blob: 960f56141969dc7d8838341a9a54cf7c5612196e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29#include <linux/uaccess.h>
30#include <linux/types.h>
31#include <linux/cache.h>
32#include <linux/capability.h>
33#include <linux/errno.h>
34#include <linux/mm.h>
35#include <linux/kernel.h>
36#include <linux/fcntl.h>
37#include <linux/stat.h>
38#include <linux/socket.h>
39#include <linux/in.h>
40#include <linux/inet.h>
41#include <linux/netdevice.h>
42#include <linux/inetdevice.h>
43#include <linux/igmp.h>
44#include <linux/proc_fs.h>
45#include <linux/seq_file.h>
46#include <linux/mroute.h>
47#include <linux/init.h>
48#include <linux/if_ether.h>
49#include <linux/slab.h>
50#include <net/net_namespace.h>
51#include <net/ip.h>
52#include <net/protocol.h>
53#include <linux/skbuff.h>
54#include <net/route.h>
55#include <net/icmp.h>
56#include <net/udp.h>
57#include <net/raw.h>
58#include <linux/notifier.h>
59#include <linux/if_arp.h>
60#include <linux/netfilter_ipv4.h>
61#include <linux/compat.h>
62#include <linux/export.h>
63#include <linux/rhashtable.h>
64#include <net/ip_tunnels.h>
65#include <net/checksum.h>
66#include <net/netlink.h>
67#include <net/fib_rules.h>
68#include <linux/netconf.h>
69#include <net/nexthop.h>
70#include <net/switchdev.h>
71
72#include <linux/nospec.h>
73
74struct ipmr_rule {
75 struct fib_rule common;
76};
77
78struct ipmr_result {
79 struct mr_table *mrt;
80};
81
82/* Big lock, protecting vif table, mrt cache and mroute socket state.
83 * Note that the changes are semaphored via rtnl_lock.
84 */
85
86static DEFINE_RWLOCK(mrt_lock);
87
88/* Multicast router control variables */
89
90/* Special spinlock for queue of unresolved entries */
91static DEFINE_SPINLOCK(mfc_unres_lock);
92
93/* We return to original Alan's scheme. Hash table of resolved
94 * entries is changed only in process context and protected
95 * with weak lock mrt_lock. Queue of unresolved entries is protected
96 * with strong spinlock mfc_unres_lock.
97 *
98 * In this case data path is free of exclusive locks at all.
99 */
100
101static struct kmem_cache *mrt_cachep __ro_after_init;
102
103static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104static void ipmr_free_table(struct mr_table *mrt);
105
106static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107 struct net_device *dev, struct sk_buff *skb,
108 struct mfc_cache *cache, int local);
109static int ipmr_cache_report(struct mr_table *mrt,
110 struct sk_buff *pkt, vifi_t vifi, int assert);
111static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112 int cmd);
113static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
114static void mroute_clean_tables(struct mr_table *mrt, bool all);
115static void ipmr_expire_process(struct timer_list *t);
116
117#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118#define ipmr_for_each_table(mrt, net) \
119 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
120
121static struct mr_table *ipmr_mr_table_iter(struct net *net,
122 struct mr_table *mrt)
123{
124 struct mr_table *ret;
125
126 if (!mrt)
127 ret = list_entry_rcu(net->ipv4.mr_tables.next,
128 struct mr_table, list);
129 else
130 ret = list_entry_rcu(mrt->list.next,
131 struct mr_table, list);
132
133 if (&ret->list == &net->ipv4.mr_tables)
134 return NULL;
135 return ret;
136}
137
138static struct mr_table *ipmr_get_table(struct net *net, u32 id)
139{
140 struct mr_table *mrt;
141
142 ipmr_for_each_table(mrt, net) {
143 if (mrt->id == id)
144 return mrt;
145 }
146 return NULL;
147}
148
149static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
150 struct mr_table **mrt)
151{
152 int err;
153 struct ipmr_result res;
154 struct fib_lookup_arg arg = {
155 .result = &res,
156 .flags = FIB_LOOKUP_NOREF,
157 };
158
159 /* update flow if oif or iif point to device enslaved to l3mdev */
160 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
161
162 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
163 flowi4_to_flowi(flp4), 0, &arg);
164 if (err < 0)
165 return err;
166 *mrt = res.mrt;
167 return 0;
168}
169
170static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
171 int flags, struct fib_lookup_arg *arg)
172{
173 struct ipmr_result *res = arg->result;
174 struct mr_table *mrt;
175
176 switch (rule->action) {
177 case FR_ACT_TO_TBL:
178 break;
179 case FR_ACT_UNREACHABLE:
180 return -ENETUNREACH;
181 case FR_ACT_PROHIBIT:
182 case FR_ACT_POLICY_FAILED:
183 return -EACCES;
184 case FR_ACT_BLACKHOLE:
185 default:
186 return -EINVAL;
187 }
188
189 arg->table = fib_rule_get_table(rule, arg);
190
191 mrt = ipmr_get_table(rule->fr_net, arg->table);
192 if (!mrt)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196}
197
198static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199{
200 return 1;
201}
202
203static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204 FRA_GENERIC_POLICY,
205};
206
207static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208 struct fib_rule_hdr *frh, struct nlattr **tb,
209 struct netlink_ext_ack *extack)
210{
211 return 0;
212}
213
214static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
215 struct nlattr **tb)
216{
217 return 1;
218}
219
220static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
221 struct fib_rule_hdr *frh)
222{
223 frh->dst_len = 0;
224 frh->src_len = 0;
225 frh->tos = 0;
226 return 0;
227}
228
229static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
230 .family = RTNL_FAMILY_IPMR,
231 .rule_size = sizeof(struct ipmr_rule),
232 .addr_size = sizeof(u32),
233 .action = ipmr_rule_action,
234 .match = ipmr_rule_match,
235 .configure = ipmr_rule_configure,
236 .compare = ipmr_rule_compare,
237 .fill = ipmr_rule_fill,
238 .nlgroup = RTNLGRP_IPV4_RULE,
239 .policy = ipmr_rule_policy,
240 .owner = THIS_MODULE,
241};
242
243static int __net_init ipmr_rules_init(struct net *net)
244{
245 struct fib_rules_ops *ops;
246 struct mr_table *mrt;
247 int err;
248
249 ops = fib_rules_register(&ipmr_rules_ops_template, net);
250 if (IS_ERR(ops))
251 return PTR_ERR(ops);
252
253 INIT_LIST_HEAD(&net->ipv4.mr_tables);
254
255 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
256 if (IS_ERR(mrt)) {
257 err = PTR_ERR(mrt);
258 goto err1;
259 }
260
261 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
262 if (err < 0)
263 goto err2;
264
265 net->ipv4.mr_rules_ops = ops;
266 return 0;
267
268err2:
269 ipmr_free_table(mrt);
270err1:
271 fib_rules_unregister(ops);
272 return err;
273}
274
275static void __net_exit ipmr_rules_exit(struct net *net)
276{
277 struct mr_table *mrt, *next;
278
279 rtnl_lock();
280 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
281 list_del(&mrt->list);
282 ipmr_free_table(mrt);
283 }
284 fib_rules_unregister(net->ipv4.mr_rules_ops);
285 rtnl_unlock();
286}
287
288static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
289{
290 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
291}
292
293static unsigned int ipmr_rules_seq_read(struct net *net)
294{
295 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
296}
297
298bool ipmr_rule_default(const struct fib_rule *rule)
299{
300 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
301}
302EXPORT_SYMBOL(ipmr_rule_default);
303#else
304#define ipmr_for_each_table(mrt, net) \
305 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
306
307static struct mr_table *ipmr_mr_table_iter(struct net *net,
308 struct mr_table *mrt)
309{
310 if (!mrt)
311 return net->ipv4.mrt;
312 return NULL;
313}
314
315static struct mr_table *ipmr_get_table(struct net *net, u32 id)
316{
317 return net->ipv4.mrt;
318}
319
320static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
321 struct mr_table **mrt)
322{
323 *mrt = net->ipv4.mrt;
324 return 0;
325}
326
327static int __net_init ipmr_rules_init(struct net *net)
328{
329 struct mr_table *mrt;
330
331 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
332 if (IS_ERR(mrt))
333 return PTR_ERR(mrt);
334 net->ipv4.mrt = mrt;
335 return 0;
336}
337
338static void __net_exit ipmr_rules_exit(struct net *net)
339{
340 rtnl_lock();
341 ipmr_free_table(net->ipv4.mrt);
342 net->ipv4.mrt = NULL;
343 rtnl_unlock();
344}
345
346static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
347{
348 return 0;
349}
350
351static unsigned int ipmr_rules_seq_read(struct net *net)
352{
353 return 0;
354}
355
356bool ipmr_rule_default(const struct fib_rule *rule)
357{
358 return true;
359}
360EXPORT_SYMBOL(ipmr_rule_default);
361#endif
362
363static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
364 const void *ptr)
365{
366 const struct mfc_cache_cmp_arg *cmparg = arg->key;
367 struct mfc_cache *c = (struct mfc_cache *)ptr;
368
369 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
370 cmparg->mfc_origin != c->mfc_origin;
371}
372
373static const struct rhashtable_params ipmr_rht_params = {
374 .head_offset = offsetof(struct mr_mfc, mnode),
375 .key_offset = offsetof(struct mfc_cache, cmparg),
376 .key_len = sizeof(struct mfc_cache_cmp_arg),
377 .nelem_hint = 3,
378 .locks_mul = 1,
379 .obj_cmpfn = ipmr_hash_cmp,
380 .automatic_shrinking = true,
381};
382
