| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * mm/kmemleak.c | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2008 ARM Limited | 
 | 5 |  * Written by Catalin Marinas <catalin.marinas@arm.com> | 
 | 6 |  * | 
 | 7 |  * This program is free software; you can redistribute it and/or modify | 
 | 8 |  * it under the terms of the GNU General Public License version 2 as | 
 | 9 |  * published by the Free Software Foundation. | 
 | 10 |  * | 
 | 11 |  * This program is distributed in the hope that it will be useful, | 
 | 12 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 13 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 14 |  * GNU General Public License for more details. | 
 | 15 |  * | 
 | 16 |  * You should have received a copy of the GNU General Public License | 
 | 17 |  * along with this program; if not, write to the Free Software | 
 | 18 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
 | 19 |  * | 
 | 20 |  * | 
 | 21 |  * For more information on the algorithm and kmemleak usage, please see | 
 | 22 |  * Documentation/dev-tools/kmemleak.rst. | 
 | 23 |  * | 
 | 24 |  * Notes on locking | 
 | 25 |  * ---------------- | 
 | 26 |  * | 
 | 27 |  * The following locks and mutexes are used by kmemleak: | 
 | 28 |  * | 
 | 29 |  * - kmemleak_lock (rwlock): protects the object_list modifications and | 
 | 30 |  *   accesses to the object_tree_root. The object_list is the main list | 
 | 31 |  *   holding the metadata (struct kmemleak_object) for the allocated memory | 
 | 32 |  *   blocks. The object_tree_root is a red black tree used to look-up | 
 | 33 |  *   metadata based on a pointer to the corresponding memory block.  The | 
 | 34 |  *   kmemleak_object structures are added to the object_list and | 
 | 35 |  *   object_tree_root in the create_object() function called from the | 
 | 36 |  *   kmemleak_alloc() callback and removed in delete_object() called from the | 
 | 37 |  *   kmemleak_free() callback | 
 | 38 |  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to | 
 | 39 |  *   the metadata (e.g. count) are protected by this lock. Note that some | 
 | 40 |  *   members of this structure may be protected by other means (atomic or | 
 | 41 |  *   kmemleak_lock). This lock is also held when scanning the corresponding | 
 | 42 |  *   memory block to avoid the kernel freeing it via the kmemleak_free() | 
 | 43 |  *   callback. This is less heavyweight than holding a global lock like | 
 | 44 |  *   kmemleak_lock during scanning | 
 | 45 |  * - scan_mutex (mutex): ensures that only one thread may scan the memory for | 
 | 46 |  *   unreferenced objects at a time. The gray_list contains the objects which | 
 | 47 |  *   are already referenced or marked as false positives and need to be | 
 | 48 |  *   scanned. This list is only modified during a scanning episode when the | 
 | 49 |  *   scan_mutex is held. At the end of a scan, the gray_list is always empty. | 
 | 50 |  *   Note that the kmemleak_object.use_count is incremented when an object is | 
 | 51 |  *   added to the gray_list and therefore cannot be freed. This mutex also | 
 | 52 |  *   prevents multiple users of the "kmemleak" debugfs file together with | 
 | 53 |  *   modifications to the memory scanning parameters including the scan_thread | 
 | 54 |  *   pointer | 
 | 55 |  * | 
 | 56 |  * Locks and mutexes are acquired/nested in the following order: | 
 | 57 |  * | 
 | 58 |  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) | 
 | 59 |  * | 
 | 60 |  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex | 
 | 61 |  * regions. | 
 | 62 |  * | 
 | 63 |  * The kmemleak_object structures have a use_count incremented or decremented | 
 | 64 |  * using the get_object()/put_object() functions. When the use_count becomes | 
 | 65 |  * 0, this count can no longer be incremented and put_object() schedules the | 
 | 66 |  * kmemleak_object freeing via an RCU callback. All calls to the get_object() | 
 | 67 |  * function must be protected by rcu_read_lock() to avoid accessing a freed | 
 | 68 |  * structure. | 
 | 69 |  */ | 
 | 70 |  | 
 | 71 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | 72 |  | 
 | 73 | #include <linux/init.h> | 
 | 74 | #include <linux/kernel.h> | 
 | 75 | #include <linux/list.h> | 
 | 76 | #include <linux/sched/signal.h> | 
 | 77 | #include <linux/sched/task.h> | 
 | 78 | #include <linux/sched/task_stack.h> | 
 | 79 | #include <linux/jiffies.h> | 
 | 80 | #include <linux/delay.h> | 
 | 81 | #include <linux/export.h> | 
 | 82 | #include <linux/kthread.h> | 
 | 83 | #include <linux/rbtree.h> | 
 | 84 | #include <linux/fs.h> | 
 | 85 | #include <linux/debugfs.h> | 
 | 86 | #include <linux/seq_file.h> | 
 | 87 | #include <linux/cpumask.h> | 
 | 88 | #include <linux/spinlock.h> | 
 | 89 | #include <linux/mutex.h> | 
 | 90 | #include <linux/rcupdate.h> | 
 | 91 | #include <linux/stacktrace.h> | 
 | 92 | #include <linux/cache.h> | 
 | 93 | #include <linux/percpu.h> | 
 | 94 | #include <linux/bootmem.h> | 
 | 95 | #include <linux/pfn.h> | 
 | 96 | #include <linux/mmzone.h> | 
 | 97 | #include <linux/slab.h> | 
 | 98 | #include <linux/thread_info.h> | 
 | 99 | #include <linux/err.h> | 
 | 100 | #include <linux/uaccess.h> | 
 | 101 | #include <linux/string.h> | 
 | 102 | #include <linux/nodemask.h> | 
 | 103 | #include <linux/mm.h> | 
 | 104 | #include <linux/workqueue.h> | 
 | 105 | #include <linux/crc32.h> | 
 | 106 |  | 
 | 107 | #include <asm/sections.h> | 
 | 108 | #include <asm/processor.h> | 
 | 109 | #include <linux/atomic.h> | 
 | 110 |  | 
 | 111 | #include <linux/kasan.h> | 
 | 112 | #include <linux/kmemleak.h> | 
 | 113 | #include <linux/memory_hotplug.h> | 
 | 114 |  | 
 | 115 | /* | 
 | 116 |  * Kmemleak configuration and common defines. | 
 | 117 |  */ | 
 | 118 | #define MAX_TRACE		16	/* stack trace length */ | 
 | 119 | #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */ | 
 | 120 | #define SECS_FIRST_SCAN		60	/* delay before the first scan */ | 
 | 121 | #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */ | 
 | 122 | #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */ | 
 | 123 |  | 
 | 124 | #define BYTES_PER_POINTER	sizeof(void *) | 
 | 125 |  | 
 | 126 | /* GFP bitmask for kmemleak internal allocations */ | 
 | 127 | #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ | 
 | 128 | 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \ | 
 | 129 | 				 __GFP_NOWARN) | 
 | 130 |  | 
 | 131 | /* scanning area inside a memory block */ | 
 | 132 | struct kmemleak_scan_area { | 
 | 133 | 	struct hlist_node node; | 
 | 134 | 	unsigned long start; | 
 | 135 | 	size_t size; | 
 | 136 | }; | 
 | 137 |  | 
 | 138 | #define KMEMLEAK_GREY	0 | 
 | 139 | #define KMEMLEAK_BLACK	-1 | 
 | 140 |  | 
 | 141 | /* | 
 | 142 |  * Structure holding the metadata for each allocated memory block. | 
 | 143 |  * Modifications to such objects should be made while holding the | 
 | 144 |  * object->lock. Insertions or deletions from object_list, gray_list or | 
 | 145 |  * rb_node are already protected by the corresponding locks or mutex (see | 
 | 146 |  * the notes on locking above). These objects are reference-counted | 
 | 147 |  * (use_count) and freed using the RCU mechanism. | 
 | 148 |  */ | 
 | 149 | struct kmemleak_object { | 
 | 150 | 	spinlock_t lock; | 
 | 151 | 	unsigned int flags;		/* object status flags */ | 
 | 152 | 	struct list_head object_list; | 
 | 153 | 	struct list_head gray_list; | 
 | 154 | 	struct rb_node rb_node; | 
 | 155 | 	struct rcu_head rcu;		/* object_list lockless traversal */ | 
 | 156 | 	/* object usage count; object freed when use_count == 0 */ | 
 | 157 | 	atomic_t use_count; | 
 | 158 | 	unsigned long pointer; | 
 | 159 | 	size_t size; | 
 | 160 | 	/* pass surplus references to this pointer */ | 
 | 161 | 	unsigned long excess_ref; | 
 | 162 | 	/* minimum number of a pointers found before it is considered leak */ | 
 | 163 | 	int min_count; | 
 | 164 | 	/* the total number of pointers found pointing to this object */ | 
 | 165 | 	int count; | 
 | 166 | 	/* checksum for detecting modified objects */ | 
 | 167 | 	u32 checksum; | 
 | 168 | 	/* memory ranges to be scanned inside an object (empty for all) */ | 
 | 169 | 	struct hlist_head area_list; | 
 | 170 | 	unsigned long trace[MAX_TRACE]; | 
 | 171 | 	unsigned int trace_len; | 
 | 172 | 	unsigned long jiffies;		/* creation timestamp */ | 
 | 173 | 	pid_t pid;			/* pid of the current task */ | 
 | 174 | 	char comm[TASK_COMM_LEN];	/* executable name */ | 
 | 175 | }; | 
 | 176 |  | 
 | 177 | /* flag representing the memory block allocation status */ | 
 | 178 | #define OBJECT_ALLOCATED	(1 << 0) | 
 | 179 | /* flag set after the first reporting of an unreference object */ | 
 | 180 | #define OBJECT_REPORTED		(1 << 1) | 
 | 181 | /* flag set to not scan the object */ | 
 | 182 | #define OBJECT_NO_SCAN		(1 << 2) | 
 | 183 |  | 
 | 184 | /* number of bytes to print per line; must be 16 or 32 */ | 
 | 185 | #define HEX_ROW_SIZE		16 | 
 | 186 | /* number of bytes to print at a time (1, 2, 4, 8) */ | 
 | 187 | #define HEX_GROUP_SIZE		1 | 
 | 188 | /* include ASCII after the hex output */ | 
 | 189 | #define HEX_ASCII		1 | 
 | 190 | /* max number of lines to be printed */ | 
 | 191 | #define HEX_MAX_LINES		2 | 
 | 192 |  | 
 | 193 | /* the list of all allocated objects */ | 
 | 194 | static LIST_HEAD(object_list); | 
 | 195 | /* the list of gray-colored objects (see color_gray comment below) */ | 
 | 196 | static LIST_HEAD(gray_list); | 
 | 197 | /* search tree for object boundaries */ | 
 | 198 | static struct rb_root object_tree_root = RB_ROOT; | 
 | 199 | /* rw_lock protecting the access to object_list and object_tree_root */ | 
 | 200 | static DEFINE_RWLOCK(kmemleak_lock); | 
 | 201 |  | 
 | 202 | /* allocation caches for kmemleak internal data */ | 
 | 203 | static struct kmem_cache *object_cache; | 
 | 204 | static struct kmem_cache *scan_area_cache; | 
 | 205 |  | 
 | 206 | /* set if tracing memory operations is enabled */ | 
 | 207 | static int kmemleak_enabled; | 
 | 208 | /* same as above but only for the kmemleak_free() callback */ | 
 | 209 | static int kmemleak_free_enabled; | 
 | 210 | /* set in the late_initcall if there were no errors */ | 
 | 211 | static int kmemleak_initialized; | 
 | 212 | /* enables or disables early logging of the memory operations */ | 
 | 213 | static int kmemleak_early_log = 1; | 
 | 214 | /* set if a kmemleak warning was issued */ | 
 | 215 | static int kmemleak_warning; | 
 | 216 | /* set if a fatal kmemleak error has occurred */ | 
 | 217 | static int kmemleak_error; | 
 | 218 |  | 
 | 219 | /* minimum and maximum address that may be valid pointers */ | 
 | 220 | static unsigned long min_addr = ULONG_MAX; | 
 | 221 | static unsigned long max_addr; | 
 | 222 |  | 
