 
|  | 3961 | return; | 
|  | 3962 | } | 
|  | 3963 | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); | 
|  | 3964 | } | 
|  | 3965 | EXPORT_SYMBOL(kfree); | 
|  | 3966 |  | 
|  | 3967 | #define SHRINK_PROMOTE_MAX 32 | 
|  | 3968 |  | 
|  | 3969 | /* | 
|  | 3970 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled | 
|  | 3971 | * up most to the head of the partial lists. New allocations will then | 
|  | 3972 | * fill those up and thus they can be removed from the partial lists. | 
|  | 3973 | * | 
|  | 3974 | * The slabs with the least items are placed last. This results in them | 
|  | 3975 | * being allocated from last increasing the chance that the last objects | 
|  | 3976 | * are freed in them. | 
|  | 3977 | */ | 
|  | 3978 | int __kmem_cache_shrink(struct kmem_cache *s) | 
|  | 3979 | { | 
|  | 3980 | int node; | 
|  | 3981 | int i; | 
|  | 3982 | struct kmem_cache_node *n; | 
|  | 3983 | struct page *page; | 
|  | 3984 | struct page *t; | 
|  | 3985 | struct list_head discard; | 
|  | 3986 | struct list_head promote[SHRINK_PROMOTE_MAX]; | 
|  | 3987 | unsigned long flags; | 
|  | 3988 | int ret = 0; | 
|  | 3989 |  | 
|  | 3990 | flush_all(s); | 
|  | 3991 | for_each_kmem_cache_node(s, node, n) { | 
|  | 3992 | INIT_LIST_HEAD(&discard); | 
|  | 3993 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | 
|  | 3994 | INIT_LIST_HEAD(promote + i); | 
|  | 3995 |  | 
|  | 3996 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 3997 |  | 
|  | 3998 | /* | 
|  | 3999 | * Build lists of slabs to discard or promote. | 
|  | 4000 | * | 
|  | 4001 | * Note that concurrent frees may occur while we hold the | 
|  | 4002 | * list_lock. page->inuse here is the upper limit. | 
|  | 4003 | */ | 
|  | 4004 | list_for_each_entry_safe(page, t, &n->partial, lru) { | 
|  | 4005 | int free = page->objects - page->inuse; | 
|  | 4006 |  | 
|  | 4007 | /* Do not reread page->inuse */ | 
|  | 4008 | barrier(); | 
|  | 4009 |  | 
|  | 4010 | /* We do not keep full slabs on the list */ | 
|  | 4011 | BUG_ON(free <= 0); | 
|  | 4012 |  | 
|  | 4013 | if (free == page->objects) { | 
|  | 4014 | list_move(&page->lru, &discard); | 
|  | 4015 | n->nr_partial--; | 
|  | 4016 | } else if (free <= SHRINK_PROMOTE_MAX) | 
|  | 4017 | list_move(&page->lru, promote + free - 1); | 
|  | 4018 | } | 
|  | 4019 |  | 
|  | 4020 | /* | 
|  | 4021 | * Promote the slabs filled up most to the head of the | 
|  | 4022 | * partial list. | 
|  | 4023 | */ | 
|  | 4024 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) | 
|  | 4025 | list_splice(promote + i, &n->partial); | 
|  | 4026 |  | 
|  | 4027 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 4028 |  | 
|  | 4029 | /* Release empty slabs */ | 
|  | 4030 | list_for_each_entry_safe(page, t, &discard, lru) | 
|  | 4031 | discard_slab(s, page); | 
|  | 4032 |  | 
|  | 4033 | if (slabs_node(s, node)) | 
|  | 4034 | ret = 1; | 
|  | 4035 | } | 
|  | 4036 |  | 
|  | 4037 | return ret; | 
|  | 4038 | } | 
|  | 4039 |  | 
|  | 4040 | #ifdef CONFIG_MEMCG | 
|  | 4041 | static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) | 
|  | 4042 | { | 
|  | 4043 | /* | 
|  | 4044 | * Called with all the locks held after a sched RCU grace period. | 
|  | 4045 | * Even if @s becomes empty after shrinking, we can't know that @s | 
|  | 4046 | * doesn't have allocations already in-flight and thus can't | 
|  | 4047 | * destroy @s until the associated memcg is released. | 
|  | 4048 | * | 
|  | 4049 | * However, let's remove the sysfs files for empty caches here. | 
|  | 4050 | * Each cache has a lot of interface files which aren't | 
|  | 4051 | * particularly useful for empty draining caches; otherwise, we can | 
|  | 4052 | * easily end up with millions of unnecessary sysfs files on | 
|  | 4053 | * systems which have a lot of memory and transient cgroups. | 
|  | 4054 | */ | 
|  | 4055 | if (!__kmem_cache_shrink(s)) | 
|  | 4056 | sysfs_slab_remove(s); | 
|  | 4057 | } | 
|  | 4058 |  | 
|  | 4059 | void __kmemcg_cache_deactivate(struct kmem_cache *s) | 
|  | 4060 | { | 
|  | 4061 | /* | 
|  | 4062 | * Disable empty slabs caching. Used to avoid pinning offline | 
|  | 4063 | * memory cgroups by kmem pages that can be freed. | 
|  | 4064 | */ | 
|  | 4065 | slub_set_cpu_partial(s, 0); | 
|  | 4066 | s->min_partial = 0; | 
|  | 4067 |  | 
|  | 4068 | /* | 
|  | 4069 | * s->cpu_partial is checked locklessly (see put_cpu_partial), so | 
|  | 4070 | * we have to make sure the change is visible before shrinking. | 
|  | 4071 | */ | 
|  | 4072 | slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); | 
|  | 4073 | } | 
|  | 4074 | #endif | 
|  | 4075 |  | 
|  | 4076 | static int slab_mem_going_offline_callback(void *arg) | 
|  | 4077 | { | 
|  | 4078 | struct kmem_cache *s; | 
|  | 4079 |  | 
|  | 4080 | mutex_lock(&slab_mutex); | 
|  | 4081 | list_for_each_entry(s, &slab_caches, list) | 
|  | 4082 | __kmem_cache_shrink(s); | 
|  | 4083 | mutex_unlock(&slab_mutex); | 
|  | 4084 |  | 
|  | 4085 | return 0; | 
|  | 4086 | } | 
|  | 4087 |  | 
|  | 4088 | static void slab_mem_offline_callback(void *arg) | 
|  | 4089 | { | 
|  | 4090 | struct kmem_cache_node *n; | 
|  | 4091 | struct kmem_cache *s; | 
|  | 4092 | struct memory_notify *marg = arg; | 
|  | 4093 | int offline_node; | 
|  | 4094 |  | 
|  | 4095 | offline_node = marg->status_change_nid_normal; | 
|  | 4096 |  | 
|  | 4097 | /* | 
|  | 4098 | * If the node still has available memory. we need kmem_cache_node | 
|  | 4099 | * for it yet. | 
|  | 4100 | */ | 
|  | 4101 | if (offline_node < 0) | 
|  | 4102 | return; | 
|  | 4103 |  | 
|  | 4104 | mutex_lock(&slab_mutex); | 
|  | 4105 | list_for_each_entry(s, &slab_caches, list) { | 
|  | 4106 | n = get_node(s, offline_node); | 
|  | 4107 | if (n) { | 
|  | 4108 | /* | 
|  | 4109 | * if n->nr_slabs > 0, slabs still exist on the node | 
|  | 4110 | * that is going down. We were unable to free them, | 
|  | 4111 | * and offline_pages() function shouldn't call this | 
|  | 4112 | * callback. So, we must fail. | 
|  | 4113 | */ | 
|  | 4114 | BUG_ON(slabs_node(s, offline_node)); | 
|  | 4115 |  | 
|  | 4116 | s->node[offline_node] = NULL; | 
|  | 4117 | kmem_cache_free(kmem_cache_node, n); | 
|  | 4118 | } | 
|  | 4119 | } | 
|  | 4120 | mutex_unlock(&slab_mutex); | 
|  | 4121 | } | 
|  | 4122 |  | 
|  | 4123 | static int slab_mem_going_online_callback(void *arg) | 
|  | 4124 | { | 
|  | 4125 | struct kmem_cache_node *n; | 
|  | 4126 | struct kmem_cache *s; | 
|  | 4127 | struct memory_notify *marg = arg; | 
|  | 4128 | int nid = marg->status_change_nid_normal; | 
|  | 4129 | int ret = 0; | 
|  | 4130 |  | 
|  | 4131 | /* | 
|  | 4132 | * If the node's memory is already available, then kmem_cache_node is | 
|  | 4133 | * already created. Nothing to do. | 
|  | 4134 | */ | 
|  | 4135 | if (nid < 0) | 
|  | 4136 | return 0; | 
|  | 4137 |  | 
|  | 4138 | /* | 
|  | 4139 | * We are bringing a node online. No memory is available yet. We must | 
|  | 4140 | * allocate a kmem_cache_node structure in order to bring the node | 
|  | 4141 | * online. | 
|  | 4142 | */ | 
|  | 4143 | mutex_lock(&slab_mutex); | 
|  | 4144 | list_for_each_entry(s, &slab_caches, list) { | 
|  | 4145 | /* | 
|  | 4146 | * XXX: kmem_cache_alloc_node will fallback to other nodes | 
|  | 4147 | *      since memory is not yet available from the node that | 
|  | 4148 | *      is brought up. | 
|  | 4149 | */ | 
|  | 4150 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); | 
|  | 4151 | if (!n) { | 
|  | 4152 | ret = -ENOMEM; | 
|  | 4153 | goto out; | 
|  | 4154 | } | 
|  | 4155 | init_kmem_cache_node(n); | 
|  | 4156 | s->node[nid] = n; | 
|  | 4157 | } | 
|  | 4158 | out: | 
|  | 4159 | mutex_unlock(&slab_mutex); | 
|  | 4160 | return ret; | 
|  | 4161 | } | 
|  | 4162 |  | 
|  | 4163 | static int slab_memory_callback(struct notifier_block *self, | 
|  | 4164 | unsigned long action, void *arg) | 
|  | 4165 | { | 
|  | 4166 | int ret = 0; | 
|  | 4167 |  | 
|  | 4168 | switch (action) { | 
|  | 4169 | case MEM_GOING_ONLINE: | 
|  | 4170 | ret = slab_mem_going_online_callback(arg); | 
|  | 4171 | break; | 
|  | 4172 | case MEM_GOING_OFFLINE: | 
|  | 4173 | ret = slab_mem_going_offline_callback(arg); | 
|  | 4174 | break; | 
|  | 4175 | case MEM_OFFLINE: | 
|  | 4176 | case MEM_CANCEL_ONLINE: | 
|  | 4177 | slab_mem_offline_callback(arg); | 
|  | 4178 | break; | 
|  | 4179 | case MEM_ONLINE: | 
|  | 4180 | case MEM_CANCEL_OFFLINE: | 
|  | 4181 | break; | 
|  | 4182 | } | 
|  | 4183 | if (ret) | 
|  | 4184 | ret = notifier_from_errno(ret); | 
|  | 4185 | else | 
|  | 4186 | ret = NOTIFY_OK; | 
|  | 4187 | return ret; | 
|  | 4188 | } | 
|  | 4189 |  | 
|  | 4190 | static struct notifier_block slab_memory_callback_nb = { | 
|  | 4191 | .notifier_call = slab_memory_callback, | 
|  | 4192 | .priority = SLAB_CALLBACK_PRI, | 
|  | 4193 | }; | 
|  | 4194 |  | 
|  | 4195 | /******************************************************************** | 
|  | 4196 | *			Basic setup of slabs | 
