| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Manage cache of swap slots to be used for and returned from | 
|  | 4 | * swap. | 
|  | 5 | * | 
|  | 6 | * Copyright(c) 2016 Intel Corporation. | 
|  | 7 | * | 
|  | 8 | * Author: Tim Chen <tim.c.chen@linux.intel.com> | 
|  | 9 | * | 
|  | 10 | * We allocate the swap slots from the global pool and put | 
|  | 11 | * it into local per cpu caches.  This has the advantage | 
|  | 12 | * of no needing to acquire the swap_info lock every time | 
|  | 13 | * we need a new slot. | 
|  | 14 | * | 
|  | 15 | * There is also opportunity to simply return the slot | 
|  | 16 | * to local caches without needing to acquire swap_info | 
|  | 17 | * lock.  We do not reuse the returned slots directly but | 
|  | 18 | * move them back to the global pool in a batch.  This | 
|  | 19 | * allows the slots to coaellesce and reduce fragmentation. | 
|  | 20 | * | 
|  | 21 | * The swap entry allocated is marked with SWAP_HAS_CACHE | 
|  | 22 | * flag in map_count that prevents it from being allocated | 
|  | 23 | * again from the global pool. | 
|  | 24 | * | 
|  | 25 | * The swap slots cache is protected by a mutex instead of | 
|  | 26 | * a spin lock as when we search for slots with scan_swap_map, | 
|  | 27 | * we can possibly sleep. | 
|  | 28 | */ | 
|  | 29 |  | 
|  | 30 | #include <linux/swap_slots.h> | 
|  | 31 | #include <linux/cpu.h> | 
|  | 32 | #include <linux/cpumask.h> | 
|  | 33 | #include <linux/vmalloc.h> | 
|  | 34 | #include <linux/mutex.h> | 
|  | 35 | #include <linux/mm.h> | 
|  | 36 |  | 
|  | 37 | static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots); | 
|  | 38 | static bool	swap_slot_cache_active; | 
|  | 39 | bool	swap_slot_cache_enabled; | 
|  | 40 | static bool	swap_slot_cache_initialized; | 
|  | 41 | static DEFINE_MUTEX(swap_slots_cache_mutex); | 
|  | 42 | /* Serialize swap slots cache enable/disable operations */ | 
|  | 43 | static DEFINE_MUTEX(swap_slots_cache_enable_mutex); | 
|  | 44 |  | 
|  | 45 | static void __drain_swap_slots_cache(unsigned int type); | 
|  | 46 | static void deactivate_swap_slots_cache(void); | 
|  | 47 | static void reactivate_swap_slots_cache(void); | 
|  | 48 |  | 
|  | 49 | #define use_swap_slot_cache (swap_slot_cache_active && \ | 
|  | 50 | swap_slot_cache_enabled && swap_slot_cache_initialized) | 
|  | 51 | #define SLOTS_CACHE 0x1 | 
|  | 52 | #define SLOTS_CACHE_RET 0x2 | 
|  | 53 |  | 
|  | 54 | static void deactivate_swap_slots_cache(void) | 
|  | 55 | { | 
|  | 56 | mutex_lock(&swap_slots_cache_mutex); | 
|  | 57 | swap_slot_cache_active = false; | 
|  | 58 | __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); | 
|  | 59 | mutex_unlock(&swap_slots_cache_mutex); | 
|  | 60 | } | 
|  | 61 |  | 
|  | 62 | static void reactivate_swap_slots_cache(void) | 
|  | 63 | { | 
|  | 64 | mutex_lock(&swap_slots_cache_mutex); | 
|  | 65 | swap_slot_cache_active = true; | 
|  | 66 | mutex_unlock(&swap_slots_cache_mutex); | 
|  | 67 | } | 
|  | 68 |  | 
|  | 69 | /* Must not be called with cpu hot plug lock */ | 
|  | 70 | void disable_swap_slots_cache_lock(void) | 
|  | 71 | { | 
|  | 72 | mutex_lock(&swap_slots_cache_enable_mutex); | 
|  | 73 | swap_slot_cache_enabled = false; | 
|  | 74 | if (swap_slot_cache_initialized) { | 
|  | 75 | /* serialize with cpu hotplug operations */ | 
|  | 76 | get_online_cpus(); | 
|  | 77 | __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); | 
|  | 78 | put_online_cpus(); | 
|  | 79 | } | 
|  | 80 | } | 
|  | 81 |  | 