 | 223 | static struct task_struct *scan_thread; | 
 | 224 | /* used to avoid reporting of recently allocated objects */ | 
 | 225 | static unsigned long jiffies_min_age; | 
 | 226 | static unsigned long jiffies_last_scan; | 
 | 227 | /* delay between automatic memory scannings */ | 
 | 228 | static signed long jiffies_scan_wait; | 
 | 229 | /* enables or disables the task stacks scanning */ | 
 | 230 | static int kmemleak_stack_scan = 1; | 
 | 231 | /* protects the memory scanning, parameters and debug/kmemleak file access */ | 
 | 232 | static DEFINE_MUTEX(scan_mutex); | 
 | 233 | /* setting kmemleak=on, will set this var, skipping the disable */ | 
 | 234 | static int kmemleak_skip_disable; | 
 | 235 | /* If there are leaks that can be reported */ | 
 | 236 | static bool kmemleak_found_leaks; | 
 | 237 |  | 
 | 238 | /* | 
 | 239 |  * Early object allocation/freeing logging. Kmemleak is initialized after the | 
 | 240 |  * kernel allocator. However, both the kernel allocator and kmemleak may | 
 | 241 |  * allocate memory blocks which need to be tracked. Kmemleak defines an | 
 | 242 |  * arbitrary buffer to hold the allocation/freeing information before it is | 
 | 243 |  * fully initialized. | 
 | 244 |  */ | 
 | 245 |  | 
 | 246 | /* kmemleak operation type for early logging */ | 
 | 247 | enum { | 
 | 248 | 	KMEMLEAK_ALLOC, | 
 | 249 | 	KMEMLEAK_ALLOC_PERCPU, | 
 | 250 | 	KMEMLEAK_FREE, | 
 | 251 | 	KMEMLEAK_FREE_PART, | 
 | 252 | 	KMEMLEAK_FREE_PERCPU, | 
 | 253 | 	KMEMLEAK_NOT_LEAK, | 
 | 254 | 	KMEMLEAK_IGNORE, | 
 | 255 | 	KMEMLEAK_SCAN_AREA, | 
 | 256 | 	KMEMLEAK_NO_SCAN, | 
 | 257 | 	KMEMLEAK_SET_EXCESS_REF | 
 | 258 | }; | 
 | 259 |  | 
 | 260 | /* | 
 | 261 |  * Structure holding the information passed to kmemleak callbacks during the | 
 | 262 |  * early logging. | 
 | 263 |  */ | 
 | 264 | struct early_log { | 
 | 265 | 	int op_type;			/* kmemleak operation type */ | 
 | 266 | 	int min_count;			/* minimum reference count */ | 
 | 267 | 	const void *ptr;		/* allocated/freed memory block */ | 
 | 268 | 	union { | 
 | 269 | 		size_t size;		/* memory block size */ | 
 | 270 | 		unsigned long excess_ref; /* surplus reference passing */ | 
 | 271 | 	}; | 
 | 272 | 	unsigned long trace[MAX_TRACE];	/* stack trace */ | 
 | 273 | 	unsigned int trace_len;		/* stack trace length */ | 
 | 274 | }; | 
 | 275 |  | 
 | 276 | /* early logging buffer and current position */ | 
 | 277 | static struct early_log | 
 | 278 | 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; | 
 | 279 | static int crt_early_log __initdata; | 
 | 280 |  | 
 | 281 | static void kmemleak_disable(void); | 
 | 282 |  | 
 | 283 | /* | 
 | 284 |  * Print a warning and dump the stack trace. | 
 | 285 |  */ | 
 | 286 | #define kmemleak_warn(x...)	do {		\ | 
 | 287 | 	pr_warn(x);				\ | 
 | 288 | 	dump_stack();				\ | 
 | 289 | 	kmemleak_warning = 1;			\ | 
 | 290 | } while (0) | 
 | 291 |  | 
 | 292 | /* | 
 | 293 |  * Macro invoked when a serious kmemleak condition occurred and cannot be | 
 | 294 |  * recovered from. Kmemleak will be disabled and further allocation/freeing | 
 | 295 |  * tracing no longer available. | 
 | 296 |  */ | 
 | 297 | #define kmemleak_stop(x...)	do {	\ | 
 | 298 | 	kmemleak_warn(x);		\ | 
 | 299 | 	kmemleak_disable();		\ | 
 | 300 | } while (0) | 
 | 301 |  | 
 | 302 | /* | 
 | 303 |  * Printing of the objects hex dump to the seq file. The number of lines to be | 
 | 304 |  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The | 
 | 305 |  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called | 
 | 306 |  * with the object->lock held. | 
 | 307 |  */ | 
 | 308 | static void hex_dump_object(struct seq_file *seq, | 
 | 309 | 			    struct kmemleak_object *object) | 
 | 310 | { | 
 | 311 | 	const u8 *ptr = (const u8 *)object->pointer; | 
 | 312 | 	size_t len; | 
 | 313 |  | 
 | 314 | 	/* limit the number of lines to HEX_MAX_LINES */ | 
 | 315 | 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); | 
 | 316 |  | 
 | 317 | 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len); | 
 | 318 | 	kasan_disable_current(); | 
 | 319 | 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, | 
 | 320 | 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII); | 
 | 321 | 	kasan_enable_current(); | 
 | 322 | } | 
 | 323 |  | 
 | 324 | /* | 
 | 325 |  * Object colors, encoded with count and min_count: | 
 | 326 |  * - white - orphan object, not enough references to it (count < min_count) | 
 | 327 |  * - gray  - not orphan, not marked as false positive (min_count == 0) or | 
 | 328 |  *		sufficient references to it (count >= min_count) | 
 | 329 |  * - black - ignore, it doesn't contain references (e.g. text section) | 
 | 330 |  *		(min_count == -1). No function defined for this color. | 
 | 331 |  * Newly created objects don't have any color assigned (object->count == -1) | 
 | 332 |  * before the next memory scan when they become white. | 
 | 333 |  */ | 
 | 334 | static bool color_white(const struct kmemleak_object *object) | 
 | 335 | { | 
 | 336 | 	return object->count != KMEMLEAK_BLACK && | 
 | 337 | 		object->count < object->min_count; | 
 | 338 | } | 
 | 339 |  | 
 | 340 | static bool color_gray(const struct kmemleak_object *object) | 
 | 341 | { | 
 | 342 | 	return object->min_count != KMEMLEAK_BLACK && | 
 | 343 | 		object->count >= object->min_count; | 
 | 344 | } | 
 | 345 |  | 
 | 346 | /* | 
 | 347 |  * Objects are considered unreferenced only if their color is white, they have | 
 | 348 |  * not be deleted and have a minimum age to avoid false positives caused by | 
 | 349 |  * pointers temporarily stored in CPU registers. | 
 | 350 |  */ | 
 | 351 | static bool unreferenced_object(struct kmemleak_object *object) | 
 | 352 | { | 
 | 353 | 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) && | 
 | 354 | 		time_before_eq(object->jiffies + jiffies_min_age, | 
 | 355 | 			       jiffies_last_scan); | 
 | 356 | } | 
 | 357 |  | 
 | 358 | /* | 
 | 359 |  * Printing of the unreferenced objects information to the seq file. The | 
 | 360 |  * print_unreferenced function must be called with the object->lock held. | 
 | 361 |  */ | 
 | 362 | static void print_unreferenced(struct seq_file *seq, | 
 | 363 | 			       struct kmemleak_object *object) | 
 | 364 | { | 
 | 365 | 	int i; | 
 | 366 | 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); | 
 | 367 |  | 
 | 368 | 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", | 
 | 369 | 		   object->pointer, object->size); | 
 | 370 | 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", | 
 | 371 | 		   object->comm, object->pid, object->jiffies, | 
 | 372 | 		   msecs_age / 1000, msecs_age % 1000); | 
 | 373 | 	hex_dump_object(seq, object); | 
 | 374 | 	seq_printf(seq, "  backtrace:\n"); | 
 | 375 |  | 
 | 376 | 	for (i = 0; i < object->trace_len; i++) { | 
 | 377 | 		void *ptr = (void *)object->trace[i]; | 
 | 378 | 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr); | 
 | 379 | 	} | 
 | 380 | } | 
 | 381 |  | 
 | 382 | /* | 
 | 383 |  * Print the kmemleak_object information. This function is used mainly for | 
 | 384 |  * debugging special cases when kmemleak operations. It must be called with | 
 | 385 |  * the object->lock held. | 
 | 386 |  */ | 
 | 387 | static void dump_object_info(struct kmemleak_object *object) | 
 | 388 | { | 
 | 389 | 	struct stack_trace trace; | 
 | 390 |  | 
 | 391 | 	trace.nr_entries = object->trace_len; | 
 | 392 | 	trace.entries = object->trace; | 
 | 393 |  | 
 | 394 | 	pr_notice("Object 0x%08lx (size %zu):\n", | 
 | 395 | 		  object->pointer, object->size); | 
 | 396 | 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n", | 
 | 397 | 		  object->comm, object->pid, object->jiffies); | 
 | 398 | 	pr_notice("  min_count = %d\n", object->min_count); | 
 | 399 | 	pr_notice("  count = %d\n", object->count); | 
 | 400 | 	pr_notice("  flags = 0x%x\n", object->flags); | 
 | 401 | 	pr_notice("  checksum = %u\n", object->checksum); | 
 | 402 | 	pr_notice("  backtrace:\n"); | 
 | 403 | 	print_stack_trace(&trace, 4); | 
 | 404 | } | 
 | 405 |  | 
 | 406 | /* | 
 | 407 |  * Look-up a memory block metadata (kmemleak_object) in the object search | 
 | 408 |  * tree based on a pointer value. If alias is 0, only values pointing to the | 
 | 409 |  * beginning of the memory block are allowed. The kmemleak_lock must be held | 
 | 410 |  * when calling this function. | 
 | 411 |  */ | 
 | 412 | static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) | 
 | 413 | { | 
 | 414 | 	struct rb_node *rb = object_tree_root.rb_node; | 
 | 415 |  | 
 | 416 | 	while (rb) { | 
 | 417 | 		struct kmemleak_object *object = | 
 | 418 | 			rb_entry(rb, struct kmemleak_object, rb_node); | 
 | 419 | 		if (ptr < object->pointer) | 
 | 420 | 			rb = object->rb_node.rb_left; | 
 | 421 | 		else if (object->pointer + object->size <= ptr) | 
 | 422 | 			rb = object->rb_node.rb_right; | 
 | 423 | 		else if (object->pointer == ptr || alias) | 
 | 424 | 			return object; | 
 | 425 | 		else { | 
 | 426 | 			kmemleak_warn("Found object by alias at 0x%08lx\n", | 
 | 427 | 				      ptr); | 
 | 428 | 			dump_object_info(object); | 
 | 429 | 			break; | 
 | 430 | 		} | 
 | 431 | 	} | 
 | 432 | 	return NULL; | 
 | 433 | } | 
 | 434 |  | 
 | 435 | /* | 
 | 436 |  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note | 
 | 437 |  * that once an object's use_count reached 0, the RCU freeing was already | 
 | 438 |  * registered and the object should no longer be used. This function must be | 
 | 439 |  * called under the protection of rcu_read_lock(). | 
 | 440 |  */ | 
 | 441 | static int get_object(struct kmemleak_object *object) | 
 | 442 | { | 
 | 443 | 	return atomic_inc_not_zero(&object->use_count); | 
 | 444 | } | 
 | 445 |  | 
 | 446 | /* | 
 | 447 |  * RCU callback to free a kmemleak_object. | 
 | 448 |  */ | 
 | 449 | static void free_object_rcu(struct rcu_head *rcu) | 
 | 450 | { | 
 | 451 | 	struct hlist_node *tmp; | 
 | 452 | 	struct kmemleak_scan_area *area; | 
 | 453 | 	struct kmemleak_object *object = | 
 | 454 | 		container_of(rcu, struct kmemleak_object, rcu); | 
 | 455 |  | 
 | 456 | 	/* | 
 | 457 | 	 * Once use_count is 0 (guaranteed by put_object), there is no other | 
 | 458 | 	 * code accessing this object, hence no need for locking. | 
 | 459 | 	 */ | 
 | 460 | 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { | 
 | 461 | 		hlist_del(&area->node); | 
 | 462 | 		kmem_cache_free(scan_area_cache, area); | 
 | 463 | 	} | 
 | 464 | 	kmem_cache_free(object_cache, object); | 
 | 465 | } | 
 | 466 |  | 
 | 467 | /* | 
 | 468 |  * Decrement the object use_count. Once the count is 0, free the object using | 
 | 469 |  * an RCU callback. Since put_object() may be called via the kmemleak_free() -> | 
 | 470 |  * delete_object() path, the delayed RCU freeing ensures that there is no | 
