blob: 30ccd94f87d247d16903f9fb3952514d423662ce [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * ACPI support for Intel Lynxpoint LPSS.
3 *
4 * Copyright (C) 2013, Intel Corporation
5 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
6 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/acpi.h>
14#include <linux/clkdev.h>
15#include <linux/clk-provider.h>
16#include <linux/err.h>
17#include <linux/io.h>
18#include <linux/mutex.h>
19#include <linux/pci.h>
20#include <linux/platform_device.h>
21#include <linux/platform_data/clk-lpss.h>
22#include <linux/platform_data/x86/pmc_atom.h>
23#include <linux/pm_domain.h>
24#include <linux/pm_runtime.h>
25#include <linux/pwm.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28
29#include "internal.h"
30
31ACPI_MODULE_NAME("acpi_lpss");
32
33#ifdef CONFIG_X86_INTEL_LPSS
34
35#include <asm/cpu_device_id.h>
36#include <asm/intel-family.h>
37#include <asm/iosf_mbi.h>
38
39#define LPSS_ADDR(desc) ((unsigned long)&desc)
40
41#define LPSS_CLK_SIZE 0x04
42#define LPSS_LTR_SIZE 0x18
43
44/* Offsets relative to LPSS_PRIVATE_OFFSET */
45#define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
46#define LPSS_RESETS 0x04
47#define LPSS_RESETS_RESET_FUNC BIT(0)
48#define LPSS_RESETS_RESET_APB BIT(1)
49#define LPSS_GENERAL 0x08
50#define LPSS_GENERAL_LTR_MODE_SW BIT(2)
51#define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
52#define LPSS_SW_LTR 0x10
53#define LPSS_AUTO_LTR 0x14
54#define LPSS_LTR_SNOOP_REQ BIT(15)
55#define LPSS_LTR_SNOOP_MASK 0x0000FFFF
56#define LPSS_LTR_SNOOP_LAT_1US 0x800
57#define LPSS_LTR_SNOOP_LAT_32US 0xC00
58#define LPSS_LTR_SNOOP_LAT_SHIFT 5
59#define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
60#define LPSS_LTR_MAX_VAL 0x3FF
61#define LPSS_TX_INT 0x20
62#define LPSS_TX_INT_MASK BIT(1)
63
64#define LPSS_PRV_REG_COUNT 9
65
66/* LPSS Flags */
67#define LPSS_CLK BIT(0)
68#define LPSS_CLK_GATE BIT(1)
69#define LPSS_CLK_DIVIDER BIT(2)
70#define LPSS_LTR BIT(3)
71#define LPSS_SAVE_CTX BIT(4)
72#define LPSS_NO_D3_DELAY BIT(5)
73
74/* Crystal Cove PMIC shares same ACPI ID between different platforms */
75#define BYT_CRC_HRV 2
76#define CHT_CRC_HRV 3
77
78struct lpss_private_data;
79
80struct lpss_device_desc {
81 unsigned int flags;
82 const char *clk_con_id;
83 unsigned int prv_offset;
84 size_t prv_size_override;
85 struct property_entry *properties;
86 void (*setup)(struct lpss_private_data *pdata);
87 bool resume_from_noirq;
88};
89
90static const struct lpss_device_desc lpss_dma_desc = {
91 .flags = LPSS_CLK,
92};
93
94struct lpss_private_data {
95 struct acpi_device *adev;
96 void __iomem *mmio_base;
97 resource_size_t mmio_size;
98 unsigned int fixed_clk_rate;
99 struct clk *clk;
100 const struct lpss_device_desc *dev_desc;
101 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102};
103
104/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107/* LPSS run time quirks */
108static unsigned int lpss_quirks;
109
110/*
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112 *
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
118 *
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
121 */
122#define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
123
124/* UART Component Parameter Register */
125#define LPSS_UART_CPR 0xF4
126#define LPSS_UART_CPR_AFCE BIT(4)
127
128static void lpss_uart_setup(struct lpss_private_data *pdata)
129{
130 unsigned int offset;
131 u32 val;
132
133 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 val = readl(pdata->mmio_base + offset);
135 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137 val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 if (!(val & LPSS_UART_CPR_AFCE)) {
139 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 val = readl(pdata->mmio_base + offset);
141 val |= LPSS_GENERAL_UART_RTS_OVRD;
142 writel(val, pdata->mmio_base + offset);
143 }
144}
145
146static void lpss_deassert_reset(struct lpss_private_data *pdata)
147{
148 unsigned int offset;
149 u32 val;
150
151 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 val = readl(pdata->mmio_base + offset);
153 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 writel(val, pdata->mmio_base + offset);
155}
156
157/*
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
