| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF) | 
|  | 2 | * | 
|  | 3 | * Copyright (C) 2013 Terry Lam <vtlam@google.com> | 
|  | 4 | * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> | 
|  | 5 | */ | 
|  | 6 |  | 
|  | 7 | #include <linux/jiffies.h> | 
|  | 8 | #include <linux/module.h> | 
|  | 9 | #include <linux/skbuff.h> | 
|  | 10 | #include <linux/vmalloc.h> | 
|  | 11 | #include <linux/siphash.h> | 
|  | 12 | #include <net/pkt_sched.h> | 
|  | 13 | #include <net/sock.h> | 
|  | 14 |  | 
|  | 15 | /*	Heavy-Hitter Filter (HHF) | 
|  | 16 | * | 
|  | 17 | * Principles : | 
|  | 18 | * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter | 
|  | 19 | * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified | 
|  | 20 | * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. | 
|  | 21 | * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, | 
|  | 22 | * in which the heavy-hitter bucket is served with less weight. | 
|  | 23 | * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) | 
|  | 24 | * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have | 
|  | 25 | * higher share of bandwidth. | 
|  | 26 | * | 
|  | 27 | * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the | 
|  | 28 | * following paper: | 
|  | 29 | * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and | 
|  | 30 | * Accounting", in ACM SIGCOMM, 2002. | 
|  | 31 | * | 
|  | 32 | * Conceptually, a multi-stage filter comprises k independent hash functions | 
|  | 33 | * and k counter arrays. Packets are indexed into k counter arrays by k hash | 
|  | 34 | * functions, respectively. The counters are then increased by the packet sizes. | 
|  | 35 | * Therefore, | 
|  | 36 | *    - For a heavy-hitter flow: *all* of its k array counters must be large. | 
|  | 37 | *    - For a non-heavy-hitter flow: some of its k array counters can be large | 
|  | 38 | *      due to hash collision with other small flows; however, with high | 
|  | 39 | *      probability, not *all* k counters are large. | 
|  | 40 | * | 
|  | 41 | * By the design of the multi-stage filter algorithm, the false negative rate | 
|  | 42 | * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is | 
|  | 43 | * susceptible to false positives (non-heavy-hitters mistakenly classified as | 
|  | 44 | * heavy-hitters). | 
|  | 45 | * Therefore, we also implement the following optimizations to reduce false | 
|  | 46 | * positives by avoiding unnecessary increment of the counter values: | 
|  | 47 | *    - Optimization O1: once a heavy-hitter is identified, its bytes are not | 
|  | 48 | *        accounted in the array counters. This technique is called "shielding" | 
|  | 49 | *        in Section 3.3.1 of [EV02]. | 
|  | 50 | *    - Optimization O2: conservative update of counters | 
|  | 51 | *                       (Section 3.3.2 of [EV02]), | 
|  | 52 | *        New counter value = max {old counter value, | 
|  | 53 | *                                 smallest counter value + packet bytes} | 
|  | 54 | * | 
|  | 55 | * Finally, we refresh the counters periodically since otherwise the counter | 
|  | 56 | * values will keep accumulating. | 
|  | 57 | * | 
|  | 58 | * Once a flow is classified as heavy-hitter, we also save its per-flow state | 
|  | 59 | * in an exact-matching flow table so that its subsequent packets can be | 
|  | 60 | * dispatched to the heavy-hitter bucket accordingly. | 
|  | 61 | * | 
|  | 62 | * | 
|  | 63 | * At a high level, this qdisc works as follows: | 
|  | 64 | * Given a packet p: | 
|  | 65 | *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching | 
|  | 66 | *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter | 
|  | 67 | *     bucket. | 
|  | 68 | *   - Otherwise, forward p to the multi-stage filter, denoted filter F | 