 | 471 |  * recursive call to the kernel allocator. Lock-less RCU object_list traversal | 
 | 472 |  * is also possible. | 
 | 473 |  */ | 
 | 474 | static void put_object(struct kmemleak_object *object) | 
 | 475 | { | 
 | 476 | 	if (!atomic_dec_and_test(&object->use_count)) | 
 | 477 | 		return; | 
 | 478 |  | 
 | 479 | 	/* should only get here after delete_object was called */ | 
 | 480 | 	WARN_ON(object->flags & OBJECT_ALLOCATED); | 
 | 481 |  | 
 | 482 | 	call_rcu(&object->rcu, free_object_rcu); | 
 | 483 | } | 
 | 484 |  | 
 | 485 | /* | 
 | 486 |  * Look up an object in the object search tree and increase its use_count. | 
 | 487 |  */ | 
 | 488 | static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) | 
 | 489 | { | 
 | 490 | 	unsigned long flags; | 
 | 491 | 	struct kmemleak_object *object; | 
 | 492 |  | 
 | 493 | 	rcu_read_lock(); | 
 | 494 | 	read_lock_irqsave(&kmemleak_lock, flags); | 
 | 495 | 	object = lookup_object(ptr, alias); | 
 | 496 | 	read_unlock_irqrestore(&kmemleak_lock, flags); | 
 | 497 |  | 
 | 498 | 	/* check whether the object is still available */ | 
 | 499 | 	if (object && !get_object(object)) | 
 | 500 | 		object = NULL; | 
 | 501 | 	rcu_read_unlock(); | 
 | 502 |  | 
 | 503 | 	return object; | 
 | 504 | } | 
 | 505 |  | 
 | 506 | /* | 
 | 507 |  * Look up an object in the object search tree and remove it from both | 
 | 508 |  * object_tree_root and object_list. The returned object's use_count should be | 
 | 509 |  * at least 1, as initially set by create_object(). | 
 | 510 |  */ | 
 | 511 | static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) | 
 | 512 | { | 
 | 513 | 	unsigned long flags; | 
 | 514 | 	struct kmemleak_object *object; | 
 | 515 |  | 
 | 516 | 	write_lock_irqsave(&kmemleak_lock, flags); | 
 | 517 | 	object = lookup_object(ptr, alias); | 
 | 518 | 	if (object) { | 
 | 519 | 		rb_erase(&object->rb_node, &object_tree_root); | 
 | 520 | 		list_del_rcu(&object->object_list); | 
 | 521 | 	} | 
 | 522 | 	write_unlock_irqrestore(&kmemleak_lock, flags); | 
 | 523 |  | 
 | 524 | 	return object; | 
 | 525 | } | 
 | 526 |  | 
 | 527 | /* | 
 | 528 |  * Save stack trace to the given array of MAX_TRACE size. | 
 | 529 |  */ | 
 | 530 | static int __save_stack_trace(unsigned long *trace) | 
 | 531 | { | 
 | 532 | 	struct stack_trace stack_trace; | 
 | 533 |  | 
 | 534 | 	stack_trace.max_entries = MAX_TRACE; | 
 | 535 | 	stack_trace.nr_entries = 0; | 
 | 536 | 	stack_trace.entries = trace; | 
 | 537 | 	stack_trace.skip = 2; | 
 | 538 | 	save_stack_trace(&stack_trace); | 
 | 539 |  | 
 | 540 | 	return stack_trace.nr_entries; | 
 | 541 | } | 
 | 542 |  | 
 | 543 | /* | 
 | 544 |  * Create the metadata (struct kmemleak_object) corresponding to an allocated | 
 | 545 |  * memory block and add it to the object_list and object_tree_root. | 
 | 546 |  */ | 
 | 547 | static struct kmemleak_object *create_object(unsigned long ptr, size_t size, | 
 | 548 | 					     int min_count, gfp_t gfp) | 
 | 549 | { | 
 | 550 | 	unsigned long flags; | 
 | 551 | 	struct kmemleak_object *object, *parent; | 
 | 552 | 	struct rb_node **link, *rb_parent; | 
 | 553 |  | 
 | 554 | 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); | 
 | 555 | 	if (!object) { | 
 | 556 | 		pr_warn("Cannot allocate a kmemleak_object structure\n"); | 
 | 557 | 		kmemleak_disable(); | 
 | 558 | 		return NULL; | 
 | 559 | 	} | 
 | 560 |  | 
 | 561 | 	INIT_LIST_HEAD(&object->object_list); | 
 | 562 | 	INIT_LIST_HEAD(&object->gray_list); | 
 | 563 | 	INIT_HLIST_HEAD(&object->area_list); | 
 | 564 | 	spin_lock_init(&object->lock); | 
 | 565 | 	atomic_set(&object->use_count, 1); | 
 | 566 | 	object->flags = OBJECT_ALLOCATED; | 
 | 567 | 	object->pointer = ptr; | 
 | 568 | 	object->size = size; | 
 | 569 | 	object->excess_ref = 0; | 
 | 570 | 	object->min_count = min_count; | 
 | 571 | 	object->count = 0;			/* white color initially */ | 
 | 572 | 	object->jiffies = jiffies; | 
 | 573 | 	object->checksum = 0; | 
 | 574 |  | 
 | 575 | 	/* task information */ | 
 | 576 | 	if (in_irq()) { | 
 | 577 | 		object->pid = 0; | 
 | 578 | 		strncpy(object->comm, "hardirq", sizeof(object->comm)); | 
 | 579 | 	} else if (in_serving_softirq()) { | 
 | 580 | 		object->pid = 0; | 
 | 581 | 		strncpy(object->comm, "softirq", sizeof(object->comm)); | 
 | 582 | 	} else { | 
 | 583 | 		object->pid = current->pid; | 
 | 584 | 		/* | 
 | 585 | 		 * There is a small chance of a race with set_task_comm(), | 
 | 586 | 		 * however using get_task_comm() here may cause locking | 
 | 587 | 		 * dependency issues with current->alloc_lock. In the worst | 
 | 588 | 		 * case, the command line is not correct. | 
 | 589 | 		 */ | 
 | 590 | 		strncpy(object->comm, current->comm, sizeof(object->comm)); | 
 | 591 | 	} | 
 | 592 |  | 
 | 593 | 	/* kernel backtrace */ | 
 | 594 | 	object->trace_len = __save_stack_trace(object->trace); | 
 | 595 |  | 
 | 596 | 	write_lock_irqsave(&kmemleak_lock, flags); | 
 | 597 |  | 
 | 598 | 	min_addr = min(min_addr, ptr); | 
 | 599 | 	max_addr = max(max_addr, ptr + size); | 
 | 600 | 	link = &object_tree_root.rb_node; | 
 | 601 | 	rb_parent = NULL; | 
 | 602 | 	while (*link) { | 
 | 603 | 		rb_parent = *link; | 
 | 604 | 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); | 
 | 605 | 		if (ptr + size <= parent->pointer) | 
 | 606 | 			link = &parent->rb_node.rb_left; | 
 | 607 | 		else if (parent->pointer + parent->size <= ptr) | 
 | 608 | 			link = &parent->rb_node.rb_right; | 
 | 609 | 		else { | 
 | 610 | 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", | 
 | 611 | 				      ptr); | 
 | 612 | 			/* | 
 | 613 | 			 * No need for parent->lock here since "parent" cannot | 
 | 614 | 			 * be freed while the kmemleak_lock is held. | 
 | 615 | 			 */ | 
 | 616 | 			dump_object_info(parent); | 
 | 617 | 			kmem_cache_free(object_cache, object); | 
 | 618 | 			object = NULL; | 
 | 619 | 			goto out; | 
 | 620 | 		} | 
 | 621 | 	} | 
 | 622 | 	rb_link_node(&object->rb_node, rb_parent, link); | 
 | 623 | 	rb_insert_color(&object->rb_node, &object_tree_root); | 
 | 624 |  | 
 | 625 | 	list_add_tail_rcu(&object->object_list, &object_list); | 
 | 626 | out: | 
 | 627 | 	write_unlock_irqrestore(&kmemleak_lock, flags); | 
 | 628 | 	return object; | 
 | 629 | } | 
 | 630 |  | 
 | 631 | /* | 
 | 632 |  * Mark the object as not allocated and schedule RCU freeing via put_object(). | 
 | 633 |  */ | 
 | 634 | static void __delete_object(struct kmemleak_object *object) | 
 | 635 | { | 
 | 636 | 	unsigned long flags; | 
 | 637 |  | 
 | 638 | 	WARN_ON(!(object->flags & OBJECT_ALLOCATED)); | 
 | 639 | 	WARN_ON(atomic_read(&object->use_count) < 1); | 
 | 640 |  | 
 | 641 | 	/* | 
 | 642 | 	 * Locking here also ensures that the corresponding memory block | 
 | 643 | 	 * cannot be freed when it is being scanned. | 
 | 644 | 	 */ | 
 | 645 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 646 | 	object->flags &= ~OBJECT_ALLOCATED; | 
 | 647 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 648 | 	put_object(object); | 
 | 649 | } | 
 | 650 |  | 
 | 651 | /* | 
 | 652 |  * Look up the metadata (struct kmemleak_object) corresponding to ptr and | 
 | 653 |  * delete it. | 
 | 654 |  */ | 
 | 655 | static void delete_object_full(unsigned long ptr) | 
 | 656 | { | 
 | 657 | 	struct kmemleak_object *object; | 
 | 658 |  | 
 | 659 | 	object = find_and_remove_object(ptr, 0); | 
 | 660 | 	if (!object) { | 
 | 661 | #ifdef DEBUG | 
 | 662 | 		kmemleak_warn("Freeing unknown object at 0x%08lx\n", | 
 | 663 | 			      ptr); | 
 | 664 | #endif | 
 | 665 | 		return; | 
 | 666 | 	} | 
 | 667 | 	__delete_object(object); | 
 | 668 | } | 
 | 669 |  | 
 | 670 | /* | 
 | 671 |  * Look up the metadata (struct kmemleak_object) corresponding to ptr and | 
 | 672 |  * delete it. If the memory block is partially freed, the function may create | 
 | 673 |  * additional metadata for the remaining parts of the block. | 
 | 674 |  */ | 
 | 675 | static void delete_object_part(unsigned long ptr, size_t size) | 
 | 676 | { | 
 | 677 | 	struct kmemleak_object *object; | 
 | 678 | 	unsigned long start, end; | 
 | 679 |  | 
 | 680 | 	object = find_and_remove_object(ptr, 1); | 
 | 681 | 	if (!object) { | 
 | 682 | #ifdef DEBUG | 
 | 683 | 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", | 
 | 684 | 			      ptr, size); | 
 | 685 | #endif | 
 | 686 | 		return; | 
 | 687 | 	} | 
 | 688 |  | 
 | 689 | 	/* | 
 | 690 | 	 * Create one or two objects that may result from the memory block | 
 | 691 | 	 * split. Note that partial freeing is only done by free_bootmem() and | 
 | 692 | 	 * this happens before kmemleak_init() is called. The path below is | 
 | 693 | 	 * only executed during early log recording in kmemleak_init(), so | 
 | 694 | 	 * GFP_KERNEL is enough. | 
 | 695 | 	 */ | 
 | 696 | 	start = object->pointer; | 
 | 697 | 	end = object->pointer + object->size; | 
 | 698 | 	if (ptr > start) | 
 | 699 | 		create_object(start, ptr - start, object->min_count, | 
 | 700 | 			      GFP_KERNEL); | 
 | 701 | 	if (ptr + size < end) | 
 | 702 | 		create_object(ptr + size, end - ptr - size, object->min_count, | 
 | 703 | 			      GFP_KERNEL); | 
 | 704 |  | 
 | 705 | 	__delete_object(object); | 
 | 706 | } | 
 | 707 |  | 
 | 708 | static void __paint_it(struct kmemleak_object *object, int color) | 
 | 709 | { | 
 | 710 | 	object->min_count = color; | 
 | 711 | 	if (color == KMEMLEAK_BLACK) | 
 | 712 | 		object->flags |= OBJECT_NO_SCAN; | 
 | 713 | } | 
 | 714 |  | 
 | 715 | static void paint_it(struct kmemleak_object *object, int color) | 
 | 716 | { | 
 | 717 | 	unsigned long flags; | 
 | 718 |  | 
 | 719 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 720 | 	__paint_it(object, color); | 
 | 721 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 722 | } | 
 | 723 |  | 
 | 724 | static void paint_ptr(unsigned long ptr, int color) | 
 | 725 | { | 
 | 726 | 	struct kmemleak_object *object; | 
 | 727 |  | 
 | 728 | 	object = find_and_get_object(ptr, 0); | 
 | 729 | 	if (!object) { | 
 | 730 | 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", | 
 | 731 | 			      ptr, | 
 | 732 | 			      (color == KMEMLEAK_GREY) ? "Grey" : | 
 | 733 | 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); | 
 | 734 | 		return; | 
 | 735 | 	} | 
 | 736 | 	paint_it(object, color); | 
 | 737 | 	put_object(object); | 
 | 738 | } | 
 | 739 |  | 
 | 740 | /* | 
 | 741 |  * Mark an object permanently as gray-colored so that it can no longer be | 
 | 742 |  * reported as a leak. This is used in general to mark a false positive. | 
 | 743 |  */ | 
 | 744 | static void make_gray_object(unsigned long ptr) | 
 | 745 | { | 
 | 746 | 	paint_ptr(ptr, KMEMLEAK_GREY); | 
 | 747 | } | 
 | 748 |  | 
 | 749 | /* | 
