| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright 2005, Paul Mackerras, IBM Corporation. | 
 | 3 |  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation. | 
 | 4 |  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or | 
 | 7 |  * modify it under the terms of the GNU General Public License | 
 | 8 |  * as published by the Free Software Foundation; either version | 
 | 9 |  * 2 of the License, or (at your option) any later version. | 
 | 10 |  */ | 
 | 11 |  | 
 | 12 | #include <linux/sched.h> | 
 | 13 | #include <linux/mm_types.h> | 
 | 14 | #include <linux/mm.h> | 
 | 15 |  | 
 | 16 | #include <asm/pgalloc.h> | 
 | 17 | #include <asm/pgtable.h> | 
 | 18 | #include <asm/sections.h> | 
 | 19 | #include <asm/mmu.h> | 
 | 20 | #include <asm/tlb.h> | 
 | 21 |  | 
 | 22 | #include "mmu_decl.h" | 
 | 23 |  | 
 | 24 | #define CREATE_TRACE_POINTS | 
 | 25 | #include <trace/events/thp.h> | 
 | 26 |  | 
 | 27 | #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE)) | 
 | 28 | #warning Limited user VSID range means pagetable space is wasted | 
 | 29 | #endif | 
 | 30 |  | 
 | 31 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 32 | /* | 
 | 33 |  * vmemmap is the starting address of the virtual address space where | 
 | 34 |  * struct pages are allocated for all possible PFNs present on the system | 
 | 35 |  * including holes and bad memory (hence sparse). These virtual struct | 
 | 36 |  * pages are stored in sequence in this virtual address space irrespective | 
 | 37 |  * of the fact whether the corresponding PFN is valid or not. This achieves | 
 | 38 |  * constant relationship between address of struct page and its PFN. | 
 | 39 |  * | 
 | 40 |  * During boot or memory hotplug operation when a new memory section is | 
 | 41 |  * added, physical memory allocation (including hash table bolting) will | 
 | 42 |  * be performed for the set of struct pages which are part of the memory | 
 | 43 |  * section. This saves memory by not allocating struct pages for PFNs | 
 | 44 |  * which are not valid. | 
 | 45 |  * | 
 | 46 |  *		---------------------------------------------- | 
 | 47 |  *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES| | 
 | 48 |  *		---------------------------------------------- | 
 | 49 |  * | 
 | 50 |  *	   f000000000000000                  c000000000000000 | 
 | 51 |  * vmemmap +--------------+                  +--------------+ | 
 | 52 |  *  +      |  page struct | +--------------> |  page struct | | 
 | 53 |  *  |      +--------------+                  +--------------+ | 
 | 54 |  *  |      |  page struct | +--------------> |  page struct | | 
 | 55 |  *  |      +--------------+ |                +--------------+ | 
 | 56 |  *  |      |  page struct | +       +------> |  page struct | | 
 | 57 |  *  |      +--------------+         |        +--------------+ | 
 | 58 |  *  |      |  page struct |         |   +--> |  page struct | | 
 | 59 |  *  |      +--------------+         |   |    +--------------+ | 
 | 60 |  *  |      |  page struct |         |   | | 
 | 61 |  *  |      +--------------+         |   | | 
 | 62 |  *  |      |  page struct |         |   | | 