|  | 69 | *        + If F decides that p belongs to a non-heavy-hitter flow, then send p | 
|  | 70 | *          to the non-heavy-hitter bucket. | 
|  | 71 | *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow, | 
|  | 72 | *          then set up a new flow entry for the flow-id of p in the table T and | 
|  | 73 | *          send p to the heavy-hitter bucket. | 
|  | 74 | * | 
|  | 75 | * In this implementation: | 
|  | 76 | *   - T is a fixed-size hash-table with 1024 entries. Hash collision is | 
|  | 77 | *     resolved by linked-list chaining. | 
|  | 78 | *   - F has four counter arrays, each array containing 1024 32-bit counters. | 
|  | 79 | *     That means 4 * 1024 * 32 bits = 16KB of memory. | 
|  | 80 | *   - Since each array in F contains 1024 counters, 10 bits are sufficient to | 
|  | 81 | *     index into each array. | 
|  | 82 | *     Hence, instead of having four hash functions, we chop the 32-bit | 
|  | 83 | *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is | 
|  | 84 | *     computed as XOR sum of those three chunks. | 
|  | 85 | *   - We need to clear the counter arrays periodically; however, directly | 
|  | 86 | *     memsetting 16KB of memory can lead to cache eviction and unwanted delay. | 
|  | 87 | *     So by representing each counter by a valid bit, we only need to reset | 
|  | 88 | *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. | 
|  | 89 | *   - The Deficit Round Robin engine is taken from fq_codel implementation | 
|  | 90 | *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to | 
|  | 91 | *     fq_codel_flow in fq_codel implementation. | 
|  | 92 | * | 
|  | 93 | */ | 
|  | 94 |  | 
|  | 95 | /* Non-configurable parameters */ | 
|  | 96 | #define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */ | 
|  | 97 | #define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */ | 
|  | 98 | #define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */ | 
|  | 99 | #define HHF_BIT_MASK_LEN 10    /* masking 10 bits */ | 
|  | 100 | #define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */ | 
|  | 101 |  | 
|  | 102 | #define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */ | 
|  | 103 | enum wdrr_bucket_idx { | 
|  | 104 | WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */ | 
|  | 105 | WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */ | 
|  | 106 | }; | 
|  | 107 |  | 
|  | 108 | #define hhf_time_before(a, b)	\ | 
|  | 109 | (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) | 
|  | 110 |  | 
|  | 111 | /* Heavy-hitter per-flow state */ | 
|  | 112 | struct hh_flow_state { | 
|  | 113 | u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */ | 
|  | 114 | u32		 hit_timestamp;	/* last time heavy-hitter was seen */ | 
|  | 115 | struct list_head flowchain;	/* chaining under hash collision */ | 
|  | 116 | }; | 
|  | 117 |  | 
|  | 118 | /* Weighted Deficit Round Robin (WDRR) scheduler */ | 
|  | 119 | struct wdrr_bucket { | 
|  | 120 | struct sk_buff	  *head; | 
|  | 121 | struct sk_buff	  *tail; | 
|  | 122 | struct list_head  bucketchain; | 
|  | 123 | int		  deficit; | 
|  | 124 | }; | 
|  | 125 |  | 
|  | 126 | struct hhf_sched_data { | 
|  | 127 | struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; | 
|  | 128 | siphash_key_t	   perturbation;   /* hash perturbation */ | 
|  | 129 | u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */ | 
|  | 130 | u32		   drop_overlimit; /* number of times max qdisc packet | 
|  | 131 | * limit was hit | 
|  | 132 | */ | 
|  | 133 | struct list_head   *hh_flows;       /* table T (currently active HHs) */ | 
|  | 134 | u32		   hh_flows_limit;            /* max active HH allocs */ | 
|  | 135 | u32		   hh_flows_overlimit; /* num of disallowed HH allocs */ | 
|  | 136 | u32		   hh_flows_total_cnt;          /* total admitted HHs */ | 
|  | 137 | u32		   hh_flows_current_cnt;        /* total current HHs  */ | 