 | 750 |  * Mark the object as black-colored so that it is ignored from scans and | 
 | 751 |  * reporting. | 
 | 752 |  */ | 
 | 753 | static void make_black_object(unsigned long ptr) | 
 | 754 | { | 
 | 755 | 	paint_ptr(ptr, KMEMLEAK_BLACK); | 
 | 756 | } | 
 | 757 |  | 
 | 758 | /* | 
 | 759 |  * Add a scanning area to the object. If at least one such area is added, | 
 | 760 |  * kmemleak will only scan these ranges rather than the whole memory block. | 
 | 761 |  */ | 
 | 762 | static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) | 
 | 763 | { | 
 | 764 | 	unsigned long flags; | 
 | 765 | 	struct kmemleak_object *object; | 
 | 766 | 	struct kmemleak_scan_area *area; | 
 | 767 |  | 
 | 768 | 	object = find_and_get_object(ptr, 1); | 
 | 769 | 	if (!object) { | 
 | 770 | 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", | 
 | 771 | 			      ptr); | 
 | 772 | 		return; | 
 | 773 | 	} | 
 | 774 |  | 
 | 775 | 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); | 
 | 776 | 	if (!area) { | 
 | 777 | 		pr_warn("Cannot allocate a scan area\n"); | 
 | 778 | 		goto out; | 
 | 779 | 	} | 
 | 780 |  | 
 | 781 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 782 | 	if (size == SIZE_MAX) { | 
 | 783 | 		size = object->pointer + object->size - ptr; | 
 | 784 | 	} else if (ptr + size > object->pointer + object->size) { | 
 | 785 | 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); | 
 | 786 | 		dump_object_info(object); | 
 | 787 | 		kmem_cache_free(scan_area_cache, area); | 
 | 788 | 		goto out_unlock; | 
 | 789 | 	} | 
 | 790 |  | 
 | 791 | 	INIT_HLIST_NODE(&area->node); | 
 | 792 | 	area->start = ptr; | 
 | 793 | 	area->size = size; | 
 | 794 |  | 
 | 795 | 	hlist_add_head(&area->node, &object->area_list); | 
 | 796 | out_unlock: | 
 | 797 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 798 | out: | 
 | 799 | 	put_object(object); | 
 | 800 | } | 
 | 801 |  | 
 | 802 | /* | 
 | 803 |  * Any surplus references (object already gray) to 'ptr' are passed to | 
 | 804 |  * 'excess_ref'. This is used in the vmalloc() case where a pointer to | 
 | 805 |  * vm_struct may be used as an alternative reference to the vmalloc'ed object | 
 | 806 |  * (see free_thread_stack()). | 
 | 807 |  */ | 
 | 808 | static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) | 
 | 809 | { | 
 | 810 | 	unsigned long flags; | 
 | 811 | 	struct kmemleak_object *object; | 
 | 812 |  | 
 | 813 | 	object = find_and_get_object(ptr, 0); | 
 | 814 | 	if (!object) { | 
 | 815 | 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", | 
 | 816 | 			      ptr); | 
 | 817 | 		return; | 
 | 818 | 	} | 
 | 819 |  | 
 | 820 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 821 | 	object->excess_ref = excess_ref; | 
 | 822 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 823 | 	put_object(object); | 
 | 824 | } | 
 | 825 |  | 
 | 826 | /* | 
 | 827 |  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give | 
 | 828 |  * pointer. Such object will not be scanned by kmemleak but references to it | 
 | 829 |  * are searched. | 
 | 830 |  */ | 
 | 831 | static void object_no_scan(unsigned long ptr) | 
 | 832 | { | 
 | 833 | 	unsigned long flags; | 
 | 834 | 	struct kmemleak_object *object; | 
 | 835 |  | 
 | 836 | 	object = find_and_get_object(ptr, 0); | 
 | 837 | 	if (!object) { | 
 | 838 | 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); | 
 | 839 | 		return; | 
 | 840 | 	} | 
 | 841 |  | 
 | 842 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 843 | 	object->flags |= OBJECT_NO_SCAN; | 
 | 844 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 845 | 	put_object(object); | 
 | 846 | } | 
 | 847 |  | 
 | 848 | /* | 
 | 849 |  * Log an early kmemleak_* call to the early_log buffer. These calls will be | 
 | 850 |  * processed later once kmemleak is fully initialized. | 
 | 851 |  */ | 
 | 852 | static void __init log_early(int op_type, const void *ptr, size_t size, | 
 | 853 | 			     int min_count) | 
 | 854 | { | 
 | 855 | 	unsigned long flags; | 
 | 856 | 	struct early_log *log; | 
 | 857 |  | 
 | 858 | 	if (kmemleak_error) { | 
 | 859 | 		/* kmemleak stopped recording, just count the requests */ | 
 | 860 | 		crt_early_log++; | 
 | 861 | 		return; | 
 | 862 | 	} | 
 | 863 |  | 
 | 864 | 	if (crt_early_log >= ARRAY_SIZE(early_log)) { | 
 | 865 | 		crt_early_log++; | 
 | 866 | 		kmemleak_disable(); | 
 | 867 | 		return; | 
 | 868 | 	} | 
 | 869 |  | 
 | 870 | 	/* | 
 | 871 | 	 * There is no need for locking since the kernel is still in UP mode | 
 | 872 | 	 * at this stage. Disabling the IRQs is enough. | 
 | 873 | 	 */ | 
 | 874 | 	local_irq_save(flags); | 
 | 875 | 	log = &early_log[crt_early_log]; | 
 | 876 | 	log->op_type = op_type; | 
 | 877 | 	log->ptr = ptr; | 
 | 878 | 	log->size = size; | 
 | 879 | 	log->min_count = min_count; | 
 | 880 | 	log->trace_len = __save_stack_trace(log->trace); | 
 | 881 | 	crt_early_log++; | 
 | 882 | 	local_irq_restore(flags); | 
 | 883 | } | 
 | 884 |  | 
 | 885 | /* | 
 | 886 |  * Log an early allocated block and populate the stack trace. | 
 | 887 |  */ | 
 | 888 | static void early_alloc(struct early_log *log) | 
 | 889 | { | 
 | 890 | 	struct kmemleak_object *object; | 
 | 891 | 	unsigned long flags; | 
 | 892 | 	int i; | 
 | 893 |  | 
 | 894 | 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) | 
 | 895 | 		return; | 
 | 896 |  | 
 | 897 | 	/* | 
 | 898 | 	 * RCU locking needed to ensure object is not freed via put_object(). | 
 | 899 | 	 */ | 
 | 900 | 	rcu_read_lock(); | 
 | 901 | 	object = create_object((unsigned long)log->ptr, log->size, | 
 | 902 | 			       log->min_count, GFP_ATOMIC); | 
 | 903 | 	if (!object) | 
 | 904 | 		goto out; | 
 | 905 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 906 | 	for (i = 0; i < log->trace_len; i++) | 
 | 907 | 		object->trace[i] = log->trace[i]; | 
 | 908 | 	object->trace_len = log->trace_len; | 
 | 909 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 910 | out: | 
 | 911 | 	rcu_read_unlock(); | 
 | 912 | } | 
 | 913 |  | 
 | 914 | /* | 
 | 915 |  * Log an early allocated block and populate the stack trace. | 
 | 916 |  */ | 
 | 917 | static void early_alloc_percpu(struct early_log *log) | 
 | 918 | { | 
 | 919 | 	unsigned int cpu; | 
 | 920 | 	const void __percpu *ptr = log->ptr; | 
 | 921 |  | 
 | 922 | 	for_each_possible_cpu(cpu) { | 
 | 923 | 		log->ptr = per_cpu_ptr(ptr, cpu); | 
 | 924 | 		early_alloc(log); | 
 | 925 | 	} | 
 | 926 | } | 
 | 927 |  | 
 | 928 | /** | 
 | 929 |  * kmemleak_alloc - register a newly allocated object | 
 | 930 |  * @ptr:	pointer to beginning of the object | 
 | 931 |  * @size:	size of the object | 
 | 932 |  * @min_count:	minimum number of references to this object. If during memory | 
 | 933 |  *		scanning a number of references less than @min_count is found, | 
 | 934 |  *		the object is reported as a memory leak. If @min_count is 0, | 
 | 935 |  *		the object is never reported as a leak. If @min_count is -1, | 
 | 936 |  *		the object is ignored (not scanned and not reported as a leak) | 
 | 937 |  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations | 
 | 938 |  * | 
 | 939 |  * This function is called from the kernel allocators when a new object | 
 | 940 |  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). | 
 | 941 |  */ | 
 | 942 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, | 
 | 943 | 			  gfp_t gfp) | 
 | 944 | { | 
 | 945 | 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); | 
 | 946 |  | 
 | 947 | 	if (kmemleak_enabled && ptr && !IS_ERR(ptr)) | 
 | 948 | 		create_object((unsigned long)ptr, size, min_count, gfp); | 
 | 949 | 	else if (kmemleak_early_log) | 
 | 950 | 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count); | 
 | 951 | } | 
 | 952 | EXPORT_SYMBOL_GPL(kmemleak_alloc); | 
 | 953 |  | 
 | 954 | /** | 
 | 955 |  * kmemleak_alloc_percpu - register a newly allocated __percpu object | 
 | 956 |  * @ptr:	__percpu pointer to beginning of the object | 
 | 957 |  * @size:	size of the object | 
 | 958 |  * @gfp:	flags used for kmemleak internal memory allocations | 
 | 959 |  * | 
 | 960 |  * This function is called from the kernel percpu allocator when a new object | 
 | 961 |  * (memory block) is allocated (alloc_percpu). | 
 | 962 |  */ | 
 | 963 | void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, | 
 | 964 | 				 gfp_t gfp) | 
 | 965 | { | 
 | 966 | 	unsigned int cpu; | 
 | 967 |  | 
 | 968 | 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); | 
 | 969 |  | 
 | 970 | 	/* | 
 | 971 | 	 * Percpu allocations are only scanned and not reported as leaks | 
 | 972 | 	 * (min_count is set to 0). | 
 | 973 | 	 */ | 
 | 974 | 	if (kmemleak_enabled && ptr && !IS_ERR(ptr)) | 
 | 975 | 		for_each_possible_cpu(cpu) | 
 | 976 | 			create_object((unsigned long)per_cpu_ptr(ptr, cpu), | 
 | 977 | 				      size, 0, gfp); | 
 | 978 | 	else if (kmemleak_early_log) | 
 | 979 | 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); | 
 | 980 | } | 
 | 981 | EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); | 
 | 982 |  | 
 | 983 | /** | 
 | 984 |  * kmemleak_vmalloc - register a newly vmalloc'ed object | 
 | 985 |  * @area:	pointer to vm_struct | 
 | 986 |  * @size:	size of the object | 
 | 987 |  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations | 
 | 988 |  * | 
 | 989 |  * This function is called from the vmalloc() kernel allocator when a new | 
 | 990 |  * object (memory block) is allocated. | 
 | 991 |  */ | 
 | 992 | void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) | 
 | 993 | { | 
 | 994 | 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size); | 
 | 995 |  | 
 | 996 | 	/* | 
 | 997 | 	 * A min_count = 2 is needed because vm_struct contains a reference to | 
 | 998 | 	 * the virtual address of the vmalloc'ed block. | 
 | 999 | 	 */ | 
 | 1000 | 	if (kmemleak_enabled) { | 
 | 1001 | 		create_object((unsigned long)area->addr, size, 2, gfp); | 
 | 1002 | 		object_set_excess_ref((unsigned long)area, | 
 | 1003 | 				      (unsigned long)area->addr); | 
 | 1004 | 	} else if (kmemleak_early_log) { | 
 | 1005 | 		log_early(KMEMLEAK_ALLOC, area->addr, size, 2); | 
 | 1006 | 		/* reusing early_log.size for storing area->addr */ | 
 | 1007 | 		log_early(KMEMLEAK_SET_EXCESS_REF, | 
 | 1008 | 			  area, (unsigned long)area->addr, 0); | 
 | 1009 | 	} | 
 | 1010 | } | 
 | 1011 | EXPORT_SYMBOL_GPL(kmemleak_vmalloc); | 
 | 1012 |  | 
 | 1013 | /** | 
 | 1014 |  * kmemleak_free - unregister a previously registered object | 
 | 1015 |  * @ptr:	pointer to beginning of the object | 
 | 1016 |  * | 
 | 1017 |  * This function is called from the kernel allocators when an object (memory | 
 | 1018 |  * block) is freed (kmem_cache_free, kfree, vfree etc.). | 
 | 1019 |  */ | 
 | 1020 | void __ref kmemleak_free(const void *ptr) | 
 | 1021 | { | 