383static void ipmr_new_table_set(struct mr_table *mrt,
384 struct net *net)
385{
386#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
387 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
388#endif
389}
390
391static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
392 .mfc_mcastgrp = htonl(INADDR_ANY),
393 .mfc_origin = htonl(INADDR_ANY),
394};
395
396static struct mr_table_ops ipmr_mr_table_ops = {
397 .rht_params = &ipmr_rht_params,
398 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
399};
400
401static struct mr_table *ipmr_new_table(struct net *net, u32 id)
402{
403 struct mr_table *mrt;
404
405 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
406 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
407 return ERR_PTR(-EINVAL);
408
409 mrt = ipmr_get_table(net, id);
410 if (mrt)
411 return mrt;
412
413 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
414 ipmr_expire_process, ipmr_new_table_set);
415}
416
417static void ipmr_free_table(struct mr_table *mrt)
418{
419 del_timer_sync(&mrt->ipmr_expire_timer);
420 mroute_clean_tables(mrt, true);
421 rhltable_destroy(&mrt->mfc_hash);
422 kfree(mrt);
423}
424
425/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
426
427static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
428{
429 struct net *net = dev_net(dev);
430
431 dev_close(dev);
432
433 dev = __dev_get_by_name(net, "tunl0");
434 if (dev) {
435 const struct net_device_ops *ops = dev->netdev_ops;
436 struct ifreq ifr;
437 struct ip_tunnel_parm p;
438
439 memset(&p, 0, sizeof(p));
440 p.iph.daddr = v->vifc_rmt_addr.s_addr;
441 p.iph.saddr = v->vifc_lcl_addr.s_addr;
442 p.iph.version = 4;
443 p.iph.ihl = 5;
444 p.iph.protocol = IPPROTO_IPIP;
445 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
446 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
447
448 if (ops->ndo_do_ioctl) {
449 mm_segment_t oldfs = get_fs();
450
451 set_fs(KERNEL_DS);
452 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
453 set_fs(oldfs);
454 }
455 }
456}
457
458/* Initialize ipmr pimreg/tunnel in_device */
459static bool ipmr_init_vif_indev(const struct net_device *dev)
460{
461 struct in_device *in_dev;
462
463 ASSERT_RTNL();
464
465 in_dev = __in_dev_get_rtnl(dev);
466 if (!in_dev)
467 return false;
468 ipv4_devconf_setall(in_dev);
469 neigh_parms_data_state_setall(in_dev->arp_parms);
470 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
471
472 return true;
473}
474
475static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
476{
477 struct net_device *dev;
478
479 dev = __dev_get_by_name(net, "tunl0");
480
481 if (dev) {
482 const struct net_device_ops *ops = dev->netdev_ops;
483 int err;
484 struct ifreq ifr;
485 struct ip_tunnel_parm p;
486
487 memset(&p, 0, sizeof(p));
488 p.iph.daddr = v->vifc_rmt_addr.s_addr;
489 p.iph.saddr = v->vifc_lcl_addr.s_addr;
490 p.iph.version = 4;
491 p.iph.ihl = 5;
492 p.iph.protocol = IPPROTO_IPIP;
493 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
494 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
495
496 if (ops->ndo_do_ioctl) {
497 mm_segment_t oldfs = get_fs();
498
499 set_fs(KERNEL_DS);
500 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
501 set_fs(oldfs);
502 } else {
503 err = -EOPNOTSUPP;
504 }
505 dev = NULL;
506
507 if (err == 0 &&
508 (dev = __dev_get_by_name(net, p.name)) != NULL) {
509 dev->flags |= IFF_MULTICAST;
510 if (!ipmr_init_vif_indev(dev))
511 goto failure;
512 if (dev_open(dev))
513 goto failure;
514 dev_hold(dev);
515 }
516 }
517 return dev;
518
519failure:
520 unregister_netdevice(dev);
521 return NULL;
522}
523
524#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
525static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
526{
527 struct net *net = dev_net(dev);
528 struct mr_table *mrt;
529 struct flowi4 fl4 = {
530 .flowi4_oif = dev->ifindex,
531 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
532 .flowi4_mark = skb->mark,
533 };
534 int err;
535
536 err = ipmr_fib_lookup(net, &fl4, &mrt);
537 if (err < 0) {
538 kfree_skb(skb);
539 return err;
540 }
541
542 read_lock(&mrt_lock);
543 dev->stats.tx_bytes += skb->len;
544 dev->stats.tx_packets++;
545 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
546 read_unlock(&mrt_lock);
547 kfree_skb(skb);
548 return NETDEV_TX_OK;
549}
550
551static int reg_vif_get_iflink(const struct net_device *dev)
552{
553 return 0;
554}
555
556static const struct net_device_ops reg_vif_netdev_ops = {
557 .ndo_start_xmit = reg_vif_xmit,
558 .ndo_get_iflink = reg_vif_get_iflink,
559};
560
561static void reg_vif_setup(struct net_device *dev)
562{
563 dev->type = ARPHRD_PIMREG;
564 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
565 dev->flags = IFF_NOARP;
566 dev->netdev_ops = &reg_vif_netdev_ops;
567 dev->needs_free_netdev = true;
568 dev->features |= NETIF_F_NETNS_LOCAL;
569}
570
571static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
572{
573 struct net_device *dev;
574 char name[IFNAMSIZ];
575
576 if (mrt->id == RT_TABLE_DEFAULT)
577 sprintf(name, "pimreg");
578 else
579 sprintf(name, "pimreg%u", mrt->id);
580
581 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
582
583 if (!dev)
584 return NULL;
585
586 dev_net_set(dev, net);
587
588 if (register_netdevice(dev)) {
589 free_netdev(dev);
590 return NULL;
591 }
592
593 if (!ipmr_init_vif_indev(dev))
594 goto failure;
595 if (dev_open(dev))
596 goto failure;
597
598 dev_hold(dev);
599
600 return dev;
601
602failure:
603 unregister_netdevice(dev);
604 return NULL;
605}
606
607/* called with rcu_read_lock() */
608static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
609 unsigned int pimlen)
610{
611 struct net_device *reg_dev = NULL;
612 struct iphdr *encap;
613
614 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
615 /* Check that:
616 * a. packet is really sent to a multicast group
617 * b. packet is not a NULL-REGISTER
618 * c. packet is not truncated
619 */
620 if (!ipv4_is_multicast(encap->daddr) ||
621 encap->tot_len == 0 ||
622 ntohs(encap->tot_len) + pimlen > skb->len)
623 return 1;
624
625 read_lock(&mrt_lock);
626 if (mrt->mroute_reg_vif_num >= 0)
627 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
628 read_unlock(&mrt_lock);
629
630 if (!reg_dev)
631 return 1;
632
633 skb->mac_header = skb->network_header;
634 skb_pull(skb, (u8 *)encap - skb->data);
635 skb_reset_network_header(skb);
636 skb->protocol = htons(ETH_P_IP);
637 skb->ip_summed = CHECKSUM_NONE;
638
639 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
640
641 netif_rx(skb);
642
643 return NET_RX_SUCCESS;
644}
645#else
646static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
647{
648 return NULL;
649}
650#endif
651
652static int call_ipmr_vif_entry_notifiers(struct net *net,
653 enum fib_event_type event_type,
654 struct vif_device *vif,
655 vifi_t vif_index, u32 tb_id)
656{
657 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
658 vif, vif_index, tb_id,
659 &net->ipv4.ipmr_seq);
660}
661
662static int call_ipmr_mfc_entry_notifiers(struct net *net,
663 enum fib_event_type event_type,
664 struct mfc_cache *mfc, u32 tb_id)
665{
666 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
667 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
668}
669
670/**
671 * vif_delete - Delete a VIF entry
672 * @notify: Set to 1, if the caller is a notifier_call
673 */
674static int vif_delete(struct mr_table *mrt, int vifi, int notify,
675 struct list_head *head)
676{
677 struct net *net = read_pnet(&mrt->net);
678 struct vif_device *v;
679 struct net_device *dev;
680 struct in_device *in_dev;
681
682 if (vifi < 0 || vifi >= mrt->maxvif)
683 return -EADDRNOTAVAIL;
684
685 v = &mrt->vif_table[vifi];
686
687 if (VIF_EXISTS(mrt, vifi))
688 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
689 mrt->id);
690
691 write_lock_bh(&mrt_lock);
692 dev = v->dev;
693 v->dev = NULL;
694
695 if (!dev) {
696 write_unlock_bh(&mrt_lock);
697 return -EADDRNOTAVAIL;
698 }
699
700 if (vifi == mrt->mroute_reg_vif_num)
701 mrt->mroute_reg_vif_num = -1;
702
703 if (vifi + 1 == mrt->maxvif) {
704 int tmp;
705
706 for (tmp = vifi - 1; tmp >= 0; tmp--) {
707 if (VIF_EXISTS(mrt, tmp))
708 break;
709 }
710 mrt->maxvif = tmp+1;
711 }
712
713 write_unlock_bh(&mrt_lock);
714
715 dev_set_allmulti(dev, -1);
716
717 in_dev = __in_dev_get_rtnl(dev);
718 if (in_dev) {
719 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
720 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
721 NETCONFA_MC_FORWARDING,
722 dev->ifindex, &in_dev->cnf);
723 ip_rt_multicast_event(in_dev);
724 }
725
726 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
727 unregister_netdevice_queue(dev, head);
728
729 dev_put(dev);
730 return 0;
731}
732
733static void ipmr_cache_free_rcu(struct rcu_head *head)
734{
735 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
736
737 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
738}
739
740static void ipmr_cache_free(struct mfc_cache *c)
741{
742 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
743}
744
745/* Destroy an unresolved cache entry, killing queued skbs
746 * and reporting error to netlink readers.