|  | 138 | u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ | 
|  | 139 | u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays | 
|  | 140 | * was reset | 
|  | 141 | */ | 
|  | 142 | unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits | 
|  | 143 | * of hhf_arrays | 
|  | 144 | */ | 
|  | 145 | /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ | 
|  | 146 | struct list_head   new_buckets; /* list of new buckets */ | 
|  | 147 | struct list_head   old_buckets; /* list of old buckets */ | 
|  | 148 |  | 
|  | 149 | /* Configurable HHF parameters */ | 
|  | 150 | u32		   hhf_reset_timeout; /* interval to reset counter | 
|  | 151 | * arrays in filter F | 
|  | 152 | * (default 40ms) | 
|  | 153 | */ | 
|  | 154 | u32		   hhf_admit_bytes;   /* counter thresh to classify as | 
|  | 155 | * HH (default 128KB). | 
|  | 156 | * With these default values, | 
|  | 157 | * 128KB / 40ms = 25 Mbps | 
|  | 158 | * i.e., we expect to capture HHs | 
|  | 159 | * sending > 25 Mbps. | 
|  | 160 | */ | 
|  | 161 | u32		   hhf_evict_timeout; /* aging threshold to evict idle | 
|  | 162 | * HHs out of table T. This should | 
|  | 163 | * be large enough to avoid | 
|  | 164 | * reordering during HH eviction. | 
|  | 165 | * (default 1s) | 
|  | 166 | */ | 
|  | 167 | u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs | 
|  | 168 | * (default 2, | 
|  | 169 | *  i.e., non-HH : HH = 2 : 1) | 
|  | 170 | */ | 
|  | 171 | }; | 
|  | 172 |  | 
|  | 173 | static u32 hhf_time_stamp(void) | 
|  | 174 | { | 
|  | 175 | return jiffies; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | /* Looks up a heavy-hitter flow in a chaining list of table T. */ | 
|  | 179 | static struct hh_flow_state *seek_list(const u32 hash, | 
|  | 180 | struct list_head *head, | 
|  | 181 | struct hhf_sched_data *q) | 
|  | 182 | { | 
|  | 183 | struct hh_flow_state *flow, *next; | 
|  | 184 | u32 now = hhf_time_stamp(); | 
|  | 185 |  | 
|  | 186 | if (list_empty(head)) | 
|  | 187 | return NULL; | 
|  | 188 |  | 
|  | 189 | list_for_each_entry_safe(flow, next, head, flowchain) { | 
|  | 190 | u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; | 
|  | 191 |  | 
|  | 192 | if (hhf_time_before(prev, now)) { | 
|  | 193 | /* Delete expired heavy-hitters, but preserve one entry | 
|  | 194 | * to avoid kzalloc() when next time this slot is hit. | 
|  | 195 | */ | 
|  | 196 | if (list_is_last(&flow->flowchain, head)) | 
|  | 197 | return NULL; | 
|  | 198 | list_del(&flow->flowchain); | 
|  | 199 | kfree(flow); | 
|  | 200 | q->hh_flows_current_cnt--; | 
|  | 201 | } else if (flow->hash_id == hash) { | 
|  | 202 | return flow; | 
|  | 203 | } | 
|  | 204 | } | 
|  | 205 | return NULL; | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 | /* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired | 
|  | 209 | * entry or dynamically alloc a new entry. | 
|  | 210 | */ | 
|  | 211 | static struct hh_flow_state *alloc_new_hh(struct list_head *head, | 
|  | 212 | struct hhf_sched_data *q) | 
|  | 213 | { | 
|  | 214 | struct hh_flow_state *flow; | 
|  | 215 | u32 now = hhf_time_stamp(); | 
|  | 216 |  | 
|  | 217 | if (!list_empty(head)) { | 
|  | 218 | /* Find an expired heavy-hitter flow entry. */ | 
|  | 219 | list_for_each_entry(flow, head, flowchain) { | 
|  | 220 | u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; | 
|  | 221 |  | 
|  | 222 | if (hhf_time_before(prev, now)) | 
|  | 223 | return flow; | 
|  | 224 | } | 
|  | 225 | } | 
|  | 226 |  | 
|  | 227 | if (q->hh_flows_current_cnt >= q->hh_flows_limit) { | 
|  | 228 | q->hh_flows_overlimit++; | 
|  | 229 | return NULL; | 
|  | 230 | } | 
|  | 231 | /* Create new entry. */ | 
|  | 232 | flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); | 
|  | 233 | if (!flow) | 