 | 1022 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1023 |  | 
 | 1024 | 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) | 
 | 1025 | 		delete_object_full((unsigned long)ptr); | 
 | 1026 | 	else if (kmemleak_early_log) | 
 | 1027 | 		log_early(KMEMLEAK_FREE, ptr, 0, 0); | 
 | 1028 | } | 
 | 1029 | EXPORT_SYMBOL_GPL(kmemleak_free); | 
 | 1030 |  | 
 | 1031 | /** | 
 | 1032 |  * kmemleak_free_part - partially unregister a previously registered object | 
 | 1033 |  * @ptr:	pointer to the beginning or inside the object. This also | 
 | 1034 |  *		represents the start of the range to be freed | 
 | 1035 |  * @size:	size to be unregistered | 
 | 1036 |  * | 
 | 1037 |  * This function is called when only a part of a memory block is freed | 
 | 1038 |  * (usually from the bootmem allocator). | 
 | 1039 |  */ | 
 | 1040 | void __ref kmemleak_free_part(const void *ptr, size_t size) | 
 | 1041 | { | 
 | 1042 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1043 |  | 
 | 1044 | 	if (kmemleak_enabled && ptr && !IS_ERR(ptr)) | 
 | 1045 | 		delete_object_part((unsigned long)ptr, size); | 
 | 1046 | 	else if (kmemleak_early_log) | 
 | 1047 | 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0); | 
 | 1048 | } | 
 | 1049 | EXPORT_SYMBOL_GPL(kmemleak_free_part); | 
 | 1050 |  | 
 | 1051 | /** | 
 | 1052 |  * kmemleak_free_percpu - unregister a previously registered __percpu object | 
 | 1053 |  * @ptr:	__percpu pointer to beginning of the object | 
 | 1054 |  * | 
 | 1055 |  * This function is called from the kernel percpu allocator when an object | 
 | 1056 |  * (memory block) is freed (free_percpu). | 
 | 1057 |  */ | 
 | 1058 | void __ref kmemleak_free_percpu(const void __percpu *ptr) | 
 | 1059 | { | 
 | 1060 | 	unsigned int cpu; | 
 | 1061 |  | 
 | 1062 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1063 |  | 
 | 1064 | 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) | 
 | 1065 | 		for_each_possible_cpu(cpu) | 
 | 1066 | 			delete_object_full((unsigned long)per_cpu_ptr(ptr, | 
 | 1067 | 								      cpu)); | 
 | 1068 | 	else if (kmemleak_early_log) | 
 | 1069 | 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); | 
 | 1070 | } | 
 | 1071 | EXPORT_SYMBOL_GPL(kmemleak_free_percpu); | 
 | 1072 |  | 
 | 1073 | /** | 
 | 1074 |  * kmemleak_update_trace - update object allocation stack trace | 
 | 1075 |  * @ptr:	pointer to beginning of the object | 
 | 1076 |  * | 
 | 1077 |  * Override the object allocation stack trace for cases where the actual | 
 | 1078 |  * allocation place is not always useful. | 
 | 1079 |  */ | 
 | 1080 | void __ref kmemleak_update_trace(const void *ptr) | 
 | 1081 | { | 
 | 1082 | 	struct kmemleak_object *object; | 
 | 1083 | 	unsigned long flags; | 
 | 1084 |  | 
 | 1085 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1086 |  | 
 | 1087 | 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) | 
 | 1088 | 		return; | 
 | 1089 |  | 
 | 1090 | 	object = find_and_get_object((unsigned long)ptr, 1); | 
 | 1091 | 	if (!object) { | 
 | 1092 | #ifdef DEBUG | 
 | 1093 | 		kmemleak_warn("Updating stack trace for unknown object at %p\n", | 
 | 1094 | 			      ptr); | 
 | 1095 | #endif | 
 | 1096 | 		return; | 
 | 1097 | 	} | 
 | 1098 |  | 
 | 1099 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 1100 | 	object->trace_len = __save_stack_trace(object->trace); | 
 | 1101 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 1102 |  | 
 | 1103 | 	put_object(object); | 
 | 1104 | } | 
 | 1105 | EXPORT_SYMBOL(kmemleak_update_trace); | 
 | 1106 |  | 
 | 1107 | /** | 
 | 1108 |  * kmemleak_not_leak - mark an allocated object as false positive | 
 | 1109 |  * @ptr:	pointer to beginning of the object | 
 | 1110 |  * | 
 | 1111 |  * Calling this function on an object will cause the memory block to no longer | 
 | 1112 |  * be reported as leak and always be scanned. | 
 | 1113 |  */ | 
 | 1114 | void __ref kmemleak_not_leak(const void *ptr) | 
 | 1115 | { | 
 | 1116 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1117 |  | 
 | 1118 | 	if (kmemleak_enabled && ptr && !IS_ERR(ptr)) | 
 | 1119 | 		make_gray_object((unsigned long)ptr); | 
 | 1120 | 	else if (kmemleak_early_log) | 
 | 1121 | 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); | 
 | 1122 | } | 
 | 1123 | EXPORT_SYMBOL(kmemleak_not_leak); | 
 | 1124 |  | 
 | 1125 | /** | 
 | 1126 |  * kmemleak_ignore - ignore an allocated object | 
 | 1127 |  * @ptr:	pointer to beginning of the object | 
 | 1128 |  * | 
 | 1129 |  * Calling this function on an object will cause the memory block to be | 
 | 1130 |  * ignored (not scanned and not reported as a leak). This is usually done when | 
 | 1131 |  * it is known that the corresponding block is not a leak and does not contain | 
 | 1132 |  * any references to other allocated memory blocks. | 
 | 1133 |  */ | 
 | 1134 | void __ref kmemleak_ignore(const void *ptr) | 
 | 1135 | { | 
 | 1136 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1137 |  | 
 | 1138 | 	if (kmemleak_enabled && ptr && !IS_ERR(ptr)) | 
 | 1139 | 		make_black_object((unsigned long)ptr); | 
 | 1140 | 	else if (kmemleak_early_log) | 
 | 1141 | 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0); | 
 | 1142 | } | 
 | 1143 | EXPORT_SYMBOL(kmemleak_ignore); | 
 | 1144 |  | 
 | 1145 | /** | 
 | 1146 |  * kmemleak_scan_area - limit the range to be scanned in an allocated object | 
 | 1147 |  * @ptr:	pointer to beginning or inside the object. This also | 
 | 1148 |  *		represents the start of the scan area | 
 | 1149 |  * @size:	size of the scan area | 
 | 1150 |  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations | 
 | 1151 |  * | 
 | 1152 |  * This function is used when it is known that only certain parts of an object | 
 | 1153 |  * contain references to other objects. Kmemleak will only scan these areas | 
 | 1154 |  * reducing the number false negatives. | 
 | 1155 |  */ | 
 | 1156 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) | 
 | 1157 | { | 
 | 1158 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1159 |  | 
 | 1160 | 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) | 
 | 1161 | 		add_scan_area((unsigned long)ptr, size, gfp); | 
 | 1162 | 	else if (kmemleak_early_log) | 
 | 1163 | 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); | 
 | 1164 | } | 
 | 1165 | EXPORT_SYMBOL(kmemleak_scan_area); | 
 | 1166 |  | 
 | 1167 | /** | 
 | 1168 |  * kmemleak_no_scan - do not scan an allocated object | 
 | 1169 |  * @ptr:	pointer to beginning of the object | 
 | 1170 |  * | 
 | 1171 |  * This function notifies kmemleak not to scan the given memory block. Useful | 
 | 1172 |  * in situations where it is known that the given object does not contain any | 
 | 1173 |  * references to other objects. Kmemleak will not scan such objects reducing | 
 | 1174 |  * the number of false negatives. | 
 | 1175 |  */ | 
 | 1176 | void __ref kmemleak_no_scan(const void *ptr) | 
 | 1177 | { | 
 | 1178 | 	pr_debug("%s(0x%p)\n", __func__, ptr); | 
 | 1179 |  | 
 | 1180 | 	if (kmemleak_enabled && ptr && !IS_ERR(ptr)) | 
 | 1181 | 		object_no_scan((unsigned long)ptr); | 
 | 1182 | 	else if (kmemleak_early_log) | 
 | 1183 | 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); | 
 | 1184 | } | 
 | 1185 | EXPORT_SYMBOL(kmemleak_no_scan); | 
 | 1186 |  | 
 | 1187 | /** | 
 | 1188 |  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical | 
 | 1189 |  *			 address argument | 
 | 1190 |  * @phys:	physical address of the object | 
 | 1191 |  * @size:	size of the object | 
 | 1192 |  * @min_count:	minimum number of references to this object. | 
 | 1193 |  *              See kmemleak_alloc() | 
 | 1194 |  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations | 
 | 1195 |  */ | 
 | 1196 | void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, | 
 | 1197 | 			       gfp_t gfp) | 
 | 1198 | { | 
 | 1199 | 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | 
 | 1200 | 		kmemleak_alloc(__va(phys), size, min_count, gfp); | 
 | 1201 | } | 
 | 1202 | EXPORT_SYMBOL(kmemleak_alloc_phys); | 
 | 1203 |  | 
 | 1204 | /** | 
 | 1205 |  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a | 
 | 1206 |  *			     physical address argument | 
 | 1207 |  * @phys:	physical address if the beginning or inside an object. This | 
 | 1208 |  *		also represents the start of the range to be freed | 
 | 1209 |  * @size:	size to be unregistered | 
 | 1210 |  */ | 
 | 1211 | void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) | 
 | 1212 | { | 
 | 1213 | 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | 
 | 1214 | 		kmemleak_free_part(__va(phys), size); | 
 | 1215 | } | 
 | 1216 | EXPORT_SYMBOL(kmemleak_free_part_phys); | 
 | 1217 |  | 
 | 1218 | /** | 
 | 1219 |  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical | 
 | 1220 |  *			    address argument | 
 | 1221 |  * @phys:	physical address of the object | 
 | 1222 |  */ | 
 | 1223 | void __ref kmemleak_not_leak_phys(phys_addr_t phys) | 
 | 1224 | { | 
 | 1225 | 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | 
 | 1226 | 		kmemleak_not_leak(__va(phys)); | 
 | 1227 | } | 
 | 1228 | EXPORT_SYMBOL(kmemleak_not_leak_phys); | 
 | 1229 |  | 
 | 1230 | /** | 
 | 1231 |  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical | 
 | 1232 |  *			  address argument | 
 | 1233 |  * @phys:	physical address of the object | 
 | 1234 |  */ | 
 | 1235 | void __ref kmemleak_ignore_phys(phys_addr_t phys) | 
 | 1236 | { | 
 | 1237 | 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | 
 | 1238 | 		kmemleak_ignore(__va(phys)); | 
 | 1239 | } | 
 | 1240 | EXPORT_SYMBOL(kmemleak_ignore_phys); | 
 | 1241 |  | 
 | 1242 | /* | 
 | 1243 |  * Update an object's checksum and return true if it was modified. | 
 | 1244 |  */ | 
 | 1245 | static bool update_checksum(struct kmemleak_object *object) | 
 | 1246 | { | 
 | 1247 | 	u32 old_csum = object->checksum; | 
 | 1248 |  | 
 | 1249 | 	kasan_disable_current(); | 
 | 1250 | 	object->checksum = crc32(0, (void *)object->pointer, object->size); | 
 | 1251 | 	kasan_enable_current(); | 
 | 1252 |  | 
 | 1253 | 	return object->checksum != old_csum; | 
 | 1254 | } | 
 | 1255 |  | 
 | 1256 | /* | 
 | 1257 |  * Update an object's references. object->lock must be held by the caller. | 
 | 1258 |  */ | 
 | 1259 | static void update_refs(struct kmemleak_object *object) | 
 | 1260 | { | 
 | 1261 | 	if (!color_white(object)) { | 
 | 1262 | 		/* non-orphan, ignored or new */ | 
 | 1263 | 		return; | 
 | 1264 | 	} | 
 | 1265 |  | 
 | 1266 | 	/* | 
 | 1267 | 	 * Increase the object's reference count (number of pointers to the | 
 | 1268 | 	 * memory block). If this count reaches the required minimum, the | 
 | 1269 | 	 * object's color will become gray and it will be added to the | 
 | 1270 | 	 * gray_list. | 
 | 1271 | 	 */ | 