160 */
161static struct pwm_lookup byt_pwm_lookup[] = {
162 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
164 "pwm-lpss-platform"),
165};
166
167static void byt_pwm_setup(struct lpss_private_data *pdata)
168{
169 struct acpi_device *adev = pdata->adev;
170
171 /* Only call pwm_add_table for the first PWM controller */
172 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 return;
174
175 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
176 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177}
178
179#define LPSS_I2C_ENABLE 0x6c
180
181static void byt_i2c_setup(struct lpss_private_data *pdata)
182{
183 const char *uid_str = acpi_device_uid(pdata->adev);
184 acpi_handle handle = pdata->adev->handle;
185 unsigned long long shared_host = 0;
186 acpi_status status;
187 long uid = 0;
188
189 /* Expected to always be true, but better safe then sorry */
190 if (uid_str)
191 uid = simple_strtol(uid_str, NULL, 10);
192
193 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
194 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
195 if (ACPI_SUCCESS(status) && shared_host && uid)
196 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
197
198 lpss_deassert_reset(pdata);
199
200 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
201 pdata->fixed_clk_rate = 133000000;
202
203 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
204}
205
206/* BSW PWM used for backlight control by the i915 driver */
207static struct pwm_lookup bsw_pwm_lookup[] = {
208 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
209 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
210 "pwm-lpss-platform"),
211};
212
213static void bsw_pwm_setup(struct lpss_private_data *pdata)
214{
215 struct acpi_device *adev = pdata->adev;
216
217 /* Only call pwm_add_table for the first PWM controller */
218 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
219 return;
220
221 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
222}
223
224static const struct lpss_device_desc lpt_dev_desc = {
225 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
226 .prv_offset = 0x800,
227};
228
229static const struct lpss_device_desc lpt_i2c_dev_desc = {
230 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
231 .prv_offset = 0x800,
232};
233
234static struct property_entry uart_properties[] = {
235 PROPERTY_ENTRY_U32("reg-io-width", 4),
236 PROPERTY_ENTRY_U32("reg-shift", 2),
237 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238 { },
239};
240
241static const struct lpss_device_desc lpt_uart_dev_desc = {
242 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
243 .clk_con_id = "baudclk",
244 .prv_offset = 0x800,
245 .setup = lpss_uart_setup,
246 .properties = uart_properties,
247};
248
249static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 .flags = LPSS_LTR,
251 .prv_offset = 0x1000,
252 .prv_size_override = 0x1018,
253};
254
255static const struct lpss_device_desc byt_pwm_dev_desc = {
256 .flags = LPSS_SAVE_CTX,
257 .prv_offset = 0x800,
258 .setup = byt_pwm_setup,
259};
260
261static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
263 .prv_offset = 0x800,
264 .setup = bsw_pwm_setup,
265};
266
267static const struct lpss_device_desc byt_uart_dev_desc = {
268 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
269 .clk_con_id = "baudclk",
270 .prv_offset = 0x800,
271 .setup = lpss_uart_setup,
272 .properties = uart_properties,
273};
274
275static const struct lpss_device_desc bsw_uart_dev_desc = {
276 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
277 | LPSS_NO_D3_DELAY,
278 .clk_con_id = "baudclk",
279 .prv_offset = 0x800,
280 .setup = lpss_uart_setup,
281 .properties = uart_properties,
282};
283
284static const struct lpss_device_desc byt_spi_dev_desc = {
285 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
286 .prv_offset = 0x400,
287};
288
289static const struct lpss_device_desc byt_sdio_dev_desc = {
290 .flags = LPSS_CLK,
291};
292
293static const struct lpss_device_desc byt_i2c_dev_desc = {
294 .flags = LPSS_CLK | LPSS_SAVE_CTX,
295 .prv_offset = 0x800,
296 .setup = byt_i2c_setup,
297 .resume_from_noirq = true,
298};
299
300static const struct lpss_device_desc bsw_i2c_dev_desc = {
301 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
302 .prv_offset = 0x800,
