| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * kvm eventfd support - use eventfd objects to signal various KVM events |
| 3 | * |
| 4 | * Copyright 2009 Novell. All Rights Reserved. |
| 5 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 6 | * |
| 7 | * Author: |
| 8 | * Gregory Haskins <ghaskins@novell.com> |
| 9 | * |
| 10 | * This file is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of version 2 of the GNU General Public License |
| 12 | * as published by the Free Software Foundation. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software Foundation, |
| 21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/kvm_host.h> |
| 25 | #include <linux/kvm.h> |
| 26 | #include <linux/kvm_irqfd.h> |
| 27 | #include <linux/workqueue.h> |
| 28 | #include <linux/syscalls.h> |
| 29 | #include <linux/wait.h> |
| 30 | #include <linux/poll.h> |
| 31 | #include <linux/file.h> |
| 32 | #include <linux/list.h> |
| 33 | #include <linux/eventfd.h> |
| 34 | #include <linux/kernel.h> |
| 35 | #include <linux/srcu.h> |
| 36 | #include <linux/slab.h> |
| 37 | #include <linux/seqlock.h> |
| 38 | #include <linux/irqbypass.h> |
| 39 | #include <trace/events/kvm.h> |
| 40 | |
| 41 | #include <kvm/iodev.h> |
| 42 | |
| 43 | #ifdef CONFIG_HAVE_KVM_IRQFD |
| 44 | |
| 45 | static struct workqueue_struct *irqfd_cleanup_wq; |
| 46 | |
| 47 | bool __attribute__((weak)) |
| 48 | kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args) |
| 49 | { |
| 50 | return true; |
| 51 | } |
| 52 | |
| 53 | static void |
| 54 | irqfd_inject(struct work_struct *work) |
| 55 | { |
| 56 | struct kvm_kernel_irqfd *irqfd = |
| 57 | container_of(work, struct kvm_kernel_irqfd, inject); |
| 58 | struct kvm *kvm = irqfd->kvm; |
| 59 | |
| 60 | if (!irqfd->resampler) { |
| 61 | kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1, |
| 62 | false); |
| 63 | kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0, |
| 64 | false); |
| 65 | } else |
| 66 | kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, |
| 67 | irqfd->gsi, 1, false); |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * Since resampler irqfds share an IRQ source ID, we de-assert once |
| 72 | * then notify all of the resampler irqfds using this GSI. We can't |
| 73 | * do multiple de-asserts or we risk racing with incoming re-asserts. |
| 74 | */ |
| 75 | static void |
| 76 | irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) |
| 77 | { |
| 78 | struct kvm_kernel_irqfd_resampler *resampler; |
| 79 | struct kvm *kvm; |
| 80 | struct kvm_kernel_irqfd *irqfd; |
| 81 | int idx; |
| 82 | |
| 83 | resampler = container_of(kian, |
| 84 | struct kvm_kernel_irqfd_resampler, notifier); |
| 85 | kvm = resampler->kvm; |
| 86 | |
| 87 | kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, |
| 88 | resampler->notifier.gsi, 0, false); |
| 89 | |
| 90 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 91 | |
| 92 | list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) |
| 93 | eventfd_signal(irqfd->resamplefd, 1); |
| 94 | |
| 95 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 96 | } |
| 97 | |
| 98 | static void |
| 99 | irqfd_resampler_shutdown(struct kvm_kernel_irqfd *irqfd) |
| 100 | { |
| 101 | struct kvm_kernel_irqfd_resampler *resampler = irqfd->resampler; |
| 102 | struct kvm *kvm = resampler->kvm; |
| 103 | |
| 104 | mutex_lock(&kvm->irqfds.resampler_lock); |
| 105 | |
| 106 | list_del_rcu(&irqfd->resampler_link); |
| 107 | synchronize_srcu(&kvm->irq_srcu); |
| 108 | |
| 109 | if (list_empty(&resampler->list)) { |
| 110 | list_del(&resampler->link); |