|  | 82 | static void __reenable_swap_slots_cache(void) | 
|  | 83 | { | 
|  | 84 | swap_slot_cache_enabled = has_usable_swap(); | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | void reenable_swap_slots_cache_unlock(void) | 
|  | 88 | { | 
|  | 89 | __reenable_swap_slots_cache(); | 
|  | 90 | mutex_unlock(&swap_slots_cache_enable_mutex); | 
|  | 91 | } | 
|  | 92 |  | 
|  | 93 | static bool check_cache_active(void) | 
|  | 94 | { | 
|  | 95 | long pages; | 
|  | 96 |  | 
|  | 97 | if (!swap_slot_cache_enabled || !swap_slot_cache_initialized) | 
|  | 98 | return false; | 
|  | 99 |  | 
|  | 100 | pages = get_nr_swap_pages(); | 
|  | 101 | if (!swap_slot_cache_active) { | 
|  | 102 | if (pages > num_online_cpus() * | 
|  | 103 | THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE) | 
|  | 104 | reactivate_swap_slots_cache(); | 
|  | 105 | goto out; | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | /* if global pool of slot caches too low, deactivate cache */ | 
|  | 109 | if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE) | 
|  | 110 | deactivate_swap_slots_cache(); | 
|  | 111 | out: | 
|  | 112 | return swap_slot_cache_active; | 
|  | 113 | } | 
|  | 114 |  | 
|  | 115 | static int alloc_swap_slot_cache(unsigned int cpu) | 
|  | 116 | { | 
|  | 117 | struct swap_slots_cache *cache; | 
|  | 118 | swp_entry_t *slots, *slots_ret; | 
|  | 119 |  | 
|  | 120 | /* | 
|  | 121 | * Do allocation outside swap_slots_cache_mutex | 
|  | 122 | * as kvzalloc could trigger reclaim and get_swap_page, | 
|  | 123 | * which can lock swap_slots_cache_mutex. | 
|  | 124 | */ | 
|  | 125 | slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), | 
|  | 126 | GFP_KERNEL); | 
|  | 127 | if (!slots) | 
|  | 128 | return -ENOMEM; | 
|  | 129 |  | 
|  | 130 | slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), | 
|  | 131 | GFP_KERNEL); | 
|  | 132 | if (!slots_ret) { | 
|  | 133 | kvfree(slots); | 
|  | 134 | return -ENOMEM; | 
|  | 135 | } | 
|  | 136 |  | 
|  | 137 | mutex_lock(&swap_slots_cache_mutex); | 
|  | 138 | cache = &per_cpu(swp_slots, cpu); | 
|  | 139 | if (cache->slots || cache->slots_ret) | 
|  | 140 | /* cache already allocated */ | 
|  | 141 | goto out; | 
|  | 142 | if (!cache->lock_initialized) { | 
|  | 143 | mutex_init(&cache->alloc_lock); | 
|  | 144 | spin_lock_init(&cache->free_lock); | 
|  | 145 | cache->lock_initialized = true; | 
|  | 146 | } | 
|  | 147 | cache->nr = 0; | 
|  | 148 | cache->cur = 0; | 
|  | 149 | cache->n_ret = 0; | 
|  | 150 | /* | 
|  | 151 | * We initialized alloc_lock and free_lock earlier.  We use | 
|  | 152 | * !cache->slots or !cache->slots_ret to know if it is safe to acquire | 
|  | 153 | * the corresponding lock and use the cache.  Memory barrier below | 
|  | 154 | * ensures the assumption. | 
|  | 155 | */ | 
|  | 156 | mb(); | 
|  | 157 | cache->slots = slots; | 
|  | 158 | slots = NULL; | 
|  | 159 | cache->slots_ret = slots_ret; | 
|  | 160 | slots_ret = NULL; | 
|  | 161 | out: | 
|  | 162 | mutex_unlock(&swap_slots_cache_mutex); | 
|  | 163 | if (slots) | 
|  | 164 | kvfree(slots); | 
|  | 165 | if (slots_ret) | 
|  | 166 | kvfree(slots_ret); | 
|  | 167 | return 0; | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, | 
|  | 171 | bool free_slots) | 
|  | 172 | { | 
|  | 173 | struct swap_slots_cache *cache; | 
|  | 174 | swp_entry_t *slots = NULL; | 
|  | 175 |  | 
|  | 176 | cache = &per_cpu(swp_slots, cpu); | 
|  | 177 | if ((type & SLOTS_CACHE) && cache->slots) { | 
|  | 178 | mutex_lock(&cache->alloc_lock); | 