 | 63 |  *  |      +--------------+         |   | | 
 | 64 |  *  |      |  page struct |         |   | | 
 | 65 |  *  |      +--------------+         |   | | 
 | 66 |  *  |      |  page struct |         |   | | 
 | 67 |  *  |      +--------------+         |   | | 
 | 68 |  *  |      |  page struct | +-------+   | | 
 | 69 |  *  |      +--------------+             | | 
 | 70 |  *  |      |  page struct | +-----------+ | 
 | 71 |  *  |      +--------------+ | 
 | 72 |  *  |      |  page struct | No mapping | 
 | 73 |  *  |      +--------------+ | 
 | 74 |  *  |      |  page struct | No mapping | 
 | 75 |  *  v      +--------------+ | 
 | 76 |  * | 
 | 77 |  *		----------------------------------------- | 
 | 78 |  *		| RELATION BETWEEN STRUCT PAGES AND PFNS| | 
 | 79 |  *		----------------------------------------- | 
 | 80 |  * | 
 | 81 |  * vmemmap +--------------+                 +---------------+ | 
 | 82 |  *  +      |  page struct | +-------------> |      PFN      | | 
 | 83 |  *  |      +--------------+                 +---------------+ | 
 | 84 |  *  |      |  page struct | +-------------> |      PFN      | | 
 | 85 |  *  |      +--------------+                 +---------------+ | 
 | 86 |  *  |      |  page struct | +-------------> |      PFN      | | 
 | 87 |  *  |      +--------------+                 +---------------+ | 
 | 88 |  *  |      |  page struct | +-------------> |      PFN      | | 
 | 89 |  *  |      +--------------+                 +---------------+ | 
 | 90 |  *  |      |              | | 
 | 91 |  *  |      +--------------+ | 
 | 92 |  *  |      |              | | 
 | 93 |  *  |      +--------------+ | 
 | 94 |  *  |      |              | | 
 | 95 |  *  |      +--------------+                 +---------------+ | 
 | 96 |  *  |      |  page struct | +-------------> |      PFN      | | 
 | 97 |  *  |      +--------------+                 +---------------+ | 
 | 98 |  *  |      |              | | 
 | 99 |  *  |      +--------------+ | 
 | 100 |  *  |      |              | | 
 | 101 |  *  |      +--------------+                 +---------------+ | 
 | 102 |  *  |      |  page struct | +-------------> |      PFN      | | 
 | 103 |  *  |      +--------------+                 +---------------+ | 
 | 104 |  *  |      |  page struct | +-------------> |      PFN      | | 
 | 105 |  *  v      +--------------+                 +---------------+ | 
 | 106 |  */ | 
 | 107 | /* | 
 | 108 |  * On hash-based CPUs, the vmemmap is bolted in the hash table. | 
 | 109 |  * | 
 | 110 |  */ | 
 | 111 | int __meminit hash__vmemmap_create_mapping(unsigned long start, | 
 | 112 | 				       unsigned long page_size, | 
 | 113 | 				       unsigned long phys) | 
 | 114 | { | 
 | 115 | 	int rc = htab_bolt_mapping(start, start + page_size, phys, | 
 | 116 | 				   pgprot_val(PAGE_KERNEL), | 
 | 117 | 				   mmu_vmemmap_psize, mmu_kernel_ssize); | 
 | 118 | 	if (rc < 0) { | 
 | 119 | 		int rc2 = htab_remove_mapping(start, start + page_size, | 
 | 120 | 					      mmu_vmemmap_psize, | 
 | 121 | 					      mmu_kernel_ssize); | 
 | 122 | 		BUG_ON(rc2 && (rc2 != -ENOENT)); | 
 | 123 | 	} | 
 | 124 | 	return rc; | 
 | 125 | } | 
 | 126 |  | 