|  | 4197 | *******************************************************************/ | 
|  | 4198 |  | 
|  | 4199 | /* | 
|  | 4200 | * Used for early kmem_cache structures that were allocated using | 
|  | 4201 | * the page allocator. Allocate them properly then fix up the pointers | 
|  | 4202 | * that may be pointing to the wrong kmem_cache structure. | 
|  | 4203 | */ | 
|  | 4204 |  | 
|  | 4205 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) | 
|  | 4206 | { | 
|  | 4207 | int node; | 
|  | 4208 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
|  | 4209 | struct kmem_cache_node *n; | 
|  | 4210 |  | 
|  | 4211 | memcpy(s, static_cache, kmem_cache->object_size); | 
|  | 4212 |  | 
|  | 4213 | /* | 
|  | 4214 | * This runs very early, and only the boot processor is supposed to be | 
|  | 4215 | * up.  Even if it weren't true, IRQs are not up so we couldn't fire | 
|  | 4216 | * IPIs around. | 
|  | 4217 | */ | 
|  | 4218 | __flush_cpu_slab(s, smp_processor_id()); | 
|  | 4219 | for_each_kmem_cache_node(s, node, n) { | 
|  | 4220 | struct page *p; | 
|  | 4221 |  | 
|  | 4222 | list_for_each_entry(p, &n->partial, lru) | 
|  | 4223 | p->slab_cache = s; | 
|  | 4224 |  | 
|  | 4225 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 4226 | list_for_each_entry(p, &n->full, lru) | 
|  | 4227 | p->slab_cache = s; | 
|  | 4228 | #endif | 
|  | 4229 | } | 
|  | 4230 | slab_init_memcg_params(s); | 
|  | 4231 | list_add(&s->list, &slab_caches); | 
|  | 4232 | memcg_link_cache(s); | 
|  | 4233 | return s; | 
|  | 4234 | } | 
|  | 4235 |  | 
|  | 4236 | void __init kmem_cache_init(void) | 
|  | 4237 | { | 
|  | 4238 | static __initdata struct kmem_cache boot_kmem_cache, | 
|  | 4239 | boot_kmem_cache_node; | 
|  | 4240 |  | 
|  | 4241 | if (debug_guardpage_minorder()) | 
|  | 4242 | slub_max_order = 0; | 
|  | 4243 |  | 
|  | 4244 | kmem_cache_node = &boot_kmem_cache_node; | 
|  | 4245 | kmem_cache = &boot_kmem_cache; | 
|  | 4246 |  | 
|  | 4247 | create_boot_cache(kmem_cache_node, "kmem_cache_node", | 
|  | 4248 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); | 
|  | 4249 |  | 
|  | 4250 | register_hotmemory_notifier(&slab_memory_callback_nb); | 
|  | 4251 |  | 
|  | 4252 | /* Able to allocate the per node structures */ | 
|  | 4253 | slab_state = PARTIAL; | 
|  | 4254 |  | 
|  | 4255 | create_boot_cache(kmem_cache, "kmem_cache", | 
|  | 4256 | offsetof(struct kmem_cache, node) + | 
|  | 4257 | nr_node_ids * sizeof(struct kmem_cache_node *), | 
|  | 4258 | SLAB_HWCACHE_ALIGN, 0, 0); | 
|  | 4259 |  | 
|  | 4260 | kmem_cache = bootstrap(&boot_kmem_cache); | 
|  | 4261 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); | 
|  | 4262 |  | 
|  | 4263 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | 
|  | 4264 | setup_kmalloc_cache_index_table(); | 
|  | 4265 | create_kmalloc_caches(0); | 
|  | 4266 |  | 
|  | 4267 | /* Setup random freelists for each cache */ | 
|  | 4268 | init_freelist_randomization(); | 
|  | 4269 |  | 
|  | 4270 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, | 
|  | 4271 | slub_cpu_dead); | 
|  | 4272 |  | 
|  | 4273 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", | 
|  | 4274 | cache_line_size(), | 
|  | 4275 | slub_min_order, slub_max_order, slub_min_objects, | 
|  | 4276 | nr_cpu_ids, nr_node_ids); | 
|  | 4277 | } | 
|  | 4278 |  | 
|  | 4279 | void __init kmem_cache_init_late(void) | 
|  | 4280 | { | 
|  | 4281 | } | 
|  | 4282 |  | 
|  | 4283 | struct kmem_cache * | 
|  | 4284 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, | 
|  | 4285 | slab_flags_t flags, void (*ctor)(void *)) | 
|  | 4286 | { | 
|  | 4287 | struct kmem_cache *s, *c; | 
|  | 4288 |  | 
|  | 4289 | s = find_mergeable(size, align, flags, name, ctor); | 
|  | 4290 | if (s) { | 
|  | 4291 | s->refcount++; | 
|  | 4292 |  | 
|  | 4293 | /* | 
|  | 4294 | * Adjust the object sizes so that we clear | 
|  | 4295 | * the complete object on kzalloc. | 
|  | 4296 | */ | 
|  | 4297 | s->object_size = max(s->object_size, size); | 
|  | 4298 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); | 
|  | 4299 |  | 
|  | 4300 | for_each_memcg_cache(c, s) { | 
|  | 4301 | c->object_size = s->object_size; | 
|  | 4302 | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); | 
|  | 4303 | } | 
|  | 4304 |  | 
|  | 4305 | if (sysfs_slab_alias(s, name)) { | 
|  | 4306 | s->refcount--; | 
|  | 4307 | s = NULL; | 
|  | 4308 | } | 
|  | 4309 | } | 
|  | 4310 |  | 
|  | 4311 | return s; | 
|  | 4312 | } | 
|  | 4313 |  | 
|  | 4314 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) | 
|  | 4315 | { | 
|  | 4316 | int err; | 
|  | 4317 |  | 
|  | 4318 | err = kmem_cache_open(s, flags); | 
|  | 4319 | if (err) | 
|  | 4320 | return err; | 
|  | 4321 |  | 
|  | 4322 | /* Mutex is not taken during early boot */ | 
|  | 4323 | if (slab_state <= UP) | 
|  | 4324 | return 0; | 
|  | 4325 |  | 
|  | 4326 | memcg_propagate_slab_attrs(s); | 
|  | 4327 | err = sysfs_slab_add(s); | 
|  | 4328 | if (err) | 
|  | 4329 | __kmem_cache_release(s); | 
|  | 4330 |  | 
|  | 4331 | return err; | 
|  | 4332 | } | 
|  | 4333 |  | 
|  | 4334 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 
|  | 4335 | { | 
|  | 4336 | struct kmem_cache *s; | 
|  | 4337 | void *ret; | 
|  | 4338 |  | 
|  | 4339 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
|  | 4340 | return kmalloc_large(size, gfpflags); | 
|  | 4341 |  | 
|  | 4342 | s = kmalloc_slab(size, gfpflags); | 
|  | 4343 |  | 
|  | 4344 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | 4345 | return s; | 
|  | 4346 |  | 
|  | 4347 | ret = slab_alloc(s, gfpflags, caller); | 
|  | 4348 |  | 
|  | 4349 | /* Honor the call site pointer we received. */ | 
|  | 4350 | trace_kmalloc(caller, ret, size, s->size, gfpflags); | 
|  | 4351 |  | 
|  | 4352 | return ret; | 
|  | 4353 | } | 
|  | 4354 |  | 
|  | 4355 | #ifdef CONFIG_NUMA | 
|  | 4356 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
|  | 4357 | int node, unsigned long caller) | 
|  | 4358 | { | 
|  | 4359 | struct kmem_cache *s; | 
|  | 4360 | void *ret; | 
|  | 4361 |  | 
|  | 4362 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
|  | 4363 | ret = kmalloc_large_node(size, gfpflags, node); | 
|  | 4364 |  | 
|  | 4365 | trace_kmalloc_node(caller, ret, | 
|  | 4366 | size, PAGE_SIZE << get_order(size), | 
|  | 4367 | gfpflags, node); | 
|  | 4368 |  | 
|  | 4369 | return ret; | 
|  | 4370 | } | 
|  | 4371 |  | 
|  | 4372 | s = kmalloc_slab(size, gfpflags); | 
|  | 4373 |  | 
|  | 4374 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | 4375 | return s; | 
|  | 4376 |  | 
|  | 4377 | ret = slab_alloc_node(s, gfpflags, node, caller); | 
|  | 4378 |  | 
|  | 4379 | /* Honor the call site pointer we received. */ | 
|  | 4380 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); | 
|  | 4381 |  | 
|  | 4382 | return ret; | 
|  | 4383 | } | 
|  | 4384 | #endif | 
|  | 4385 |  | 
|  | 4386 | #ifdef CONFIG_SYSFS | 
|  | 4387 | static int count_inuse(struct page *page) | 
|  | 4388 | { | 
|  | 4389 | return page->inuse; | 
|  | 4390 | } | 
|  | 4391 |  | 
|  | 4392 | static int count_total(struct page *page) | 
|  | 4393 | { | 
|  | 4394 | return page->objects; | 
|  | 4395 | } | 
|  | 4396 | #endif | 
|  | 4397 |  | 
|  | 4398 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 4399 | static int validate_slab(struct kmem_cache *s, struct page *page, | 
|  | 4400 | unsigned long *map) | 
|  | 4401 | { | 
|  | 4402 | void *p; | 
|  | 4403 | void *addr = page_address(page); | 
|  | 4404 |  | 
|  | 4405 | if (!check_slab(s, page) || | 
|  | 4406 | !on_freelist(s, page, NULL)) | 
|  | 4407 | return 0; | 
|  | 4408 |  | 
|  | 4409 | /* Now we know that a valid freelist exists */ | 
|  | 4410 | bitmap_zero(map, page->objects); | 
|  | 4411 |  | 
|  | 4412 | get_map(s, page, map); | 
|  | 4413 | for_each_object(p, s, addr, page->objects) { | 
|  | 4414 | if (test_bit(slab_index(p, s, addr), map)) | 
|  | 4415 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | 
|  | 4416 | return 0; | 
|  | 4417 | } | 
|  | 4418 |  | 
|  | 4419 | for_each_object(p, s, addr, page->objects) | 
|  | 4420 | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | 4421 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) | 
|  | 4422 | return 0; | 
|  | 4423 | return 1; | 
|  | 4424 | } | 
|  | 4425 |  | 
|  | 4426 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 
|  | 4427 | unsigned long *map) | 
|  | 4428 | { | 
|  | 4429 | slab_lock(page); | 
|  | 4430 | validate_slab(s, page, map); | 
|  | 4431 | slab_unlock(page); | 
|  | 4432 | } | 
|  | 4433 |  | 
|  | 4434 | static int validate_slab_node(struct kmem_cache *s, | 
|  | 4435 | struct kmem_cache_node *n, unsigned long *map) | 
|  | 4436 | { | 
|  | 4437 | unsigned long count = 0; | 
|  | 4438 | struct page *page; | 
|  | 4439 | unsigned long flags; | 
|  | 4440 |  | 
|  | 4441 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 4442 |  | 
|  | 4443 | list_for_each_entry(page, &n->partial, lru) { | 
|  | 4444 | validate_slab_slab(s, page, map); | 
|  | 4445 | count++; | 