747 */
748static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
749{
750 struct net *net = read_pnet(&mrt->net);
751 struct sk_buff *skb;
752 struct nlmsgerr *e;
753
754 atomic_dec(&mrt->cache_resolve_queue_len);
755
756 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
757 if (ip_hdr(skb)->version == 0) {
758 struct nlmsghdr *nlh = skb_pull(skb,
759 sizeof(struct iphdr));
760 nlh->nlmsg_type = NLMSG_ERROR;
761 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
762 skb_trim(skb, nlh->nlmsg_len);
763 e = nlmsg_data(nlh);
764 e->error = -ETIMEDOUT;
765 memset(&e->msg, 0, sizeof(e->msg));
766
767 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
768 } else {
769 kfree_skb(skb);
770 }
771 }
772
773 ipmr_cache_free(c);
774}
775
776/* Timer process for the unresolved queue. */
777static void ipmr_expire_process(struct timer_list *t)
778{
779 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
780 struct mr_mfc *c, *next;
781 unsigned long expires;
782 unsigned long now;
783
784 if (!spin_trylock(&mfc_unres_lock)) {
785 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
786 return;
787 }
788
789 if (list_empty(&mrt->mfc_unres_queue))
790 goto out;
791
792 now = jiffies;
793 expires = 10*HZ;
794
795 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
796 if (time_after(c->mfc_un.unres.expires, now)) {
797 unsigned long interval = c->mfc_un.unres.expires - now;
798 if (interval < expires)
799 expires = interval;
800 continue;
801 }
802
803 list_del(&c->list);
804 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
805 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
806 }
807
808 if (!list_empty(&mrt->mfc_unres_queue))
809 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
810
811out:
812 spin_unlock(&mfc_unres_lock);
813}
814
815/* Fill oifs list. It is called under write locked mrt_lock. */
816static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
817 unsigned char *ttls)
818{
819 int vifi;
820
821 cache->mfc_un.res.minvif = MAXVIFS;
822 cache->mfc_un.res.maxvif = 0;
823 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
824
825 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
826 if (VIF_EXISTS(mrt, vifi) &&
827 ttls[vifi] && ttls[vifi] < 255) {
828 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
829 if (cache->mfc_un.res.minvif > vifi)
830 cache->mfc_un.res.minvif = vifi;
831 if (cache->mfc_un.res.maxvif <= vifi)
832 cache->mfc_un.res.maxvif = vifi + 1;
833 }
834 }
835 cache->mfc_un.res.lastuse = jiffies;
836}
837
838static int vif_add(struct net *net, struct mr_table *mrt,
839 struct vifctl *vifc, int mrtsock)
840{
841 int vifi = vifc->vifc_vifi;
842 struct switchdev_attr attr = {
843 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
844 };
845 struct vif_device *v = &mrt->vif_table[vifi];
846 struct net_device *dev;
847 struct in_device *in_dev;
848 int err;
849
850 /* Is vif busy ? */
851 if (VIF_EXISTS(mrt, vifi))
852 return -EADDRINUSE;
853
854 switch (vifc->vifc_flags) {
855 case VIFF_REGISTER:
856 if (!ipmr_pimsm_enabled())
857 return -EINVAL;
858 /* Special Purpose VIF in PIM
859 * All the packets will be sent to the daemon
860 */
861 if (mrt->mroute_reg_vif_num >= 0)
862 return -EADDRINUSE;
863 dev = ipmr_reg_vif(net, mrt);
864 if (!dev)
865 return -ENOBUFS;
866 err = dev_set_allmulti(dev, 1);
867 if (err) {
868 unregister_netdevice(dev);
869 dev_put(dev);
870 return err;
871 }
872 break;
873 case VIFF_TUNNEL:
874 dev = ipmr_new_tunnel(net, vifc);
875 if (!dev)
876 return -ENOBUFS;
877 err = dev_set_allmulti(dev, 1);
878 if (err) {
879 ipmr_del_tunnel(dev, vifc);
880 dev_put(dev);
881 return err;
882 }
883 break;
884 case VIFF_USE_IFINDEX:
885 case 0:
886 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
887 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
888 if (dev && !__in_dev_get_rtnl(dev)) {
889 dev_put(dev);
890 return -EADDRNOTAVAIL;
891 }
892 } else {
893 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
894 }
895 if (!dev)
896 return -EADDRNOTAVAIL;
897 err = dev_set_allmulti(dev, 1);
898 if (err) {
899 dev_put(dev);
900 return err;
901 }
902 break;
903 default:
904 return -EINVAL;
905 }
906
907 in_dev = __in_dev_get_rtnl(dev);
908 if (!in_dev) {
909 dev_put(dev);
910 return -EADDRNOTAVAIL;
911 }
912 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
913 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
914 dev->ifindex, &in_dev->cnf);
915 ip_rt_multicast_event(in_dev);
916
917 /* Fill in the VIF structures */
918 vif_device_init(v, dev, vifc->vifc_rate_limit,
919 vifc->vifc_threshold,
920 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
921 (VIFF_TUNNEL | VIFF_REGISTER));
922
923 attr.orig_dev = dev;
924 if (!switchdev_port_attr_get(dev, &attr)) {
925 memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
926 v->dev_parent_id.id_len = attr.u.ppid.id_len;
927 } else {
928 v->dev_parent_id.id_len = 0;
929 }
930
931 v->local = vifc->vifc_lcl_addr.s_addr;
932 v->remote = vifc->vifc_rmt_addr.s_addr;
933
934 /* And finish update writing critical data */
935 write_lock_bh(&mrt_lock);
936 v->dev = dev;
937 if (v->flags & VIFF_REGISTER)
938 mrt->mroute_reg_vif_num = vifi;
939 if (vifi+1 > mrt->maxvif)
940 mrt->maxvif = vifi+1;
941 write_unlock_bh(&mrt_lock);
942 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
943 return 0;
944}
945
946/* called with rcu_read_lock() */
947static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
948 __be32 origin,
949 __be32 mcastgrp)
950{
951 struct mfc_cache_cmp_arg arg = {
952 .mfc_mcastgrp = mcastgrp,
953 .mfc_origin = origin
954 };
955
956 return mr_mfc_find(mrt, &arg);
957}
958
959/* Look for a (*,G) entry */
960static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
961 __be32 mcastgrp, int vifi)
962{
963 struct mfc_cache_cmp_arg arg = {
964 .mfc_mcastgrp = mcastgrp,
965 .mfc_origin = htonl(INADDR_ANY)
966 };
967
968 if (mcastgrp == htonl(INADDR_ANY))
969 return mr_mfc_find_any_parent(mrt, vifi);
970 return mr_mfc_find_any(mrt, vifi, &arg);
971}
972
973/* Look for a (S,G,iif) entry if parent != -1 */
974static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
975 __be32 origin, __be32 mcastgrp,
976 int parent)
977{
978 struct mfc_cache_cmp_arg arg = {
979 .mfc_mcastgrp = mcastgrp,
980 .mfc_origin = origin,
981 };
982
983 return mr_mfc_find_parent(mrt, &arg, parent);
984}
985
986/* Allocate a multicast cache entry */
987static struct mfc_cache *ipmr_cache_alloc(void)
988{
989 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
990
991 if (c) {
992 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
993 c->_c.mfc_un.res.minvif = MAXVIFS;
994 c->_c.free = ipmr_cache_free_rcu;
995 refcount_set(&c->_c.mfc_un.res.refcount, 1);
996 }
997 return c;
998}
999
1000static struct mfc_cache *ipmr_cache_alloc_unres(void)
1001{
1002 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1003
1004 if (c) {
1005 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1006 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1007 }
1008 return c;
1009}
1010
1011/* A cache entry has gone into a resolved state from queued */
1012static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1013 struct mfc_cache *uc, struct mfc_cache *c)
1014{
1015 struct sk_buff *skb;
1016 struct nlmsgerr *e;
1017
1018 /* Play the pending entries through our router */
1019 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1020 if (ip_hdr(skb)->version == 0) {
1021 struct nlmsghdr *nlh = skb_pull(skb,
1022 sizeof(struct iphdr));
1023
1024 if (mr_fill_mroute(mrt, skb, &c->_c,
1025 nlmsg_data(nlh)) > 0) {
1026 nlh->nlmsg_len = skb_tail_pointer(skb) -
1027 (u8 *)nlh;
1028 } else {
1029 nlh->nlmsg_type = NLMSG_ERROR;
1030 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1031 skb_trim(skb, nlh->nlmsg_len);
1032 e = nlmsg_data(nlh);
1033 e->error = -EMSGSIZE;
1034 memset(&e->msg, 0, sizeof(e->msg));
1035 }
1036
1037 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1038 } else {
1039 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1040 }
1041 }
1042}
1043
1044/* Bounce a cache query up to mrouted and netlink.
1045 *
1046 * Called under mrt_lock.
1047 */
1048static int ipmr_cache_report(struct mr_table *mrt,
1049 struct sk_buff *pkt, vifi_t vifi, int assert)
1050{
1051 const int ihl = ip_hdrlen(pkt);
1052 struct sock *mroute_sk;
1053 struct igmphdr *igmp;
1054 struct igmpmsg *msg;
1055 struct sk_buff *skb;
1056 int ret;
1057
1058 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1059 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1060 else
1061 skb = alloc_skb(128, GFP_ATOMIC);
1062
1063 if (!skb)
1064 return -ENOBUFS;
1065
1066 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1067 /* Ugly, but we have no choice with this interface.
1068 * Duplicate old header, fix ihl, length etc.
1069 * And all this only to mangle msg->im_msgtype and
1070 * to set msg->im_mbz to "mbz" :-)
1071 */
1072 skb_push(skb, sizeof(struct iphdr));
1073 skb_reset_network_header(skb);
1074 skb_reset_transport_header(skb);
1075 msg = (struct igmpmsg *)skb_network_header(skb);
1076 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1077 msg->im_msgtype = assert;
1078 msg->im_mbz = 0;
1079 if (assert == IGMPMSG_WRVIFWHOLE)
1080 msg->im_vif = vifi;
1081 else
1082 msg->im_vif = mrt->mroute_reg_vif_num;
1083 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1084 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1085 sizeof(struct iphdr));
1086 } else {
1087 /* Copy the IP header */
1088 skb_set_network_header(skb, skb->len);
1089 skb_put(skb, ihl);
1090 skb_copy_to_linear_data(skb, pkt->data, ihl);
1091 /* Flag to the kernel this is a route add */
1092 ip_hdr(skb)->protocol = 0;
1093 msg = (struct igmpmsg *)skb_network_header(skb);
1094 msg->im_vif = vifi;
1095 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1096 /* Add our header */
1097 igmp = skb_put(skb, sizeof(struct igmphdr));
1098 igmp->type = assert;
1099 msg->im_msgtype = assert;
1100 igmp->code = 0;
1101 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1102 skb->transport_header = skb->network_header;
1103 }
1104
1105 rcu_read_lock();
1106 mroute_sk = rcu_dereference(mrt->mroute_sk);
1107 if (!mroute_sk) {
1108 rcu_read_unlock();
1109 kfree_skb(skb);
1110 return -EINVAL;
1111 }
1112
1113 igmpmsg_netlink_event(mrt, skb);
1114
1115 /* Deliver to mrouted */
1116 ret = sock_queue_rcv_skb(mroute_sk, skb);
1117 rcu_read_unlock();
1118 if (ret < 0) {
1119 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1120 kfree_skb(skb);
1121 }
1122
1123 return ret;
1124}
1125
1126/* Queue a packet for resolution. It gets locked cache entry! */
1127static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1128 struct sk_buff *skb, struct net_device *dev)
1129{
1130 const struct iphdr *iph = ip_hdr(skb);
1131 struct mfc_cache *c;
1132 bool found = false;
1133 int err;
1134
1135 spin_lock_bh(&mfc_unres_lock);
1136 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1137 if (c->mfc_mcastgrp == iph->daddr &&
1138 c->mfc_origin == iph->saddr) {
1139 found = true;
1140 break;
1141 }
1142 }
1143
1144 if (!found) {
1145 /* Create a new entry if allowable */
1146 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1147 (c = ipmr_cache_alloc_unres()) == NULL) {
1148 spin_unlock_bh(&mfc_unres_lock);
1149
1150 kfree_skb(skb);
1151 return -ENOBUFS;
1152 }
1153
1154 /* Fill in the new cache entry */
1155 c->_c.mfc_parent = -1;
1156 c->mfc_origin = iph->saddr;
1157 c->mfc_mcastgrp = iph->daddr;
1158
1159 /* Reflect first query at mrouted. */
1160 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1161
1162 if (err < 0) {
1163 /* If the report failed throw the cache entry
1164 out - Brad Parker
1165 */
1166 spin_unlock_bh(&mfc_unres_lock);
1167
1168 ipmr_cache_free(c);
1169 kfree_skb(skb);
1170 return err;
1171 }
1172
1173 atomic_inc(&mrt->cache_resolve_queue_len);
1174 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1175 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1176
1177 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1178 mod_timer(&mrt->ipmr_expire_timer,
1179 c->_c.mfc_un.unres.expires);
1180 }
1181
1182 /* See if we can append the packet */
1183 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1184 kfree_skb(skb);
1185 err = -ENOBUFS;
1186 } else {
1187 if (dev) {
1188 skb->dev = dev;
1189 skb->skb_iif = dev->ifindex;
1190 }
1191 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1192 err = 0;
1193 }
1194
1195 spin_unlock_bh(&mfc_unres_lock);
1196 return err;
1197}
1198
1199/* MFC cache manipulation by user space mroute daemon */
1200
1201static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1202{
1203 struct net *net = read_pnet(&mrt->net);
1204 struct mfc_cache *c;
1205
1206 /* The entries are added/deleted only under RTNL */
1207 rcu_read_lock();
1208 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1209 mfc->mfcc_mcastgrp.s_addr, parent);
1210 rcu_read_unlock();
1211 if (!c)
1212 return -ENOENT;
1213 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1214 list_del_rcu(&c->_c.list);
1215 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1216 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1217 mr_cache_put(&c->_c);
1218
1219 return 0;
1220}
1221
1222static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1223 struct mfcctl *mfc, int mrtsock, int parent)
1224{
1225 struct mfc_cache *uc, *c;
1226 struct mr_mfc *_uc;
1227 bool found;
1228 int ret;
1229
1230 if (mfc->mfcc_parent >= MAXVIFS)
1231 return -ENFILE;
1232
1233 /* The entries are added/deleted only under RTNL */
1234 rcu_read_lock();
1235 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1236 mfc->mfcc_mcastgrp.s_addr, parent);
1237 rcu_read_unlock();
1238 if (c) {
1239 write_lock_bh(&mrt_lock);
1240 c->_c.mfc_parent = mfc->mfcc_parent;
1241 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1242 if (!mrtsock)
1243 c->_c.mfc_flags |= MFC_STATIC;
1244 write_unlock_bh(&mrt_lock);
1245 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1246 mrt->id);
1247 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1248 return 0;
1249 }
1250
1251 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1252 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1253 return -EINVAL;
1254
1255 c = ipmr_cache_alloc();
1256 if (!c)
1257 return -ENOMEM;
1258
1259 c->mfc_origin = mfc->mfcc_origin.s_addr;
1260 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1261 c->_c.mfc_parent = mfc->mfcc_parent;
1262 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1263 if (!mrtsock)
1264 c->_c.mfc_flags |= MFC_STATIC;
1265
1266 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1267 ipmr_rht_params);
1268 if (ret) {
1269 pr_err("ipmr: rhtable insert error %d\n", ret);
1270 ipmr_cache_free(c);
1271 return ret;
1272 }
1273 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1274 /* Check to see if we resolved a queued list. If so we
1275 * need to send on the frames and tidy up.