| 111 | kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); |
| 112 | kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, |
| 113 | resampler->notifier.gsi, 0, false); |
| 114 | kfree(resampler); |
| 115 | } |
| 116 | |
| 117 | mutex_unlock(&kvm->irqfds.resampler_lock); |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Race-free decouple logic (ordering is critical) |
| 122 | */ |
| 123 | static void |
| 124 | irqfd_shutdown(struct work_struct *work) |
| 125 | { |
| 126 | struct kvm_kernel_irqfd *irqfd = |
| 127 | container_of(work, struct kvm_kernel_irqfd, shutdown); |
| 128 | struct kvm *kvm = irqfd->kvm; |
| 129 | u64 cnt; |
| 130 | |
| 131 | /* Make sure irqfd has been initalized in assign path. */ |
| 132 | synchronize_srcu(&kvm->irq_srcu); |
| 133 | |
| 134 | /* |
| 135 | * Synchronize with the wait-queue and unhook ourselves to prevent |
| 136 | * further events. |
| 137 | */ |
| 138 | eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); |
| 139 | |
| 140 | /* |
| 141 | * We know no new events will be scheduled at this point, so block |
| 142 | * until all previously outstanding events have completed |
| 143 | */ |
| 144 | flush_work(&irqfd->inject); |
| 145 | |
| 146 | if (irqfd->resampler) { |
| 147 | irqfd_resampler_shutdown(irqfd); |
| 148 | eventfd_ctx_put(irqfd->resamplefd); |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * It is now safe to release the object's resources |
| 153 | */ |
| 154 | #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS |
| 155 | irq_bypass_unregister_consumer(&irqfd->consumer); |
| 156 | #endif |
| 157 | eventfd_ctx_put(irqfd->eventfd); |
| 158 | kfree(irqfd); |
| 159 | } |
| 160 | |
| 161 | |
| 162 | /* assumes kvm->irqfds.lock is held */ |
| 163 | static bool |
| 164 | irqfd_is_active(struct kvm_kernel_irqfd *irqfd) |
| 165 | { |
| 166 | return list_empty(&irqfd->list) ? false : true; |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Mark the irqfd as inactive and schedule it for removal |
| 171 | * |
| 172 | * assumes kvm->irqfds.lock is held |
| 173 | */ |
| 174 | static void |
| 175 | irqfd_deactivate(struct kvm_kernel_irqfd *irqfd) |
| 176 | { |
| 177 | BUG_ON(!irqfd_is_active(irqfd)); |
| 178 | |
| 179 | list_del_init(&irqfd->list); |
| 180 | |
| 181 | queue_work(irqfd_cleanup_wq, &irqfd->shutdown); |
| 182 | } |
| 183 | |
| 184 | int __attribute__((weak)) kvm_arch_set_irq_inatomic( |
| 185 | struct kvm_kernel_irq_routing_entry *irq, |
| 186 | struct kvm *kvm, int irq_source_id, |
| 187 | int level, |
| 188 | bool line_status) |
| 189 | { |
| 190 | return -EWOULDBLOCK; |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * Called with wqh->lock held and interrupts disabled |
| 195 | */ |
| 196 | static int |
| 197 | irqfd_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) |
| 198 | { |
| 199 | struct kvm_kernel_irqfd *irqfd = |
| 200 | container_of(wait, struct kvm_kernel_irqfd, wait); |
| 201 | __poll_t flags = key_to_poll(key); |
| 202 | struct kvm_kernel_irq_routing_entry irq; |
| 203 | struct kvm *kvm = irqfd->kvm; |
| 204 | unsigned seq; |
| 205 | int idx; |
| 206 | |
| 207 | if (flags & EPOLLIN) { |
| 208 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 209 | do { |
| 210 | seq = read_seqcount_begin(&irqfd->irq_entry_sc); |
| 211 | irq = irqfd->irq_entry; |
| 212 | } while (read_seqcount_retry(&irqfd->irq_entry_sc, seq)); |
| 213 | /* An event has been signaled, inject an interrupt */ |
| 214 | if (kvm_arch_set_irq_inatomic(&irq, kvm, |
| 215 | KVM_USERSPACE_IRQ_SOURCE_ID, 1, |
| 216 | false) == -EWOULDBLOCK) |
| 217 | schedule_work(&irqfd->inject); |