 | 1272 | 	object->count++; | 
 | 1273 | 	if (color_gray(object)) { | 
 | 1274 | 		/* put_object() called when removing from gray_list */ | 
 | 1275 | 		WARN_ON(!get_object(object)); | 
 | 1276 | 		list_add_tail(&object->gray_list, &gray_list); | 
 | 1277 | 	} | 
 | 1278 | } | 
 | 1279 |  | 
 | 1280 | /* | 
 | 1281 |  * Memory scanning is a long process and it needs to be interruptable. This | 
 | 1282 |  * function checks whether such interrupt condition occurred. | 
 | 1283 |  */ | 
 | 1284 | static int scan_should_stop(void) | 
 | 1285 | { | 
 | 1286 | 	if (!kmemleak_enabled) | 
 | 1287 | 		return 1; | 
 | 1288 |  | 
 | 1289 | 	/* | 
 | 1290 | 	 * This function may be called from either process or kthread context, | 
 | 1291 | 	 * hence the need to check for both stop conditions. | 
 | 1292 | 	 */ | 
 | 1293 | 	if (current->mm) | 
 | 1294 | 		return signal_pending(current); | 
 | 1295 | 	else | 
 | 1296 | 		return kthread_should_stop(); | 
 | 1297 |  | 
 | 1298 | 	return 0; | 
 | 1299 | } | 
 | 1300 |  | 
 | 1301 | /* | 
 | 1302 |  * Scan a memory block (exclusive range) for valid pointers and add those | 
 | 1303 |  * found to the gray list. | 
 | 1304 |  */ | 
 | 1305 | static void scan_block(void *_start, void *_end, | 
 | 1306 | 		       struct kmemleak_object *scanned) | 
 | 1307 | { | 
 | 1308 | 	unsigned long *ptr; | 
 | 1309 | 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); | 
 | 1310 | 	unsigned long *end = _end - (BYTES_PER_POINTER - 1); | 
 | 1311 | 	unsigned long flags; | 
 | 1312 |  | 
 | 1313 | 	read_lock_irqsave(&kmemleak_lock, flags); | 
 | 1314 | 	for (ptr = start; ptr < end; ptr++) { | 
 | 1315 | 		struct kmemleak_object *object; | 
 | 1316 | 		unsigned long pointer; | 
 | 1317 | 		unsigned long excess_ref; | 
 | 1318 |  | 
 | 1319 | 		if (scan_should_stop()) | 
 | 1320 | 			break; | 
 | 1321 |  | 
 | 1322 | 		kasan_disable_current(); | 
 | 1323 | 		pointer = *ptr; | 
 | 1324 | 		kasan_enable_current(); | 
 | 1325 |  | 
 | 1326 | 		if (pointer < min_addr || pointer >= max_addr) | 
 | 1327 | 			continue; | 
 | 1328 |  | 
 | 1329 | 		/* | 
 | 1330 | 		 * No need for get_object() here since we hold kmemleak_lock. | 
 | 1331 | 		 * object->use_count cannot be dropped to 0 while the object | 
 | 1332 | 		 * is still present in object_tree_root and object_list | 
 | 1333 | 		 * (with updates protected by kmemleak_lock). | 
 | 1334 | 		 */ | 
 | 1335 | 		object = lookup_object(pointer, 1); | 
 | 1336 | 		if (!object) | 
 | 1337 | 			continue; | 
 | 1338 | 		if (object == scanned) | 
 | 1339 | 			/* self referenced, ignore */ | 
 | 1340 | 			continue; | 
 | 1341 |  | 
 | 1342 | 		/* | 
 | 1343 | 		 * Avoid the lockdep recursive warning on object->lock being | 
 | 1344 | 		 * previously acquired in scan_object(). These locks are | 
 | 1345 | 		 * enclosed by scan_mutex. | 
 | 1346 | 		 */ | 
 | 1347 | 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); | 
 | 1348 | 		/* only pass surplus references (object already gray) */ | 
 | 1349 | 		if (color_gray(object)) { | 
 | 1350 | 			excess_ref = object->excess_ref; | 
 | 1351 | 			/* no need for update_refs() if object already gray */ | 
 | 1352 | 		} else { | 
 | 1353 | 			excess_ref = 0; | 
 | 1354 | 			update_refs(object); | 
 | 1355 | 		} | 
 | 1356 | 		spin_unlock(&object->lock); | 
 | 1357 |  | 
 | 1358 | 		if (excess_ref) { | 
 | 1359 | 			object = lookup_object(excess_ref, 0); | 
 | 1360 | 			if (!object) | 
 | 1361 | 				continue; | 
 | 1362 | 			if (object == scanned) | 
 | 1363 | 				/* circular reference, ignore */ | 
 | 1364 | 				continue; | 
 | 1365 | 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); | 
 | 1366 | 			update_refs(object); | 
 | 1367 | 			spin_unlock(&object->lock); | 
 | 1368 | 		} | 
 | 1369 | 	} | 
 | 1370 | 	read_unlock_irqrestore(&kmemleak_lock, flags); | 
 | 1371 | } | 
 | 1372 |  | 
 | 1373 | /* | 
 | 1374 |  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. | 
 | 1375 |  */ | 
 | 1376 | #ifdef CONFIG_SMP | 
 | 1377 | static void scan_large_block(void *start, void *end) | 
 | 1378 | { | 
 | 1379 | 	void *next; | 
 | 1380 |  | 
 | 1381 | 	while (start < end) { | 
 | 1382 | 		next = min(start + MAX_SCAN_SIZE, end); | 
 | 1383 | 		scan_block(start, next, NULL); | 
 | 1384 | 		start = next; | 
 | 1385 | 		cond_resched(); | 
 | 1386 | 	} | 
 | 1387 | } | 
 | 1388 | #endif | 
 | 1389 |  | 
 | 1390 | /* | 
 | 1391 |  * Scan a memory block corresponding to a kmemleak_object. A condition is | 
 | 1392 |  * that object->use_count >= 1. | 
 | 1393 |  */ | 
 | 1394 | static void scan_object(struct kmemleak_object *object) | 
 | 1395 | { | 
 | 1396 | 	struct kmemleak_scan_area *area; | 
 | 1397 | 	unsigned long flags; | 
 | 1398 |  | 
 | 1399 | 	/* | 
 | 1400 | 	 * Once the object->lock is acquired, the corresponding memory block | 
 | 1401 | 	 * cannot be freed (the same lock is acquired in delete_object). | 
 | 1402 | 	 */ | 
 | 1403 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 1404 | 	if (object->flags & OBJECT_NO_SCAN) | 
 | 1405 | 		goto out; | 
 | 1406 | 	if (!(object->flags & OBJECT_ALLOCATED)) | 
 | 1407 | 		/* already freed object */ | 
 | 1408 | 		goto out; | 
 | 1409 | 	if (hlist_empty(&object->area_list)) { | 
 | 1410 | 		void *start = (void *)object->pointer; | 
 | 1411 | 		void *end = (void *)(object->pointer + object->size); | 
 | 1412 | 		void *next; | 
 | 1413 |  | 
 | 1414 | 		do { | 
 | 1415 | 			next = min(start + MAX_SCAN_SIZE, end); | 
 | 1416 | 			scan_block(start, next, object); | 
 | 1417 |  | 
 | 1418 | 			start = next; | 
 | 1419 | 			if (start >= end) | 
 | 1420 | 				break; | 
 | 1421 |  | 
 | 1422 | 			spin_unlock_irqrestore(&object->lock, flags); | 
 | 1423 | 			cond_resched(); | 
 | 1424 | 			spin_lock_irqsave(&object->lock, flags); | 
 | 1425 | 		} while (object->flags & OBJECT_ALLOCATED); | 
 | 1426 | 	} else | 
 | 1427 | 		hlist_for_each_entry(area, &object->area_list, node) | 
 | 1428 | 			scan_block((void *)area->start, | 
 | 1429 | 				   (void *)(area->start + area->size), | 
 | 1430 | 				   object); | 
 | 1431 | out: | 
 | 1432 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 1433 | } | 
 | 1434 |  | 
 | 1435 | /* | 
 | 1436 |  * Scan the objects already referenced (gray objects). More objects will be | 
 | 1437 |  * referenced and, if there are no memory leaks, all the objects are scanned. | 
 | 1438 |  */ | 
 | 1439 | static void scan_gray_list(void) | 
 | 1440 | { | 
 | 1441 | 	struct kmemleak_object *object, *tmp; | 
 | 1442 |  | 
 | 1443 | 	/* | 
 | 1444 | 	 * The list traversal is safe for both tail additions and removals | 
 | 1445 | 	 * from inside the loop. The kmemleak objects cannot be freed from | 
 | 1446 | 	 * outside the loop because their use_count was incremented. | 
 | 1447 | 	 */ | 
 | 1448 | 	object = list_entry(gray_list.next, typeof(*object), gray_list); | 
 | 1449 | 	while (&object->gray_list != &gray_list) { | 
 | 1450 | 		cond_resched(); | 
 | 1451 |  | 
 | 1452 | 		/* may add new objects to the list */ | 
 | 1453 | 		if (!scan_should_stop()) | 
 | 1454 | 			scan_object(object); | 
 | 1455 |  | 
 | 1456 | 		tmp = list_entry(object->gray_list.next, typeof(*object), | 
 | 1457 | 				 gray_list); | 
 | 1458 |  | 
 | 1459 | 		/* remove the object from the list and release it */ | 
 | 1460 | 		list_del(&object->gray_list); | 
 | 1461 | 		put_object(object); | 
 | 1462 |  | 
 | 1463 | 		object = tmp; | 
 | 1464 | 	} | 
 | 1465 | 	WARN_ON(!list_empty(&gray_list)); | 
 | 1466 | } | 
 | 1467 |  | 
 | 1468 | /* | 
 | 1469 |  * Scan data sections and all the referenced memory blocks allocated via the | 
 | 1470 |  * kernel's standard allocators. This function must be called with the | 
 | 1471 |  * scan_mutex held. | 
 | 1472 |  */ | 
 | 1473 | static void kmemleak_scan(void) | 
 | 1474 | { | 
 | 1475 | 	unsigned long flags; | 
 | 1476 | 	struct kmemleak_object *object; | 
 | 1477 | 	int i; | 
 | 1478 | 	int new_leaks = 0; | 
 | 1479 |  | 
 | 1480 | 	jiffies_last_scan = jiffies; | 
 | 1481 |  | 
 | 1482 | 	/* prepare the kmemleak_object's */ | 
 | 1483 | 	rcu_read_lock(); | 
 | 1484 | 	list_for_each_entry_rcu(object, &object_list, object_list) { | 
 | 1485 | 		spin_lock_irqsave(&object->lock, flags); | 
 | 1486 | #ifdef DEBUG | 
 | 1487 | 		/* | 
 | 1488 | 		 * With a few exceptions there should be a maximum of | 
 | 1489 | 		 * 1 reference to any object at this point. | 
 | 1490 | 		 */ | 
 | 1491 | 		if (atomic_read(&object->use_count) > 1) { | 
 | 1492 | 			pr_debug("object->use_count = %d\n", | 
 | 1493 | 				 atomic_read(&object->use_count)); | 
 | 1494 | 			dump_object_info(object); | 
 | 1495 | 		} | 
 | 1496 | #endif | 
 | 1497 | 		/* reset the reference count (whiten the object) */ | 
 | 1498 | 		object->count = 0; | 
 | 1499 | 		if (color_gray(object) && get_object(object)) | 
 | 1500 | 			list_add_tail(&object->gray_list, &gray_list); | 
 | 1501 |  | 
 | 1502 | 		spin_unlock_irqrestore(&object->lock, flags); | 
 | 1503 | 	} | 
 | 1504 | 	rcu_read_unlock(); | 
 | 1505 |  | 
 | 1506 | #ifdef CONFIG_SMP | 
 | 1507 | 	/* per-cpu sections scanning */ | 
 | 1508 | 	for_each_possible_cpu(i) | 
 | 1509 | 		scan_large_block(__per_cpu_start + per_cpu_offset(i), | 
 | 1510 | 				 __per_cpu_end + per_cpu_offset(i)); | 
 | 1511 | #endif | 
 | 1512 |  | 
 | 1513 | 	/* | 
 | 1514 | 	 * Struct page scanning for each node. | 
 | 1515 | 	 */ | 
 | 1516 | 	get_online_mems(); | 
 | 1517 | 	for_each_online_node(i) { | 
 | 1518 | 		unsigned long start_pfn = node_start_pfn(i); | 
 | 1519 | 		unsigned long end_pfn = node_end_pfn(i); | 
 | 1520 | 		unsigned long pfn; | 
 | 1521 |  | 
 | 1522 | 		for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
 | 1523 | 			struct page *page; | 
 | 1524 |  | 
 | 1525 | 			if (!pfn_valid(pfn)) | 
 | 1526 | 				continue; | 
 | 1527 | 			page = pfn_to_page(pfn); | 
 | 1528 | 			/* only scan if page is in use */ | 
 | 1529 | 			if (page_count(page) == 0) | 
 | 1530 | 				continue; | 
 | 1531 | 			scan_block(page, page + 1, NULL); | 
 | 1532 | 			if (!(pfn & 63)) | 
 | 1533 | 				cond_resched(); | 
 | 1534 | 		} | 
 | 1535 | 	} | 
 | 1536 | 	put_online_mems(); | 
 | 1537 |  | 
 | 1538 | 	/* | 
 | 1539 | 	 * Scanning the task stacks (may introduce false negatives). | 
 | 1540 | 	 */ | 
 | 1541 | 	if (kmemleak_stack_scan) { | 
 | 1542 | 		struct task_struct *p, *g; | 
 | 1543 |  | 
 | 1544 | 		read_lock(&tasklist_lock); | 
 | 1545 | 		do_each_thread(g, p) { | 
 | 1546 | 			void *stack = try_get_task_stack(p); | 
 | 1547 | 			if (stack) { | 
 | 1548 | 				scan_block(stack, stack + THREAD_SIZE, NULL); | 
 | 1549 | 				put_task_stack(p); | 
 | 1550 | 			} | 
 | 1551 | 		} while_each_thread(g, p); | 
 | 1552 | 		read_unlock(&tasklist_lock); | 
 | 1553 | 	} | 
 | 1554 |  | 
 | 1555 | 	/* | 
 | 1556 | 	 * Scan the objects already referenced from the sections scanned | 