|  | 4446 | } | 
|  | 4447 | if (count != n->nr_partial) | 
|  | 4448 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", | 
|  | 4449 | s->name, count, n->nr_partial); | 
|  | 4450 |  | 
|  | 4451 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 4452 | goto out; | 
|  | 4453 |  | 
|  | 4454 | list_for_each_entry(page, &n->full, lru) { | 
|  | 4455 | validate_slab_slab(s, page, map); | 
|  | 4456 | count++; | 
|  | 4457 | } | 
|  | 4458 | if (count != atomic_long_read(&n->nr_slabs)) | 
|  | 4459 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", | 
|  | 4460 | s->name, count, atomic_long_read(&n->nr_slabs)); | 
|  | 4461 |  | 
|  | 4462 | out: | 
|  | 4463 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 4464 | return count; | 
|  | 4465 | } | 
|  | 4466 |  | 
|  | 4467 | static long validate_slab_cache(struct kmem_cache *s) | 
|  | 4468 | { | 
|  | 4469 | int node; | 
|  | 4470 | unsigned long count = 0; | 
|  | 4471 | unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), | 
|  | 4472 | sizeof(unsigned long), | 
|  | 4473 | GFP_KERNEL); | 
|  | 4474 | struct kmem_cache_node *n; | 
|  | 4475 |  | 
|  | 4476 | if (!map) | 
|  | 4477 | return -ENOMEM; | 
|  | 4478 |  | 
|  | 4479 | flush_all(s); | 
|  | 4480 | for_each_kmem_cache_node(s, node, n) | 
|  | 4481 | count += validate_slab_node(s, n, map); | 
|  | 4482 | kfree(map); | 
|  | 4483 | return count; | 
|  | 4484 | } | 
|  | 4485 | /* | 
|  | 4486 | * Generate lists of code addresses where slabcache objects are allocated | 
|  | 4487 | * and freed. | 
|  | 4488 | */ | 
|  | 4489 |  | 
|  | 4490 | struct location { | 
|  | 4491 | unsigned long count; | 
|  | 4492 | unsigned long addr; | 
|  | 4493 | long long sum_time; | 
|  | 4494 | long min_time; | 
|  | 4495 | long max_time; | 
|  | 4496 | long min_pid; | 
|  | 4497 | long max_pid; | 
|  | 4498 | DECLARE_BITMAP(cpus, NR_CPUS); | 
|  | 4499 | nodemask_t nodes; | 
|  | 4500 | }; | 
|  | 4501 |  | 
|  | 4502 | struct loc_track { | 
|  | 4503 | unsigned long max; | 
|  | 4504 | unsigned long count; | 
|  | 4505 | struct location *loc; | 
|  | 4506 | }; | 
|  | 4507 |  | 
|  | 4508 | static void free_loc_track(struct loc_track *t) | 
|  | 4509 | { | 
|  | 4510 | if (t->max) | 
|  | 4511 | free_pages((unsigned long)t->loc, | 
|  | 4512 | get_order(sizeof(struct location) * t->max)); | 
|  | 4513 | } | 
|  | 4514 |  | 
|  | 4515 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
|  | 4516 | { | 
|  | 4517 | struct location *l; | 
|  | 4518 | int order; | 
|  | 4519 |  | 
|  | 4520 | order = get_order(sizeof(struct location) * max); | 
|  | 4521 |  | 
|  | 4522 | l = (void *)__get_free_pages(flags, order); | 
|  | 4523 | if (!l) | 
|  | 4524 | return 0; | 
|  | 4525 |  | 
|  | 4526 | if (t->count) { | 
|  | 4527 | memcpy(l, t->loc, sizeof(struct location) * t->count); | 
|  | 4528 | free_loc_track(t); | 
|  | 4529 | } | 
|  | 4530 | t->max = max; | 
|  | 4531 | t->loc = l; | 
|  | 4532 | return 1; | 
|  | 4533 | } | 
|  | 4534 |  | 
|  | 4535 | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
|  | 4536 | const struct track *track) | 
|  | 4537 | { | 
|  | 4538 | long start, end, pos; | 
|  | 4539 | struct location *l; | 
|  | 4540 | unsigned long caddr; | 
|  | 4541 | unsigned long age = jiffies - track->when; | 
|  | 4542 |  | 
|  | 4543 | start = -1; | 
|  | 4544 | end = t->count; | 
|  | 4545 |  | 
|  | 4546 | for ( ; ; ) { | 
|  | 4547 | pos = start + (end - start + 1) / 2; | 
|  | 4548 |  | 
|  | 4549 | /* | 
|  | 4550 | * There is nothing at "end". If we end up there | 
|  | 4551 | * we need to add something to before end. | 
|  | 4552 | */ | 
|  | 4553 | if (pos == end) | 
|  | 4554 | break; | 
|  | 4555 |  | 
|  | 4556 | caddr = t->loc[pos].addr; | 
|  | 4557 | if (track->addr == caddr) { | 
|  | 4558 |  | 
|  | 4559 | l = &t->loc[pos]; | 
|  | 4560 | l->count++; | 
|  | 4561 | if (track->when) { | 
|  | 4562 | l->sum_time += age; | 
|  | 4563 | if (age < l->min_time) | 
|  | 4564 | l->min_time = age; | 
|  | 4565 | if (age > l->max_time) | 
|  | 4566 | l->max_time = age; | 
|  | 4567 |  | 
|  | 4568 | if (track->pid < l->min_pid) | 
|  | 4569 | l->min_pid = track->pid; | 
|  | 4570 | if (track->pid > l->max_pid) | 
|  | 4571 | l->max_pid = track->pid; | 
|  | 4572 |  | 
|  | 4573 | cpumask_set_cpu(track->cpu, | 
|  | 4574 | to_cpumask(l->cpus)); | 
|  | 4575 | } | 
|  | 4576 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | 4577 | return 1; | 
|  | 4578 | } | 
|  | 4579 |  | 
|  | 4580 | if (track->addr < caddr) | 
|  | 4581 | end = pos; | 
|  | 4582 | else | 
|  | 4583 | start = pos; | 
|  | 4584 | } | 
|  | 4585 |  | 
|  | 4586 | /* | 
|  | 4587 | * Not found. Insert new tracking element. | 
|  | 4588 | */ | 
|  | 4589 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
|  | 4590 | return 0; | 
|  | 4591 |  | 
|  | 4592 | l = t->loc + pos; | 
|  | 4593 | if (pos < t->count) | 
|  | 4594 | memmove(l + 1, l, | 
|  | 4595 | (t->count - pos) * sizeof(struct location)); | 
|  | 4596 | t->count++; | 
|  | 4597 | l->count = 1; | 
|  | 4598 | l->addr = track->addr; | 
|  | 4599 | l->sum_time = age; | 
|  | 4600 | l->min_time = age; | 
|  | 4601 | l->max_time = age; | 
|  | 4602 | l->min_pid = track->pid; | 
|  | 4603 | l->max_pid = track->pid; | 
|  | 4604 | cpumask_clear(to_cpumask(l->cpus)); | 
|  | 4605 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | 
|  | 4606 | nodes_clear(l->nodes); | 
|  | 4607 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | 4608 | return 1; | 
|  | 4609 | } | 
|  | 4610 |  | 
|  | 4611 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
|  | 4612 | struct page *page, enum track_item alloc, | 
|  | 4613 | unsigned long *map) | 
|  | 4614 | { | 
|  | 4615 | void *addr = page_address(page); | 
|  | 4616 | void *p; | 
|  | 4617 |  | 
|  | 4618 | bitmap_zero(map, page->objects); | 
|  | 4619 | get_map(s, page, map); | 
|  | 4620 |  | 
|  | 4621 | for_each_object(p, s, addr, page->objects) | 
|  | 4622 | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | 4623 | add_location(t, s, get_track(s, p, alloc)); | 
|  | 4624 | } | 
|  | 4625 |  | 
|  | 4626 | static int list_locations(struct kmem_cache *s, char *buf, | 
|  | 4627 | enum track_item alloc) | 
|  | 4628 | { | 
|  | 4629 | int len = 0; | 
|  | 4630 | unsigned long i; | 
|  | 4631 | struct loc_track t = { 0, 0, NULL }; | 
|  | 4632 | int node; | 
|  | 4633 | unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), | 
|  | 4634 | sizeof(unsigned long), | 
|  | 4635 | GFP_KERNEL); | 
|  | 4636 | struct kmem_cache_node *n; | 
|  | 4637 |  | 
|  | 4638 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
|  | 4639 | GFP_KERNEL)) { | 
|  | 4640 | kfree(map); | 
|  | 4641 | return sprintf(buf, "Out of memory\n"); | 
|  | 4642 | } | 
|  | 4643 | /* Push back cpu slabs */ | 
|  | 4644 | flush_all(s); | 
|  | 4645 |  | 
|  | 4646 | for_each_kmem_cache_node(s, node, n) { | 
|  | 4647 | unsigned long flags; | 
|  | 4648 | struct page *page; | 
|  | 4649 |  | 
|  | 4650 | if (!atomic_long_read(&n->nr_slabs)) | 
|  | 4651 | continue; | 
|  | 4652 |  | 
|  | 4653 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 4654 | list_for_each_entry(page, &n->partial, lru) | 
|  | 4655 | process_slab(&t, s, page, alloc, map); | 
|  | 4656 | list_for_each_entry(page, &n->full, lru) | 
|  | 4657 | process_slab(&t, s, page, alloc, map); | 
|  | 4658 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 4659 | } | 
|  | 4660 |  | 
|  | 4661 | for (i = 0; i < t.count; i++) { | 
|  | 4662 | struct location *l = &t.loc[i]; | 
|  | 4663 |  | 
|  | 4664 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) | 
|  | 4665 | break; | 
|  | 4666 | len += sprintf(buf + len, "%7ld ", l->count); | 
|  | 4667 |  | 
|  | 4668 | if (l->addr) | 
|  | 4669 | len += sprintf(buf + len, "%pS", (void *)l->addr); | 
|  | 4670 | else | 
|  | 4671 | len += sprintf(buf + len, "<not-available>"); | 
|  | 4672 |  | 
|  | 4673 | if (l->sum_time != l->min_time) { | 
|  | 4674 | len += sprintf(buf + len, " age=%ld/%ld/%ld", | 
|  | 4675 | l->min_time, | 
|  | 4676 | (long)div_u64(l->sum_time, l->count), | 
|  | 4677 | l->max_time); | 
|  | 4678 | } else | 
|  | 4679 | len += sprintf(buf + len, " age=%ld", | 
|  | 4680 | l->min_time); | 
|  | 4681 |  | 
|  | 4682 | if (l->min_pid != l->max_pid) | 
|  | 4683 | len += sprintf(buf + len, " pid=%ld-%ld", | 
|  | 4684 | l->min_pid, l->max_pid); | 
|  | 4685 | else | 
|  | 4686 | len += sprintf(buf + len, " pid=%ld", | 
|  | 4687 | l->min_pid); | 
|  | 4688 |  | 
|  | 4689 | if (num_online_cpus() > 1 && | 
|  | 4690 | !cpumask_empty(to_cpumask(l->cpus)) && | 
|  | 4691 | len < PAGE_SIZE - 60) | 
|  | 4692 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | 
|  | 4693 | " cpus=%*pbl", | 
|  | 4694 | cpumask_pr_args(to_cpumask(l->cpus))); | 
|  | 4695 |  | 
|  | 4696 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && | 
|  | 4697 | len < PAGE_SIZE - 60) | 
|  | 4698 | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | 
|  | 4699 | " nodes=%*pbl", | 