1276 */
1277 found = false;
1278 spin_lock_bh(&mfc_unres_lock);
1279 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1280 uc = (struct mfc_cache *)_uc;
1281 if (uc->mfc_origin == c->mfc_origin &&
1282 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1283 list_del(&_uc->list);
1284 atomic_dec(&mrt->cache_resolve_queue_len);
1285 found = true;
1286 break;
1287 }
1288 }
1289 if (list_empty(&mrt->mfc_unres_queue))
1290 del_timer(&mrt->ipmr_expire_timer);
1291 spin_unlock_bh(&mfc_unres_lock);
1292
1293 if (found) {
1294 ipmr_cache_resolve(net, mrt, uc, c);
1295 ipmr_cache_free(uc);
1296 }
1297 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1298 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1299 return 0;
1300}
1301
1302/* Close the multicast socket, and clear the vif tables etc */
1303static void mroute_clean_tables(struct mr_table *mrt, bool all)
1304{
1305 struct net *net = read_pnet(&mrt->net);
1306 struct mr_mfc *c, *tmp;
1307 struct mfc_cache *cache;
1308 LIST_HEAD(list);
1309 int i;
1310
1311 /* Shut down all active vif entries */
1312 for (i = 0; i < mrt->maxvif; i++) {
1313 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1314 continue;
1315 vif_delete(mrt, i, 0, &list);
1316 }
1317 unregister_netdevice_many(&list);
1318
1319 /* Wipe the cache */
1320 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1321 if (!all && (c->mfc_flags & MFC_STATIC))
1322 continue;
1323 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1324 list_del_rcu(&c->list);
1325 cache = (struct mfc_cache *)c;
1326 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1327 mrt->id);
1328 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1329 mr_cache_put(c);
1330 }
1331
1332 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1333 spin_lock_bh(&mfc_unres_lock);
1334 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1335 list_del(&c->list);
1336 cache = (struct mfc_cache *)c;
1337 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1338 ipmr_destroy_unres(mrt, cache);
1339 }
1340 spin_unlock_bh(&mfc_unres_lock);
1341 }
1342}
1343
1344/* called from ip_ra_control(), before an RCU grace period,
1345 * we dont need to call synchronize_rcu() here
1346 */
1347static void mrtsock_destruct(struct sock *sk)
1348{
1349 struct net *net = sock_net(sk);
1350 struct mr_table *mrt;
1351
1352 rtnl_lock();
1353 ipmr_for_each_table(mrt, net) {
1354 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1355 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1356 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1357 NETCONFA_MC_FORWARDING,
1358 NETCONFA_IFINDEX_ALL,
1359 net->ipv4.devconf_all);
1360 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1361 mroute_clean_tables(mrt, false);
1362 }
1363 }
1364 rtnl_unlock();
1365}
1366
1367/* Socket options and virtual interface manipulation. The whole
1368 * virtual interface system is a complete heap, but unfortunately
1369 * that's how BSD mrouted happens to think. Maybe one day with a proper
1370 * MOSPF/PIM router set up we can clean this up.
1371 */
1372
1373int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1374 unsigned int optlen)
1375{
1376 struct net *net = sock_net(sk);
1377 int val, ret = 0, parent = 0;
1378 struct mr_table *mrt;
1379 struct vifctl vif;
1380 struct mfcctl mfc;
1381 bool do_wrvifwhole;
1382 u32 uval;
1383
1384 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1385 rtnl_lock();
1386 if (sk->sk_type != SOCK_RAW ||
1387 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1388 ret = -EOPNOTSUPP;
1389 goto out_unlock;
1390 }
1391
1392 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1393 if (!mrt) {
1394 ret = -ENOENT;
1395 goto out_unlock;
1396 }
1397 if (optname != MRT_INIT) {
1398 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1399 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1400 ret = -EACCES;
1401 goto out_unlock;
1402 }
1403 }
1404
1405 switch (optname) {
1406 case MRT_INIT:
1407 if (optlen != sizeof(int)) {
1408 ret = -EINVAL;
1409 break;
1410 }
1411 if (rtnl_dereference(mrt->mroute_sk)) {
1412 ret = -EADDRINUSE;
1413 break;
1414 }
1415
1416 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1417 if (ret == 0) {
1418 rcu_assign_pointer(mrt->mroute_sk, sk);
1419 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1420 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1421 NETCONFA_MC_FORWARDING,
1422 NETCONFA_IFINDEX_ALL,
1423 net->ipv4.devconf_all);
1424 }
1425 break;
1426 case MRT_DONE:
1427 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1428 ret = -EACCES;
1429 } else {
1430 /* We need to unlock here because mrtsock_destruct takes
1431 * care of rtnl itself and we can't change that due to
1432 * the IP_ROUTER_ALERT setsockopt which runs without it.
1433 */
1434 rtnl_unlock();
1435 ret = ip_ra_control(sk, 0, NULL);
1436 goto out;
1437 }
1438 break;
1439 case MRT_ADD_VIF:
1440 case MRT_DEL_VIF:
1441 if (optlen != sizeof(vif)) {
1442 ret = -EINVAL;
1443 break;
1444 }
1445 if (copy_from_user(&vif, optval, sizeof(vif))) {
1446 ret = -EFAULT;
1447 break;
1448 }
1449 if (vif.vifc_vifi >= MAXVIFS) {
1450 ret = -ENFILE;
1451 break;
1452 }
1453 if (optname == MRT_ADD_VIF) {
1454 ret = vif_add(net, mrt, &vif,
1455 sk == rtnl_dereference(mrt->mroute_sk));
1456 } else {
1457 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1458 }
1459 break;
1460 /* Manipulate the forwarding caches. These live
1461 * in a sort of kernel/user symbiosis.