 | 127 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | 128 | void hash__vmemmap_remove_mapping(unsigned long start, | 
 | 129 | 			      unsigned long page_size) | 
 | 130 | { | 
 | 131 | 	int rc = htab_remove_mapping(start, start + page_size, | 
 | 132 | 				     mmu_vmemmap_psize, | 
 | 133 | 				     mmu_kernel_ssize); | 
 | 134 | 	BUG_ON((rc < 0) && (rc != -ENOENT)); | 
 | 135 | 	WARN_ON(rc == -ENOENT); | 
 | 136 | } | 
 | 137 | #endif | 
 | 138 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
 | 139 |  | 
 | 140 | /* | 
 | 141 |  * map_kernel_page currently only called by __ioremap | 
 | 142 |  * map_kernel_page adds an entry to the ioremap page table | 
 | 143 |  * and adds an entry to the HPT, possibly bolting it | 
 | 144 |  */ | 
 | 145 | int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags) | 
 | 146 | { | 
 | 147 | 	pgd_t *pgdp; | 
 | 148 | 	pud_t *pudp; | 
 | 149 | 	pmd_t *pmdp; | 
 | 150 | 	pte_t *ptep; | 
 | 151 |  | 
 | 152 | 	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE); | 
 | 153 | 	if (slab_is_available()) { | 
 | 154 | 		pgdp = pgd_offset_k(ea); | 
 | 155 | 		pudp = pud_alloc(&init_mm, pgdp, ea); | 
 | 156 | 		if (!pudp) | 
 | 157 | 			return -ENOMEM; | 
 | 158 | 		pmdp = pmd_alloc(&init_mm, pudp, ea); | 
 | 159 | 		if (!pmdp) | 
 | 160 | 			return -ENOMEM; | 
 | 161 | 		ptep = pte_alloc_kernel(pmdp, ea); | 
 | 162 | 		if (!ptep) | 
 | 163 | 			return -ENOMEM; | 
 | 164 | 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, | 
 | 165 | 							  __pgprot(flags))); | 
 | 166 | 	} else { | 
 | 167 | 		/* | 
 | 168 | 		 * If the mm subsystem is not fully up, we cannot create a | 
 | 169 | 		 * linux page table entry for this mapping.  Simply bolt an | 
 | 170 | 		 * entry in the hardware page table. | 
 | 171 | 		 * | 
 | 172 | 		 */ | 
 | 173 | 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags, | 
 | 174 | 				      mmu_io_psize, mmu_kernel_ssize)) { | 
 | 175 | 			printk(KERN_ERR "Failed to do bolted mapping IO " | 
 | 176 | 			       "memory at %016lx !\n", pa); | 
 | 177 | 			return -ENOMEM; | 
 | 178 | 		} | 
 | 179 | 	} | 
 | 180 |  | 
 | 181 | 	smp_wmb(); | 
 | 182 | 	return 0; | 
 | 183 | } | 
 | 184 |  | 
 | 185 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 186 |  | 
 | 187 | unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, | 
 | 188 | 				    pmd_t *pmdp, unsigned long clr, | 
 | 189 | 				    unsigned long set) | 
 | 190 | { | 
 | 191 | 	__be64 old_be, tmp; | 
 | 192 | 	unsigned long old; | 
 | 193 |  | 
 | 194 | #ifdef CONFIG_DEBUG_VM | 
 | 195 | 	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); | 
 | 196 | 	assert_spin_locked(pmd_lockptr(mm, pmdp)); | 
 | 197 | #endif | 
 | 198 |  | 
 | 199 | 	__asm__ __volatile__( | 
 | 200 | 	"1:	ldarx	%0,0,%3\n\ | 
 | 201 | 		and.	%1,%0,%6\n\ | 
 | 202 | 		bne-	1b \n\ | 
 | 203 | 		andc	%1,%0,%4 \n\ | 
 | 204 | 		or	%1,%1,%7\n\ | 
 | 205 | 		stdcx.	%1,0,%3 \n\ | 
 | 206 | 		bne-	1b" | 
 | 207 | 	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp) | 
 | 208 | 	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp), | 
 | 209 | 	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set)) | 
 | 210 | 	: "cc" ); | 
 | 211 |  | 