303 .setup = byt_i2c_setup,
304 .resume_from_noirq = true,
305};
306
307static const struct lpss_device_desc bsw_spi_dev_desc = {
308 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
309 | LPSS_NO_D3_DELAY,
310 .prv_offset = 0x400,
311 .setup = lpss_deassert_reset,
312};
313
314#define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
315
316static const struct x86_cpu_id lpss_cpu_ids[] = {
317 ICPU(INTEL_FAM6_ATOM_SILVERMONT), /* Valleyview, Bay Trail */
318 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
319 {}
320};
321
322#else
323
324#define LPSS_ADDR(desc) (0UL)
325
326#endif /* CONFIG_X86_INTEL_LPSS */
327
328static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 /* Generic LPSS devices */
330 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332 /* Lynxpoint LPSS devices */
333 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 { "INT33C7", },
341
342 /* BayTrail LPSS devices */
343 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 { "INT33B2", },
349 { "INT33FC", },
350
351 /* Braswell LPSS devices */
352 { "80862286", LPSS_ADDR(lpss_dma_desc) },
353 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359 /* Broadwell LPSS devices */
360 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 { "INT3437", },
368
369 /* Wildcat Point LPSS devices */
370 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372 { }
373};
374
375#ifdef CONFIG_X86_INTEL_LPSS
376
377static int is_memory(struct acpi_resource *res, void *not_used)
378{
379 struct resource r;
380 return !acpi_dev_resource_memory(res, &r);
381}
382
383/* LPSS main clock device. */
384static struct platform_device *lpss_clk_dev;
385
386static inline void lpt_register_clock_device(void)
387{
388 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389}
390
391static int register_device_clock(struct acpi_device *adev,
392 struct lpss_private_data *pdata)
393{
394 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395 const char *devname = dev_name(&adev->dev);
396 struct clk *clk;
397 struct lpss_clk_data *clk_data;
398 const char *parent, *clk_name;
399 void __iomem *prv_base;
400
401 if (!lpss_clk_dev)
402 lpt_register_clock_device();
403
404 clk_data = platform_get_drvdata(lpss_clk_dev);
405 if (!clk_data)
406 return -ENODEV;
407 clk = clk_data->clk;
408
409 if (!pdata->mmio_base
410 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
411 return -ENODATA;
412
413 parent = clk_data->name;
414 prv_base = pdata->mmio_base + dev_desc->prv_offset;
415
416 if (pdata->fixed_clk_rate) {
417 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
418 pdata->fixed_clk_rate);
419 goto out;
420 }
421
422 if (dev_desc->flags & LPSS_CLK_GATE) {
423 clk = clk_register_gate(NULL, devname, parent, 0,
424 prv_base, 0, 0, NULL);
425 parent = devname;
426 }
427
428 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
429 /* Prevent division by zero */
430 if (!readl(prv_base))
431 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
432
433 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
434 if (!clk_name)
435 return -ENOMEM;
436 clk = clk_register_fractional_divider(NULL, clk_name, parent,
437 0, prv_base,
438 1, 15, 16, 15, 0, NULL);
439 parent = clk_name;
440
441 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
442 if (!clk_name) {
443 kfree(parent);
444 return -ENOMEM;
445 }
446 clk = clk_register_gate(NULL, clk_name, parent,
447 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
448 prv_base, 31, 0, NULL);
449 kfree(parent);
450 kfree(clk_name);
451 }
452out:
453 if (IS_ERR(clk))
454 return PTR_ERR(clk);
455
456 pdata->clk = clk;
457 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
458 return 0;
459}
460
461struct lpss_device_links {
462 const char *supplier_hid;
463 const char *supplier_uid;
464 const char *consumer_hid;
465 const char *consumer_uid;
466 u32 flags;
467};
468
469/*
470 * The _DEP method is used to identify dependencies but instead of creating
471 * device links for every handle in _DEP, only links in the following list are
472 * created. That is necessary because, in the general case, _DEP can refer to
473 * devices that might not have drivers, or that are on different buses, or where
474 * the supplier is not enumerated until after the consumer is probed.