|  | 4700 | nodemask_pr_args(&l->nodes)); | 
|  | 4701 |  | 
|  | 4702 | len += sprintf(buf + len, "\n"); | 
|  | 4703 | } | 
|  | 4704 |  | 
|  | 4705 | free_loc_track(&t); | 
|  | 4706 | kfree(map); | 
|  | 4707 | if (!t.count) | 
|  | 4708 | len += sprintf(buf, "No data\n"); | 
|  | 4709 | return len; | 
|  | 4710 | } | 
|  | 4711 | #endif | 
|  | 4712 |  | 
|  | 4713 | #ifdef SLUB_RESILIENCY_TEST | 
|  | 4714 | static void __init resiliency_test(void) | 
|  | 4715 | { | 
|  | 4716 | u8 *p; | 
|  | 4717 | int type = KMALLOC_NORMAL; | 
|  | 4718 |  | 
|  | 4719 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); | 
|  | 4720 |  | 
|  | 4721 | pr_err("SLUB resiliency testing\n"); | 
|  | 4722 | pr_err("-----------------------\n"); | 
|  | 4723 | pr_err("A. Corruption after allocation\n"); | 
|  | 4724 |  | 
|  | 4725 | p = kzalloc(16, GFP_KERNEL); | 
|  | 4726 | p[16] = 0x12; | 
|  | 4727 | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", | 
|  | 4728 | p + 16); | 
|  | 4729 |  | 
|  | 4730 | validate_slab_cache(kmalloc_caches[type][4]); | 
|  | 4731 |  | 
|  | 4732 | /* Hmmm... The next two are dangerous */ | 
|  | 4733 | p = kzalloc(32, GFP_KERNEL); | 
|  | 4734 | p[32 + sizeof(void *)] = 0x34; | 
|  | 4735 | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", | 
|  | 4736 | p); | 
|  | 4737 | pr_err("If allocated object is overwritten then not detectable\n\n"); | 
|  | 4738 |  | 
|  | 4739 | validate_slab_cache(kmalloc_caches[type][5]); | 
|  | 4740 | p = kzalloc(64, GFP_KERNEL); | 
|  | 4741 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
|  | 4742 | *p = 0x56; | 
|  | 4743 | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
|  | 4744 | p); | 
|  | 4745 | pr_err("If allocated object is overwritten then not detectable\n\n"); | 
|  | 4746 | validate_slab_cache(kmalloc_caches[type][6]); | 
|  | 4747 |  | 
|  | 4748 | pr_err("\nB. Corruption after free\n"); | 
|  | 4749 | p = kzalloc(128, GFP_KERNEL); | 
|  | 4750 | kfree(p); | 
|  | 4751 | *p = 0x78; | 
|  | 4752 | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
|  | 4753 | validate_slab_cache(kmalloc_caches[type][7]); | 
|  | 4754 |  | 
|  | 4755 | p = kzalloc(256, GFP_KERNEL); | 
|  | 4756 | kfree(p); | 
|  | 4757 | p[50] = 0x9a; | 
|  | 4758 | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | 
|  | 4759 | validate_slab_cache(kmalloc_caches[type][8]); | 
|  | 4760 |  | 
|  | 4761 | p = kzalloc(512, GFP_KERNEL); | 
|  | 4762 | kfree(p); | 
|  | 4763 | p[512] = 0xab; | 
|  | 4764 | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
|  | 4765 | validate_slab_cache(kmalloc_caches[type][9]); | 
|  | 4766 | } | 
|  | 4767 | #else | 
|  | 4768 | #ifdef CONFIG_SYSFS | 
|  | 4769 | static void resiliency_test(void) {}; | 
|  | 4770 | #endif | 
|  | 4771 | #endif | 
|  | 4772 |  | 
|  | 4773 | #ifdef CONFIG_SYSFS | 
|  | 4774 | enum slab_stat_type { | 
|  | 4775 | SL_ALL,			/* All slabs */ | 
|  | 4776 | SL_PARTIAL,		/* Only partially allocated slabs */ | 
|  | 4777 | SL_CPU,			/* Only slabs used for cpu caches */ | 
|  | 4778 | SL_OBJECTS,		/* Determine allocated objects not slabs */ | 
|  | 4779 | SL_TOTAL		/* Determine object capacity not slabs */ | 
|  | 4780 | }; | 
|  | 4781 |  | 
|  | 4782 | #define SO_ALL		(1 << SL_ALL) | 
|  | 4783 | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
|  | 4784 | #define SO_CPU		(1 << SL_CPU) | 
|  | 4785 | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
|  | 4786 | #define SO_TOTAL	(1 << SL_TOTAL) | 
|  | 4787 |  | 
|  | 4788 | #ifdef CONFIG_MEMCG | 
|  | 4789 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | 
|  | 4790 |  | 
|  | 4791 | static int __init setup_slub_memcg_sysfs(char *str) | 
|  | 4792 | { | 
|  | 4793 | int v; | 
|  | 4794 |  | 
|  | 4795 | if (get_option(&str, &v) > 0) | 
|  | 4796 | memcg_sysfs_enabled = v; | 
|  | 4797 |  | 
|  | 4798 | return 1; | 
|  | 4799 | } | 
|  | 4800 |  | 
|  | 4801 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | 
|  | 4802 | #endif | 
|  | 4803 |  | 
|  | 4804 | static ssize_t show_slab_objects(struct kmem_cache *s, | 
|  | 4805 | char *buf, unsigned long flags) | 
|  | 4806 | { | 
|  | 4807 | unsigned long total = 0; | 
|  | 4808 | int node; | 
|  | 4809 | int x; | 
|  | 4810 | unsigned long *nodes; | 
|  | 4811 |  | 
|  | 4812 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); | 
|  | 4813 | if (!nodes) | 
|  | 4814 | return -ENOMEM; | 
|  | 4815 |  | 
|  | 4816 | if (flags & SO_CPU) { | 
|  | 4817 | int cpu; | 
|  | 4818 |  | 
|  | 4819 | for_each_possible_cpu(cpu) { | 
|  | 4820 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, | 
|  | 4821 | cpu); | 
|  | 4822 | int node; | 
|  | 4823 | struct page *page; | 
|  | 4824 |  | 
|  | 4825 | page = READ_ONCE(c->page); | 
|  | 4826 | if (!page) | 
|  | 4827 | continue; | 
|  | 4828 |  | 
|  | 4829 | node = page_to_nid(page); | 
|  | 4830 | if (flags & SO_TOTAL) | 
|  | 4831 | x = page->objects; | 
|  | 4832 | else if (flags & SO_OBJECTS) | 
|  | 4833 | x = page->inuse; | 
|  | 4834 | else | 
|  | 4835 | x = 1; | 
|  | 4836 |  | 
|  | 4837 | total += x; | 
|  | 4838 | nodes[node] += x; | 
|  | 4839 |  | 
|  | 4840 | page = slub_percpu_partial_read_once(c); | 
|  | 4841 | if (page) { | 
|  | 4842 | node = page_to_nid(page); | 
|  | 4843 | if (flags & SO_TOTAL) | 
|  | 4844 | WARN_ON_ONCE(1); | 
|  | 4845 | else if (flags & SO_OBJECTS) | 
|  | 4846 | WARN_ON_ONCE(1); | 
|  | 4847 | else | 
|  | 4848 | x = page->pages; | 
|  | 4849 | total += x; | 
|  | 4850 | nodes[node] += x; | 
|  | 4851 | } | 
|  | 4852 | } | 
|  | 4853 | } | 
|  | 4854 |  | 
|  | 4855 | /* | 
|  | 4856 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | 
|  | 4857 | * already held which will conflict with an existing lock order: | 
|  | 4858 | * | 
|  | 4859 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | 
|  | 4860 | * | 
|  | 4861 | * We don't really need mem_hotplug_lock (to hold off | 
|  | 4862 | * slab_mem_going_offline_callback) here because slab's memory hot | 
|  | 4863 | * unplug code doesn't destroy the kmem_cache->node[] data. | 
|  | 4864 | */ | 
|  | 4865 |  | 
|  | 4866 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 4867 | if (flags & SO_ALL) { | 
|  | 4868 | struct kmem_cache_node *n; | 
|  | 4869 |  | 
|  | 4870 | for_each_kmem_cache_node(s, node, n) { | 
|  | 4871 |  | 
|  | 4872 | if (flags & SO_TOTAL) | 
|  | 4873 | x = atomic_long_read(&n->total_objects); | 
|  | 4874 | else if (flags & SO_OBJECTS) | 
|  | 4875 | x = atomic_long_read(&n->total_objects) - | 
|  | 4876 | count_partial(n, count_free); | 
|  | 4877 | else | 
|  | 4878 | x = atomic_long_read(&n->nr_slabs); | 
|  | 4879 | total += x; | 
|  | 4880 | nodes[node] += x; | 
|  | 4881 | } | 
|  | 4882 |  | 
|  | 4883 | } else | 
|  | 4884 | #endif | 
|  | 4885 | if (flags & SO_PARTIAL) { | 
|  | 4886 | struct kmem_cache_node *n; | 
|  | 4887 |  | 
|  | 4888 | for_each_kmem_cache_node(s, node, n) { | 
|  | 4889 | if (flags & SO_TOTAL) | 
|  | 4890 | x = count_partial(n, count_total); | 
|  | 4891 | else if (flags & SO_OBJECTS) | 
|  | 4892 | x = count_partial(n, count_inuse); | 
|  | 4893 | else | 
|  | 4894 | x = n->nr_partial; | 
|  | 4895 | total += x; | 
|  | 4896 | nodes[node] += x; | 
|  | 4897 | } | 
|  | 4898 | } | 
|  | 4899 | x = sprintf(buf, "%lu", total); | 
|  | 4900 | #ifdef CONFIG_NUMA | 
|  | 4901 | for (node = 0; node < nr_node_ids; node++) | 
|  | 4902 | if (nodes[node]) | 
|  | 4903 | x += sprintf(buf + x, " N%d=%lu", | 
|  | 4904 | node, nodes[node]); | 
|  | 4905 | #endif | 
|  | 4906 | kfree(nodes); | 
|  | 4907 | return x + sprintf(buf + x, "\n"); | 
|  | 4908 | } | 
|  | 4909 |  | 
|  | 4910 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 4911 | static int any_slab_objects(struct kmem_cache *s) | 
|  | 4912 | { | 
|  | 4913 | int node; | 
|  | 4914 | struct kmem_cache_node *n; | 
|  | 4915 |  | 
|  | 4916 | for_each_kmem_cache_node(s, node, n) | 
|  | 4917 | if (atomic_long_read(&n->total_objects)) | 
|  | 4918 | return 1; | 
|  | 4919 |  | 
|  | 4920 | return 0; | 
|  | 4921 | } | 
|  | 4922 | #endif | 
|  | 4923 |  | 
|  | 4924 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
|  | 4925 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) | 
|  | 4926 |  | 
|  | 4927 | struct slab_attribute { | 
|  | 4928 | struct attribute attr; | 
|  | 4929 | ssize_t (*show)(struct kmem_cache *s, char *buf); | 
|  | 4930 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
|  | 4931 | }; | 
|  | 4932 |  | 
|  | 4933 | #define SLAB_ATTR_RO(_name) \ | 
|  | 4934 | static struct slab_attribute _name##_attr = \ | 
|  | 4935 | __ATTR(_name, 0400, _name##_show, NULL) | 
|  | 4936 |  | 
|  | 4937 | #define SLAB_ATTR(_name) \ | 
|  | 4938 | static struct slab_attribute _name##_attr =  \ | 
|  | 4939 | __ATTR(_name, 0600, _name##_show, _name##_store) | 
|  | 4940 |  | 
|  | 4941 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
|  | 4942 | { | 
|  | 4943 | return sprintf(buf, "%u\n", s->size); | 
|  | 4944 | } | 
|  | 4945 | SLAB_ATTR_RO(slab_size); | 
|  | 4946 |  | 