|  | 179 | swapcache_free_entries(cache->slots + cache->cur, cache->nr); | 
|  | 180 | cache->cur = 0; | 
|  | 181 | cache->nr = 0; | 
|  | 182 | if (free_slots && cache->slots) { | 
|  | 183 | kvfree(cache->slots); | 
|  | 184 | cache->slots = NULL; | 
|  | 185 | } | 
|  | 186 | mutex_unlock(&cache->alloc_lock); | 
|  | 187 | } | 
|  | 188 | if ((type & SLOTS_CACHE_RET) && cache->slots_ret) { | 
|  | 189 | spin_lock_irq(&cache->free_lock); | 
|  | 190 | swapcache_free_entries(cache->slots_ret, cache->n_ret); | 
|  | 191 | cache->n_ret = 0; | 
|  | 192 | if (free_slots && cache->slots_ret) { | 
|  | 193 | slots = cache->slots_ret; | 
|  | 194 | cache->slots_ret = NULL; | 
|  | 195 | } | 
|  | 196 | spin_unlock_irq(&cache->free_lock); | 
|  | 197 | if (slots) | 
|  | 198 | kvfree(slots); | 
|  | 199 | } | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | static void __drain_swap_slots_cache(unsigned int type) | 
|  | 203 | { | 
|  | 204 | unsigned int cpu; | 
|  | 205 |  | 
|  | 206 | /* | 
|  | 207 | * This function is called during | 
|  | 208 | *	1) swapoff, when we have to make sure no | 
|  | 209 | *	   left over slots are in cache when we remove | 
|  | 210 | *	   a swap device; | 
|  | 211 | *      2) disabling of swap slot cache, when we run low | 
|  | 212 | *	   on swap slots when allocating memory and need | 
|  | 213 | *	   to return swap slots to global pool. | 
|  | 214 | * | 
|  | 215 | * We cannot acquire cpu hot plug lock here as | 
|  | 216 | * this function can be invoked in the cpu | 
|  | 217 | * hot plug path: | 
|  | 218 | * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback | 
|  | 219 | *   -> memory allocation -> direct reclaim -> get_swap_page | 
|  | 220 | *   -> drain_swap_slots_cache | 
|  | 221 | * | 
|  | 222 | * Hence the loop over current online cpu below could miss cpu that | 
|  | 223 | * is being brought online but not yet marked as online. | 
|  | 224 | * That is okay as we do not schedule and run anything on a | 
|  | 225 | * cpu before it has been marked online. Hence, we will not | 
|  | 226 | * fill any swap slots in slots cache of such cpu. | 
|  | 227 | * There are no slots on such cpu that need to be drained. | 
|  | 228 | */ | 
|  | 229 | for_each_online_cpu(cpu) | 
|  | 230 | drain_slots_cache_cpu(cpu, type, false); | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | static int free_slot_cache(unsigned int cpu) | 
|  | 234 | { | 
|  | 235 | mutex_lock(&swap_slots_cache_mutex); | 
|  | 236 | drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true); | 
|  | 237 | mutex_unlock(&swap_slots_cache_mutex); | 
|  | 238 | return 0; | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | int enable_swap_slots_cache(void) | 
|  | 242 | { | 
|  | 243 | int ret = 0; | 
|  | 244 |  | 
|  | 245 | mutex_lock(&swap_slots_cache_enable_mutex); | 
|  | 246 | if (swap_slot_cache_initialized) { | 
|  | 247 | __reenable_swap_slots_cache(); | 
|  | 248 | goto out_unlock; | 
|  | 249 | } | 
|  | 250 |  | 
|  | 251 | ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", | 
|  | 252 | alloc_swap_slot_cache, free_slot_cache); | 
|  | 253 | if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " | 
|  | 254 | "without swap slots cache.\n", __func__)) | 
|  | 255 | goto out_unlock; | 
|  | 256 |  | 
|  | 257 | swap_slot_cache_initialized = true; | 
|  | 258 | __reenable_swap_slots_cache(); | 
|  | 259 | out_unlock: | 
|  | 260 | mutex_unlock(&swap_slots_cache_enable_mutex); | 
|  | 261 | return 0; | 
|  | 262 | } | 
|  | 263 |  | 