|  | 234 | return NULL; | 
|  | 235 |  | 
|  | 236 | q->hh_flows_current_cnt++; | 
|  | 237 | INIT_LIST_HEAD(&flow->flowchain); | 
|  | 238 | list_add_tail(&flow->flowchain, head); | 
|  | 239 |  | 
|  | 240 | return flow; | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | /* Assigns packets to WDRR buckets.  Implements a multi-stage filter to | 
|  | 244 | * classify heavy-hitters. | 
|  | 245 | */ | 
|  | 246 | static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) | 
|  | 247 | { | 
|  | 248 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 249 | u32 tmp_hash, hash; | 
|  | 250 | u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; | 
|  | 251 | struct hh_flow_state *flow; | 
|  | 252 | u32 pkt_len, min_hhf_val; | 
|  | 253 | int i; | 
|  | 254 | u32 prev; | 
|  | 255 | u32 now = hhf_time_stamp(); | 
|  | 256 |  | 
|  | 257 | /* Reset the HHF counter arrays if this is the right time. */ | 
|  | 258 | prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; | 
|  | 259 | if (hhf_time_before(prev, now)) { | 
|  | 260 | for (i = 0; i < HHF_ARRAYS_CNT; i++) | 
|  | 261 | bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); | 
|  | 262 | q->hhf_arrays_reset_timestamp = now; | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | /* Get hashed flow-id of the skb. */ | 
|  | 266 | hash = skb_get_hash_perturb(skb, &q->perturbation); | 
|  | 267 |  | 
|  | 268 | /* Check if this packet belongs to an already established HH flow. */ | 
|  | 269 | flow_pos = hash & HHF_BIT_MASK; | 
|  | 270 | flow = seek_list(hash, &q->hh_flows[flow_pos], q); | 
|  | 271 | if (flow) { /* found its HH flow */ | 
|  | 272 | flow->hit_timestamp = now; | 
|  | 273 | return WDRR_BUCKET_FOR_HH; | 
|  | 274 | } | 
|  | 275 |  | 
|  | 276 | /* Now pass the packet through the multi-stage filter. */ | 
|  | 277 | tmp_hash = hash; | 
|  | 278 | xorsum = 0; | 
|  | 279 | for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { | 
|  | 280 | /* Split the skb_hash into three 10-bit chunks. */ | 
|  | 281 | filter_pos[i] = tmp_hash & HHF_BIT_MASK; | 
|  | 282 | xorsum ^= filter_pos[i]; | 
|  | 283 | tmp_hash >>= HHF_BIT_MASK_LEN; | 
|  | 284 | } | 
|  | 285 | /* The last chunk is computed as XOR sum of other chunks. */ | 
|  | 286 | filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; | 
|  | 287 |  | 
|  | 288 | pkt_len = qdisc_pkt_len(skb); | 
|  | 289 | min_hhf_val = ~0U; | 
|  | 290 | for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
|  | 291 | u32 val; | 
|  | 292 |  | 
|  | 293 | if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { | 
|  | 294 | q->hhf_arrays[i][filter_pos[i]] = 0; | 
|  | 295 | __set_bit(filter_pos[i], q->hhf_valid_bits[i]); | 
|  | 296 | } | 
|  | 297 |  | 
|  | 298 | val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; | 
|  | 299 | if (min_hhf_val > val) | 
|  | 300 | min_hhf_val = val; | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | /* Found a new HH iff all counter values > HH admit threshold. */ | 
|  | 304 | if (min_hhf_val > q->hhf_admit_bytes) { | 
|  | 305 | /* Just captured a new heavy-hitter. */ | 
|  | 306 | flow = alloc_new_hh(&q->hh_flows[flow_pos], q); | 
|  | 307 | if (!flow) /* memory alloc problem */ | 
|  | 308 | return WDRR_BUCKET_FOR_NON_HH; | 
|  | 309 | flow->hash_id = hash; | 
|  | 310 | flow->hit_timestamp = now; | 
|  | 311 | q->hh_flows_total_cnt++; | 
|  | 312 |  | 
|  | 313 | /* By returning without updating counters in q->hhf_arrays, | 
|  | 314 | * we implicitly implement "shielding" (see Optimization O1). | 
|  | 315 | */ | 
|  | 316 | return WDRR_BUCKET_FOR_HH; | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | /* Conservative update of HHF arrays (see Optimization O2). */ | 
|  | 320 | for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
|  | 321 | if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) | 