|  | 4947 | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
|  | 4948 | { | 
|  | 4949 | return sprintf(buf, "%u\n", s->align); | 
|  | 4950 | } | 
|  | 4951 | SLAB_ATTR_RO(align); | 
|  | 4952 |  | 
|  | 4953 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
|  | 4954 | { | 
|  | 4955 | return sprintf(buf, "%u\n", s->object_size); | 
|  | 4956 | } | 
|  | 4957 | SLAB_ATTR_RO(object_size); | 
|  | 4958 |  | 
|  | 4959 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
|  | 4960 | { | 
|  | 4961 | return sprintf(buf, "%u\n", oo_objects(s->oo)); | 
|  | 4962 | } | 
|  | 4963 | SLAB_ATTR_RO(objs_per_slab); | 
|  | 4964 |  | 
|  | 4965 | static ssize_t order_store(struct kmem_cache *s, | 
|  | 4966 | const char *buf, size_t length) | 
|  | 4967 | { | 
|  | 4968 | unsigned int order; | 
|  | 4969 | int err; | 
|  | 4970 |  | 
|  | 4971 | err = kstrtouint(buf, 10, &order); | 
|  | 4972 | if (err) | 
|  | 4973 | return err; | 
|  | 4974 |  | 
|  | 4975 | if (order > slub_max_order || order < slub_min_order) | 
|  | 4976 | return -EINVAL; | 
|  | 4977 |  | 
|  | 4978 | calculate_sizes(s, order); | 
|  | 4979 | return length; | 
|  | 4980 | } | 
|  | 4981 |  | 
|  | 4982 | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
|  | 4983 | { | 
|  | 4984 | return sprintf(buf, "%u\n", oo_order(s->oo)); | 
|  | 4985 | } | 
|  | 4986 | SLAB_ATTR(order); | 
|  | 4987 |  | 
|  | 4988 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | 
|  | 4989 | { | 
|  | 4990 | return sprintf(buf, "%lu\n", s->min_partial); | 
|  | 4991 | } | 
|  | 4992 |  | 
|  | 4993 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | 
|  | 4994 | size_t length) | 
|  | 4995 | { | 
|  | 4996 | unsigned long min; | 
|  | 4997 | int err; | 
|  | 4998 |  | 
|  | 4999 | err = kstrtoul(buf, 10, &min); | 
|  | 5000 | if (err) | 
|  | 5001 | return err; | 
|  | 5002 |  | 
|  | 5003 | set_min_partial(s, min); | 
|  | 5004 | return length; | 
|  | 5005 | } | 
|  | 5006 | SLAB_ATTR(min_partial); | 
|  | 5007 |  | 
|  | 5008 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) | 
|  | 5009 | { | 
|  | 5010 | return sprintf(buf, "%u\n", slub_cpu_partial(s)); | 
|  | 5011 | } | 
|  | 5012 |  | 
|  | 5013 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | 
|  | 5014 | size_t length) | 
|  | 5015 | { | 
|  | 5016 | unsigned int objects; | 
|  | 5017 | int err; | 
|  | 5018 |  | 
|  | 5019 | err = kstrtouint(buf, 10, &objects); | 
|  | 5020 | if (err) | 
|  | 5021 | return err; | 
|  | 5022 | if (objects && !kmem_cache_has_cpu_partial(s)) | 
|  | 5023 | return -EINVAL; | 
|  | 5024 |  | 
|  | 5025 | slub_set_cpu_partial(s, objects); | 
|  | 5026 | flush_all(s); | 
|  | 5027 | return length; | 
|  | 5028 | } | 
|  | 5029 | SLAB_ATTR(cpu_partial); | 
|  | 5030 |  | 
|  | 5031 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
|  | 5032 | { | 
|  | 5033 | if (!s->ctor) | 
|  | 5034 | return 0; | 
|  | 5035 | return sprintf(buf, "%pS\n", s->ctor); | 
|  | 5036 | } | 
|  | 5037 | SLAB_ATTR_RO(ctor); | 
|  | 5038 |  | 
|  | 5039 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
|  | 5040 | { | 
|  | 5041 | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); | 
|  | 5042 | } | 
|  | 5043 | SLAB_ATTR_RO(aliases); | 
|  | 5044 |  | 
|  | 5045 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
|  | 5046 | { | 
|  | 5047 | return show_slab_objects(s, buf, SO_PARTIAL); | 
|  | 5048 | } | 
|  | 5049 | SLAB_ATTR_RO(partial); | 
|  | 5050 |  | 
|  | 5051 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
|  | 5052 | { | 
|  | 5053 | return show_slab_objects(s, buf, SO_CPU); | 
|  | 5054 | } | 
|  | 5055 | SLAB_ATTR_RO(cpu_slabs); | 
|  | 5056 |  | 
|  | 5057 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
|  | 5058 | { | 
|  | 5059 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 
|  | 5060 | } | 
|  | 5061 | SLAB_ATTR_RO(objects); | 
|  | 5062 |  | 
|  | 5063 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 
|  | 5064 | { | 
|  | 5065 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 
|  | 5066 | } | 
|  | 5067 | SLAB_ATTR_RO(objects_partial); | 
|  | 5068 |  | 
|  | 5069 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) | 
|  | 5070 | { | 
|  | 5071 | int objects = 0; | 
|  | 5072 | int pages = 0; | 
|  | 5073 | int cpu; | 
|  | 5074 | int len; | 
|  | 5075 |  | 
|  | 5076 | for_each_online_cpu(cpu) { | 
|  | 5077 | struct page *page; | 
|  | 5078 |  | 
|  | 5079 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
|  | 5080 |  | 
|  | 5081 | if (page) { | 
|  | 5082 | pages += page->pages; | 
|  | 5083 | objects += page->pobjects; | 
|  | 5084 | } | 
|  | 5085 | } | 
|  | 5086 |  | 
|  | 5087 | len = sprintf(buf, "%d(%d)", objects, pages); | 
|  | 5088 |  | 
|  | 5089 | #ifdef CONFIG_SMP | 
|  | 5090 | for_each_online_cpu(cpu) { | 
|  | 5091 | struct page *page; | 
|  | 5092 |  | 
|  | 5093 | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
|  | 5094 |  | 
|  | 5095 | if (page && len < PAGE_SIZE - 20) | 
|  | 5096 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | 
|  | 5097 | page->pobjects, page->pages); | 
|  | 5098 | } | 
|  | 5099 | #endif | 
|  | 5100 | return len + sprintf(buf + len, "\n"); | 
|  | 5101 | } | 
|  | 5102 | SLAB_ATTR_RO(slabs_cpu_partial); | 
|  | 5103 |  | 
|  | 5104 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
|  | 5105 | { | 
|  | 5106 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
|  | 5107 | } | 
|  | 5108 |  | 
|  | 5109 | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
|  | 5110 | const char *buf, size_t length) | 
|  | 5111 | { | 
|  | 5112 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
|  | 5113 | if (buf[0] == '1') | 
|  | 5114 | s->flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | 5115 | return length; | 
|  | 5116 | } | 
|  | 5117 | SLAB_ATTR(reclaim_account); | 
|  | 5118 |  | 
|  | 5119 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
|  | 5120 | { | 
|  | 5121 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
|  | 5122 | } | 
|  | 5123 | SLAB_ATTR_RO(hwcache_align); | 
|  | 5124 |  | 
|  | 5125 | #ifdef CONFIG_ZONE_DMA | 
|  | 5126 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
|  | 5127 | { | 
|  | 5128 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
|  | 5129 | } | 
|  | 5130 | SLAB_ATTR_RO(cache_dma); | 
|  | 5131 | #endif | 
|  | 5132 |  | 
|  | 5133 | #ifdef CONFIG_ZONE_DMA32 | 
|  | 5134 | static ssize_t cache_dma32_show(struct kmem_cache *s, char *buf) | 
|  | 5135 | { | 
|  | 5136 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA32)); | 
|  | 5137 | } | 
|  | 5138 | SLAB_ATTR_RO(cache_dma32); | 
|  | 5139 | #endif | 
|  | 5140 |  | 
|  | 5141 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) | 
|  | 5142 | { | 
|  | 5143 | return sprintf(buf, "%u\n", s->usersize); | 
|  | 5144 | } | 
|  | 5145 | SLAB_ATTR_RO(usersize); | 
|  | 5146 |  | 
|  | 5147 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
|  | 5148 | { | 
|  | 5149 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); | 
|  | 5150 | } | 
|  | 5151 | SLAB_ATTR_RO(destroy_by_rcu); | 
|  | 5152 |  | 
|  | 5153 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 5154 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
|  | 5155 | { | 
|  | 5156 | return show_slab_objects(s, buf, SO_ALL); | 
|  | 5157 | } | 
|  | 5158 | SLAB_ATTR_RO(slabs); | 
|  | 5159 |  | 
|  | 5160 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 
|  | 5161 | { | 
|  | 5162 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 
|  | 5163 | } | 
|  | 5164 | SLAB_ATTR_RO(total_objects); | 
|  | 5165 |  | 
|  | 5166 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
|  | 5167 | { | 
|  | 5168 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); | 
|  | 5169 | } | 
|  | 5170 |  | 
|  | 5171 | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
|  | 5172 | const char *buf, size_t length) | 
|  | 5173 | { | 
|  | 5174 | s->flags &= ~SLAB_CONSISTENCY_CHECKS; | 
|  | 5175 | if (buf[0] == '1') { | 
|  | 5176 | s->flags &= ~__CMPXCHG_DOUBLE; | 
|  | 5177 | s->flags |= SLAB_CONSISTENCY_CHECKS; | 
|  | 5178 | } | 
|  | 5179 | return length; | 
|  | 5180 | } | 
|  | 5181 | SLAB_ATTR(sanity_checks); | 
|  | 5182 |  | 
|  | 5183 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
|  | 5184 | { | 
|  | 5185 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
|  | 5186 | } | 
|  | 5187 |  | 
|  | 5188 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
|  | 5189 | size_t length) | 
|  | 5190 | { | 
|  | 5191 | /* | 
|  | 5192 | * Tracing a merged cache is going to give confusing results | 
|  | 5193 | * as well as cause other issues like converting a mergeable | 
|  | 5194 | * cache into an umergeable one. | 
|  | 5195 | */ | 
|  | 5196 | if (s->refcount > 1) | 
|  | 5197 | return -EINVAL; | 
|  | 5198 |  | 
|  | 5199 | s->flags &= ~SLAB_TRACE; | 
|  | 5200 | if (buf[0] == '1') { | 
|  | 5201 | s->flags &= ~__CMPXCHG_DOUBLE; | 
|  | 5202 | s->flags |= SLAB_TRACE; | 
|  | 5203 | } | 
|  | 5204 | return length; | 
|  | 5205 | } | 
|  | 5206 | SLAB_ATTR(trace); | 