|  | 264 | /* called with swap slot cache's alloc lock held */ | 
|  | 265 | static int refill_swap_slots_cache(struct swap_slots_cache *cache) | 
|  | 266 | { | 
|  | 267 | if (!use_swap_slot_cache || cache->nr) | 
|  | 268 | return 0; | 
|  | 269 |  | 
|  | 270 | cache->cur = 0; | 
|  | 271 | if (swap_slot_cache_active) | 
|  | 272 | cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, | 
|  | 273 | cache->slots, 1); | 
|  | 274 |  | 
|  | 275 | return cache->nr; | 
|  | 276 | } | 
|  | 277 |  | 
|  | 278 | int free_swap_slot(swp_entry_t entry) | 
|  | 279 | { | 
|  | 280 | struct swap_slots_cache *cache; | 
|  | 281 |  | 
|  | 282 | cache = raw_cpu_ptr(&swp_slots); | 
|  | 283 | if (likely(use_swap_slot_cache && cache->slots_ret)) { | 
|  | 284 | spin_lock_irq(&cache->free_lock); | 
|  | 285 | /* Swap slots cache may be deactivated before acquiring lock */ | 
|  | 286 | if (!use_swap_slot_cache || !cache->slots_ret) { | 
|  | 287 | spin_unlock_irq(&cache->free_lock); | 
|  | 288 | goto direct_free; | 
|  | 289 | } | 
|  | 290 | if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) { | 
|  | 291 | /* | 
|  | 292 | * Return slots to global pool. | 
|  | 293 | * The current swap_map value is SWAP_HAS_CACHE. | 
|  | 294 | * Set it to 0 to indicate it is available for | 
|  | 295 | * allocation in global pool | 
|  | 296 | */ | 
|  | 297 | swapcache_free_entries(cache->slots_ret, cache->n_ret); | 
|  | 298 | cache->n_ret = 0; | 
|  | 299 | } | 
|  | 300 | cache->slots_ret[cache->n_ret++] = entry; | 
|  | 301 | spin_unlock_irq(&cache->free_lock); | 
|  | 302 | } else { | 
|  | 303 | direct_free: | 
|  | 304 | swapcache_free_entries(&entry, 1); | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | return 0; | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | swp_entry_t get_swap_page(struct page *page) | 
|  | 311 | { | 
|  | 312 | swp_entry_t entry, *pentry; | 
|  | 313 | struct swap_slots_cache *cache; | 
|  | 314 |  | 
|  | 315 | entry.val = 0; | 
|  | 316 |  | 
|  | 317 | if (PageTransHuge(page)) { | 
|  | 318 | if (IS_ENABLED(CONFIG_THP_SWAP)) | 
|  | 319 | get_swap_pages(1, &entry, HPAGE_PMD_NR); | 
|  | 320 | goto out; | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | /* | 
|  | 324 | * Preemption is allowed here, because we may sleep | 
|  | 325 | * in refill_swap_slots_cache().  But it is safe, because | 
|  | 326 | * accesses to the per-CPU data structure are protected by the | 
|  | 327 | * mutex cache->alloc_lock. | 
|  | 328 | * | 
|  | 329 | * The alloc path here does not touch cache->slots_ret | 
|  | 330 | * so cache->free_lock is not taken. | 
|  | 331 | */ | 
|  | 332 | cache = raw_cpu_ptr(&swp_slots); | 
|  | 333 |  | 
|  | 334 | if (likely(check_cache_active() && cache->slots)) { | 
|  | 335 | mutex_lock(&cache->alloc_lock); | 
|  | 336 | if (cache->slots) { | 
|  | 337 | repeat: | 
|  | 338 | if (cache->nr) { | 
|  | 339 | pentry = &cache->slots[cache->cur++]; | 
|  | 340 | entry = *pentry; | 
|  | 341 | pentry->val = 0; | 
|  | 342 | cache->nr--; | 
|  | 343 | } else { | 
|  | 344 | if (refill_swap_slots_cache(cache)) | 
|  | 345 | goto repeat; | 
|  | 346 | } | 
|  | 347 | } | 
|  | 348 | mutex_unlock(&cache->alloc_lock); | 
|  | 349 | if (entry.val) | 
|  | 350 | goto out; | 
|  | 351 | } | 
|  | 352 |  | 
|  | 353 | get_swap_pages(1, &entry, 1); | 
|  | 354 | out: | 
|  | 355 | if (mem_cgroup_try_charge_swap(page, entry)) { | 
|  | 356 | put_swap_page(page, entry); | 
|  | 357 | entry.val = 0; | 
|  | 358 | } | 
|  | 359 | return entry; | 
|  | 360 | } |