| 218 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 219 | } |
| 220 | |
| 221 | if (flags & EPOLLHUP) { |
| 222 | /* The eventfd is closing, detach from KVM */ |
| 223 | unsigned long flags; |
| 224 | |
| 225 | spin_lock_irqsave(&kvm->irqfds.lock, flags); |
| 226 | |
| 227 | /* |
| 228 | * We must check if someone deactivated the irqfd before |
| 229 | * we could acquire the irqfds.lock since the item is |
| 230 | * deactivated from the KVM side before it is unhooked from |
| 231 | * the wait-queue. If it is already deactivated, we can |
| 232 | * simply return knowing the other side will cleanup for us. |
| 233 | * We cannot race against the irqfd going away since the |
| 234 | * other side is required to acquire wqh->lock, which we hold |
| 235 | */ |
| 236 | if (irqfd_is_active(irqfd)) |
| 237 | irqfd_deactivate(irqfd); |
| 238 | |
| 239 | spin_unlock_irqrestore(&kvm->irqfds.lock, flags); |
| 240 | } |
| 241 | |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | static void |
| 246 | irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, |
| 247 | poll_table *pt) |
| 248 | { |
| 249 | struct kvm_kernel_irqfd *irqfd = |
| 250 | container_of(pt, struct kvm_kernel_irqfd, pt); |
| 251 | add_wait_queue(wqh, &irqfd->wait); |
| 252 | } |
| 253 | |
| 254 | /* Must be called under irqfds.lock */ |
| 255 | static void irqfd_update(struct kvm *kvm, struct kvm_kernel_irqfd *irqfd) |
| 256 | { |
| 257 | struct kvm_kernel_irq_routing_entry *e; |
| 258 | struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS]; |
| 259 | int n_entries; |
| 260 | |
| 261 | n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi); |
| 262 | |
| 263 | write_seqcount_begin(&irqfd->irq_entry_sc); |
| 264 | |
| 265 | e = entries; |
| 266 | if (n_entries == 1) |
| 267 | irqfd->irq_entry = *e; |
| 268 | else |
| 269 | irqfd->irq_entry.type = 0; |
| 270 | |
| 271 | write_seqcount_end(&irqfd->irq_entry_sc); |
| 272 | } |
| 273 | |
| 274 | #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS |
| 275 | void __attribute__((weak)) kvm_arch_irq_bypass_stop( |
| 276 | struct irq_bypass_consumer *cons) |
| 277 | { |
| 278 | } |
| 279 | |
| 280 | void __attribute__((weak)) kvm_arch_irq_bypass_start( |
| 281 | struct irq_bypass_consumer *cons) |
| 282 | { |
| 283 | } |
| 284 | |
| 285 | int __attribute__((weak)) kvm_arch_update_irqfd_routing( |
| 286 | struct kvm *kvm, unsigned int host_irq, |
| 287 | uint32_t guest_irq, bool set) |
| 288 | { |
| 289 | return 0; |
| 290 | } |
| 291 | #endif |
| 292 | |
| 293 | static int |
| 294 | kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) |
| 295 | { |
| 296 | struct kvm_kernel_irqfd *irqfd, *tmp; |
| 297 | struct fd f; |
| 298 | struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; |
| 299 | int ret; |
| 300 | __poll_t events; |
| 301 | int idx; |
| 302 | |
| 303 | if (!kvm_arch_intc_initialized(kvm)) |
| 304 | return -EAGAIN; |
| 305 | |
| 306 | if (!kvm_arch_irqfd_allowed(kvm, args)) |
| 307 | return -EINVAL; |
| 308 | |
| 309 | irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); |
| 310 | if (!irqfd) |
| 311 | return -ENOMEM; |
| 312 | |
| 313 | irqfd->kvm = kvm; |
| 314 | irqfd->gsi = args->gsi; |
| 315 | INIT_LIST_HEAD(&irqfd->list); |
| 316 | INIT_WORK(&irqfd->inject, irqfd_inject); |
| 317 | INIT_WORK(&irqfd->shutdown, irqfd_shutdown); |
| 318 | seqcount_init(&irqfd->irq_entry_sc); |
| 319 | |
| 320 | f = fdget(args->fd); |
| 321 | if (!f.file) { |
| 322 | ret = -EBADF; |
| 323 | goto out; |
| 324 | } |
| 325 | |
| 326 | eventfd = eventfd_ctx_fileget(f.file); |
| 327 | if (IS_ERR(eventfd)) { |
| 328 | ret = PTR_ERR(eventfd); |