|  | 5207 |  | 
|  | 5208 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
|  | 5209 | { | 
|  | 5210 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
|  | 5211 | } | 
|  | 5212 |  | 
|  | 5213 | static ssize_t red_zone_store(struct kmem_cache *s, | 
|  | 5214 | const char *buf, size_t length) | 
|  | 5215 | { | 
|  | 5216 | if (any_slab_objects(s)) | 
|  | 5217 | return -EBUSY; | 
|  | 5218 |  | 
|  | 5219 | s->flags &= ~SLAB_RED_ZONE; | 
|  | 5220 | if (buf[0] == '1') { | 
|  | 5221 | s->flags |= SLAB_RED_ZONE; | 
|  | 5222 | } | 
|  | 5223 | calculate_sizes(s, -1); | 
|  | 5224 | return length; | 
|  | 5225 | } | 
|  | 5226 | SLAB_ATTR(red_zone); | 
|  | 5227 |  | 
|  | 5228 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
|  | 5229 | { | 
|  | 5230 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
|  | 5231 | } | 
|  | 5232 |  | 
|  | 5233 | static ssize_t poison_store(struct kmem_cache *s, | 
|  | 5234 | const char *buf, size_t length) | 
|  | 5235 | { | 
|  | 5236 | if (any_slab_objects(s)) | 
|  | 5237 | return -EBUSY; | 
|  | 5238 |  | 
|  | 5239 | s->flags &= ~SLAB_POISON; | 
|  | 5240 | if (buf[0] == '1') { | 
|  | 5241 | s->flags |= SLAB_POISON; | 
|  | 5242 | } | 
|  | 5243 | calculate_sizes(s, -1); | 
|  | 5244 | return length; | 
|  | 5245 | } | 
|  | 5246 | SLAB_ATTR(poison); | 
|  | 5247 |  | 
|  | 5248 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
|  | 5249 | { | 
|  | 5250 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
|  | 5251 | } | 
|  | 5252 |  | 
|  | 5253 | static ssize_t store_user_store(struct kmem_cache *s, | 
|  | 5254 | const char *buf, size_t length) | 
|  | 5255 | { | 
|  | 5256 | if (any_slab_objects(s)) | 
|  | 5257 | return -EBUSY; | 
|  | 5258 |  | 
|  | 5259 | s->flags &= ~SLAB_STORE_USER; | 
|  | 5260 | if (buf[0] == '1') { | 
|  | 5261 | s->flags &= ~__CMPXCHG_DOUBLE; | 
|  | 5262 | s->flags |= SLAB_STORE_USER; | 
|  | 5263 | } | 
|  | 5264 | calculate_sizes(s, -1); | 
|  | 5265 | return length; | 
|  | 5266 | } | 
|  | 5267 | SLAB_ATTR(store_user); | 
|  | 5268 |  | 
|  | 5269 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
|  | 5270 | { | 
|  | 5271 | return 0; | 
|  | 5272 | } | 
|  | 5273 |  | 
|  | 5274 | static ssize_t validate_store(struct kmem_cache *s, | 
|  | 5275 | const char *buf, size_t length) | 
|  | 5276 | { | 
|  | 5277 | int ret = -EINVAL; | 
|  | 5278 |  | 
|  | 5279 | if (buf[0] == '1') { | 
|  | 5280 | ret = validate_slab_cache(s); | 
|  | 5281 | if (ret >= 0) | 
|  | 5282 | ret = length; | 
|  | 5283 | } | 
|  | 5284 | return ret; | 
|  | 5285 | } | 
|  | 5286 | SLAB_ATTR(validate); | 
|  | 5287 |  | 
|  | 5288 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
|  | 5289 | { | 
|  | 5290 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 5291 | return -ENOSYS; | 
|  | 5292 | return list_locations(s, buf, TRACK_ALLOC); | 
|  | 5293 | } | 
|  | 5294 | SLAB_ATTR_RO(alloc_calls); | 
|  | 5295 |  | 
|  | 5296 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
|  | 5297 | { | 
|  | 5298 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 5299 | return -ENOSYS; | 
|  | 5300 | return list_locations(s, buf, TRACK_FREE); | 
|  | 5301 | } | 
|  | 5302 | SLAB_ATTR_RO(free_calls); | 
|  | 5303 | #endif /* CONFIG_SLUB_DEBUG */ | 
|  | 5304 |  | 
|  | 5305 | #ifdef CONFIG_FAILSLAB | 
|  | 5306 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | 
|  | 5307 | { | 
|  | 5308 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | 
|  | 5309 | } | 
|  | 5310 |  | 
|  | 5311 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | 
|  | 5312 | size_t length) | 
|  | 5313 | { | 
|  | 5314 | if (s->refcount > 1) | 
|  | 5315 | return -EINVAL; | 
|  | 5316 |  | 
|  | 5317 | s->flags &= ~SLAB_FAILSLAB; | 
|  | 5318 | if (buf[0] == '1') | 
|  | 5319 | s->flags |= SLAB_FAILSLAB; | 
|  | 5320 | return length; | 
|  | 5321 | } | 
|  | 5322 | SLAB_ATTR(failslab); | 
|  | 5323 | #endif | 
|  | 5324 |  | 
|  | 5325 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
|  | 5326 | { | 
|  | 5327 | return 0; | 
|  | 5328 | } | 
|  | 5329 |  | 
|  | 5330 | static ssize_t shrink_store(struct kmem_cache *s, | 
|  | 5331 | const char *buf, size_t length) | 
|  | 5332 | { | 
|  | 5333 | if (buf[0] == '1') | 
|  | 5334 | kmem_cache_shrink(s); | 
|  | 5335 | else | 
|  | 5336 | return -EINVAL; | 
|  | 5337 | return length; | 
|  | 5338 | } | 
|  | 5339 | SLAB_ATTR(shrink); | 
|  | 5340 |  | 
|  | 5341 | #ifdef CONFIG_NUMA | 
|  | 5342 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 
|  | 5343 | { | 
|  | 5344 | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); | 
|  | 5345 | } | 
|  | 5346 |  | 
|  | 5347 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 
|  | 5348 | const char *buf, size_t length) | 
|  | 5349 | { | 
|  | 5350 | unsigned int ratio; | 
|  | 5351 | int err; | 
|  | 5352 |  | 
|  | 5353 | err = kstrtouint(buf, 10, &ratio); | 
|  | 5354 | if (err) | 
|  | 5355 | return err; | 
|  | 5356 | if (ratio > 100) | 
|  | 5357 | return -ERANGE; | 
|  | 5358 |  | 
|  | 5359 | s->remote_node_defrag_ratio = ratio * 10; | 
|  | 5360 |  | 
|  | 5361 | return length; | 
|  | 5362 | } | 
|  | 5363 | SLAB_ATTR(remote_node_defrag_ratio); | 
|  | 5364 | #endif | 
|  | 5365 |  | 
|  | 5366 | #ifdef CONFIG_SLUB_STATS | 
|  | 5367 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 
|  | 5368 | { | 
|  | 5369 | unsigned long sum  = 0; | 
|  | 5370 | int cpu; | 
|  | 5371 | int len; | 
|  | 5372 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); | 
|  | 5373 |  | 
|  | 5374 | if (!data) | 
|  | 5375 | return -ENOMEM; | 
|  | 5376 |  | 
|  | 5377 | for_each_online_cpu(cpu) { | 
|  | 5378 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; | 
|  | 5379 |  | 
|  | 5380 | data[cpu] = x; | 
|  | 5381 | sum += x; | 
|  | 5382 | } | 
|  | 5383 |  | 
|  | 5384 | len = sprintf(buf, "%lu", sum); | 
|  | 5385 |  | 
|  | 5386 | #ifdef CONFIG_SMP | 
|  | 5387 | for_each_online_cpu(cpu) { | 
|  | 5388 | if (data[cpu] && len < PAGE_SIZE - 20) | 
|  | 5389 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); | 
|  | 5390 | } | 
|  | 5391 | #endif | 
|  | 5392 | kfree(data); | 
|  | 5393 | return len + sprintf(buf + len, "\n"); | 
|  | 5394 | } | 
|  | 5395 |  | 
|  | 5396 | static void clear_stat(struct kmem_cache *s, enum stat_item si) | 
|  | 5397 | { | 
|  | 5398 | int cpu; | 
|  | 5399 |  | 
|  | 5400 | for_each_online_cpu(cpu) | 
|  | 5401 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; | 
|  | 5402 | } | 
|  | 5403 |  | 
|  | 5404 | #define STAT_ATTR(si, text) 					\ | 
|  | 5405 | static ssize_t text##_show(struct kmem_cache *s, char *buf)	\ | 
|  | 5406 | {								\ | 
|  | 5407 | return show_stat(s, buf, si);				\ | 
|  | 5408 | }								\ | 
|  | 5409 | static ssize_t text##_store(struct kmem_cache *s,		\ | 
|  | 5410 | const char *buf, size_t length)	\ | 
|  | 5411 | {								\ | 
|  | 5412 | if (buf[0] != '0')					\ | 
|  | 5413 | return -EINVAL;					\ | 
|  | 5414 | clear_stat(s, si);					\ | 
|  | 5415 | return length;						\ | 
|  | 5416 | }								\ | 
|  | 5417 | SLAB_ATTR(text);						\ | 
|  | 5418 |  | 
|  | 5419 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 
|  | 5420 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 
|  | 5421 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 
|  | 5422 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 
|  | 5423 | STAT_ATTR(FREE_FROZEN, free_frozen); | 
|  | 5424 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 
|  | 5425 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 
|  | 5426 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 
|  | 5427 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 
|  | 5428 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 
|  | 5429 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); | 
|  | 5430 | STAT_ATTR(FREE_SLAB, free_slab); | 
|  | 5431 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 
|  | 5432 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 
|  | 5433 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 
|  | 5434 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 
|  | 5435 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 
|  | 5436 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 
|  | 5437 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); | 
|  | 5438 | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 
|  | 5439 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); | 
|  | 5440 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | 
|  | 5441 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); | 
|  | 5442 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | 
|  | 5443 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); | 
|  | 5444 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | 
|  | 5445 | #endif | 
|  | 5446 |  | 
|  | 5447 | static struct attribute *slab_attrs[] = { | 
|  | 5448 | &slab_size_attr.attr, | 
|  | 5449 | &object_size_attr.attr, | 
|  | 5450 | &objs_per_slab_attr.attr, | 
|  | 5451 | &order_attr.attr, | 