|  | 322 | q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; | 
|  | 323 | } | 
|  | 324 | return WDRR_BUCKET_FOR_NON_HH; | 
|  | 325 | } | 
|  | 326 |  | 
|  | 327 | /* Removes one skb from head of bucket. */ | 
|  | 328 | static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) | 
|  | 329 | { | 
|  | 330 | struct sk_buff *skb = bucket->head; | 
|  | 331 |  | 
|  | 332 | bucket->head = skb->next; | 
|  | 333 | skb->next = NULL; | 
|  | 334 | return skb; | 
|  | 335 | } | 
|  | 336 |  | 
|  | 337 | /* Tail-adds skb to bucket. */ | 
|  | 338 | static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) | 
|  | 339 | { | 
|  | 340 | if (bucket->head == NULL) | 
|  | 341 | bucket->head = skb; | 
|  | 342 | else | 
|  | 343 | bucket->tail->next = skb; | 
|  | 344 | bucket->tail = skb; | 
|  | 345 | skb->next = NULL; | 
|  | 346 | } | 
|  | 347 |  | 
|  | 348 | static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free) | 
|  | 349 | { | 
|  | 350 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 351 | struct wdrr_bucket *bucket; | 
|  | 352 |  | 
|  | 353 | /* Always try to drop from heavy-hitters first. */ | 
|  | 354 | bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; | 
|  | 355 | if (!bucket->head) | 
|  | 356 | bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; | 
|  | 357 |  | 
|  | 358 | if (bucket->head) { | 
|  | 359 | struct sk_buff *skb = dequeue_head(bucket); | 
|  | 360 |  | 
|  | 361 | sch->q.qlen--; | 
|  | 362 | qdisc_qstats_backlog_dec(sch, skb); | 
|  | 363 | qdisc_drop(skb, sch, to_free); | 
|  | 364 | } | 
|  | 365 |  | 
|  | 366 | /* Return id of the bucket from which the packet was dropped. */ | 
|  | 367 | return bucket - q->buckets; | 
|  | 368 | } | 
|  | 369 |  | 
|  | 370 | static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch, | 
|  | 371 | struct sk_buff **to_free) | 
|  | 372 | { | 
|  | 373 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 374 | enum wdrr_bucket_idx idx; | 
|  | 375 | struct wdrr_bucket *bucket; | 
|  | 376 | unsigned int prev_backlog; | 
|  | 377 |  | 
|  | 378 | idx = hhf_classify(skb, sch); | 
|  | 379 |  | 
|  | 380 | bucket = &q->buckets[idx]; | 
|  | 381 | bucket_add(bucket, skb); | 
|  | 382 | qdisc_qstats_backlog_inc(sch, skb); | 
|  | 383 |  | 
|  | 384 | if (list_empty(&bucket->bucketchain)) { | 
|  | 385 | unsigned int weight; | 
|  | 386 |  | 
|  | 387 | /* The logic of new_buckets vs. old_buckets is the same as | 
|  | 388 | * new_flows vs. old_flows in the implementation of fq_codel, | 
|  | 389 | * i.e., short bursts of non-HHs should have strict priority. | 
|  | 390 | */ | 
|  | 391 | if (idx == WDRR_BUCKET_FOR_HH) { | 
|  | 392 | /* Always move heavy-hitters to old bucket. */ | 
|  | 393 | weight = 1; | 
|  | 394 | list_add_tail(&bucket->bucketchain, &q->old_buckets); | 
|  | 395 | } else { | 
|  | 396 | weight = q->hhf_non_hh_weight; | 
|  | 397 | list_add_tail(&bucket->bucketchain, &q->new_buckets); | 
|  | 398 | } | 
|  | 399 | bucket->deficit = weight * q->quantum; | 
|  | 400 | } | 
|  | 401 | if (++sch->q.qlen <= sch->limit) | 
|  | 402 | return NET_XMIT_SUCCESS; | 
|  | 403 |  | 
|  | 404 | prev_backlog = sch->qstats.backlog; | 
|  | 405 | q->drop_overlimit++; | 
|  | 406 | /* Return Congestion Notification only if we dropped a packet from this | 
|  | 407 | * bucket. | 
|  | 408 | */ | 
|  | 409 | if (hhf_drop(sch, to_free) == idx) | 
|  | 410 | return NET_XMIT_CN; | 
|  | 411 |  | 
|  | 412 | /* As we dropped a packet, better let upper stack know this. */ | 
|  | 413 | qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog); | 
|  | 414 | return NET_XMIT_SUCCESS; | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | static struct sk_buff *hhf_dequeue(struct Qdisc *sch) | 
|  | 418 | { | 