475 */
476static const struct lpss_device_links lpss_device_links[] = {
477 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
478};
479
480static bool hid_uid_match(const char *hid1, const char *uid1,
481 const char *hid2, const char *uid2)
482{
483 return !strcmp(hid1, hid2) && uid1 && uid2 && !strcmp(uid1, uid2);
484}
485
486static bool acpi_lpss_is_supplier(struct acpi_device *adev,
487 const struct lpss_device_links *link)
488{
489 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
490 link->supplier_hid, link->supplier_uid);
491}
492
493static bool acpi_lpss_is_consumer(struct acpi_device *adev,
494 const struct lpss_device_links *link)
495{
496 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
497 link->consumer_hid, link->consumer_uid);
498}
499
500struct hid_uid {
501 const char *hid;
502 const char *uid;
503};
504
505static int match_hid_uid(struct device *dev, void *data)
506{
507 struct acpi_device *adev = ACPI_COMPANION(dev);
508 struct hid_uid *id = data;
509
510 if (!adev)
511 return 0;
512
513 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
514 id->hid, id->uid);
515}
516
517static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
518{
519 struct device *dev;
520
521 struct hid_uid data = {
522 .hid = hid,
523 .uid = uid,
524 };
525
526 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
527 if (dev)
528 return dev;
529
530 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
531}
532
533static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
534{
535 struct acpi_handle_list dep_devices;
536 acpi_status status;
537 int i;
538
539 if (!acpi_has_method(adev->handle, "_DEP"))
540 return false;
541
542 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
543 &dep_devices);
544 if (ACPI_FAILURE(status)) {
545 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
546 return false;
547 }
548
549 for (i = 0; i < dep_devices.count; i++) {
550 if (dep_devices.handles[i] == handle)
551 return true;
552 }
553
554 return false;
555}
556
557static void acpi_lpss_link_consumer(struct device *dev1,
558 const struct lpss_device_links *link)
559{
560 struct device *dev2;
561
562 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
563 if (!dev2)
564 return;
565
566 if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
567 device_link_add(dev2, dev1, link->flags);
568
569 put_device(dev2);
570}
571
572static void acpi_lpss_link_supplier(struct device *dev1,
573 const struct lpss_device_links *link)
574{
575 struct device *dev2;
576
577 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
578 if (!dev2)
579 return;
580
581 if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
582 device_link_add(dev1, dev2, link->flags);
583
584 put_device(dev2);
585}
586
587static void acpi_lpss_create_device_links(struct acpi_device *adev,
588 struct platform_device *pdev)
589{
590 int i;
591
592 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
593 const struct lpss_device_links *link = &lpss_device_links[i];
594
595 if (acpi_lpss_is_supplier(adev, link))
596 acpi_lpss_link_consumer(&pdev->dev, link);
597
598 if (acpi_lpss_is_consumer(adev, link))
599 acpi_lpss_link_supplier(&pdev->dev, link);
600 }
601}
602
603static int acpi_lpss_create_device(struct acpi_device *adev,
604 const struct acpi_device_id *id)
605{
606 const struct lpss_device_desc *dev_desc;
607 struct lpss_private_data *pdata;
608 struct resource_entry *rentry;
609 struct list_head resource_list;
610 struct platform_device *pdev;
611 int ret;
612
613 dev_desc = (const struct lpss_device_desc *)id->driver_data;
614 if (!dev_desc) {
615 pdev = acpi_create_platform_device(adev, NULL);
616 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
617 }
618 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
619 if (!pdata)
620 return -ENOMEM;
621
622 INIT_LIST_HEAD(&resource_list);
623 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
624 if (ret < 0)
625 goto err_out;
626
627 list_for_each_entry(rentry, &resource_list, node)
628 if (resource_type(rentry->res) == IORESOURCE_MEM) {
629 if (dev_desc->prv_size_override)
630 pdata->mmio_size = dev_desc->prv_size_override;
631 else
632 pdata->mmio_size = resource_size(rentry->res);
633 pdata->mmio_base = ioremap(rentry->res->start,
634 pdata->mmio_size);
635 break;
636 }
637
638 acpi_dev_free_resource_list(&resource_list);
639
640 if (!pdata->mmio_base) {
641 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
642 adev->pnp.type.platform_id = 0;
643 /* Skip the device, but continue the namespace scan. */