| 329 | goto fail; |
| 330 | } |
| 331 | |
| 332 | irqfd->eventfd = eventfd; |
| 333 | |
| 334 | if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { |
| 335 | struct kvm_kernel_irqfd_resampler *resampler; |
| 336 | |
| 337 | resamplefd = eventfd_ctx_fdget(args->resamplefd); |
| 338 | if (IS_ERR(resamplefd)) { |
| 339 | ret = PTR_ERR(resamplefd); |
| 340 | goto fail; |
| 341 | } |
| 342 | |
| 343 | irqfd->resamplefd = resamplefd; |
| 344 | INIT_LIST_HEAD(&irqfd->resampler_link); |
| 345 | |
| 346 | mutex_lock(&kvm->irqfds.resampler_lock); |
| 347 | |
| 348 | list_for_each_entry(resampler, |
| 349 | &kvm->irqfds.resampler_list, link) { |
| 350 | if (resampler->notifier.gsi == irqfd->gsi) { |
| 351 | irqfd->resampler = resampler; |
| 352 | break; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | if (!irqfd->resampler) { |
| 357 | resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); |
| 358 | if (!resampler) { |
| 359 | ret = -ENOMEM; |
| 360 | mutex_unlock(&kvm->irqfds.resampler_lock); |
| 361 | goto fail; |
| 362 | } |
| 363 | |
| 364 | resampler->kvm = kvm; |
| 365 | INIT_LIST_HEAD(&resampler->list); |
| 366 | resampler->notifier.gsi = irqfd->gsi; |
| 367 | resampler->notifier.irq_acked = irqfd_resampler_ack; |
| 368 | INIT_LIST_HEAD(&resampler->link); |
| 369 | |
| 370 | list_add(&resampler->link, &kvm->irqfds.resampler_list); |
| 371 | kvm_register_irq_ack_notifier(kvm, |
| 372 | &resampler->notifier); |
| 373 | irqfd->resampler = resampler; |
| 374 | } |
| 375 | |
| 376 | list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); |
| 377 | synchronize_srcu(&kvm->irq_srcu); |
| 378 | |
| 379 | mutex_unlock(&kvm->irqfds.resampler_lock); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Install our own custom wake-up handling so we are notified via |
| 384 | * a callback whenever someone signals the underlying eventfd |
| 385 | */ |
| 386 | init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); |
| 387 | init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); |
| 388 | |
| 389 | spin_lock_irq(&kvm->irqfds.lock); |
| 390 | |
| 391 | ret = 0; |
| 392 | list_for_each_entry(tmp, &kvm->irqfds.items, list) { |
| 393 | if (irqfd->eventfd != tmp->eventfd) |
| 394 | continue; |
| 395 | /* This fd is used for another irq already. */ |
| 396 | ret = -EBUSY; |
| 397 | spin_unlock_irq(&kvm->irqfds.lock); |
| 398 | goto fail; |
| 399 | } |
| 400 | |
| 401 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 402 | irqfd_update(kvm, irqfd); |
| 403 | |
| 404 | list_add_tail(&irqfd->list, &kvm->irqfds.items); |
| 405 | |
| 406 | spin_unlock_irq(&kvm->irqfds.lock); |
| 407 | |
| 408 | /* |
| 409 | * Check if there was an event already pending on the eventfd |
| 410 | * before we registered, and trigger it as if we didn't miss it. |
| 411 | */ |
| 412 | events = vfs_poll(f.file, &irqfd->pt); |
| 413 | |
| 414 | if (events & EPOLLIN) |
| 415 | schedule_work(&irqfd->inject); |
| 416 | |
| 417 | #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS |
| 418 | if (kvm_arch_has_irq_bypass()) { |
| 419 | irqfd->consumer.token = (void *)irqfd->eventfd; |
| 420 | irqfd->consumer.add_producer = kvm_arch_irq_bypass_add_producer; |
| 421 | irqfd->consumer.del_producer = kvm_arch_irq_bypass_del_producer; |
| 422 | irqfd->consumer.stop = kvm_arch_irq_bypass_stop; |
| 423 | irqfd->consumer.start = kvm_arch_irq_bypass_start; |
| 424 | ret = irq_bypass_register_consumer(&irqfd->consumer); |
| 425 | if (ret) |
| 426 | pr_info("irq bypass consumer (token %p) registration fails: %d\n", |
| 427 | irqfd->consumer.token, ret); |
| 428 | } |