 | 212 | 	old = be64_to_cpu(old_be); | 
 | 213 |  | 
 | 214 | 	trace_hugepage_update(addr, old, clr, set); | 
 | 215 | 	if (old & H_PAGE_HASHPTE) | 
 | 216 | 		hpte_do_hugepage_flush(mm, addr, pmdp, old); | 
 | 217 | 	return old; | 
 | 218 | } | 
 | 219 |  | 
 | 220 | pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, | 
 | 221 | 			    pmd_t *pmdp) | 
 | 222 | { | 
 | 223 | 	pmd_t pmd; | 
 | 224 |  | 
 | 225 | 	VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
 | 226 | 	VM_BUG_ON(pmd_trans_huge(*pmdp)); | 
 | 227 | 	VM_BUG_ON(pmd_devmap(*pmdp)); | 
 | 228 |  | 
 | 229 | 	pmd = *pmdp; | 
 | 230 | 	pmd_clear(pmdp); | 
 | 231 | 	/* | 
 | 232 | 	 * Wait for all pending hash_page to finish. This is needed | 
 | 233 | 	 * in case of subpage collapse. When we collapse normal pages | 
 | 234 | 	 * to hugepage, we first clear the pmd, then invalidate all | 
 | 235 | 	 * the PTE entries. The assumption here is that any low level | 
 | 236 | 	 * page fault will see a none pmd and take the slow path that | 
 | 237 | 	 * will wait on mmap_sem. But we could very well be in a | 
 | 238 | 	 * hash_page with local ptep pointer value. Such a hash page | 
 | 239 | 	 * can result in adding new HPTE entries for normal subpages. | 
 | 240 | 	 * That means we could be modifying the page content as we | 
 | 241 | 	 * copy them to a huge page. So wait for parallel hash_page | 
 | 242 | 	 * to finish before invalidating HPTE entries. We can do this | 
 | 243 | 	 * by sending an IPI to all the cpus and executing a dummy | 
 | 244 | 	 * function there. | 
 | 245 | 	 */ | 
 | 246 | 	serialize_against_pte_lookup(vma->vm_mm); | 
 | 247 | 	/* | 
 | 248 | 	 * Now invalidate the hpte entries in the range | 
 | 249 | 	 * covered by pmd. This make sure we take a | 
 | 250 | 	 * fault and will find the pmd as none, which will | 
 | 251 | 	 * result in a major fault which takes mmap_sem and | 
 | 252 | 	 * hence wait for collapse to complete. Without this | 
 | 253 | 	 * the __collapse_huge_page_copy can result in copying | 
 | 254 | 	 * the old content. | 
 | 255 | 	 */ | 
 | 256 | 	flush_tlb_pmd_range(vma->vm_mm, &pmd, address); | 
 | 257 | 	return pmd; | 
 | 258 | } | 
 | 259 |  | 
 | 260 | /* | 
 | 261 |  * We want to put the pgtable in pmd and use pgtable for tracking | 
 | 262 |  * the base page size hptes | 
 | 263 |  */ | 
 | 264 | void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, | 
 | 265 | 				  pgtable_t pgtable) | 
 | 266 | { | 
 | 267 | 	pgtable_t *pgtable_slot; | 
 | 268 |  | 
 | 269 | 	assert_spin_locked(pmd_lockptr(mm, pmdp)); | 
 | 270 | 	/* | 
 | 271 | 	 * we store the pgtable in the second half of PMD | 
 | 272 | 	 */ | 
 | 273 | 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; | 
 | 274 | 	*pgtable_slot = pgtable; | 
 | 275 | 	/* | 
 | 276 | 	 * expose the deposited pgtable to other cpus. | 
 | 277 | 	 * before we set the hugepage PTE at pmd level | 
 | 278 | 	 * hash fault code looks at the deposted pgtable | 
 | 279 | 	 * to store hash index values. | 
 | 280 | 	 */ | 
 | 281 | 	smp_wmb(); | 
 | 282 | } | 
 | 283 |  | 
 | 284 | pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) | 
 | 285 | { | 