644 ret = 0;
645 goto err_out;
646 }
647
648 pdata->adev = adev;
649 pdata->dev_desc = dev_desc;
650
651 if (dev_desc->setup)
652 dev_desc->setup(pdata);
653
654 if (dev_desc->flags & LPSS_CLK) {
655 ret = register_device_clock(adev, pdata);
656 if (ret) {
657 /* Skip the device, but continue the namespace scan. */
658 ret = 0;
659 goto err_out;
660 }
661 }
662
663 /*
664 * This works around a known issue in ACPI tables where LPSS devices
665 * have _PS0 and _PS3 without _PSC (and no power resources), so
666 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
667 */
668 acpi_device_fix_up_power(adev);
669
670 adev->driver_data = pdata;
671 pdev = acpi_create_platform_device(adev, dev_desc->properties);
672 if (!IS_ERR_OR_NULL(pdev)) {
673 acpi_lpss_create_device_links(adev, pdev);
674 return 1;
675 }
676
677 ret = PTR_ERR(pdev);
678 adev->driver_data = NULL;
679
680 err_out:
681 kfree(pdata);
682 return ret;
683}
684
685static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
686{
687 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
688}
689
690static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
691 unsigned int reg)
692{
693 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
694}
695
696static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
697{
698 struct acpi_device *adev;
699 struct lpss_private_data *pdata;
700 unsigned long flags;
701 int ret;
702
703 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
704 if (WARN_ON(ret))
705 return ret;
706
707 spin_lock_irqsave(&dev->power.lock, flags);
708 if (pm_runtime_suspended(dev)) {
709 ret = -EAGAIN;
710 goto out;
711 }
712 pdata = acpi_driver_data(adev);
713 if (WARN_ON(!pdata || !pdata->mmio_base)) {
714 ret = -ENODEV;
715 goto out;
716 }
717 *val = __lpss_reg_read(pdata, reg);
718
719 out:
720 spin_unlock_irqrestore(&dev->power.lock, flags);
721 return ret;
722}
723
724static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
725 char *buf)
726{
727 u32 ltr_value = 0;
728 unsigned int reg;
729 int ret;
730
731 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
732 ret = lpss_reg_read(dev, reg, &ltr_value);
733 if (ret)
734 return ret;
735
736 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
737}
738
739static ssize_t lpss_ltr_mode_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741{
742 u32 ltr_mode = 0;
743 char *outstr;
744 int ret;
745
746 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
747 if (ret)
748 return ret;
749
750 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
751 return sprintf(buf, "%s\n", outstr);
752}
753
754static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
755static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
756static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
757
758static struct attribute *lpss_attrs[] = {
759 &dev_attr_auto_ltr.attr,
760 &dev_attr_sw_ltr.attr,
761 &dev_attr_ltr_mode.attr,
762 NULL,
763};
764
765static const struct attribute_group lpss_attr_group = {
766 .attrs = lpss_attrs,
767 .name = "lpss_ltr",
768};
769
770static void acpi_lpss_set_ltr(struct device *dev, s32 val)
771{
772 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
773 u32 ltr_mode, ltr_val;
774
775 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
776 if (val < 0) {
777 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
778 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
779 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
780 }
781 return;
782 }
783 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
784 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
785 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
786 val = LPSS_LTR_MAX_VAL;
787 } else if (val > LPSS_LTR_MAX_VAL) {
788 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
789 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
790 } else {
791 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
792 }
793 ltr_val |= val;
794 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
795 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
796 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
797 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
798 }
799}
800
801#ifdef CONFIG_PM
802/**
803 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
804 * @dev: LPSS device
805 * @pdata: pointer to the private data of the LPSS device
806 *
807 * Most LPSS devices have private registers which may loose their context when
808 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
809 * prv_reg_ctx array.