| 429 | #endif |
| 430 | |
| 431 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 432 | |
| 433 | /* |
| 434 | * do not drop the file until the irqfd is fully initialized, otherwise |
| 435 | * we might race against the EPOLLHUP |
| 436 | */ |
| 437 | fdput(f); |
| 438 | return 0; |
| 439 | |
| 440 | fail: |
| 441 | if (irqfd->resampler) |
| 442 | irqfd_resampler_shutdown(irqfd); |
| 443 | |
| 444 | if (resamplefd && !IS_ERR(resamplefd)) |
| 445 | eventfd_ctx_put(resamplefd); |
| 446 | |
| 447 | if (eventfd && !IS_ERR(eventfd)) |
| 448 | eventfd_ctx_put(eventfd); |
| 449 | |
| 450 | fdput(f); |
| 451 | |
| 452 | out: |
| 453 | kfree(irqfd); |
| 454 | return ret; |
| 455 | } |
| 456 | |
| 457 | bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin) |
| 458 | { |
| 459 | struct kvm_irq_ack_notifier *kian; |
| 460 | int gsi, idx; |
| 461 | |
| 462 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 463 | gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); |
| 464 | if (gsi != -1) |
| 465 | hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, |
| 466 | link) |
| 467 | if (kian->gsi == gsi) { |
| 468 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 469 | return true; |
| 470 | } |
| 471 | |
| 472 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 473 | |
| 474 | return false; |
| 475 | } |
| 476 | EXPORT_SYMBOL_GPL(kvm_irq_has_notifier); |
| 477 | |
| 478 | void kvm_notify_acked_gsi(struct kvm *kvm, int gsi) |
| 479 | { |
| 480 | struct kvm_irq_ack_notifier *kian; |
| 481 | |
| 482 | hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, |
| 483 | link) |
| 484 | if (kian->gsi == gsi) |
| 485 | kian->irq_acked(kian); |
| 486 | } |
| 487 | |
| 488 | void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin) |
| 489 | { |
| 490 | int gsi, idx; |
| 491 | |
| 492 | trace_kvm_ack_irq(irqchip, pin); |
| 493 | |
| 494 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 495 | gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); |
| 496 | if (gsi != -1) |
| 497 | kvm_notify_acked_gsi(kvm, gsi); |
| 498 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 499 | } |
| 500 | |
| 501 | void kvm_register_irq_ack_notifier(struct kvm *kvm, |
| 502 | struct kvm_irq_ack_notifier *kian) |
| 503 | { |
| 504 | mutex_lock(&kvm->irq_lock); |
| 505 | hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list); |
| 506 | mutex_unlock(&kvm->irq_lock); |
| 507 | kvm_arch_post_irq_ack_notifier_list_update(kvm); |
| 508 | } |
| 509 | |
| 510 | void kvm_unregister_irq_ack_notifier(struct kvm *kvm, |
| 511 | struct kvm_irq_ack_notifier *kian) |
| 512 | { |
| 513 | mutex_lock(&kvm->irq_lock); |
| 514 | hlist_del_init_rcu(&kian->link); |
| 515 | mutex_unlock(&kvm->irq_lock); |
| 516 | synchronize_srcu(&kvm->irq_srcu); |
| 517 | kvm_arch_post_irq_ack_notifier_list_update(kvm); |
| 518 | } |
| 519 | #endif |
| 520 | |
| 521 | void |
| 522 | kvm_eventfd_init(struct kvm *kvm) |
| 523 | { |
| 524 | #ifdef CONFIG_HAVE_KVM_IRQFD |
| 525 | spin_lock_init(&kvm->irqfds.lock); |
| 526 | INIT_LIST_HEAD(&kvm->irqfds.items); |
| 527 | INIT_LIST_HEAD(&kvm->irqfds.resampler_list); |
| 528 | mutex_init(&kvm->irqfds.resampler_lock); |
| 529 | #endif |
| 530 | INIT_LIST_HEAD(&kvm->ioeventfds); |
| 531 | } |
| 532 | |
| 533 | #ifdef CONFIG_HAVE_KVM_IRQFD |
| 534 | /* |
| 535 | * shutdown any irqfd's that match fd+gsi |
| 536 | */ |
| 537 | static int |
| 538 | kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) |
| 539 | { |
| 540 | struct kvm_kernel_irqfd *irqfd, *tmp; |
| 541 | struct eventfd_ctx *eventfd; |
| 542 | |
| 543 | eventfd = eventfd_ctx_fdget(args->fd); |