1462 */
1463 case MRT_ADD_MFC:
1464 case MRT_DEL_MFC:
1465 parent = -1;
1466 /* fall through */
1467 case MRT_ADD_MFC_PROXY:
1468 case MRT_DEL_MFC_PROXY:
1469 if (optlen != sizeof(mfc)) {
1470 ret = -EINVAL;
1471 break;
1472 }
1473 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1474 ret = -EFAULT;
1475 break;
1476 }
1477 if (parent == 0)
1478 parent = mfc.mfcc_parent;
1479 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1480 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1481 else
1482 ret = ipmr_mfc_add(net, mrt, &mfc,
1483 sk == rtnl_dereference(mrt->mroute_sk),
1484 parent);
1485 break;
1486 /* Control PIM assert. */
1487 case MRT_ASSERT:
1488 if (optlen != sizeof(val)) {
1489 ret = -EINVAL;
1490 break;
1491 }
1492 if (get_user(val, (int __user *)optval)) {
1493 ret = -EFAULT;
1494 break;
1495 }
1496 mrt->mroute_do_assert = val;
1497 break;
1498 case MRT_PIM:
1499 if (!ipmr_pimsm_enabled()) {
1500 ret = -ENOPROTOOPT;
1501 break;
1502 }
1503 if (optlen != sizeof(val)) {
1504 ret = -EINVAL;
1505 break;
1506 }
1507 if (get_user(val, (int __user *)optval)) {
1508 ret = -EFAULT;
1509 break;
1510 }
1511
1512 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1513 val = !!val;
1514 if (val != mrt->mroute_do_pim) {
1515 mrt->mroute_do_pim = val;
1516 mrt->mroute_do_assert = val;
1517 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1518 }
1519 break;
1520 case MRT_TABLE:
1521 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1522 ret = -ENOPROTOOPT;
1523 break;
1524 }
1525 if (optlen != sizeof(uval)) {
1526 ret = -EINVAL;
1527 break;
1528 }
1529 if (get_user(uval, (u32 __user *)optval)) {
1530 ret = -EFAULT;
1531 break;
1532 }
1533
1534 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1535 ret = -EBUSY;
1536 } else {
1537 mrt = ipmr_new_table(net, uval);
1538 if (IS_ERR(mrt))
1539 ret = PTR_ERR(mrt);
1540 else
1541 raw_sk(sk)->ipmr_table = uval;
1542 }
1543 break;
1544 /* Spurious command, or MRT_VERSION which you cannot set. */
1545 default:
1546 ret = -ENOPROTOOPT;
1547 }
1548out_unlock:
1549 rtnl_unlock();
1550out:
1551 return ret;
1552}
1553
1554/* Getsock opt support for the multicast routing system. */
1555int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1556{
1557 int olr;
1558 int val;
1559 struct net *net = sock_net(sk);
1560 struct mr_table *mrt;
1561
1562 if (sk->sk_type != SOCK_RAW ||
1563 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1564 return -EOPNOTSUPP;
1565
1566 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1567 if (!mrt)
1568 return -ENOENT;
1569
1570 switch (optname) {
1571 case MRT_VERSION:
1572 val = 0x0305;
1573 break;
1574 case MRT_PIM:
1575 if (!ipmr_pimsm_enabled())
1576 return -ENOPROTOOPT;
1577 val = mrt->mroute_do_pim;
1578 break;
1579 case MRT_ASSERT:
1580 val = mrt->mroute_do_assert;
1581 break;
1582 default:
1583 return -ENOPROTOOPT;
1584 }
1585
1586 if (get_user(olr, optlen))
1587 return -EFAULT;
1588 olr = min_t(unsigned int, olr, sizeof(int));
1589 if (olr < 0)
1590 return -EINVAL;
1591 if (put_user(olr, optlen))
1592 return -EFAULT;
1593 if (copy_to_user(optval, &val, olr))
1594 return -EFAULT;
1595 return 0;
1596}
1597
1598/* The IP multicast ioctl support routines. */
1599int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1600{
1601 struct sioc_sg_req sr;
1602 struct sioc_vif_req vr;
1603 struct vif_device *vif;
1604 struct mfc_cache *c;
1605 struct net *net = sock_net(sk);
1606 struct mr_table *mrt;
1607
1608 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1609 if (!mrt)
1610 return -ENOENT;
1611
1612 switch (cmd) {
1613 case SIOCGETVIFCNT:
1614 if (copy_from_user(&vr, arg, sizeof(vr)))
1615 return -EFAULT;
1616 if (vr.vifi >= mrt->maxvif)
1617 return -EINVAL;
1618 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1619 read_lock(&mrt_lock);
1620 vif = &mrt->vif_table[vr.vifi];
1621 if (VIF_EXISTS(mrt, vr.vifi)) {
1622 vr.icount = vif->pkt_in;
1623 vr.ocount = vif->pkt_out;
1624 vr.ibytes = vif->bytes_in;
1625 vr.obytes = vif->bytes_out;
1626 read_unlock(&mrt_lock);
1627
1628 if (copy_to_user(arg, &vr, sizeof(vr)))
1629 return -EFAULT;
1630 return 0;
1631 }
1632 read_unlock(&mrt_lock);
1633 return -EADDRNOTAVAIL;
1634 case SIOCGETSGCNT:
1635 if (copy_from_user(&sr, arg, sizeof(sr)))
1636 return -EFAULT;
1637
1638 rcu_read_lock();
1639 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1640 if (c) {
1641 sr.pktcnt = c->_c.mfc_un.res.pkt;
1642 sr.bytecnt = c->_c.mfc_un.res.bytes;
1643 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1644 rcu_read_unlock();
1645
1646 if (copy_to_user(arg, &sr, sizeof(sr)))
1647 return -EFAULT;
1648 return 0;
1649 }
1650 rcu_read_unlock();
1651 return -EADDRNOTAVAIL;
1652 default:
1653 return -ENOIOCTLCMD;
1654 }
1655}
1656
1657#ifdef CONFIG_COMPAT
1658struct compat_sioc_sg_req {
1659 struct in_addr src;
1660 struct in_addr grp;
1661 compat_ulong_t pktcnt;
1662 compat_ulong_t bytecnt;
1663 compat_ulong_t wrong_if;
1664};
1665
1666struct compat_sioc_vif_req {
1667 vifi_t vifi; /* Which iface */
1668 compat_ulong_t icount;
1669 compat_ulong_t ocount;
1670 compat_ulong_t ibytes;
1671 compat_ulong_t obytes;
1672};
1673
1674int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1675{
1676 struct compat_sioc_sg_req sr;
1677 struct compat_sioc_vif_req vr;
1678 struct vif_device *vif;
1679 struct mfc_cache *c;
1680 struct net *net = sock_net(sk);
1681 struct mr_table *mrt;
1682
1683 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1684 if (!mrt)
1685 return -ENOENT;
1686
1687 switch (cmd) {
1688 case SIOCGETVIFCNT:
1689 if (copy_from_user(&vr, arg, sizeof(vr)))
1690 return -EFAULT;
1691 if (vr.vifi >= mrt->maxvif)
1692 return -EINVAL;
1693 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1694 read_lock(&mrt_lock);
1695 vif = &mrt->vif_table[vr.vifi];
1696 if (VIF_EXISTS(mrt, vr.vifi)) {
1697 vr.icount = vif->pkt_in;
1698 vr.ocount = vif->pkt_out;
1699 vr.ibytes = vif->bytes_in;
1700 vr.obytes = vif->bytes_out;
1701 read_unlock(&mrt_lock);
1702
1703 if (copy_to_user(arg, &vr, sizeof(vr)))
1704 return -EFAULT;
1705 return 0;
1706 }
1707 read_unlock(&mrt_lock);
1708 return -EADDRNOTAVAIL;
1709 case SIOCGETSGCNT:
1710 if (copy_from_user(&sr, arg, sizeof(sr)))
1711 return -EFAULT;
1712
1713 rcu_read_lock();
1714 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1715 if (c) {
1716 sr.pktcnt = c->_c.mfc_un.res.pkt;
1717 sr.bytecnt = c->_c.mfc_un.res.bytes;
1718 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1719 rcu_read_unlock();
1720
1721 if (copy_to_user(arg, &sr, sizeof(sr)))
1722 return -EFAULT;
1723 return 0;
1724 }
1725 rcu_read_unlock();
1726 return -EADDRNOTAVAIL;
1727 default:
1728 return -ENOIOCTLCMD;
1729 }
1730}
1731#endif
1732
1733static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1734{
1735 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1736 struct net *net = dev_net(dev);
1737 struct mr_table *mrt;
1738 struct vif_device *v;
1739 int ct;
1740
1741 if (event != NETDEV_UNREGISTER)
1742 return NOTIFY_DONE;
1743
1744 ipmr_for_each_table(mrt, net) {
1745 v = &mrt->vif_table[0];
1746 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1747 if (v->dev == dev)
1748 vif_delete(mrt, ct, 1, NULL);
1749 }
1750 }
1751 return NOTIFY_DONE;
1752}
1753
1754static struct notifier_block ip_mr_notifier = {
1755 .notifier_call = ipmr_device_event,
1756};
1757
1758/* Encapsulate a packet by attaching a valid IPIP header to it.
1759 * This avoids tunnel drivers and other mess and gives us the speed so
1760 * important for multicast video.
1761 */
1762static void ip_encap(struct net *net, struct sk_buff *skb,
1763 __be32 saddr, __be32 daddr)
1764{
1765 struct iphdr *iph;
1766 const struct iphdr *old_iph = ip_hdr(skb);
1767
1768 skb_push(skb, sizeof(struct iphdr));
1769 skb->transport_header = skb->network_header;
1770 skb_reset_network_header(skb);
1771 iph = ip_hdr(skb);
1772
1773 iph->version = 4;
1774 iph->tos = old_iph->tos;
1775 iph->ttl = old_iph->ttl;
1776 iph->frag_off = 0;
1777 iph->daddr = daddr;
1778 iph->saddr = saddr;
1779 iph->protocol = IPPROTO_IPIP;
1780 iph->ihl = 5;
1781 iph->tot_len = htons(skb->len);
1782 ip_select_ident(net, skb, NULL);
1783 ip_send_check(iph);
1784
1785 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1786 nf_reset(skb);
1787}
1788
1789static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1790 struct sk_buff *skb)
1791{
1792 struct ip_options *opt = &(IPCB(skb)->opt);
1793
1794 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1795 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1796
1797 if (unlikely(opt->optlen))
1798 ip_forward_options(skb);
1799
1800 return dst_output(net, sk, skb);
1801}
1802
1803#ifdef CONFIG_NET_SWITCHDEV
1804static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1805 int in_vifi, int out_vifi)
1806{
1807 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1808 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1809
1810 if (!skb->offload_mr_fwd_mark)
1811 return false;
1812 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1813 return false;
1814 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1815 &in_vif->dev_parent_id);
1816}
1817#else
1818static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1819 int in_vifi, int out_vifi)
1820{
1821 return false;
1822}
1823#endif
1824
1825/* Processing handlers for ipmr_forward */
1826
1827static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1828 int in_vifi, struct sk_buff *skb,
1829 struct mfc_cache *c, int vifi)
1830{
1831 const struct iphdr *iph = ip_hdr(skb);
1832 struct vif_device *vif = &mrt->vif_table[vifi];
1833 struct net_device *dev;
1834 struct rtable *rt;
1835 struct flowi4 fl4;
1836 int encap = 0;
1837
1838 if (!vif->dev)
1839 goto out_free;
1840
1841 if (vif->flags & VIFF_REGISTER) {
1842 vif->pkt_out++;
1843 vif->bytes_out += skb->len;
1844 vif->dev->stats.tx_bytes += skb->len;
1845 vif->dev->stats.tx_packets++;
1846 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1847 goto out_free;
1848 }
1849
1850 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1851 goto out_free;
1852
1853 if (vif->flags & VIFF_TUNNEL) {
1854 rt = ip_route_output_ports(net, &fl4, NULL,
1855 vif->remote, vif->local,
1856 0, 0,
1857 IPPROTO_IPIP,
1858 RT_TOS(iph->tos), vif->link);
1859 if (IS_ERR(rt))
1860 goto out_free;
1861 encap = sizeof(struct iphdr);
1862 } else {
1863 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1864 0, 0,
1865 IPPROTO_IPIP,
1866 RT_TOS(iph->tos), vif->link);
1867 if (IS_ERR(rt))
1868 goto out_free;
1869 }
1870
1871 dev = rt->dst.dev;
1872
1873 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1874 /* Do not fragment multicasts. Alas, IPv4 does not
1875 * allow to send ICMP, so that packets will disappear
1876 * to blackhole.
1877 */
1878 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1879 ip_rt_put(rt);
1880 goto out_free;
1881 }
1882
1883 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1884
1885 if (skb_cow(skb, encap)) {
1886 ip_rt_put(rt);
1887 goto out_free;
1888 }
1889
1890 vif->pkt_out++;
1891 vif->bytes_out += skb->len;
1892
1893 skb_dst_drop(skb);
1894 skb_dst_set(skb, &rt->dst);
1895 ip_decrease_ttl(ip_hdr(skb));
1896
1897 /* FIXME: forward and output firewalls used to be called here.
1898 * What do we do with netfilter? -- RR
1899 */
1900 if (vif->flags & VIFF_TUNNEL) {
1901 ip_encap(net, skb, vif->local, vif->remote);
1902 /* FIXME: extra output firewall step used to be here. --RR */
1903 vif->dev->stats.tx_packets++;
1904 vif->dev->stats.tx_bytes += skb->len;
1905 }
1906
1907 IPCB(skb)->flags |= IPSKB_FORWARDED;
1908
1909 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1910 * not only before forwarding, but after forwarding on all output
1911 * interfaces. It is clear, if mrouter runs a multicasting
1912 * program, it should receive packets not depending to what interface
1913 * program is joined.