810 */
811static void acpi_lpss_save_ctx(struct device *dev,
812 struct lpss_private_data *pdata)
813{
814 unsigned int i;
815
816 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
817 unsigned long offset = i * sizeof(u32);
818
819 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
820 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
821 pdata->prv_reg_ctx[i], offset);
822 }
823}
824
825/**
826 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
827 * @dev: LPSS device
828 * @pdata: pointer to the private data of the LPSS device
829 *
830 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
831 */
832static void acpi_lpss_restore_ctx(struct device *dev,
833 struct lpss_private_data *pdata)
834{
835 unsigned int i;
836
837 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
838 unsigned long offset = i * sizeof(u32);
839
840 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
841 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
842 pdata->prv_reg_ctx[i], offset);
843 }
844}
845
846static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
847{
848 /*
849 * The following delay is needed or the subsequent write operations may
850 * fail. The LPSS devices are actually PCI devices and the PCI spec
851 * expects 10ms delay before the device can be accessed after D3 to D0
852 * transition. However some platforms like BSW does not need this delay.
853 */
854 unsigned int delay = 10; /* default 10ms delay */
855
856 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
857 delay = 0;
858
859 msleep(delay);
860}
861
862static int acpi_lpss_activate(struct device *dev)
863{
864 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
865 int ret;
866
867 ret = acpi_dev_resume(dev);
868 if (ret)
869 return ret;
870
871 acpi_lpss_d3_to_d0_delay(pdata);
872
873 /*
874 * This is called only on ->probe() stage where a device is either in
875 * known state defined by BIOS or most likely powered off. Due to this
876 * we have to deassert reset line to be sure that ->probe() will
877 * recognize the device.
878 */
879 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
880 lpss_deassert_reset(pdata);
881
882 return 0;
883}
884
885static void acpi_lpss_dismiss(struct device *dev)
886{
887 acpi_dev_suspend(dev, false);
888}
889
890/* IOSF SB for LPSS island */
891#define LPSS_IOSF_UNIT_LPIOEP 0xA0
892#define LPSS_IOSF_UNIT_LPIO1 0xAB
893#define LPSS_IOSF_UNIT_LPIO2 0xAC
894
895#define LPSS_IOSF_PMCSR 0x84
896#define LPSS_PMCSR_D0 0
897#define LPSS_PMCSR_D3hot 3
898#define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
899
900#define LPSS_IOSF_GPIODEF0 0x154
901#define LPSS_GPIODEF0_DMA1_D3 BIT(2)
902#define LPSS_GPIODEF0_DMA2_D3 BIT(3)
903#define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
904#define LPSS_GPIODEF0_DMA_LLP BIT(13)
905
906static DEFINE_MUTEX(lpss_iosf_mutex);
907static bool lpss_iosf_d3_entered = true;
908
909static void lpss_iosf_enter_d3_state(void)
910{
911 u32 value1 = 0;
912 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
913 u32 value2 = LPSS_PMCSR_D3hot;
914 u32 mask2 = LPSS_PMCSR_Dx_MASK;
915 /*
916 * PMC provides an information about actual status of the LPSS devices.
917 * Here we read the values related to LPSS power island, i.e. LPSS
918 * devices, excluding both LPSS DMA controllers, along with SCC domain.
919 */
920 u32 func_dis, d3_sts_0, pmc_status;
921 int ret;
922
923 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
924 if (ret)
925 return;
926
927 mutex_lock(&lpss_iosf_mutex);
928
929 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
930 if (ret)
931 goto exit;
932
933 /*
934 * Get the status of entire LPSS power island per device basis.
935 * Shutdown both LPSS DMA controllers if and only if all other devices
936 * are already in D3hot.
937 */
938 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
939 if (pmc_status)
940 goto exit;
941
942 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
943 LPSS_IOSF_PMCSR, value2, mask2);
944
945 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
946 LPSS_IOSF_PMCSR, value2, mask2);
947
948 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
949 LPSS_IOSF_GPIODEF0, value1, mask1);
950
951 lpss_iosf_d3_entered = true;
952
953exit:
954 mutex_unlock(&lpss_iosf_mutex);
955}
956
957static void lpss_iosf_exit_d3_state(void)
958{
959 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
960 LPSS_GPIODEF0_DMA_LLP;
961 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
962 u32 value2 = LPSS_PMCSR_D0;
963 u32 mask2 = LPSS_PMCSR_Dx_MASK;
964
965 mutex_lock(&lpss_iosf_mutex);
966
967 if (!lpss_iosf_d3_entered)
968 goto exit;
969
970 lpss_iosf_d3_entered = false;
971
972 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
973 LPSS_IOSF_GPIODEF0, value1, mask1);
974
975 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
976 LPSS_IOSF_PMCSR, value2, mask2);
977
978 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
979 LPSS_IOSF_PMCSR, value2, mask2);
980
981exit:
982 mutex_unlock(&lpss_iosf_mutex);
983}
984
985static int acpi_lpss_suspend(struct device *dev, bool wakeup)
986{
987 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
988 int ret;
989
990 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
991 acpi_lpss_save_ctx(dev, pdata);
992
993 ret = acpi_dev_suspend(dev, wakeup);
994
995 /*
996 * This call must be last in the sequence, otherwise PMC will return
997 * wrong status for devices being about to be powered off. See
998 * lpss_iosf_enter_d3_state() for further information.