| 544 | if (IS_ERR(eventfd)) |
| 545 | return PTR_ERR(eventfd); |
| 546 | |
| 547 | spin_lock_irq(&kvm->irqfds.lock); |
| 548 | |
| 549 | list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { |
| 550 | if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { |
| 551 | /* |
| 552 | * This clearing of irq_entry.type is needed for when |
| 553 | * another thread calls kvm_irq_routing_update before |
| 554 | * we flush workqueue below (we synchronize with |
| 555 | * kvm_irq_routing_update using irqfds.lock). |
| 556 | */ |
| 557 | write_seqcount_begin(&irqfd->irq_entry_sc); |
| 558 | irqfd->irq_entry.type = 0; |
| 559 | write_seqcount_end(&irqfd->irq_entry_sc); |
| 560 | irqfd_deactivate(irqfd); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | spin_unlock_irq(&kvm->irqfds.lock); |
| 565 | eventfd_ctx_put(eventfd); |
| 566 | |
| 567 | /* |
| 568 | * Block until we know all outstanding shutdown jobs have completed |
| 569 | * so that we guarantee there will not be any more interrupts on this |
| 570 | * gsi once this deassign function returns. |
| 571 | */ |
| 572 | flush_workqueue(irqfd_cleanup_wq); |
| 573 | |
| 574 | return 0; |
| 575 | } |
| 576 | |
| 577 | int |
| 578 | kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) |
| 579 | { |
| 580 | if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) |
| 581 | return -EINVAL; |
| 582 | |
| 583 | if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) |
| 584 | return kvm_irqfd_deassign(kvm, args); |
| 585 | |
| 586 | return kvm_irqfd_assign(kvm, args); |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * This function is called as the kvm VM fd is being released. Shutdown all |
| 591 | * irqfds that still remain open |
| 592 | */ |
| 593 | void |
| 594 | kvm_irqfd_release(struct kvm *kvm) |
| 595 | { |
| 596 | struct kvm_kernel_irqfd *irqfd, *tmp; |
| 597 | |
| 598 | spin_lock_irq(&kvm->irqfds.lock); |
| 599 | |
| 600 | list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) |
| 601 | irqfd_deactivate(irqfd); |
| 602 | |
| 603 | spin_unlock_irq(&kvm->irqfds.lock); |
| 604 | |
| 605 | /* |
| 606 | * Block until we know all outstanding shutdown jobs have completed |
| 607 | * since we do not take a kvm* reference. |
| 608 | */ |
| 609 | flush_workqueue(irqfd_cleanup_wq); |
| 610 | |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Take note of a change in irq routing. |
| 615 | * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards. |
| 616 | */ |
| 617 | void kvm_irq_routing_update(struct kvm *kvm) |
| 618 | { |
| 619 | struct kvm_kernel_irqfd *irqfd; |
| 620 | |
| 621 | spin_lock_irq(&kvm->irqfds.lock); |
| 622 | |
| 623 | list_for_each_entry(irqfd, &kvm->irqfds.items, list) { |
| 624 | irqfd_update(kvm, irqfd); |
| 625 | |
| 626 | #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS |
| 627 | if (irqfd->producer) { |
| 628 | int ret = kvm_arch_update_irqfd_routing( |
| 629 | irqfd->kvm, irqfd->producer->irq, |
| 630 | irqfd->gsi, 1); |
| 631 | WARN_ON(ret); |
| 632 | } |
| 633 | #endif |
| 634 | } |
| 635 | |
| 636 | spin_unlock_irq(&kvm->irqfds.lock); |
| 637 | } |
| 638 | |
| 639 | /* |
| 640 | * create a host-wide workqueue for issuing deferred shutdown requests |
| 641 | * aggregated from all vm* instances. We need our own isolated |
| 642 | * queue to ease flushing work items when a VM exits. |
| 643 | */ |
| 644 | int kvm_irqfd_init(void) |
| 645 | { |
| 646 | irqfd_cleanup_wq = alloc_workqueue("kvm-irqfd-cleanup", 0, 0); |
| 647 | if (!irqfd_cleanup_wq) |
| 648 | return -ENOMEM; |
| 649 | |
| 650 | return 0; |
| 651 | } |
| 652 | |