1914 * If we will not make it, the program will have to join on all
1915 * interfaces. On the other hand, multihoming host (or router, but
1916 * not mrouter) cannot join to more than one interface - it will
1917 * result in receiving multiple packets.
1918 */
1919 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1920 net, NULL, skb, skb->dev, dev,
1921 ipmr_forward_finish);
1922 return;
1923
1924out_free:
1925 kfree_skb(skb);
1926}
1927
1928static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1929{
1930 int ct;
1931
1932 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1933 if (mrt->vif_table[ct].dev == dev)
1934 break;
1935 }
1936 return ct;
1937}
1938
1939/* "local" means that we should preserve one skb (for local delivery) */
1940static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1941 struct net_device *dev, struct sk_buff *skb,
1942 struct mfc_cache *c, int local)
1943{
1944 int true_vifi = ipmr_find_vif(mrt, dev);
1945 int psend = -1;
1946 int vif, ct;
1947
1948 vif = c->_c.mfc_parent;
1949 c->_c.mfc_un.res.pkt++;
1950 c->_c.mfc_un.res.bytes += skb->len;
1951 c->_c.mfc_un.res.lastuse = jiffies;
1952
1953 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1954 struct mfc_cache *cache_proxy;
1955
1956 /* For an (*,G) entry, we only check that the incomming
1957 * interface is part of the static tree.
1958 */
1959 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1960 if (cache_proxy &&
1961 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1962 goto forward;
1963 }
1964
1965 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1966 if (mrt->vif_table[vif].dev != dev) {
1967 if (rt_is_output_route(skb_rtable(skb))) {
1968 /* It is our own packet, looped back.
1969 * Very complicated situation...
1970 *
1971 * The best workaround until routing daemons will be
1972 * fixed is not to redistribute packet, if it was
1973 * send through wrong interface. It means, that
1974 * multicast applications WILL NOT work for
1975 * (S,G), which have default multicast route pointing
1976 * to wrong oif. In any case, it is not a good
1977 * idea to use multicasting applications on router.
1978 */
1979 goto dont_forward;
1980 }
1981
1982 c->_c.mfc_un.res.wrong_if++;
1983
1984 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1985 /* pimsm uses asserts, when switching from RPT to SPT,
1986 * so that we cannot check that packet arrived on an oif.
1987 * It is bad, but otherwise we would need to move pretty
1988 * large chunk of pimd to kernel. Ough... --ANK
1989 */
1990 (mrt->mroute_do_pim ||
1991 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1992 time_after(jiffies,
1993 c->_c.mfc_un.res.last_assert +
1994 MFC_ASSERT_THRESH)) {
1995 c->_c.mfc_un.res.last_assert = jiffies;
1996 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1997 if (mrt->mroute_do_wrvifwhole)
1998 ipmr_cache_report(mrt, skb, true_vifi,
1999 IGMPMSG_WRVIFWHOLE);
2000 }
2001 goto dont_forward;
2002 }
2003
2004forward:
2005 mrt->vif_table[vif].pkt_in++;
2006 mrt->vif_table[vif].bytes_in += skb->len;
2007
2008 /* Forward the frame */
2009 if (c->mfc_origin == htonl(INADDR_ANY) &&
2010 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2011 if (true_vifi >= 0 &&
2012 true_vifi != c->_c.mfc_parent &&
2013 ip_hdr(skb)->ttl >
2014 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2015 /* It's an (*,*) entry and the packet is not coming from
2016 * the upstream: forward the packet to the upstream
2017 * only.
2018 */
2019 psend = c->_c.mfc_parent;
2020 goto last_forward;
2021 }
2022 goto dont_forward;
2023 }
2024 for (ct = c->_c.mfc_un.res.maxvif - 1;
2025 ct >= c->_c.mfc_un.res.minvif; ct--) {
2026 /* For (*,G) entry, don't forward to the incoming interface */
2027 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2028 ct != true_vifi) &&
2029 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2030 if (psend != -1) {
2031 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2032
2033 if (skb2)
2034 ipmr_queue_xmit(net, mrt, true_vifi,
2035 skb2, c, psend);
2036 }
2037 psend = ct;
2038 }
2039 }
2040last_forward:
2041 if (psend != -1) {
2042 if (local) {
2043 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2044
2045 if (skb2)
2046 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2047 c, psend);
2048 } else {
2049 ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
2050 return;
2051 }
2052 }
2053
2054dont_forward:
2055 if (!local)
2056 kfree_skb(skb);
2057}
2058
2059static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2060{
2061 struct rtable *rt = skb_rtable(skb);
2062 struct iphdr *iph = ip_hdr(skb);
2063 struct flowi4 fl4 = {
2064 .daddr = iph->daddr,
2065 .saddr = iph->saddr,
2066 .flowi4_tos = RT_TOS(iph->tos),
2067 .flowi4_oif = (rt_is_output_route(rt) ?
2068 skb->dev->ifindex : 0),
2069 .flowi4_iif = (rt_is_output_route(rt) ?
2070 LOOPBACK_IFINDEX :
2071 skb->dev->ifindex),
2072 .flowi4_mark = skb->mark,
2073 };
2074 struct mr_table *mrt;
2075 int err;
2076
2077 err = ipmr_fib_lookup(net, &fl4, &mrt);
2078 if (err)
2079 return ERR_PTR(err);
2080 return mrt;
2081}
2082
2083/* Multicast packets for forwarding arrive here
2084 * Called with rcu_read_lock();
2085 */
2086int ip_mr_input(struct sk_buff *skb)
2087{
2088 struct mfc_cache *cache;
2089 struct net *net = dev_net(skb->dev);
2090 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2091 struct mr_table *mrt;
2092 struct net_device *dev;
2093
2094 /* skb->dev passed in is the loX master dev for vrfs.
2095 * As there are no vifs associated with loopback devices,
2096 * get the proper interface that does have a vif associated with it.
2097 */
2098 dev = skb->dev;
2099 if (netif_is_l3_master(skb->dev)) {
2100 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2101 if (!dev) {
2102 kfree_skb(skb);
2103 return -ENODEV;
2104 }
2105 }
2106
2107 /* Packet is looped back after forward, it should not be
2108 * forwarded second time, but still can be delivered locally.
2109 */
2110 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2111 goto dont_forward;
2112
2113 mrt = ipmr_rt_fib_lookup(net, skb);
2114 if (IS_ERR(mrt)) {
2115 kfree_skb(skb);
2116 return PTR_ERR(mrt);
2117 }
2118 if (!local) {
2119 if (IPCB(skb)->opt.router_alert) {
2120 if (ip_call_ra_chain(skb))
2121 return 0;
2122 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2123 /* IGMPv1 (and broken IGMPv2 implementations sort of
2124 * Cisco IOS <= 11.2(8)) do not put router alert
2125 * option to IGMP packets destined to routable
2126 * groups. It is very bad, because it means
2127 * that we can forward NO IGMP messages.
2128 */
2129 struct sock *mroute_sk;
2130
2131 mroute_sk = rcu_dereference(mrt->mroute_sk);
2132 if (mroute_sk) {
2133 nf_reset(skb);
2134 raw_rcv(mroute_sk, skb);
2135 return 0;
2136 }
2137 }
2138 }
2139
2140 /* already under rcu_read_lock() */
2141 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2142 if (!cache) {
2143 int vif = ipmr_find_vif(mrt, dev);
2144
2145 if (vif >= 0)
2146 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2147 vif);
2148 }
2149
2150 /* No usable cache entry */
2151 if (!cache) {
2152 int vif;
2153
2154 if (local) {
2155 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2156 ip_local_deliver(skb);
2157 if (!skb2)
2158 return -ENOBUFS;
2159 skb = skb2;
2160 }
2161
2162 read_lock(&mrt_lock);
2163 vif = ipmr_find_vif(mrt, dev);
2164 if (vif >= 0) {
2165 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2166 read_unlock(&mrt_lock);
2167
2168 return err2;
2169 }
2170 read_unlock(&mrt_lock);
2171 kfree_skb(skb);
2172 return -ENODEV;
2173 }
2174
2175 read_lock(&mrt_lock);
2176 ip_mr_forward(net, mrt, dev, skb, cache, local);
2177 read_unlock(&mrt_lock);
2178
2179 if (local)
2180 return ip_local_deliver(skb);
2181
2182 return 0;
2183
2184dont_forward:
2185 if (local)
2186 return ip_local_deliver(skb);
2187 kfree_skb(skb);
2188 return 0;
2189}
2190
2191#ifdef CONFIG_IP_PIMSM_V1
2192/* Handle IGMP messages of PIMv1 */
2193int pim_rcv_v1(struct sk_buff *skb)
2194{
2195 struct igmphdr *pim;
2196 struct net *net = dev_net(skb->dev);
2197 struct mr_table *mrt;
2198
2199 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2200 goto drop;
2201
2202 pim = igmp_hdr(skb);
2203
2204 mrt = ipmr_rt_fib_lookup(net, skb);
2205 if (IS_ERR(mrt))
2206 goto drop;
2207 if (!mrt->mroute_do_pim ||
2208 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2209 goto drop;
2210
2211 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2212drop:
2213 kfree_skb(skb);
2214 }
2215 return 0;
2216}
2217#endif
2218
2219#ifdef CONFIG_IP_PIMSM_V2
2220static int pim_rcv(struct sk_buff *skb)
2221{
2222 struct pimreghdr *pim;
2223 struct net *net = dev_net(skb->dev);
2224 struct mr_table *mrt;
2225
2226 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2227 goto drop;
2228
2229 pim = (struct pimreghdr *)skb_transport_header(skb);
2230 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2231 (pim->flags & PIM_NULL_REGISTER) ||
2232 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2233 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2234 goto drop;
2235
2236 mrt = ipmr_rt_fib_lookup(net, skb);
2237 if (IS_ERR(mrt))
2238 goto drop;
2239 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2240drop:
2241 kfree_skb(skb);
2242 }
2243 return 0;
2244}
2245#endif
2246
2247int ipmr_get_route(struct net *net, struct sk_buff *skb,
2248 __be32 saddr, __be32 daddr,
2249 struct rtmsg *rtm, u32 portid)
2250{
2251 struct mfc_cache *cache;
2252 struct mr_table *mrt;
2253 int err;
2254
2255 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2256 if (!mrt)
2257 return -ENOENT;
2258
2259 rcu_read_lock();
2260 cache = ipmr_cache_find(mrt, saddr, daddr);
2261 if (!cache && skb->dev) {
2262 int vif = ipmr_find_vif(mrt, skb->dev);
2263
2264 if (vif >= 0)
2265 cache = ipmr_cache_find_any(mrt, daddr, vif);
2266 }
2267 if (!cache) {
2268 struct sk_buff *skb2;
2269 struct iphdr *iph;
2270 struct net_device *dev;
2271 int vif = -1;
2272
2273 dev = skb->dev;
2274 read_lock(&mrt_lock);
2275 if (dev)
2276 vif = ipmr_find_vif(mrt, dev);
2277 if (vif < 0) {
2278 read_unlock(&mrt_lock);
2279 rcu_read_unlock();
2280 return -ENODEV;
2281 }
2282
2283 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2284 if (!skb2) {
2285 read_unlock(&mrt_lock);
2286 rcu_read_unlock();