999 */
1000 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1001 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1002 lpss_iosf_enter_d3_state();
1003
1004 return ret;
1005}
1006
1007static int acpi_lpss_resume(struct device *dev)
1008{
1009 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1010 int ret;
1011
1012 /*
1013 * This call is kept first to be in symmetry with
1014 * acpi_lpss_runtime_suspend() one.
1015 */
1016 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1017 lpss_iosf_exit_d3_state();
1018
1019 ret = acpi_dev_resume(dev);
1020 if (ret)
1021 return ret;
1022
1023 acpi_lpss_d3_to_d0_delay(pdata);
1024
1025 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1026 acpi_lpss_restore_ctx(dev, pdata);
1027
1028 return 0;
1029}
1030
1031#ifdef CONFIG_PM_SLEEP
1032static int acpi_lpss_do_suspend_late(struct device *dev)
1033{
1034 int ret;
1035
1036 if (dev_pm_smart_suspend_and_suspended(dev))
1037 return 0;
1038
1039 ret = pm_generic_suspend_late(dev);
1040 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1041}
1042
1043static int acpi_lpss_suspend_late(struct device *dev)
1044{
1045 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1046
1047 if (pdata->dev_desc->resume_from_noirq)
1048 return 0;
1049
1050 return acpi_lpss_do_suspend_late(dev);
1051}
1052
1053static int acpi_lpss_suspend_noirq(struct device *dev)
1054{
1055 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1056 int ret;
1057
1058 if (pdata->dev_desc->resume_from_noirq) {
1059 ret = acpi_lpss_do_suspend_late(dev);
1060 if (ret)
1061 return ret;
1062 }
1063
1064 return acpi_subsys_suspend_noirq(dev);
1065}
1066
1067static int acpi_lpss_do_resume_early(struct device *dev)
1068{
1069 int ret = acpi_lpss_resume(dev);
1070
1071 return ret ? ret : pm_generic_resume_early(dev);
1072}
1073
1074static int acpi_lpss_resume_early(struct device *dev)
1075{
1076 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1077
1078 if (pdata->dev_desc->resume_from_noirq)
1079 return 0;
1080
1081 return acpi_lpss_do_resume_early(dev);
1082}
1083
1084static int acpi_lpss_resume_noirq(struct device *dev)
1085{
1086 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1087 int ret;
1088
1089 ret = acpi_subsys_resume_noirq(dev);
1090 if (ret)
1091 return ret;
1092
1093 if (!dev_pm_may_skip_resume(dev) && pdata->dev_desc->resume_from_noirq)
1094 ret = acpi_lpss_do_resume_early(dev);
1095
1096 return ret;
1097}
1098
1099#endif /* CONFIG_PM_SLEEP */
1100
1101static int acpi_lpss_runtime_suspend(struct device *dev)
1102{
1103 int ret = pm_generic_runtime_suspend(dev);
1104
1105 return ret ? ret : acpi_lpss_suspend(dev, true);
1106}
1107
1108static int acpi_lpss_runtime_resume(struct device *dev)
1109{
1110 int ret = acpi_lpss_resume(dev);
1111
1112 return ret ? ret : pm_generic_runtime_resume(dev);
1113}
1114#endif /* CONFIG_PM */
1115
1116static struct dev_pm_domain acpi_lpss_pm_domain = {
1117#ifdef CONFIG_PM
1118 .activate = acpi_lpss_activate,
1119 .dismiss = acpi_lpss_dismiss,
1120#endif
1121 .ops = {
1122#ifdef CONFIG_PM
1123#ifdef CONFIG_PM_SLEEP
1124 .prepare = acpi_subsys_prepare,
1125 .complete = acpi_subsys_complete,
1126 .suspend = acpi_subsys_suspend,
1127 .suspend_late = acpi_lpss_suspend_late,
1128 .suspend_noirq = acpi_lpss_suspend_noirq,
1129 .resume_noirq = acpi_lpss_resume_noirq,
1130 .resume_early = acpi_lpss_resume_early,
1131 .freeze = acpi_subsys_freeze,