| 653 | void kvm_irqfd_exit(void) |
| 654 | { |
| 655 | destroy_workqueue(irqfd_cleanup_wq); |
| 656 | } |
| 657 | #endif |
| 658 | |
| 659 | /* |
| 660 | * -------------------------------------------------------------------- |
| 661 | * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. |
| 662 | * |
| 663 | * userspace can register a PIO/MMIO address with an eventfd for receiving |
| 664 | * notification when the memory has been touched. |
| 665 | * -------------------------------------------------------------------- |
| 666 | */ |
| 667 | |
| 668 | struct _ioeventfd { |
| 669 | struct list_head list; |
| 670 | u64 addr; |
| 671 | int length; |
| 672 | struct eventfd_ctx *eventfd; |
| 673 | u64 datamatch; |
| 674 | struct kvm_io_device dev; |
| 675 | u8 bus_idx; |
| 676 | bool wildcard; |
| 677 | }; |
| 678 | |
| 679 | static inline struct _ioeventfd * |
| 680 | to_ioeventfd(struct kvm_io_device *dev) |
| 681 | { |
| 682 | return container_of(dev, struct _ioeventfd, dev); |
| 683 | } |
| 684 | |
| 685 | static void |
| 686 | ioeventfd_release(struct _ioeventfd *p) |
| 687 | { |
| 688 | eventfd_ctx_put(p->eventfd); |
| 689 | list_del(&p->list); |
| 690 | kfree(p); |
| 691 | } |
| 692 | |
| 693 | static bool |
| 694 | ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) |
| 695 | { |
| 696 | u64 _val; |
| 697 | |
| 698 | if (addr != p->addr) |
| 699 | /* address must be precise for a hit */ |
| 700 | return false; |
| 701 | |
| 702 | if (!p->length) |
| 703 | /* length = 0 means only look at the address, so always a hit */ |
| 704 | return true; |
| 705 | |
| 706 | if (len != p->length) |
| 707 | /* address-range must be precise for a hit */ |
| 708 | return false; |
| 709 | |
| 710 | if (p->wildcard) |
| 711 | /* all else equal, wildcard is always a hit */ |
| 712 | return true; |
| 713 | |
| 714 | /* otherwise, we have to actually compare the data */ |
| 715 | |
| 716 | BUG_ON(!IS_ALIGNED((unsigned long)val, len)); |
| 717 | |
| 718 | switch (len) { |
| 719 | case 1: |
| 720 | _val = *(u8 *)val; |
| 721 | break; |
| 722 | case 2: |
| 723 | _val = *(u16 *)val; |
| 724 | break; |
| 725 | case 4: |
| 726 | _val = *(u32 *)val; |
| 727 | break; |
| 728 | case 8: |
| 729 | _val = *(u64 *)val; |
| 730 | break; |
| 731 | default: |
| 732 | return false; |
| 733 | } |
| 734 | |
| 735 | return _val == p->datamatch ? true : false; |
| 736 | } |
| 737 | |
| 738 | /* MMIO/PIO writes trigger an event if the addr/val match */ |
| 739 | static int |
| 740 | ioeventfd_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, |
| 741 | int len, const void *val) |
| 742 | { |
| 743 | struct _ioeventfd *p = to_ioeventfd(this); |
| 744 | |
| 745 | if (!ioeventfd_in_range(p, addr, len, val)) |
| 746 | return -EOPNOTSUPP; |
| 747 | |
| 748 | eventfd_signal(p->eventfd, 1); |
| 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * This function is called as KVM is completely shutting down. We do not |
| 754 | * need to worry about locking just nuke anything we have as quickly as possible |
| 755 | */ |
| 756 | static void |
| 757 | ioeventfd_destructor(struct kvm_io_device *this) |
| 758 | { |
| 759 | struct _ioeventfd *p = to_ioeventfd(this); |
| 760 | |
| 761 | ioeventfd_release(p); |
| 762 | } |
| 763 | |
| 764 | static const struct kvm_io_device_ops ioeventfd_ops = { |
| 765 | .write = ioeventfd_write, |
| 766 | .destructor = ioeventfd_destructor, |
| 767 | }; |
| 768 | |
| 769 | /* assumes kvm->slots_lock held */ |
| 770 | static bool |
| 771 | ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) |
| 772 | { |
| 773 | struct _ioeventfd *_p; |
| 774 | |