 | 286 | 	pgtable_t pgtable; | 
 | 287 | 	pgtable_t *pgtable_slot; | 
 | 288 |  | 
 | 289 | 	assert_spin_locked(pmd_lockptr(mm, pmdp)); | 
 | 290 |  | 
 | 291 | 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; | 
 | 292 | 	pgtable = *pgtable_slot; | 
 | 293 | 	/* | 
 | 294 | 	 * Once we withdraw, mark the entry NULL. | 
 | 295 | 	 */ | 
 | 296 | 	*pgtable_slot = NULL; | 
 | 297 | 	/* | 
 | 298 | 	 * We store HPTE information in the deposited PTE fragment. | 
 | 299 | 	 * zero out the content on withdraw. | 
 | 300 | 	 */ | 
 | 301 | 	memset(pgtable, 0, PTE_FRAG_SIZE); | 
 | 302 | 	return pgtable; | 
 | 303 | } | 
 | 304 |  | 
 | 305 | /* | 
 | 306 |  * A linux hugepage PMD was changed and the corresponding hash table entries | 
 | 307 |  * neesd to be flushed. | 
 | 308 |  */ | 
 | 309 | void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr, | 
 | 310 | 			    pmd_t *pmdp, unsigned long old_pmd) | 
 | 311 | { | 
 | 312 | 	int ssize; | 
 | 313 | 	unsigned int psize; | 
 | 314 | 	unsigned long vsid; | 
 | 315 | 	unsigned long flags = 0; | 
 | 316 |  | 
 | 317 | 	/* get the base page size,vsid and segment size */ | 
 | 318 | #ifdef CONFIG_DEBUG_VM | 
 | 319 | 	psize = get_slice_psize(mm, addr); | 
 | 320 | 	BUG_ON(psize == MMU_PAGE_16M); | 
 | 321 | #endif | 
 | 322 | 	if (old_pmd & H_PAGE_COMBO) | 
 | 323 | 		psize = MMU_PAGE_4K; | 
 | 324 | 	else | 
 | 325 | 		psize = MMU_PAGE_64K; | 
 | 326 |  | 
 | 327 | 	if (!is_kernel_addr(addr)) { | 
 | 328 | 		ssize = user_segment_size(addr); | 
 | 329 | 		vsid = get_user_vsid(&mm->context, addr, ssize); | 
 | 330 | 		WARN_ON(vsid == 0); | 
 | 331 | 	} else { | 
 | 332 | 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize); | 
 | 333 | 		ssize = mmu_kernel_ssize; | 
 | 334 | 	} | 
 | 335 |  | 
 | 336 | 	if (mm_is_thread_local(mm)) | 
 | 337 | 		flags |= HPTE_LOCAL_UPDATE; | 
 | 338 |  | 
 | 339 | 	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags); | 
 | 340 | } | 
 | 341 |  | 
 | 342 | pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, | 
 | 343 | 				unsigned long addr, pmd_t *pmdp) | 
 | 344 | { | 
 | 345 | 	pmd_t old_pmd; | 
 | 346 | 	pgtable_t pgtable; | 
 | 347 | 	unsigned long old; | 
 | 348 | 	pgtable_t *pgtable_slot; | 
 | 349 |  | 
 | 350 | 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); | 
 | 351 | 	old_pmd = __pmd(old); | 
 | 352 | 	/* | 
 | 353 | 	 * We have pmd == none and we are holding page_table_lock. | 
 | 354 | 	 * So we can safely go and clear the pgtable hash | 
 | 355 | 	 * index info. | 
 | 356 | 	 */ | 
 | 357 | 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; | 
 | 358 | 	pgtable = *pgtable_slot; | 
 | 359 | 	/* | 
 | 360 | 	 * Let's zero out old valid and hash index details | 
 | 361 | 	 * hash fault look at them. | 
 | 362 | 	 */ | 
 | 363 | 	memset(pgtable, 0, PTE_FRAG_SIZE); | 
 | 364 | 	/* | 
 | 365 | 	 * Serialize against find_current_mm_pte variants which does lock-less | 
 | 366 | 	 * lookup in page tables with local interrupts disabled. For huge pages | 
 | 367 | 	 * it casts pmd_t to pte_t. Since format of pte_t is different from | 
 | 368 | 	 * pmd_t we want to prevent transit from pmd pointing to page table | 