|  | 5452 | &min_partial_attr.attr, | 
|  | 5453 | &cpu_partial_attr.attr, | 
|  | 5454 | &objects_attr.attr, | 
|  | 5455 | &objects_partial_attr.attr, | 
|  | 5456 | &partial_attr.attr, | 
|  | 5457 | &cpu_slabs_attr.attr, | 
|  | 5458 | &ctor_attr.attr, | 
|  | 5459 | &aliases_attr.attr, | 
|  | 5460 | &align_attr.attr, | 
|  | 5461 | &hwcache_align_attr.attr, | 
|  | 5462 | &reclaim_account_attr.attr, | 
|  | 5463 | &destroy_by_rcu_attr.attr, | 
|  | 5464 | &shrink_attr.attr, | 
|  | 5465 | &slabs_cpu_partial_attr.attr, | 
|  | 5466 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 5467 | &total_objects_attr.attr, | 
|  | 5468 | &slabs_attr.attr, | 
|  | 5469 | &sanity_checks_attr.attr, | 
|  | 5470 | &trace_attr.attr, | 
|  | 5471 | &red_zone_attr.attr, | 
|  | 5472 | &poison_attr.attr, | 
|  | 5473 | &store_user_attr.attr, | 
|  | 5474 | &validate_attr.attr, | 
|  | 5475 | &alloc_calls_attr.attr, | 
|  | 5476 | &free_calls_attr.attr, | 
|  | 5477 | #endif | 
|  | 5478 | #ifdef CONFIG_ZONE_DMA | 
|  | 5479 | &cache_dma_attr.attr, | 
|  | 5480 | #endif | 
|  | 5481 | #ifdef CONFIG_ZONE_DMA32 | 
|  | 5482 | &cache_dma32_attr.attr, | 
|  | 5483 | #endif | 
|  | 5484 | #ifdef CONFIG_NUMA | 
|  | 5485 | &remote_node_defrag_ratio_attr.attr, | 
|  | 5486 | #endif | 
|  | 5487 | #ifdef CONFIG_SLUB_STATS | 
|  | 5488 | &alloc_fastpath_attr.attr, | 
|  | 5489 | &alloc_slowpath_attr.attr, | 
|  | 5490 | &free_fastpath_attr.attr, | 
|  | 5491 | &free_slowpath_attr.attr, | 
|  | 5492 | &free_frozen_attr.attr, | 
|  | 5493 | &free_add_partial_attr.attr, | 
|  | 5494 | &free_remove_partial_attr.attr, | 
|  | 5495 | &alloc_from_partial_attr.attr, | 
|  | 5496 | &alloc_slab_attr.attr, | 
|  | 5497 | &alloc_refill_attr.attr, | 
|  | 5498 | &alloc_node_mismatch_attr.attr, | 
|  | 5499 | &free_slab_attr.attr, | 
|  | 5500 | &cpuslab_flush_attr.attr, | 
|  | 5501 | &deactivate_full_attr.attr, | 
|  | 5502 | &deactivate_empty_attr.attr, | 
|  | 5503 | &deactivate_to_head_attr.attr, | 
|  | 5504 | &deactivate_to_tail_attr.attr, | 
|  | 5505 | &deactivate_remote_frees_attr.attr, | 
|  | 5506 | &deactivate_bypass_attr.attr, | 
|  | 5507 | &order_fallback_attr.attr, | 
|  | 5508 | &cmpxchg_double_fail_attr.attr, | 
|  | 5509 | &cmpxchg_double_cpu_fail_attr.attr, | 
|  | 5510 | &cpu_partial_alloc_attr.attr, | 
|  | 5511 | &cpu_partial_free_attr.attr, | 
|  | 5512 | &cpu_partial_node_attr.attr, | 
|  | 5513 | &cpu_partial_drain_attr.attr, | 
|  | 5514 | #endif | 
|  | 5515 | #ifdef CONFIG_FAILSLAB | 
|  | 5516 | &failslab_attr.attr, | 
|  | 5517 | #endif | 
|  | 5518 | &usersize_attr.attr, | 
|  | 5519 |  | 
|  | 5520 | NULL | 
|  | 5521 | }; | 
|  | 5522 |  | 
|  | 5523 | static const struct attribute_group slab_attr_group = { | 
|  | 5524 | .attrs = slab_attrs, | 
|  | 5525 | }; | 
|  | 5526 |  | 
|  | 5527 | static ssize_t slab_attr_show(struct kobject *kobj, | 
|  | 5528 | struct attribute *attr, | 
|  | 5529 | char *buf) | 
|  | 5530 | { | 
|  | 5531 | struct slab_attribute *attribute; | 
|  | 5532 | struct kmem_cache *s; | 
|  | 5533 | int err; | 
|  | 5534 |  | 
|  | 5535 | attribute = to_slab_attr(attr); | 
|  | 5536 | s = to_slab(kobj); | 
|  | 5537 |  | 
|  | 5538 | if (!attribute->show) | 
|  | 5539 | return -EIO; | 
|  | 5540 |  | 
|  | 5541 | err = attribute->show(s, buf); | 
|  | 5542 |  | 
|  | 5543 | return err; | 
|  | 5544 | } | 
|  | 5545 |  | 
|  | 5546 | static ssize_t slab_attr_store(struct kobject *kobj, | 
|  | 5547 | struct attribute *attr, | 
|  | 5548 | const char *buf, size_t len) | 
|  | 5549 | { | 
|  | 5550 | struct slab_attribute *attribute; | 
|  | 5551 | struct kmem_cache *s; | 
|  | 5552 | int err; | 
|  | 5553 |  | 
|  | 5554 | attribute = to_slab_attr(attr); | 
|  | 5555 | s = to_slab(kobj); | 
|  | 5556 |  | 
|  | 5557 | if (!attribute->store) | 
|  | 5558 | return -EIO; | 
|  | 5559 |  | 
|  | 5560 | err = attribute->store(s, buf, len); | 
|  | 5561 | #ifdef CONFIG_MEMCG | 
|  | 5562 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { | 
|  | 5563 | struct kmem_cache *c; | 
|  | 5564 |  | 
|  | 5565 | mutex_lock(&slab_mutex); | 
|  | 5566 | if (s->max_attr_size < len) | 
|  | 5567 | s->max_attr_size = len; | 
|  | 5568 |  | 
|  | 5569 | /* | 
|  | 5570 | * This is a best effort propagation, so this function's return | 
|  | 5571 | * value will be determined by the parent cache only. This is | 
|  | 5572 | * basically because not all attributes will have a well | 
|  | 5573 | * defined semantics for rollbacks - most of the actions will | 
|  | 5574 | * have permanent effects. | 
|  | 5575 | * | 
|  | 5576 | * Returning the error value of any of the children that fail | 
|  | 5577 | * is not 100 % defined, in the sense that users seeing the | 
|  | 5578 | * error code won't be able to know anything about the state of | 
|  | 5579 | * the cache. | 
|  | 5580 | * | 
|  | 5581 | * Only returning the error code for the parent cache at least | 
|  | 5582 | * has well defined semantics. The cache being written to | 
|  | 5583 | * directly either failed or succeeded, in which case we loop | 
|  | 5584 | * through the descendants with best-effort propagation. | 
|  | 5585 | */ | 
|  | 5586 | for_each_memcg_cache(c, s) | 
|  | 5587 | attribute->store(c, buf, len); | 
|  | 5588 | mutex_unlock(&slab_mutex); | 
|  | 5589 | } | 
|  | 5590 | #endif | 
|  | 5591 | return err; | 
|  | 5592 | } | 
|  | 5593 |  | 
|  | 5594 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) | 
|  | 5595 | { | 
|  | 5596 | #ifdef CONFIG_MEMCG | 
|  | 5597 | int i; | 
|  | 5598 | char *buffer = NULL; | 
|  | 5599 | struct kmem_cache *root_cache; | 
|  | 5600 |  | 
|  | 5601 | if (is_root_cache(s)) | 
|  | 5602 | return; | 
|  | 5603 |  | 
|  | 5604 | root_cache = s->memcg_params.root_cache; | 
|  | 5605 |  | 
|  | 5606 | /* | 
|  | 5607 | * This mean this cache had no attribute written. Therefore, no point | 
|  | 5608 | * in copying default values around | 
|  | 5609 | */ | 
|  | 5610 | if (!root_cache->max_attr_size) | 
|  | 5611 | return; | 
|  | 5612 |  | 
|  | 5613 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | 
|  | 5614 | char mbuf[64]; | 
|  | 5615 | char *buf; | 
|  | 5616 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | 
|  | 5617 | ssize_t len; | 
|  | 5618 |  | 
|  | 5619 | if (!attr || !attr->store || !attr->show) | 
|  | 5620 | continue; | 
|  | 5621 |  | 
|  | 5622 | /* | 
|  | 5623 | * It is really bad that we have to allocate here, so we will | 
|  | 5624 | * do it only as a fallback. If we actually allocate, though, | 
|  | 5625 | * we can just use the allocated buffer until the end. | 
|  | 5626 | * | 
|  | 5627 | * Most of the slub attributes will tend to be very small in | 
|  | 5628 | * size, but sysfs allows buffers up to a page, so they can | 
|  | 5629 | * theoretically happen. | 
|  | 5630 | */ | 
|  | 5631 | if (buffer) | 
|  | 5632 | buf = buffer; | 
|  | 5633 | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) | 
|  | 5634 | buf = mbuf; | 
|  | 5635 | else { | 
|  | 5636 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | 
|  | 5637 | if (WARN_ON(!buffer)) | 
|  | 5638 | continue; | 
|  | 5639 | buf = buffer; | 
|  | 5640 | } | 
|  | 5641 |  | 
|  | 5642 | len = attr->show(root_cache, buf); | 
|  | 5643 | if (len > 0) | 
|  | 5644 | attr->store(s, buf, len); | 
|  | 5645 | } | 
|  | 5646 |  | 
|  | 5647 | if (buffer) | 
|  | 5648 | free_page((unsigned long)buffer); | 
|  | 5649 | #endif | 
|  | 5650 | } | 
|  | 5651 |  | 
|  | 5652 | static void kmem_cache_release(struct kobject *k) | 
|  | 5653 | { | 
|  | 5654 | slab_kmem_cache_release(to_slab(k)); | 
|  | 5655 | } | 
|  | 5656 |  | 
|  | 5657 | static const struct sysfs_ops slab_sysfs_ops = { | 
|  | 5658 | .show = slab_attr_show, | 
|  | 5659 | .store = slab_attr_store, | 
|  | 5660 | }; | 
|  | 5661 |  | 
|  | 5662 | static struct kobj_type slab_ktype = { | 
|  | 5663 | .sysfs_ops = &slab_sysfs_ops, | 
|  | 5664 | .release = kmem_cache_release, | 
|  | 5665 | }; | 
|  | 5666 |  | 
|  | 5667 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
|  | 5668 | { | 
|  | 5669 | struct kobj_type *ktype = get_ktype(kobj); | 
|  | 5670 |  | 
|  | 5671 | if (ktype == &slab_ktype) | 
|  | 5672 | return 1; | 
|  | 5673 | return 0; | 
|  | 5674 | } | 
|  | 5675 |  | 
|  | 5676 | static const struct kset_uevent_ops slab_uevent_ops = { | 
|  | 5677 | .filter = uevent_filter, | 
|  | 5678 | }; | 
|  | 5679 |  | 
|  | 5680 | static struct kset *slab_kset; | 
|  | 5681 |  | 
|  | 5682 | static inline struct kset *cache_kset(struct kmem_cache *s) | 
|  | 5683 | { | 
|  | 5684 | #ifdef CONFIG_MEMCG | 
|  | 5685 | if (!is_root_cache(s)) | 
|  | 5686 | return s->memcg_params.root_cache->memcg_kset; | 
|  | 5687 | #endif | 
|  | 5688 | return slab_kset; | 
|  | 5689 | } | 
|  | 5690 |  | 
|  | 5691 | #define ID_STR_LENGTH 64 | 
|  | 5692 |  | 
|  | 5693 | /* Create a unique string id for a slab cache: | 
|  | 5694 | * | 
|  | 5695 | * Format	:[flags-]size | 
|  | 5696 | */ | 
|  | 5697 | static char *create_unique_id(struct kmem_cache *s) | 