 | 1557 | 	 * above. | 
 | 1558 | 	 */ | 
 | 1559 | 	scan_gray_list(); | 
 | 1560 |  | 
 | 1561 | 	/* | 
 | 1562 | 	 * Check for new or unreferenced objects modified since the previous | 
 | 1563 | 	 * scan and color them gray until the next scan. | 
 | 1564 | 	 */ | 
 | 1565 | 	rcu_read_lock(); | 
 | 1566 | 	list_for_each_entry_rcu(object, &object_list, object_list) { | 
 | 1567 | 		spin_lock_irqsave(&object->lock, flags); | 
 | 1568 | 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED) | 
 | 1569 | 		    && update_checksum(object) && get_object(object)) { | 
 | 1570 | 			/* color it gray temporarily */ | 
 | 1571 | 			object->count = object->min_count; | 
 | 1572 | 			list_add_tail(&object->gray_list, &gray_list); | 
 | 1573 | 		} | 
 | 1574 | 		spin_unlock_irqrestore(&object->lock, flags); | 
 | 1575 | 	} | 
 | 1576 | 	rcu_read_unlock(); | 
 | 1577 |  | 
 | 1578 | 	/* | 
 | 1579 | 	 * Re-scan the gray list for modified unreferenced objects. | 
 | 1580 | 	 */ | 
 | 1581 | 	scan_gray_list(); | 
 | 1582 |  | 
 | 1583 | 	/* | 
 | 1584 | 	 * If scanning was stopped do not report any new unreferenced objects. | 
 | 1585 | 	 */ | 
 | 1586 | 	if (scan_should_stop()) | 
 | 1587 | 		return; | 
 | 1588 |  | 
 | 1589 | 	/* | 
 | 1590 | 	 * Scanning result reporting. | 
 | 1591 | 	 */ | 
 | 1592 | 	rcu_read_lock(); | 
 | 1593 | 	list_for_each_entry_rcu(object, &object_list, object_list) { | 
 | 1594 | 		spin_lock_irqsave(&object->lock, flags); | 
 | 1595 | 		if (unreferenced_object(object) && | 
 | 1596 | 		    !(object->flags & OBJECT_REPORTED)) { | 
 | 1597 | 			object->flags |= OBJECT_REPORTED; | 
 | 1598 | 			new_leaks++; | 
 | 1599 | 		} | 
 | 1600 | 		spin_unlock_irqrestore(&object->lock, flags); | 
 | 1601 | 	} | 
 | 1602 | 	rcu_read_unlock(); | 
 | 1603 |  | 
 | 1604 | 	if (new_leaks) { | 
 | 1605 | 		kmemleak_found_leaks = true; | 
 | 1606 |  | 
 | 1607 | 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", | 
 | 1608 | 			new_leaks); | 
 | 1609 | 	} | 
 | 1610 |  | 
 | 1611 | } | 
 | 1612 |  | 
 | 1613 | /* | 
 | 1614 |  * Thread function performing automatic memory scanning. Unreferenced objects | 
 | 1615 |  * at the end of a memory scan are reported but only the first time. | 
 | 1616 |  */ | 
 | 1617 | static int kmemleak_scan_thread(void *arg) | 
 | 1618 | { | 
 | 1619 | 	static int first_run = 1; | 
 | 1620 |  | 
 | 1621 | 	pr_info("Automatic memory scanning thread started\n"); | 
 | 1622 | 	set_user_nice(current, 10); | 
 | 1623 |  | 
 | 1624 | 	/* | 
 | 1625 | 	 * Wait before the first scan to allow the system to fully initialize. | 
 | 1626 | 	 */ | 
 | 1627 | 	if (first_run) { | 
 | 1628 | 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); | 
 | 1629 | 		first_run = 0; | 
 | 1630 | 		while (timeout && !kthread_should_stop()) | 
 | 1631 | 			timeout = schedule_timeout_interruptible(timeout); | 
 | 1632 | 	} | 
 | 1633 |  | 
 | 1634 | 	while (!kthread_should_stop()) { | 
 | 1635 | 		signed long timeout = jiffies_scan_wait; | 
 | 1636 |  | 
 | 1637 | 		mutex_lock(&scan_mutex); | 
 | 1638 | 		kmemleak_scan(); | 
 | 1639 | 		mutex_unlock(&scan_mutex); | 
 | 1640 |  | 
 | 1641 | 		/* wait before the next scan */ | 
 | 1642 | 		while (timeout && !kthread_should_stop()) | 
 | 1643 | 			timeout = schedule_timeout_interruptible(timeout); | 
 | 1644 | 	} | 
 | 1645 |  | 
 | 1646 | 	pr_info("Automatic memory scanning thread ended\n"); | 
 | 1647 |  | 
 | 1648 | 	return 0; | 
 | 1649 | } | 
 | 1650 |  | 
 | 1651 | /* | 
 | 1652 |  * Start the automatic memory scanning thread. This function must be called | 
 | 1653 |  * with the scan_mutex held. | 
 | 1654 |  */ | 
 | 1655 | static void start_scan_thread(void) | 
 | 1656 | { | 
 | 1657 | 	if (scan_thread) | 
 | 1658 | 		return; | 
 | 1659 | 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); | 
 | 1660 | 	if (IS_ERR(scan_thread)) { | 
 | 1661 | 		pr_warn("Failed to create the scan thread\n"); | 
 | 1662 | 		scan_thread = NULL; | 
 | 1663 | 	} | 
 | 1664 | } | 
 | 1665 |  | 
 | 1666 | /* | 
 | 1667 |  * Stop the automatic memory scanning thread. | 
 | 1668 |  */ | 
 | 1669 | static void stop_scan_thread(void) | 
 | 1670 | { | 
 | 1671 | 	if (scan_thread) { | 
 | 1672 | 		kthread_stop(scan_thread); | 
 | 1673 | 		scan_thread = NULL; | 
 | 1674 | 	} | 
 | 1675 | } | 
 | 1676 |  | 
 | 1677 | /* | 
 | 1678 |  * Iterate over the object_list and return the first valid object at or after | 
 | 1679 |  * the required position with its use_count incremented. The function triggers | 
 | 1680 |  * a memory scanning when the pos argument points to the first position. | 
 | 1681 |  */ | 
 | 1682 | static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) | 
 | 1683 | { | 
 | 1684 | 	struct kmemleak_object *object; | 
 | 1685 | 	loff_t n = *pos; | 
 | 1686 | 	int err; | 
 | 1687 |  | 
 | 1688 | 	err = mutex_lock_interruptible(&scan_mutex); | 
 | 1689 | 	if (err < 0) | 
 | 1690 | 		return ERR_PTR(err); | 
 | 1691 |  | 
 | 1692 | 	rcu_read_lock(); | 
 | 1693 | 	list_for_each_entry_rcu(object, &object_list, object_list) { | 
 | 1694 | 		if (n-- > 0) | 
 | 1695 | 			continue; | 
 | 1696 | 		if (get_object(object)) | 
 | 1697 | 			goto out; | 
 | 1698 | 	} | 
 | 1699 | 	object = NULL; | 
 | 1700 | out: | 
 | 1701 | 	return object; | 
 | 1702 | } | 
 | 1703 |  | 
 | 1704 | /* | 
 | 1705 |  * Return the next object in the object_list. The function decrements the | 
 | 1706 |  * use_count of the previous object and increases that of the next one. | 
 | 1707 |  */ | 
 | 1708 | static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
 | 1709 | { | 
 | 1710 | 	struct kmemleak_object *prev_obj = v; | 
 | 1711 | 	struct kmemleak_object *next_obj = NULL; | 
 | 1712 | 	struct kmemleak_object *obj = prev_obj; | 
 | 1713 |  | 
 | 1714 | 	++(*pos); | 
 | 1715 |  | 
 | 1716 | 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) { | 
 | 1717 | 		if (get_object(obj)) { | 
 | 1718 | 			next_obj = obj; | 
 | 1719 | 			break; | 
 | 1720 | 		} | 
 | 1721 | 	} | 
 | 1722 |  | 
 | 1723 | 	put_object(prev_obj); | 
 | 1724 | 	return next_obj; | 
 | 1725 | } | 
 | 1726 |  | 
 | 1727 | /* | 
 | 1728 |  * Decrement the use_count of the last object required, if any. | 
 | 1729 |  */ | 
 | 1730 | static void kmemleak_seq_stop(struct seq_file *seq, void *v) | 
 | 1731 | { | 
 | 1732 | 	if (!IS_ERR(v)) { | 
 | 1733 | 		/* | 
 | 1734 | 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex | 
 | 1735 | 		 * waiting was interrupted, so only release it if !IS_ERR. | 
 | 1736 | 		 */ | 
 | 1737 | 		rcu_read_unlock(); | 
 | 1738 | 		mutex_unlock(&scan_mutex); | 
 | 1739 | 		if (v) | 
 | 1740 | 			put_object(v); | 
 | 1741 | 	} | 
 | 1742 | } | 
 | 1743 |  | 
 | 1744 | /* | 
 | 1745 |  * Print the information for an unreferenced object to the seq file. | 
 | 1746 |  */ | 
 | 1747 | static int kmemleak_seq_show(struct seq_file *seq, void *v) | 
 | 1748 | { | 
 | 1749 | 	struct kmemleak_object *object = v; | 
 | 1750 | 	unsigned long flags; | 
 | 1751 |  | 
 | 1752 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 1753 | 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) | 
 | 1754 | 		print_unreferenced(seq, object); | 
 | 1755 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 1756 | 	return 0; | 
 | 1757 | } | 
 | 1758 |  | 
 | 1759 | static const struct seq_operations kmemleak_seq_ops = { | 
 | 1760 | 	.start = kmemleak_seq_start, | 
 | 1761 | 	.next  = kmemleak_seq_next, | 
 | 1762 | 	.stop  = kmemleak_seq_stop, | 
 | 1763 | 	.show  = kmemleak_seq_show, | 
 | 1764 | }; | 
 | 1765 |  | 
 | 1766 | static int kmemleak_open(struct inode *inode, struct file *file) | 
 | 1767 | { | 
 | 1768 | 	return seq_open(file, &kmemleak_seq_ops); | 
 | 1769 | } | 
 | 1770 |  | 
 | 1771 | static int dump_str_object_info(const char *str) | 
 | 1772 | { | 
 | 1773 | 	unsigned long flags; | 
 | 1774 | 	struct kmemleak_object *object; | 
 | 1775 | 	unsigned long addr; | 
 | 1776 |  | 
 | 1777 | 	if (kstrtoul(str, 0, &addr)) | 
 | 1778 | 		return -EINVAL; | 
 | 1779 | 	object = find_and_get_object(addr, 0); | 
 | 1780 | 	if (!object) { | 
 | 1781 | 		pr_info("Unknown object at 0x%08lx\n", addr); | 
 | 1782 | 		return -EINVAL; | 
 | 1783 | 	} | 
 | 1784 |  | 
 | 1785 | 	spin_lock_irqsave(&object->lock, flags); | 
 | 1786 | 	dump_object_info(object); | 
 | 1787 | 	spin_unlock_irqrestore(&object->lock, flags); | 
 | 1788 |  | 
 | 1789 | 	put_object(object); | 
 | 1790 | 	return 0; | 
 | 1791 | } | 
 | 1792 |  | 
 | 1793 | /* | 
 | 1794 |  * We use grey instead of black to ensure we can do future scans on the same | 
 | 1795 |  * objects. If we did not do future scans these black objects could | 
 | 1796 |  * potentially contain references to newly allocated objects in the future and | 
 | 1797 |  * we'd end up with false positives. | 
 | 1798 |  */ | 
 | 1799 | static void kmemleak_clear(void) | 
 | 1800 | { | 
 | 1801 | 	struct kmemleak_object *object; | 
 | 1802 | 	unsigned long flags; | 
 | 1803 |  | 
 | 1804 | 	rcu_read_lock(); | 
 | 1805 | 	list_for_each_entry_rcu(object, &object_list, object_list) { | 
 | 1806 | 		spin_lock_irqsave(&object->lock, flags); | 
 | 1807 | 		if ((object->flags & OBJECT_REPORTED) && | 
 | 1808 | 		    unreferenced_object(object)) | 
 | 1809 | 			__paint_it(object, KMEMLEAK_GREY); | 
 | 1810 | 		spin_unlock_irqrestore(&object->lock, flags); | 
 | 1811 | 	} | 
 | 1812 | 	rcu_read_unlock(); | 
 | 1813 |  | 
 | 1814 | 	kmemleak_found_leaks = false; | 
 | 1815 | } | 
 | 1816 |  | 
 | 1817 | static void __kmemleak_do_cleanup(void); | 
 | 1818 |  | 
 | 1819 | /* | 
 | 1820 |  * File write operation to configure kmemleak at run-time. The following | 
 | 1821 |  * commands can be written to the /sys/kernel/debug/kmemleak file: | 
 | 1822 |  *   off	- disable kmemleak (irreversible) | 
 | 1823 |  *   stack=on	- enable the task stacks scanning | 
 | 1824 |  *   stack=off	- disable the tasks stacks scanning | 
 | 1825 |  *   scan=on	- start the automatic memory scanning thread | 
 | 1826 |  *   scan=off	- stop the automatic memory scanning thread | 
 | 1827 |  *   scan=...	- set the automatic memory scanning period in seconds (0 to | 
 | 1828 |  *		  disable it) | 
 | 1829 |  *   scan	- trigger a memory scan | 
 | 1830 |  *   clear	- mark all current reported unreferenced kmemleak objects as | 
 | 1831 |  *		  grey to ignore printing them, or free all kmemleak objects | 
 | 1832 |  *		  if kmemleak has been disabled. | 
 | 1833 |  *   dump=...	- dump information about the object found at the given address | 
 | 1834 |  */ | 
 | 1835 | static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, | 
 | 1836 | 			      size_t size, loff_t *ppos) | 
 | 1837 | { | 
 | 1838 | 	char buf[64]; | 
 | 1839 | 	int buf_size; | 
 | 1840 | 	int ret; | 
 | 1841 |  | 