 | 369 | 	 * to pmd pointing to huge page (and back) while interrupts are disabled. | 
 | 370 | 	 * We clear pmd to possibly replace it with page table pointer in | 
 | 371 | 	 * different code paths. So make sure we wait for the parallel | 
 | 372 | 	 * find_curren_mm_pte to finish. | 
 | 373 | 	 */ | 
 | 374 | 	serialize_against_pte_lookup(mm); | 
 | 375 | 	return old_pmd; | 
 | 376 | } | 
 | 377 |  | 
 | 378 | int hash__has_transparent_hugepage(void) | 
 | 379 | { | 
 | 380 |  | 
 | 381 | 	if (!mmu_has_feature(MMU_FTR_16M_PAGE)) | 
 | 382 | 		return 0; | 
 | 383 | 	/* | 
 | 384 | 	 * We support THP only if PMD_SIZE is 16MB. | 
 | 385 | 	 */ | 
 | 386 | 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT) | 
 | 387 | 		return 0; | 
 | 388 | 	/* | 
 | 389 | 	 * We need to make sure that we support 16MB hugepage in a segement | 
 | 390 | 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE | 
 | 391 | 	 * of 64K. | 
 | 392 | 	 */ | 
 | 393 | 	/* | 
 | 394 | 	 * If we have 64K HPTE, we will be using that by default | 
 | 395 | 	 */ | 
 | 396 | 	if (mmu_psize_defs[MMU_PAGE_64K].shift && | 
 | 397 | 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1)) | 
 | 398 | 		return 0; | 
 | 399 | 	/* | 
 | 400 | 	 * Ok we only have 4K HPTE | 
 | 401 | 	 */ | 
 | 402 | 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1) | 
 | 403 | 		return 0; | 
 | 404 |  | 
 | 405 | 	return 1; | 
 | 406 | } | 
 | 407 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 | 408 |  | 
 | 409 | #ifdef CONFIG_STRICT_KERNEL_RWX | 
 | 410 | static bool hash__change_memory_range(unsigned long start, unsigned long end, | 
 | 411 | 				      unsigned long newpp) | 
 | 412 | { | 
 | 413 | 	unsigned long idx; | 
 | 414 | 	unsigned int step, shift; | 
 | 415 |  | 
 | 416 | 	shift = mmu_psize_defs[mmu_linear_psize].shift; | 
 | 417 | 	step = 1 << shift; | 
 | 418 |  | 
 | 419 | 	start = ALIGN_DOWN(start, step); | 
 | 420 | 	end = ALIGN(end, step); // aligns up | 
 | 421 |  | 
 | 422 | 	if (start >= end) | 
 | 423 | 		return false; | 
 | 424 |  | 
 | 425 | 	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n", | 
 | 426 | 		 start, end, newpp, step); | 
 | 427 |  | 
 | 428 | 	for (idx = start; idx < end; idx += step) | 
 | 429 | 		/* Not sure if we can do much with the return value */ | 
 | 430 | 		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize, | 
 | 431 | 							mmu_kernel_ssize); | 
 | 432 |  | 
 | 433 | 	return true; | 
 | 434 | } | 
 | 435 |  | 
 | 436 | void hash__mark_rodata_ro(void) | 
 | 437 | { | 
 | 438 | 	unsigned long start, end; | 
 | 439 |  | 
 | 440 | 	start = (unsigned long)_stext; | 
 | 441 | 	end = (unsigned long)__init_begin; | 
 | 442 |  | 
 | 443 | 	WARN_ON(!hash__change_memory_range(start, end, PP_RXXX)); | 
 | 444 | } | 
 | 445 |  | 
 | 446 | void hash__mark_initmem_nx(void) | 
 | 447 | { | 
 | 448 | 	unsigned long start, end, pp; | 
 | 449 |  | 
 | 450 | 	start = (unsigned long)__init_begin; | 
 | 451 | 	end = (unsigned long)__init_end; | 
 | 452 |  | 
 | 453 | 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL)); | 
 | 454 |  | 
 | 455 | 	WARN_ON(!hash__change_memory_range(start, end, pp)); | 
 | 456 | } | 
 | 457 | #endif |