1132 .freeze_late = acpi_subsys_freeze_late,
1133 .freeze_noirq = acpi_subsys_freeze_noirq,
1134 .thaw_noirq = acpi_subsys_thaw_noirq,
1135 .poweroff = acpi_subsys_suspend,
1136 .poweroff_late = acpi_lpss_suspend_late,
1137 .poweroff_noirq = acpi_lpss_suspend_noirq,
1138 .restore_noirq = acpi_lpss_resume_noirq,
1139 .restore_early = acpi_lpss_resume_early,
1140#endif
1141 .runtime_suspend = acpi_lpss_runtime_suspend,
1142 .runtime_resume = acpi_lpss_runtime_resume,
1143#endif
1144 },
1145};
1146
1147static int acpi_lpss_platform_notify(struct notifier_block *nb,
1148 unsigned long action, void *data)
1149{
1150 struct platform_device *pdev = to_platform_device(data);
1151 struct lpss_private_data *pdata;
1152 struct acpi_device *adev;
1153 const struct acpi_device_id *id;
1154
1155 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1156 if (!id || !id->driver_data)
1157 return 0;
1158
1159 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1160 return 0;
1161
1162 pdata = acpi_driver_data(adev);
1163 if (!pdata)
1164 return 0;
1165
1166 if (pdata->mmio_base &&
1167 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1168 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1169 return 0;
1170 }
1171
1172 switch (action) {
1173 case BUS_NOTIFY_BIND_DRIVER:
1174 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1175 break;
1176 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1177 case BUS_NOTIFY_UNBOUND_DRIVER:
1178 dev_pm_domain_set(&pdev->dev, NULL);
1179 break;
1180 case BUS_NOTIFY_ADD_DEVICE:
1181 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1182 if (pdata->dev_desc->flags & LPSS_LTR)
1183 return sysfs_create_group(&pdev->dev.kobj,
1184 &lpss_attr_group);
1185 break;
1186 case BUS_NOTIFY_DEL_DEVICE:
1187 if (pdata->dev_desc->flags & LPSS_LTR)
1188 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1189 dev_pm_domain_set(&pdev->dev, NULL);
1190 break;
1191 default:
1192 break;
1193 }
1194
1195 return 0;
1196}
1197
1198static struct notifier_block acpi_lpss_nb = {
1199 .notifier_call = acpi_lpss_platform_notify,
1200};
1201
1202static void acpi_lpss_bind(struct device *dev)
1203{
1204 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1205
1206 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1207 return;
1208
1209 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1210 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1211 else
1212 dev_err(dev, "MMIO size insufficient to access LTR\n");
1213}
1214
1215static void acpi_lpss_unbind(struct device *dev)
1216{
1217 dev->power.set_latency_tolerance = NULL;
1218}
1219
1220static struct acpi_scan_handler lpss_handler = {
1221 .ids = acpi_lpss_device_ids,
1222 .attach = acpi_lpss_create_device,
1223 .bind = acpi_lpss_bind,
1224 .unbind = acpi_lpss_unbind,
1225};
1226
1227void __init acpi_lpss_init(void)
1228{
1229 const struct x86_cpu_id *id;
1230 int ret;
1231
1232 ret = lpt_clk_init();
1233 if (ret)
1234 return;
1235
1236 id = x86_match_cpu(lpss_cpu_ids);
1237 if (id)
1238 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1239
1240 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1241 acpi_scan_add_handler(&lpss_handler);
1242}
1243
1244#else
1245
1246static struct acpi_scan_handler lpss_handler = {
1247 .ids = acpi_lpss_device_ids,
1248};
1249
1250void __init acpi_lpss_init(void)
1251{
1252 acpi_scan_add_handler(&lpss_handler);
1253}
1254
1255#endif /* CONFIG_X86_INTEL_LPSS */