|  | 419 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 420 | struct sk_buff *skb = NULL; | 
|  | 421 | struct wdrr_bucket *bucket; | 
|  | 422 | struct list_head *head; | 
|  | 423 |  | 
|  | 424 | begin: | 
|  | 425 | head = &q->new_buckets; | 
|  | 426 | if (list_empty(head)) { | 
|  | 427 | head = &q->old_buckets; | 
|  | 428 | if (list_empty(head)) | 
|  | 429 | return NULL; | 
|  | 430 | } | 
|  | 431 | bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); | 
|  | 432 |  | 
|  | 433 | if (bucket->deficit <= 0) { | 
|  | 434 | int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? | 
|  | 435 | 1 : q->hhf_non_hh_weight; | 
|  | 436 |  | 
|  | 437 | bucket->deficit += weight * q->quantum; | 
|  | 438 | list_move_tail(&bucket->bucketchain, &q->old_buckets); | 
|  | 439 | goto begin; | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | if (bucket->head) { | 
|  | 443 | skb = dequeue_head(bucket); | 
|  | 444 | sch->q.qlen--; | 
|  | 445 | qdisc_qstats_backlog_dec(sch, skb); | 
|  | 446 | } | 
|  | 447 |  | 
|  | 448 | if (!skb) { | 
|  | 449 | /* Force a pass through old_buckets to prevent starvation. */ | 
|  | 450 | if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) | 
|  | 451 | list_move_tail(&bucket->bucketchain, &q->old_buckets); | 
|  | 452 | else | 
|  | 453 | list_del_init(&bucket->bucketchain); | 
|  | 454 | goto begin; | 
|  | 455 | } | 
|  | 456 | qdisc_bstats_update(sch, skb); | 
|  | 457 | bucket->deficit -= qdisc_pkt_len(skb); | 
|  | 458 |  | 
|  | 459 | return skb; | 
|  | 460 | } | 
|  | 461 |  | 
|  | 462 | static void hhf_reset(struct Qdisc *sch) | 
|  | 463 | { | 
|  | 464 | struct sk_buff *skb; | 
|  | 465 |  | 
|  | 466 | while ((skb = hhf_dequeue(sch)) != NULL) | 
|  | 467 | rtnl_kfree_skbs(skb, skb); | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | static void hhf_destroy(struct Qdisc *sch) | 
|  | 471 | { | 
|  | 472 | int i; | 
|  | 473 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 474 |  | 
|  | 475 | for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
|  | 476 | kvfree(q->hhf_arrays[i]); | 
|  | 477 | kvfree(q->hhf_valid_bits[i]); | 
|  | 478 | } | 
|  | 479 |  | 
|  | 480 | if (!q->hh_flows) | 
|  | 481 | return; | 
|  | 482 |  | 
|  | 483 | for (i = 0; i < HH_FLOWS_CNT; i++) { | 
|  | 484 | struct hh_flow_state *flow, *next; | 
|  | 485 | struct list_head *head = &q->hh_flows[i]; | 
|  | 486 |  | 
|  | 487 | if (list_empty(head)) | 
|  | 488 | continue; | 
|  | 489 | list_for_each_entry_safe(flow, next, head, flowchain) { | 
|  | 490 | list_del(&flow->flowchain); | 
|  | 491 | kfree(flow); | 
|  | 492 | } | 
|  | 493 | } | 
|  | 494 | kvfree(q->hh_flows); | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { | 
|  | 498 | [TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 }, | 
|  | 499 | [TCA_HHF_QUANTUM]	 = { .type = NLA_U32 }, | 
|  | 500 | [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, | 
|  | 501 | [TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 }, | 
|  | 502 | [TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 }, | 
|  | 503 | [TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 }, | 
|  | 504 | [TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 }, | 
|  | 505 | }; | 
|  | 506 |  | 
|  | 507 | static int hhf_change(struct Qdisc *sch, struct nlattr *opt, | 
|  | 508 | struct netlink_ext_ack *extack) | 
|  | 509 | { | 
|  | 510 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 511 | struct nlattr *tb[TCA_HHF_MAX + 1]; | 
|  | 512 | unsigned int qlen, prev_backlog; | 
|  | 513 | int err; | 
|  | 514 | u64 non_hh_quantum; | 
|  | 515 | u32 new_quantum = q->quantum; | 
|  | 516 | u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; | 
|  | 517 |  | 
|  | 518 | if (!opt) | 
|  | 519 | return -EINVAL; | 
|  | 520 |  | 
|  | 521 | err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy, NULL); | 