|  | 5698 | { | 
|  | 5699 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
|  | 5700 | char *p = name; | 
|  | 5701 |  | 
|  | 5702 | BUG_ON(!name); | 
|  | 5703 |  | 
|  | 5704 | *p++ = ':'; | 
|  | 5705 | /* | 
|  | 5706 | * First flags affecting slabcache operations. We will only | 
|  | 5707 | * get here for aliasable slabs so we do not need to support | 
|  | 5708 | * too many flags. The flags here must cover all flags that | 
|  | 5709 | * are matched during merging to guarantee that the id is | 
|  | 5710 | * unique. | 
|  | 5711 | */ | 
|  | 5712 | if (s->flags & SLAB_CACHE_DMA) | 
|  | 5713 | *p++ = 'd'; | 
|  | 5714 | if (s->flags & SLAB_CACHE_DMA32) | 
|  | 5715 | *p++ = 'D'; | 
|  | 5716 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | 5717 | *p++ = 'a'; | 
|  | 5718 | if (s->flags & SLAB_CONSISTENCY_CHECKS) | 
|  | 5719 | *p++ = 'F'; | 
|  | 5720 | if (s->flags & SLAB_ACCOUNT) | 
|  | 5721 | *p++ = 'A'; | 
|  | 5722 | if (p != name + 1) | 
|  | 5723 | *p++ = '-'; | 
|  | 5724 | p += sprintf(p, "%07u", s->size); | 
|  | 5725 |  | 
|  | 5726 | BUG_ON(p > name + ID_STR_LENGTH - 1); | 
|  | 5727 | return name; | 
|  | 5728 | } | 
|  | 5729 |  | 
|  | 5730 | static void sysfs_slab_remove_workfn(struct work_struct *work) | 
|  | 5731 | { | 
|  | 5732 | struct kmem_cache *s = | 
|  | 5733 | container_of(work, struct kmem_cache, kobj_remove_work); | 
|  | 5734 |  | 
|  | 5735 | if (!s->kobj.state_in_sysfs) | 
|  | 5736 | /* | 
|  | 5737 | * For a memcg cache, this may be called during | 
|  | 5738 | * deactivation and again on shutdown.  Remove only once. | 
|  | 5739 | * A cache is never shut down before deactivation is | 
|  | 5740 | * complete, so no need to worry about synchronization. | 
|  | 5741 | */ | 
|  | 5742 | goto out; | 
|  | 5743 |  | 
|  | 5744 | #ifdef CONFIG_MEMCG | 
|  | 5745 | kset_unregister(s->memcg_kset); | 
|  | 5746 | #endif | 
|  | 5747 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
|  | 5748 | out: | 
|  | 5749 | kobject_put(&s->kobj); | 
|  | 5750 | } | 
|  | 5751 |  | 
|  | 5752 | static int sysfs_slab_add(struct kmem_cache *s) | 
|  | 5753 | { | 
|  | 5754 | int err; | 
|  | 5755 | const char *name; | 
|  | 5756 | struct kset *kset = cache_kset(s); | 
|  | 5757 | int unmergeable = slab_unmergeable(s); | 
|  | 5758 |  | 
|  | 5759 | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); | 
|  | 5760 |  | 
|  | 5761 | if (!kset) { | 
|  | 5762 | kobject_init(&s->kobj, &slab_ktype); | 
|  | 5763 | return 0; | 
|  | 5764 | } | 
|  | 5765 |  | 
|  | 5766 | if (!unmergeable && disable_higher_order_debug && | 
|  | 5767 | (slub_debug & DEBUG_METADATA_FLAGS)) | 
|  | 5768 | unmergeable = 1; | 
|  | 5769 |  | 
|  | 5770 | if (unmergeable) { | 
|  | 5771 | /* | 
|  | 5772 | * Slabcache can never be merged so we can use the name proper. | 
|  | 5773 | * This is typically the case for debug situations. In that | 
|  | 5774 | * case we can catch duplicate names easily. | 
|  | 5775 | */ | 
|  | 5776 | sysfs_remove_link(&slab_kset->kobj, s->name); | 
|  | 5777 | name = s->name; | 
|  | 5778 | } else { | 
|  | 5779 | /* | 
|  | 5780 | * Create a unique name for the slab as a target | 
|  | 5781 | * for the symlinks. | 
|  | 5782 | */ | 
|  | 5783 | name = create_unique_id(s); | 
|  | 5784 | } | 
|  | 5785 |  | 
|  | 5786 | s->kobj.kset = kset; | 
|  | 5787 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); | 
|  | 5788 | if (err) | 
|  | 5789 | goto out; | 
|  | 5790 |  | 
|  | 5791 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
|  | 5792 | if (err) | 
|  | 5793 | goto out_del_kobj; | 
|  | 5794 |  | 
|  | 5795 | #ifdef CONFIG_MEMCG | 
|  | 5796 | if (is_root_cache(s) && memcg_sysfs_enabled) { | 
|  | 5797 | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); | 
|  | 5798 | if (!s->memcg_kset) { | 
|  | 5799 | err = -ENOMEM; | 
|  | 5800 | goto out_del_kobj; | 
|  | 5801 | } | 
|  | 5802 | } | 
|  | 5803 | #endif | 
|  | 5804 |  | 
|  | 5805 | kobject_uevent(&s->kobj, KOBJ_ADD); | 
|  | 5806 | if (!unmergeable) { | 
|  | 5807 | /* Setup first alias */ | 
|  | 5808 | sysfs_slab_alias(s, s->name); | 
|  | 5809 | } | 
|  | 5810 | out: | 
|  | 5811 | if (!unmergeable) | 
|  | 5812 | kfree(name); | 
|  | 5813 | return err; | 
|  | 5814 | out_del_kobj: | 
|  | 5815 | kobject_del(&s->kobj); | 
|  | 5816 | goto out; | 
|  | 5817 | } | 
|  | 5818 |  | 
|  | 5819 | static void sysfs_slab_remove(struct kmem_cache *s) | 
|  | 5820 | { | 
|  | 5821 | if (slab_state < FULL) | 
|  | 5822 | /* | 
|  | 5823 | * Sysfs has not been setup yet so no need to remove the | 
|  | 5824 | * cache from sysfs. | 
|  | 5825 | */ | 
|  | 5826 | return; | 
|  | 5827 |  | 
|  | 5828 | kobject_get(&s->kobj); | 
|  | 5829 | schedule_work(&s->kobj_remove_work); | 
|  | 5830 | } | 
|  | 5831 |  | 
|  | 5832 | void sysfs_slab_unlink(struct kmem_cache *s) | 
|  | 5833 | { | 
|  | 5834 | if (slab_state >= FULL) | 
|  | 5835 | kobject_del(&s->kobj); | 
|  | 5836 | } | 
|  | 5837 |  | 
|  | 5838 | void sysfs_slab_release(struct kmem_cache *s) | 
|  | 5839 | { | 
|  | 5840 | if (slab_state >= FULL) | 
|  | 5841 | kobject_put(&s->kobj); | 
|  | 5842 | } | 
|  | 5843 |  | 
|  | 5844 | /* | 
|  | 5845 | * Need to buffer aliases during bootup until sysfs becomes | 
|  | 5846 | * available lest we lose that information. | 
|  | 5847 | */ | 
|  | 5848 | struct saved_alias { | 
|  | 5849 | struct kmem_cache *s; | 
|  | 5850 | const char *name; | 
|  | 5851 | struct saved_alias *next; | 
|  | 5852 | }; | 
|  | 5853 |  | 
|  | 5854 | static struct saved_alias *alias_list; | 
|  | 5855 |  | 
|  | 5856 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
|  | 5857 | { | 
|  | 5858 | struct saved_alias *al; | 
|  | 5859 |  | 
|  | 5860 | if (slab_state == FULL) { | 
|  | 5861 | /* | 
|  | 5862 | * If we have a leftover link then remove it. | 
|  | 5863 | */ | 
|  | 5864 | sysfs_remove_link(&slab_kset->kobj, name); | 
|  | 5865 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 
|  | 5866 | } | 
|  | 5867 |  | 
|  | 5868 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
|  | 5869 | if (!al) | 
|  | 5870 | return -ENOMEM; | 
|  | 5871 |  | 
|  | 5872 | al->s = s; | 
|  | 5873 | al->name = name; | 
|  | 5874 | al->next = alias_list; | 
|  | 5875 | alias_list = al; | 
|  | 5876 | return 0; | 
|  | 5877 | } | 
|  | 5878 |  | 
|  | 5879 | static int __init slab_sysfs_init(void) | 
|  | 5880 | { | 
|  | 5881 | struct kmem_cache *s; | 
|  | 5882 | int err; | 
|  | 5883 |  | 
|  | 5884 | mutex_lock(&slab_mutex); | 
|  | 5885 |  | 
|  | 5886 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 
|  | 5887 | if (!slab_kset) { | 
|  | 5888 | mutex_unlock(&slab_mutex); | 
|  | 5889 | pr_err("Cannot register slab subsystem.\n"); | 
|  | 5890 | return -ENOSYS; | 
|  | 5891 | } | 
|  | 5892 |  | 
|  | 5893 | slab_state = FULL; | 
|  | 5894 |  | 
|  | 5895 | list_for_each_entry(s, &slab_caches, list) { | 
|  | 5896 | err = sysfs_slab_add(s); | 
|  | 5897 | if (err) | 
|  | 5898 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", | 
|  | 5899 | s->name); | 
|  | 5900 | } | 
|  | 5901 |  | 
|  | 5902 | while (alias_list) { | 
|  | 5903 | struct saved_alias *al = alias_list; | 
|  | 5904 |  | 
|  | 5905 | alias_list = alias_list->next; | 
|  | 5906 | err = sysfs_slab_alias(al->s, al->name); | 
|  | 5907 | if (err) | 
|  | 5908 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", | 
|  | 5909 | al->name); | 
|  | 5910 | kfree(al); | 
|  | 5911 | } | 
|  | 5912 |  | 
|  | 5913 | mutex_unlock(&slab_mutex); | 
|  | 5914 | resiliency_test(); | 
|  | 5915 | return 0; | 
|  | 5916 | } | 
|  | 5917 |  | 
|  | 5918 | __initcall(slab_sysfs_init); | 
|  | 5919 | #endif /* CONFIG_SYSFS */ | 
|  | 5920 |  | 
|  | 5921 | /* | 
|  | 5922 | * The /proc/slabinfo ABI | 
|  | 5923 | */ | 
|  | 5924 | #ifdef CONFIG_SLUB_DEBUG | 
|  | 5925 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) | 
|  | 5926 | { | 
|  | 5927 | unsigned long nr_slabs = 0; | 
|  | 5928 | unsigned long nr_objs = 0; | 
|  | 5929 | unsigned long nr_free = 0; | 
|  | 5930 | int node; | 
|  | 5931 | struct kmem_cache_node *n; | 
|  | 5932 |  | 
|  | 5933 | for_each_kmem_cache_node(s, node, n) { | 
|  | 5934 | nr_slabs += node_nr_slabs(n); | 
|  | 5935 | nr_objs += node_nr_objs(n); | 
|  | 5936 | nr_free += count_partial(n, count_free); | 
|  | 5937 | } | 
|  | 5938 |  | 
|  | 5939 | sinfo->active_objs = nr_objs - nr_free; | 
|  | 5940 | sinfo->num_objs = nr_objs; | 
|  | 5941 | sinfo->active_slabs = nr_slabs; | 
|  | 5942 | sinfo->num_slabs = nr_slabs; | 
|  | 5943 | sinfo->objects_per_slab = oo_objects(s->oo); | 
|  | 5944 | sinfo->cache_order = oo_order(s->oo); | 
|  | 5945 | } | 
|  | 5946 |  | 
|  | 5947 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) | 
|  | 5948 | { | 
|  | 5949 | } | 
|  | 5950 |  | 
|  | 5951 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
|  | 5952 | size_t count, loff_t *ppos) | 
|  | 5953 | { | 
|  | 5954 | return -EIO; | 
|  | 5955 | } | 
|  | 5956 | #endif /* CONFIG_SLUB_DEBUG */ |