 | 1842 | 	buf_size = min(size, (sizeof(buf) - 1)); | 
 | 1843 | 	if (strncpy_from_user(buf, user_buf, buf_size) < 0) | 
 | 1844 | 		return -EFAULT; | 
 | 1845 | 	buf[buf_size] = 0; | 
 | 1846 |  | 
 | 1847 | 	ret = mutex_lock_interruptible(&scan_mutex); | 
 | 1848 | 	if (ret < 0) | 
 | 1849 | 		return ret; | 
 | 1850 |  | 
 | 1851 | 	if (strncmp(buf, "clear", 5) == 0) { | 
 | 1852 | 		if (kmemleak_enabled) | 
 | 1853 | 			kmemleak_clear(); | 
 | 1854 | 		else | 
 | 1855 | 			__kmemleak_do_cleanup(); | 
 | 1856 | 		goto out; | 
 | 1857 | 	} | 
 | 1858 |  | 
 | 1859 | 	if (!kmemleak_enabled) { | 
 | 1860 | 		ret = -EBUSY; | 
 | 1861 | 		goto out; | 
 | 1862 | 	} | 
 | 1863 |  | 
 | 1864 | 	if (strncmp(buf, "off", 3) == 0) | 
 | 1865 | 		kmemleak_disable(); | 
 | 1866 | 	else if (strncmp(buf, "stack=on", 8) == 0) | 
 | 1867 | 		kmemleak_stack_scan = 1; | 
 | 1868 | 	else if (strncmp(buf, "stack=off", 9) == 0) | 
 | 1869 | 		kmemleak_stack_scan = 0; | 
 | 1870 | 	else if (strncmp(buf, "scan=on", 7) == 0) | 
 | 1871 | 		start_scan_thread(); | 
 | 1872 | 	else if (strncmp(buf, "scan=off", 8) == 0) | 
 | 1873 | 		stop_scan_thread(); | 
 | 1874 | 	else if (strncmp(buf, "scan=", 5) == 0) { | 
 | 1875 | 		unsigned long secs; | 
 | 1876 |  | 
 | 1877 | 		ret = kstrtoul(buf + 5, 0, &secs); | 
 | 1878 | 		if (ret < 0) | 
 | 1879 | 			goto out; | 
 | 1880 | 		stop_scan_thread(); | 
 | 1881 | 		if (secs) { | 
 | 1882 | 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000); | 
 | 1883 | 			start_scan_thread(); | 
 | 1884 | 		} | 
 | 1885 | 	} else if (strncmp(buf, "scan", 4) == 0) | 
 | 1886 | 		kmemleak_scan(); | 
 | 1887 | 	else if (strncmp(buf, "dump=", 5) == 0) | 
 | 1888 | 		ret = dump_str_object_info(buf + 5); | 
 | 1889 | 	else | 
 | 1890 | 		ret = -EINVAL; | 
 | 1891 |  | 
 | 1892 | out: | 
 | 1893 | 	mutex_unlock(&scan_mutex); | 
 | 1894 | 	if (ret < 0) | 
 | 1895 | 		return ret; | 
 | 1896 |  | 
 | 1897 | 	/* ignore the rest of the buffer, only one command at a time */ | 
 | 1898 | 	*ppos += size; | 
 | 1899 | 	return size; | 
 | 1900 | } | 
 | 1901 |  | 
 | 1902 | static const struct file_operations kmemleak_fops = { | 
 | 1903 | 	.owner		= THIS_MODULE, | 
 | 1904 | 	.open		= kmemleak_open, | 
 | 1905 | 	.read		= seq_read, | 
 | 1906 | 	.write		= kmemleak_write, | 
 | 1907 | 	.llseek		= seq_lseek, | 
 | 1908 | 	.release	= seq_release, | 
 | 1909 | }; | 
 | 1910 |  | 
 | 1911 | static void __kmemleak_do_cleanup(void) | 
 | 1912 | { | 
 | 1913 | 	struct kmemleak_object *object; | 
 | 1914 |  | 
 | 1915 | 	rcu_read_lock(); | 
 | 1916 | 	list_for_each_entry_rcu(object, &object_list, object_list) | 
 | 1917 | 		delete_object_full(object->pointer); | 
 | 1918 | 	rcu_read_unlock(); | 
 | 1919 | } | 
 | 1920 |  | 
 | 1921 | /* | 
 | 1922 |  * Stop the memory scanning thread and free the kmemleak internal objects if | 
 | 1923 |  * no previous scan thread (otherwise, kmemleak may still have some useful | 
 | 1924 |  * information on memory leaks). | 
 | 1925 |  */ | 
 | 1926 | static void kmemleak_do_cleanup(struct work_struct *work) | 
 | 1927 | { | 
 | 1928 | 	stop_scan_thread(); | 
 | 1929 |  | 
 | 1930 | 	mutex_lock(&scan_mutex); | 
 | 1931 | 	/* | 
 | 1932 | 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no | 
 | 1933 | 	 * longer track object freeing. Ordering of the scan thread stopping and | 
 | 1934 | 	 * the memory accesses below is guaranteed by the kthread_stop() | 
 | 1935 | 	 * function. | 
 | 1936 | 	 */ | 
 | 1937 | 	kmemleak_free_enabled = 0; | 
 | 1938 | 	mutex_unlock(&scan_mutex); | 
 | 1939 |  | 
 | 1940 | 	if (!kmemleak_found_leaks) | 
 | 1941 | 		__kmemleak_do_cleanup(); | 
 | 1942 | 	else | 
 | 1943 | 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); | 
 | 1944 | } | 
 | 1945 |  | 
 | 1946 | static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); | 
 | 1947 |  | 
 | 1948 | /* | 
 | 1949 |  * Disable kmemleak. No memory allocation/freeing will be traced once this | 
 | 1950 |  * function is called. Disabling kmemleak is an irreversible operation. | 
 | 1951 |  */ | 
 | 1952 | static void kmemleak_disable(void) | 
 | 1953 | { | 
 | 1954 | 	/* atomically check whether it was already invoked */ | 
 | 1955 | 	if (cmpxchg(&kmemleak_error, 0, 1)) | 
 | 1956 | 		return; | 
 | 1957 |  | 
 | 1958 | 	/* stop any memory operation tracing */ | 
 | 1959 | 	kmemleak_enabled = 0; | 
 | 1960 |  | 
 | 1961 | 	/* check whether it is too early for a kernel thread */ | 
 | 1962 | 	if (kmemleak_initialized) | 
 | 1963 | 		schedule_work(&cleanup_work); | 
 | 1964 | 	else | 
 | 1965 | 		kmemleak_free_enabled = 0; | 
 | 1966 |  | 
 | 1967 | 	pr_info("Kernel memory leak detector disabled\n"); | 
 | 1968 | } | 
 | 1969 |  | 
 | 1970 | /* | 
 | 1971 |  * Allow boot-time kmemleak disabling (enabled by default). | 
 | 1972 |  */ | 
 | 1973 | static int __init kmemleak_boot_config(char *str) | 
 | 1974 | { | 
 | 1975 | 	if (!str) | 
 | 1976 | 		return -EINVAL; | 
 | 1977 | 	if (strcmp(str, "off") == 0) | 
 | 1978 | 		kmemleak_disable(); | 
 | 1979 | 	else if (strcmp(str, "on") == 0) | 
 | 1980 | 		kmemleak_skip_disable = 1; | 
 | 1981 | 	else | 
 | 1982 | 		return -EINVAL; | 
 | 1983 | 	return 0; | 
 | 1984 | } | 
 | 1985 | early_param("kmemleak", kmemleak_boot_config); | 
 | 1986 |  | 
 | 1987 | static void __init print_log_trace(struct early_log *log) | 
 | 1988 | { | 
 | 1989 | 	struct stack_trace trace; | 
 | 1990 |  | 
 | 1991 | 	trace.nr_entries = log->trace_len; | 
 | 1992 | 	trace.entries = log->trace; | 
 | 1993 |  | 
 | 1994 | 	pr_notice("Early log backtrace:\n"); | 
 | 1995 | 	print_stack_trace(&trace, 2); | 
 | 1996 | } | 
 | 1997 |  | 
 | 1998 | /* | 
 | 1999 |  * Kmemleak initialization. | 
 | 2000 |  */ | 
 | 2001 | void __init kmemleak_init(void) | 
 | 2002 | { | 
 | 2003 | 	int i; | 
 | 2004 | 	unsigned long flags; | 
 | 2005 |  | 
 | 2006 | #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF | 
 | 2007 | 	if (!kmemleak_skip_disable) { | 
 | 2008 | 		kmemleak_early_log = 0; | 
 | 2009 | 		kmemleak_disable(); | 
 | 2010 | 		return; | 
 | 2011 | 	} | 
 | 2012 | #endif | 
 | 2013 |  | 
 | 2014 | 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); | 
 | 2015 | 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); | 
 | 2016 |  | 
 | 2017 | 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); | 
 | 2018 | 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); | 
 | 2019 |  | 
 | 2020 | 	if (crt_early_log > ARRAY_SIZE(early_log)) | 
 | 2021 | 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", | 
 | 2022 | 			crt_early_log); | 
 | 2023 |  | 
 | 2024 | 	/* the kernel is still in UP mode, so disabling the IRQs is enough */ | 
 | 2025 | 	local_irq_save(flags); | 
 | 2026 | 	kmemleak_early_log = 0; | 
 | 2027 | 	if (kmemleak_error) { | 
 | 2028 | 		local_irq_restore(flags); | 
 | 2029 | 		return; | 
 | 2030 | 	} else { | 
 | 2031 | 		kmemleak_enabled = 1; | 
 | 2032 | 		kmemleak_free_enabled = 1; | 
 | 2033 | 	} | 
 | 2034 | 	local_irq_restore(flags); | 
 | 2035 |  | 
 | 2036 | 	/* register the data/bss sections */ | 
 | 2037 | 	create_object((unsigned long)_sdata, _edata - _sdata, | 
 | 2038 | 		      KMEMLEAK_GREY, GFP_ATOMIC); | 
 | 2039 | 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start, | 
 | 2040 | 		      KMEMLEAK_GREY, GFP_ATOMIC); | 
 | 2041 | 	/* only register .data..ro_after_init if not within .data */ | 
 | 2042 | 	if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata) | 
 | 2043 | 		create_object((unsigned long)__start_ro_after_init, | 
 | 2044 | 			      __end_ro_after_init - __start_ro_after_init, | 
 | 2045 | 			      KMEMLEAK_GREY, GFP_ATOMIC); | 
 | 2046 |  | 
 | 2047 | 	/* | 
 | 2048 | 	 * This is the point where tracking allocations is safe. Automatic | 
 | 2049 | 	 * scanning is started during the late initcall. Add the early logged | 
 | 2050 | 	 * callbacks to the kmemleak infrastructure. | 
 | 2051 | 	 */ | 
 | 2052 | 	for (i = 0; i < crt_early_log; i++) { | 
 | 2053 | 		struct early_log *log = &early_log[i]; | 
 | 2054 |  | 
 | 2055 | 		switch (log->op_type) { | 
 | 2056 | 		case KMEMLEAK_ALLOC: | 
 | 2057 | 			early_alloc(log); | 
 | 2058 | 			break; | 
 | 2059 | 		case KMEMLEAK_ALLOC_PERCPU: | 
 | 2060 | 			early_alloc_percpu(log); | 
 | 2061 | 			break; | 
 | 2062 | 		case KMEMLEAK_FREE: | 
 | 2063 | 			kmemleak_free(log->ptr); | 
 | 2064 | 			break; | 
 | 2065 | 		case KMEMLEAK_FREE_PART: | 
 | 2066 | 			kmemleak_free_part(log->ptr, log->size); | 
 | 2067 | 			break; | 
 | 2068 | 		case KMEMLEAK_FREE_PERCPU: | 
 | 2069 | 			kmemleak_free_percpu(log->ptr); | 
 | 2070 | 			break; | 
 | 2071 | 		case KMEMLEAK_NOT_LEAK: | 
 | 2072 | 			kmemleak_not_leak(log->ptr); | 
 | 2073 | 			break; | 
 | 2074 | 		case KMEMLEAK_IGNORE: | 
 | 2075 | 			kmemleak_ignore(log->ptr); | 
 | 2076 | 			break; | 
 | 2077 | 		case KMEMLEAK_SCAN_AREA: | 
 | 2078 | 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); | 
 | 2079 | 			break; | 
 | 2080 | 		case KMEMLEAK_NO_SCAN: | 
 | 2081 | 			kmemleak_no_scan(log->ptr); | 
 | 2082 | 			break; | 
 | 2083 | 		case KMEMLEAK_SET_EXCESS_REF: | 
 | 2084 | 			object_set_excess_ref((unsigned long)log->ptr, | 
 | 2085 | 					      log->excess_ref); | 
 | 2086 | 			break; | 
 | 2087 | 		default: | 
 | 2088 | 			kmemleak_warn("Unknown early log operation: %d\n", | 
 | 2089 | 				      log->op_type); | 
 | 2090 | 		} | 
 | 2091 |  | 
 | 2092 | 		if (kmemleak_warning) { | 
 | 2093 | 			print_log_trace(log); | 
 | 2094 | 			kmemleak_warning = 0; | 
 | 2095 | 		} | 
 | 2096 | 	} | 
 | 2097 | } | 
 | 2098 |  | 
 | 2099 | /* | 
 | 2100 |  * Late initialization function. | 
 | 2101 |  */ | 
 | 2102 | static int __init kmemleak_late_init(void) | 
 | 2103 | { | 
 | 2104 | 	struct dentry *dentry; | 
 | 2105 |  | 
 | 2106 | 	kmemleak_initialized = 1; | 
 | 2107 |  | 
 | 2108 | 	dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL, | 
 | 2109 | 				     &kmemleak_fops); | 
 | 2110 | 	if (!dentry) | 
 | 2111 | 		pr_warn("Failed to create the debugfs kmemleak file\n"); | 
 | 2112 |  | 
 | 2113 | 	if (kmemleak_error) { | 
 | 2114 | 		/* | 
 | 2115 | 		 * Some error occurred and kmemleak was disabled. There is a | 
 | 2116 | 		 * small chance that kmemleak_disable() was called immediately | 
 | 2117 | 		 * after setting kmemleak_initialized and we may end up with | 
 | 2118 | 		 * two clean-up threads but serialized by scan_mutex. | 
 | 2119 | 		 */ | 
 | 2120 | 		schedule_work(&cleanup_work); | 
 | 2121 | 		return -ENOMEM; | 
 | 2122 | 	} | 
 | 2123 |  | 
 | 2124 | 	mutex_lock(&scan_mutex); | 
 | 2125 | 	start_scan_thread(); | 
 | 2126 | 	mutex_unlock(&scan_mutex); | 
 | 2127 |  | 
 | 2128 | 	pr_info("Kernel memory leak detector initialized\n"); | 
 | 2129 |  | 
 | 2130 | 	return 0; | 
 | 2131 | } | 
 | 2132 | late_initcall(kmemleak_late_init); |