2287 return -ENOMEM;
2288 }
2289
2290 NETLINK_CB(skb2).portid = portid;
2291 skb_push(skb2, sizeof(struct iphdr));
2292 skb_reset_network_header(skb2);
2293 iph = ip_hdr(skb2);
2294 iph->ihl = sizeof(struct iphdr) >> 2;
2295 iph->saddr = saddr;
2296 iph->daddr = daddr;
2297 iph->version = 0;
2298 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2299 read_unlock(&mrt_lock);
2300 rcu_read_unlock();
2301 return err;
2302 }
2303
2304 read_lock(&mrt_lock);
2305 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2306 read_unlock(&mrt_lock);
2307 rcu_read_unlock();
2308 return err;
2309}
2310
2311static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2312 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2313 int flags)
2314{
2315 struct nlmsghdr *nlh;
2316 struct rtmsg *rtm;
2317 int err;
2318
2319 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2320 if (!nlh)
2321 return -EMSGSIZE;
2322
2323 rtm = nlmsg_data(nlh);
2324 rtm->rtm_family = RTNL_FAMILY_IPMR;
2325 rtm->rtm_dst_len = 32;
2326 rtm->rtm_src_len = 32;
2327 rtm->rtm_tos = 0;
2328 rtm->rtm_table = mrt->id;
2329 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2330 goto nla_put_failure;
2331 rtm->rtm_type = RTN_MULTICAST;
2332 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2333 if (c->_c.mfc_flags & MFC_STATIC)
2334 rtm->rtm_protocol = RTPROT_STATIC;
2335 else
2336 rtm->rtm_protocol = RTPROT_MROUTED;
2337 rtm->rtm_flags = 0;
2338
2339 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2340 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2341 goto nla_put_failure;
2342 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2343 /* do not break the dump if cache is unresolved */
2344 if (err < 0 && err != -ENOENT)
2345 goto nla_put_failure;
2346
2347 nlmsg_end(skb, nlh);
2348 return 0;
2349
2350nla_put_failure:
2351 nlmsg_cancel(skb, nlh);
2352 return -EMSGSIZE;
2353}
2354
2355static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2356 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2357 int flags)
2358{
2359 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2360 cmd, flags);
2361}
2362
2363static size_t mroute_msgsize(bool unresolved, int maxvif)
2364{
2365 size_t len =
2366 NLMSG_ALIGN(sizeof(struct rtmsg))
2367 + nla_total_size(4) /* RTA_TABLE */
2368 + nla_total_size(4) /* RTA_SRC */
2369 + nla_total_size(4) /* RTA_DST */
2370 ;
2371
2372 if (!unresolved)
2373 len = len
2374 + nla_total_size(4) /* RTA_IIF */
2375 + nla_total_size(0) /* RTA_MULTIPATH */
2376 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2377 /* RTA_MFC_STATS */
2378 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2379 ;
2380
2381 return len;
2382}
2383
2384static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2385 int cmd)
2386{
2387 struct net *net = read_pnet(&mrt->net);
2388 struct sk_buff *skb;
2389 int err = -ENOBUFS;
2390
2391 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2392 mrt->maxvif),
2393 GFP_ATOMIC);
2394 if (!skb)
2395 goto errout;
2396
2397 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2398 if (err < 0)
2399 goto errout;
2400
2401 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2402 return;
2403
2404errout:
2405 kfree_skb(skb);
2406 if (err < 0)
2407 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2408}
2409
2410static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2411{
2412 size_t len =
2413 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2414 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2415 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2416 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2417 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2418 /* IPMRA_CREPORT_PKT */
2419 + nla_total_size(payloadlen)
2420 ;
2421
2422 return len;
2423}
2424
2425static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2426{
2427 struct net *net = read_pnet(&mrt->net);
2428 struct nlmsghdr *nlh;
2429 struct rtgenmsg *rtgenm;
2430 struct igmpmsg *msg;
2431 struct sk_buff *skb;
2432 struct nlattr *nla;
2433 int payloadlen;
2434
2435 payloadlen = pkt->len - sizeof(struct igmpmsg);
2436 msg = (struct igmpmsg *)skb_network_header(pkt);
2437
2438 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2439 if (!skb)
2440 goto errout;
2441
2442 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2443 sizeof(struct rtgenmsg), 0);
2444 if (!nlh)
2445 goto errout;
2446 rtgenm = nlmsg_data(nlh);
2447 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2448 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2449 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2450 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2451 msg->im_src.s_addr) ||
2452 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2453 msg->im_dst.s_addr))
2454 goto nla_put_failure;
2455
2456 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2457 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2458 nla_data(nla), payloadlen))
2459 goto nla_put_failure;
2460
2461 nlmsg_end(skb, nlh);
2462
2463 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2464 return;
2465
2466nla_put_failure:
2467 nlmsg_cancel(skb, nlh);
2468errout:
2469 kfree_skb(skb);
2470 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2471}
2472
2473static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2474 struct netlink_ext_ack *extack)
2475{
2476 struct net *net = sock_net(in_skb->sk);
2477 struct nlattr *tb[RTA_MAX + 1];
2478 struct sk_buff *skb = NULL;
2479 struct mfc_cache *cache;
2480 struct mr_table *mrt;
2481 struct rtmsg *rtm;
2482 __be32 src, grp;
2483 u32 tableid;
2484 int err;
2485
2486 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2487 rtm_ipv4_policy, extack);
2488 if (err < 0)
2489 goto errout;
2490
2491 rtm = nlmsg_data(nlh);
2492
2493 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2494 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2495 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2496
2497 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2498 if (!mrt) {
2499 err = -ENOENT;
2500 goto errout_free;
2501 }
2502
2503 /* entries are added/deleted only under RTNL */
2504 rcu_read_lock();
2505 cache = ipmr_cache_find(mrt, src, grp);
2506 rcu_read_unlock();
2507 if (!cache) {
2508 err = -ENOENT;
2509 goto errout_free;
2510 }
2511
2512 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2513 if (!skb) {
2514 err = -ENOBUFS;
2515 goto errout_free;
2516 }
2517
2518 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2519 nlh->nlmsg_seq, cache,
2520 RTM_NEWROUTE, 0);
2521 if (err < 0)
2522 goto errout_free;
2523
2524 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2525
2526errout:
2527 return err;
2528
2529errout_free:
2530 kfree_skb(skb);
2531 goto errout;
2532}
2533
2534static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2535{
2536 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2537 _ipmr_fill_mroute, &mfc_unres_lock);
2538}
2539
2540static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2541 [RTA_SRC] = { .type = NLA_U32 },
2542 [RTA_DST] = { .type = NLA_U32 },
2543 [RTA_IIF] = { .type = NLA_U32 },
2544 [RTA_TABLE] = { .type = NLA_U32 },
2545 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2546};
2547
2548static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2549{
2550 switch (rtm_protocol) {
2551 case RTPROT_STATIC:
2552 case RTPROT_MROUTED:
2553 return true;
2554 }
2555 return false;
2556}
2557
2558static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2559{
2560 struct rtnexthop *rtnh = nla_data(nla);
2561 int remaining = nla_len(nla), vifi = 0;
2562
2563 while (rtnh_ok(rtnh, remaining)) {
2564 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2565 if (++vifi == MAXVIFS)
2566 break;
2567 rtnh = rtnh_next(rtnh, &remaining);
2568 }
2569
2570 return remaining > 0 ? -EINVAL : vifi;
2571}
2572
2573/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2574static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2575 struct mfcctl *mfcc, int *mrtsock,
2576 struct mr_table **mrtret,
2577 struct netlink_ext_ack *extack)
2578{
2579 struct net_device *dev = NULL;
2580 u32 tblid = RT_TABLE_DEFAULT;
2581 struct mr_table *mrt;
2582 struct nlattr *attr;
2583 struct rtmsg *rtm;
2584 int ret, rem;
2585
2586 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2587 extack);
2588 if (ret < 0)
2589 goto out;
2590 rtm = nlmsg_data(nlh);
2591
2592 ret = -EINVAL;
2593 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2594 rtm->rtm_type != RTN_MULTICAST ||
2595 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2596 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2597 goto out;
2598
2599 memset(mfcc, 0, sizeof(*mfcc));
2600 mfcc->mfcc_parent = -1;
2601 ret = 0;
2602 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2603 switch (nla_type(attr)) {
2604 case RTA_SRC:
2605 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2606 break;
2607 case RTA_DST:
2608 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2609 break;
2610 case RTA_IIF:
2611 dev = __dev_get_by_index(net, nla_get_u32(attr));
2612 if (!dev) {
2613 ret = -ENODEV;
2614 goto out;
2615 }
2616 break;
2617 case RTA_MULTIPATH:
2618 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2619 ret = -EINVAL;
2620 goto out;
2621 }
2622 break;
2623 case RTA_PREFSRC:
2624 ret = 1;
2625 break;
2626 case RTA_TABLE:
2627 tblid = nla_get_u32(attr);
2628 break;
2629 }
2630 }
2631 mrt = ipmr_get_table(net, tblid);
2632 if (!mrt) {
2633 ret = -ENOENT;
2634 goto out;
2635 }
2636 *mrtret = mrt;
2637 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2638 if (dev)
2639 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2640
2641out:
2642 return ret;
2643}
2644
2645/* takes care of both newroute and delroute */
2646static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2647 struct netlink_ext_ack *extack)
2648{
2649 struct net *net = sock_net(skb->sk);
2650 int ret, mrtsock, parent;
2651 struct mr_table *tbl;
2652 struct mfcctl mfcc;
2653
2654 mrtsock = 0;
2655 tbl = NULL;
2656 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2657 if (ret < 0)
2658 return ret;
2659
2660 parent = ret ? mfcc.mfcc_parent : -1;
2661 if (nlh->nlmsg_type == RTM_NEWROUTE)
2662 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2663 else
2664 return ipmr_mfc_delete(tbl, &mfcc, parent);
2665}
2666