|  | 522 | if (err < 0) | 
|  | 523 | return err; | 
|  | 524 |  | 
|  | 525 | if (tb[TCA_HHF_QUANTUM]) | 
|  | 526 | new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); | 
|  | 527 |  | 
|  | 528 | if (tb[TCA_HHF_NON_HH_WEIGHT]) | 
|  | 529 | new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); | 
|  | 530 |  | 
|  | 531 | non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; | 
|  | 532 | if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX) | 
|  | 533 | return -EINVAL; | 
|  | 534 |  | 
|  | 535 | sch_tree_lock(sch); | 
|  | 536 |  | 
|  | 537 | if (tb[TCA_HHF_BACKLOG_LIMIT]) | 
|  | 538 | sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); | 
|  | 539 |  | 
|  | 540 | q->quantum = new_quantum; | 
|  | 541 | q->hhf_non_hh_weight = new_hhf_non_hh_weight; | 
|  | 542 |  | 
|  | 543 | if (tb[TCA_HHF_HH_FLOWS_LIMIT]) | 
|  | 544 | q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); | 
|  | 545 |  | 
|  | 546 | if (tb[TCA_HHF_RESET_TIMEOUT]) { | 
|  | 547 | u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); | 
|  | 548 |  | 
|  | 549 | q->hhf_reset_timeout = usecs_to_jiffies(us); | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 | if (tb[TCA_HHF_ADMIT_BYTES]) | 
|  | 553 | q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); | 
|  | 554 |  | 
|  | 555 | if (tb[TCA_HHF_EVICT_TIMEOUT]) { | 
|  | 556 | u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); | 
|  | 557 |  | 
|  | 558 | q->hhf_evict_timeout = usecs_to_jiffies(us); | 
|  | 559 | } | 
|  | 560 |  | 
|  | 561 | qlen = sch->q.qlen; | 
|  | 562 | prev_backlog = sch->qstats.backlog; | 
|  | 563 | while (sch->q.qlen > sch->limit) { | 
|  | 564 | struct sk_buff *skb = hhf_dequeue(sch); | 
|  | 565 |  | 
|  | 566 | rtnl_kfree_skbs(skb, skb); | 
|  | 567 | } | 
|  | 568 | qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, | 
|  | 569 | prev_backlog - sch->qstats.backlog); | 
|  | 570 |  | 
|  | 571 | sch_tree_unlock(sch); | 
|  | 572 | return 0; | 
|  | 573 | } | 
|  | 574 |  | 
|  | 575 | static int hhf_init(struct Qdisc *sch, struct nlattr *opt, | 
|  | 576 | struct netlink_ext_ack *extack) | 
|  | 577 | { | 
|  | 578 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 579 | int i; | 
|  | 580 |  | 
|  | 581 | sch->limit = 1000; | 
|  | 582 | q->quantum = psched_mtu(qdisc_dev(sch)); | 
|  | 583 | get_random_bytes(&q->perturbation, sizeof(q->perturbation)); | 
|  | 584 | INIT_LIST_HEAD(&q->new_buckets); | 
|  | 585 | INIT_LIST_HEAD(&q->old_buckets); | 
|  | 586 |  | 
|  | 587 | /* Configurable HHF parameters */ | 
|  | 588 | q->hhf_reset_timeout = HZ / 25; /* 40  ms */ | 
|  | 589 | q->hhf_admit_bytes = 131072;    /* 128 KB */ | 
|  | 590 | q->hhf_evict_timeout = HZ;      /* 1  sec */ | 
|  | 591 | q->hhf_non_hh_weight = 2; | 
|  | 592 |  | 
|  | 593 | if (opt) { | 
|  | 594 | int err = hhf_change(sch, opt, extack); | 
|  | 595 |  | 
|  | 596 | if (err) | 
|  | 597 | return err; | 
|  | 598 | } | 
|  | 599 |  | 
|  | 600 | if (!q->hh_flows) { | 
|  | 601 | /* Initialize heavy-hitter flow table. */ | 
|  | 602 | q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head), | 
|  | 603 | GFP_KERNEL); | 
|  | 604 | if (!q->hh_flows) | 
|  | 605 | return -ENOMEM; | 
|  | 606 | for (i = 0; i < HH_FLOWS_CNT; i++) | 
|  | 607 | INIT_LIST_HEAD(&q->hh_flows[i]); | 
|  | 608 |  | 
|  | 609 | /* Cap max active HHs at twice len of hh_flows table. */ | 
|  | 610 | q->hh_flows_limit = 2 * HH_FLOWS_CNT; | 
|  | 611 | q->hh_flows_overlimit = 0; | 
|  | 612 | q->hh_flows_total_cnt = 0; | 
|  | 613 | q->hh_flows_current_cnt = 0; | 
|  | 614 |  | 
|  | 615 | /* Initialize heavy-hitter filter arrays. */ | 
|  | 616 | for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
|  | 617 | q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN, | 
|  | 618 | sizeof(u32), | 