2667static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2668{
2669 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2670
2671 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2672 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2673 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2674 mrt->mroute_reg_vif_num) ||
2675 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2676 mrt->mroute_do_assert) ||
2677 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2678 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2679 mrt->mroute_do_wrvifwhole))
2680 return false;
2681
2682 return true;
2683}
2684
2685static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2686{
2687 struct nlattr *vif_nest;
2688 struct vif_device *vif;
2689
2690 /* if the VIF doesn't exist just continue */
2691 if (!VIF_EXISTS(mrt, vifid))
2692 return true;
2693
2694 vif = &mrt->vif_table[vifid];
2695 vif_nest = nla_nest_start(skb, IPMRA_VIF);
2696 if (!vif_nest)
2697 return false;
2698 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2699 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2700 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2701 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2702 IPMRA_VIFA_PAD) ||
2703 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2704 IPMRA_VIFA_PAD) ||
2705 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2706 IPMRA_VIFA_PAD) ||
2707 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2708 IPMRA_VIFA_PAD) ||
2709 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2710 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2711 nla_nest_cancel(skb, vif_nest);
2712 return false;
2713 }
2714 nla_nest_end(skb, vif_nest);
2715
2716 return true;
2717}
2718
2719static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2720{
2721 struct net *net = sock_net(skb->sk);
2722 struct nlmsghdr *nlh = NULL;
2723 unsigned int t = 0, s_t;
2724 unsigned int e = 0, s_e;
2725 struct mr_table *mrt;
2726
2727 s_t = cb->args[0];
2728 s_e = cb->args[1];
2729
2730 ipmr_for_each_table(mrt, net) {
2731 struct nlattr *vifs, *af;
2732 struct ifinfomsg *hdr;
2733 u32 i;
2734
2735 if (t < s_t)
2736 goto skip_table;
2737 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2738 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2739 sizeof(*hdr), NLM_F_MULTI);
2740 if (!nlh)
2741 break;
2742
2743 hdr = nlmsg_data(nlh);
2744 memset(hdr, 0, sizeof(*hdr));
2745 hdr->ifi_family = RTNL_FAMILY_IPMR;
2746
2747 af = nla_nest_start(skb, IFLA_AF_SPEC);
2748 if (!af) {
2749 nlmsg_cancel(skb, nlh);
2750 goto out;
2751 }
2752
2753 if (!ipmr_fill_table(mrt, skb)) {
2754 nlmsg_cancel(skb, nlh);
2755 goto out;
2756 }
2757
2758 vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2759 if (!vifs) {
2760 nla_nest_end(skb, af);
2761 nlmsg_end(skb, nlh);
2762 goto out;
2763 }
2764 for (i = 0; i < mrt->maxvif; i++) {
2765 if (e < s_e)
2766 goto skip_entry;
2767 if (!ipmr_fill_vif(mrt, i, skb)) {
2768 nla_nest_end(skb, vifs);
2769 nla_nest_end(skb, af);
2770 nlmsg_end(skb, nlh);
2771 goto out;
2772 }
2773skip_entry:
2774 e++;
2775 }
2776 s_e = 0;
2777 e = 0;
2778 nla_nest_end(skb, vifs);
2779 nla_nest_end(skb, af);
2780 nlmsg_end(skb, nlh);
2781skip_table:
2782 t++;
2783 }
2784
2785out:
2786 cb->args[1] = e;
2787 cb->args[0] = t;
2788
2789 return skb->len;
2790}
2791
2792#ifdef CONFIG_PROC_FS
2793/* The /proc interfaces to multicast routing :
2794 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2795 */
2796
2797static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2798 __acquires(mrt_lock)
2799{
2800 struct mr_vif_iter *iter = seq->private;
2801 struct net *net = seq_file_net(seq);
2802 struct mr_table *mrt;
2803
2804 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2805 if (!mrt)
2806 return ERR_PTR(-ENOENT);
2807
2808 iter->mrt = mrt;
2809
2810 read_lock(&mrt_lock);
2811 return mr_vif_seq_start(seq, pos);
2812}
2813
2814static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2815 __releases(mrt_lock)
2816{
2817 read_unlock(&mrt_lock);
2818}
2819
2820static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2821{
2822 struct mr_vif_iter *iter = seq->private;
2823 struct mr_table *mrt = iter->mrt;
2824
2825 if (v == SEQ_START_TOKEN) {
2826 seq_puts(seq,
2827 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2828 } else {
2829 const struct vif_device *vif = v;
2830 const char *name = vif->dev ?
2831 vif->dev->name : "none";
2832
2833 seq_printf(seq,
2834 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2835 vif - mrt->vif_table,
2836 name, vif->bytes_in, vif->pkt_in,
2837 vif->bytes_out, vif->pkt_out,
2838 vif->flags, vif->local, vif->remote);
2839 }
2840 return 0;
2841}
2842
2843static const struct seq_operations ipmr_vif_seq_ops = {
2844 .start = ipmr_vif_seq_start,
2845 .next = mr_vif_seq_next,
2846 .stop = ipmr_vif_seq_stop,
2847 .show = ipmr_vif_seq_show,
2848};
2849
2850static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2851{
2852 struct net *net = seq_file_net(seq);
2853 struct mr_table *mrt;
2854
2855 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2856 if (!mrt)
2857 return ERR_PTR(-ENOENT);
2858
2859 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2860}
2861
2862static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2863{
2864 int n;
2865
2866 if (v == SEQ_START_TOKEN) {
2867 seq_puts(seq,
2868 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2869 } else {
2870 const struct mfc_cache *mfc = v;
2871 const struct mr_mfc_iter *it = seq->private;
2872 const struct mr_table *mrt = it->mrt;
2873
2874 seq_printf(seq, "%08X %08X %-3hd",
2875 (__force u32) mfc->mfc_mcastgrp,
2876 (__force u32) mfc->mfc_origin,
2877 mfc->_c.mfc_parent);
2878
2879 if (it->cache != &mrt->mfc_unres_queue) {
2880 seq_printf(seq, " %8lu %8lu %8lu",
2881 mfc->_c.mfc_un.res.pkt,
2882 mfc->_c.mfc_un.res.bytes,
2883 mfc->_c.mfc_un.res.wrong_if);
2884 for (n = mfc->_c.mfc_un.res.minvif;
2885 n < mfc->_c.mfc_un.res.maxvif; n++) {
2886 if (VIF_EXISTS(mrt, n) &&
2887 mfc->_c.mfc_un.res.ttls[n] < 255)
2888 seq_printf(seq,
2889 " %2d:%-3d",
2890 n, mfc->_c.mfc_un.res.ttls[n]);
2891 }
2892 } else {
2893 /* unresolved mfc_caches don't contain
2894 * pkt, bytes and wrong_if values
2895 */
2896 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2897 }
2898 seq_putc(seq, '\n');
2899 }
2900 return 0;
2901}
2902
2903static const struct seq_operations ipmr_mfc_seq_ops = {
2904 .start = ipmr_mfc_seq_start,
2905 .next = mr_mfc_seq_next,
2906 .stop = mr_mfc_seq_stop,
2907 .show = ipmr_mfc_seq_show,
2908};
2909#endif
2910
2911#ifdef CONFIG_IP_PIMSM_V2
2912static const struct net_protocol pim_protocol = {
2913 .handler = pim_rcv,
2914 .netns_ok = 1,
2915};
2916#endif
2917
2918static unsigned int ipmr_seq_read(struct net *net)
2919{
2920 ASSERT_RTNL();
2921
2922 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
2923}
2924
2925static int ipmr_dump(struct net *net, struct notifier_block *nb)
2926{
2927 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
2928 ipmr_mr_table_iter, &mrt_lock);
2929}
2930
2931static const struct fib_notifier_ops ipmr_notifier_ops_template = {
2932 .family = RTNL_FAMILY_IPMR,
2933 .fib_seq_read = ipmr_seq_read,
2934 .fib_dump = ipmr_dump,
2935 .owner = THIS_MODULE,
2936};
2937
2938static int __net_init ipmr_notifier_init(struct net *net)
2939{
2940 struct fib_notifier_ops *ops;
2941
2942 net->ipv4.ipmr_seq = 0;
2943
2944 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
2945 if (IS_ERR(ops))
2946 return PTR_ERR(ops);
2947 net->ipv4.ipmr_notifier_ops = ops;
2948
2949 return 0;
2950}
2951
2952static void __net_exit ipmr_notifier_exit(struct net *net)
2953{
2954 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
2955 net->ipv4.ipmr_notifier_ops = NULL;
2956}
2957
2958/* Setup for IP multicast routing */
2959static int __net_init ipmr_net_init(struct net *net)
2960{
2961 int err;
2962
2963 err = ipmr_notifier_init(net);
2964 if (err)
2965 goto ipmr_notifier_fail;
2966
2967 err = ipmr_rules_init(net);
2968 if (err < 0)
2969 goto ipmr_rules_fail;
2970
2971#ifdef CONFIG_PROC_FS
2972 err = -ENOMEM;
2973 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
2974 sizeof(struct mr_vif_iter)))
2975 goto proc_vif_fail;
2976 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
2977 sizeof(struct mr_mfc_iter)))
2978 goto proc_cache_fail;
2979#endif
2980 return 0;
2981
2982#ifdef CONFIG_PROC_FS
2983proc_cache_fail:
2984 remove_proc_entry("ip_mr_vif", net->proc_net);
2985proc_vif_fail:
2986 ipmr_rules_exit(net);
2987#endif
2988ipmr_rules_fail:
2989 ipmr_notifier_exit(net);
2990ipmr_notifier_fail:
2991 return err;
2992}
2993
2994static void __net_exit ipmr_net_exit(struct net *net)
2995{
2996#ifdef CONFIG_PROC_FS
2997 remove_proc_entry("ip_mr_cache", net->proc_net);
2998 remove_proc_entry("ip_mr_vif", net->proc_net);
2999#endif
3000 ipmr_notifier_exit(net);
3001 ipmr_rules_exit(net);
3002}
3003
3004static struct pernet_operations ipmr_net_ops = {
3005 .init = ipmr_net_init,
3006 .exit = ipmr_net_exit,
3007};
3008
3009int __init ip_mr_init(void)
3010{
3011 int err;
3012
3013 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3014 sizeof(struct mfc_cache),
3015 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3016 NULL);
3017
3018 err = register_pernet_subsys(&ipmr_net_ops);
3019 if (err)
3020 goto reg_pernet_fail;
3021
3022 err = register_netdevice_notifier(&ip_mr_notifier);
3023 if (err)
3024 goto reg_notif_fail;
3025#ifdef CONFIG_IP_PIMSM_V2
3026 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3027 pr_err("%s: can't add PIM protocol\n", __func__);
3028 err = -EAGAIN;
3029 goto add_proto_fail;
3030 }
3031#endif
3032 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3033 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3034 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3035 ipmr_rtm_route, NULL, 0);
3036 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3037 ipmr_rtm_route, NULL, 0);
3038
3039 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3040 NULL, ipmr_rtm_dumplink, 0);
3041 return 0;
3042
3043#ifdef CONFIG_IP_PIMSM_V2
3044add_proto_fail:
3045 unregister_netdevice_notifier(&ip_mr_notifier);
3046#endif
3047reg_notif_fail:
3048 unregister_pernet_subsys(&ipmr_net_ops);
3049reg_pernet_fail:
3050 kmem_cache_destroy(mrt_cachep);
3051 return err;
3052}