|  | 619 | GFP_KERNEL); | 
|  | 620 | if (!q->hhf_arrays[i]) { | 
|  | 621 | /* Note: hhf_destroy() will be called | 
|  | 622 | * by our caller. | 
|  | 623 | */ | 
|  | 624 | return -ENOMEM; | 
|  | 625 | } | 
|  | 626 | } | 
|  | 627 | q->hhf_arrays_reset_timestamp = hhf_time_stamp(); | 
|  | 628 |  | 
|  | 629 | /* Initialize valid bits of heavy-hitter filter arrays. */ | 
|  | 630 | for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
|  | 631 | q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN / | 
|  | 632 | BITS_PER_BYTE, GFP_KERNEL); | 
|  | 633 | if (!q->hhf_valid_bits[i]) { | 
|  | 634 | /* Note: hhf_destroy() will be called | 
|  | 635 | * by our caller. | 
|  | 636 | */ | 
|  | 637 | return -ENOMEM; | 
|  | 638 | } | 
|  | 639 | } | 
|  | 640 |  | 
|  | 641 | /* Initialize Weighted DRR buckets. */ | 
|  | 642 | for (i = 0; i < WDRR_BUCKET_CNT; i++) { | 
|  | 643 | struct wdrr_bucket *bucket = q->buckets + i; | 
|  | 644 |  | 
|  | 645 | INIT_LIST_HEAD(&bucket->bucketchain); | 
|  | 646 | } | 
|  | 647 | } | 
|  | 648 |  | 
|  | 649 | return 0; | 
|  | 650 | } | 
|  | 651 |  | 
|  | 652 | static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) | 
|  | 653 | { | 
|  | 654 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 655 | struct nlattr *opts; | 
|  | 656 |  | 
|  | 657 | opts = nla_nest_start(skb, TCA_OPTIONS); | 
|  | 658 | if (opts == NULL) | 
|  | 659 | goto nla_put_failure; | 
|  | 660 |  | 
|  | 661 | if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || | 
|  | 662 | nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || | 
|  | 663 | nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || | 
|  | 664 | nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, | 
|  | 665 | jiffies_to_usecs(q->hhf_reset_timeout)) || | 
|  | 666 | nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || | 
|  | 667 | nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, | 
|  | 668 | jiffies_to_usecs(q->hhf_evict_timeout)) || | 
|  | 669 | nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) | 
|  | 670 | goto nla_put_failure; | 
|  | 671 |  | 
|  | 672 | return nla_nest_end(skb, opts); | 
|  | 673 |  | 
|  | 674 | nla_put_failure: | 
|  | 675 | return -1; | 
|  | 676 | } | 
|  | 677 |  | 
|  | 678 | static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
|  | 679 | { | 
|  | 680 | struct hhf_sched_data *q = qdisc_priv(sch); | 
|  | 681 | struct tc_hhf_xstats st = { | 
|  | 682 | .drop_overlimit = q->drop_overlimit, | 
|  | 683 | .hh_overlimit	= q->hh_flows_overlimit, | 
|  | 684 | .hh_tot_count	= q->hh_flows_total_cnt, | 
|  | 685 | .hh_cur_count	= q->hh_flows_current_cnt, | 
|  | 686 | }; | 
|  | 687 |  | 
|  | 688 | return gnet_stats_copy_app(d, &st, sizeof(st)); | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { | 
|  | 692 | .id		=	"hhf", | 
|  | 693 | .priv_size	=	sizeof(struct hhf_sched_data), | 
|  | 694 |  | 
|  | 695 | .enqueue	=	hhf_enqueue, | 
|  | 696 | .dequeue	=	hhf_dequeue, | 
|  | 697 | .peek		=	qdisc_peek_dequeued, | 
|  | 698 | .init		=	hhf_init, | 
|  | 699 | .reset		=	hhf_reset, | 
|  | 700 | .destroy	=	hhf_destroy, | 
|  | 701 | .change		=	hhf_change, | 
|  | 702 | .dump		=	hhf_dump, | 
|  | 703 | .dump_stats	=	hhf_dump_stats, | 
|  | 704 | .owner		=	THIS_MODULE, | 
|  | 705 | }; | 
|  | 706 |  | 
|  | 707 | static int __init hhf_module_init(void) | 
|  | 708 | { | 
|  | 709 | return register_qdisc(&hhf_qdisc_ops); | 
|  | 710 | } | 
|  | 711 |  | 
|  | 712 | static void __exit hhf_module_exit(void) | 
|  | 713 | { | 
|  | 714 | unregister_qdisc(&hhf_qdisc_ops); | 
|  | 715 | } | 
|  | 716 |  | 
|  | 717 | module_init(hhf_module_init) | 
|  | 718 | module_exit(hhf_module_exit) | 
|  | 719 | MODULE_AUTHOR("Terry Lam"); | 
|  | 720 | MODULE_AUTHOR("Nandita Dukkipati"); | 
|  | 721 | MODULE_LICENSE("GPL"); |