| 775 | list_for_each_entry(_p, &kvm->ioeventfds, list) |
| 776 | if (_p->bus_idx == p->bus_idx && |
| 777 | _p->addr == p->addr && |
| 778 | (!_p->length || !p->length || |
| 779 | (_p->length == p->length && |
| 780 | (_p->wildcard || p->wildcard || |
| 781 | _p->datamatch == p->datamatch)))) |
| 782 | return true; |
| 783 | |
| 784 | return false; |
| 785 | } |
| 786 | |
| 787 | static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags) |
| 788 | { |
| 789 | if (flags & KVM_IOEVENTFD_FLAG_PIO) |
| 790 | return KVM_PIO_BUS; |
| 791 | if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY) |
| 792 | return KVM_VIRTIO_CCW_NOTIFY_BUS; |
| 793 | return KVM_MMIO_BUS; |
| 794 | } |
| 795 | |
| 796 | static int kvm_assign_ioeventfd_idx(struct kvm *kvm, |
| 797 | enum kvm_bus bus_idx, |
| 798 | struct kvm_ioeventfd *args) |
| 799 | { |
| 800 | |
| 801 | struct eventfd_ctx *eventfd; |
| 802 | struct _ioeventfd *p; |
| 803 | int ret; |
| 804 | |
| 805 | eventfd = eventfd_ctx_fdget(args->fd); |
| 806 | if (IS_ERR(eventfd)) |
| 807 | return PTR_ERR(eventfd); |
| 808 | |
| 809 | p = kzalloc(sizeof(*p), GFP_KERNEL); |
| 810 | if (!p) { |
| 811 | ret = -ENOMEM; |
| 812 | goto fail; |
| 813 | } |
| 814 | |
| 815 | INIT_LIST_HEAD(&p->list); |
| 816 | p->addr = args->addr; |
| 817 | p->bus_idx = bus_idx; |
| 818 | p->length = args->len; |
| 819 | p->eventfd = eventfd; |
| 820 | |
| 821 | /* The datamatch feature is optional, otherwise this is a wildcard */ |
| 822 | if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) |
| 823 | p->datamatch = args->datamatch; |
| 824 | else |
| 825 | p->wildcard = true; |
| 826 | |
| 827 | mutex_lock(&kvm->slots_lock); |
| 828 | |
| 829 | /* Verify that there isn't a match already */ |
| 830 | if (ioeventfd_check_collision(kvm, p)) { |
| 831 | ret = -EEXIST; |
| 832 | goto unlock_fail; |
| 833 | } |
| 834 | |
| 835 | kvm_iodevice_init(&p->dev, &ioeventfd_ops); |
| 836 | |
| 837 | ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, |
| 838 | &p->dev); |
| 839 | if (ret < 0) |
| 840 | goto unlock_fail; |
| 841 | |
| 842 | kvm_get_bus(kvm, bus_idx)->ioeventfd_count++; |
| 843 | list_add_tail(&p->list, &kvm->ioeventfds); |
| 844 | |
| 845 | mutex_unlock(&kvm->slots_lock); |
| 846 | |
| 847 | return 0; |
| 848 | |
| 849 | unlock_fail: |
| 850 | mutex_unlock(&kvm->slots_lock); |
| 851 | |
| 852 | fail: |
| 853 | kfree(p); |
| 854 | eventfd_ctx_put(eventfd); |
| 855 | |
| 856 | return ret; |
| 857 | } |
| 858 | |
| 859 | static int |
| 860 | kvm_deassign_ioeventfd_idx(struct kvm *kvm, enum kvm_bus bus_idx, |
| 861 | struct kvm_ioeventfd *args) |
| 862 | { |
| 863 | struct _ioeventfd *p, *tmp; |
| 864 | struct eventfd_ctx *eventfd; |
| 865 | struct kvm_io_bus *bus; |
| 866 | int ret = -ENOENT; |
| 867 | |
| 868 | eventfd = eventfd_ctx_fdget(args->fd); |
| 869 | if (IS_ERR(eventfd)) |
| 870 | return PTR_ERR(eventfd); |
| 871 | |
| 872 | mutex_lock(&kvm->slots_lock); |
| 873 | |
| 874 | list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { |
| 875 | bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); |
| 876 | |
| 877 | if (p->bus_idx != bus_idx || |
| 878 | p->eventfd != eventfd || |
| 879 | p->addr != args->addr || |
| 880 | p->length != args->len || |
| 881 | p->wildcard != wildcard) |
| 882 | continue; |
| 883 | |
| 884 | if (!p->wildcard && p->datamatch != args->datamatch) |
| 885 | continue; |
| 886 | |
| 887 | kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); |
| 888 | bus = kvm_get_bus(kvm, bus_idx); |
| 889 | if (bus) |
| 890 | bus->ioeventfd_count--; |
| 891 | ioeventfd_release(p); |
| 892 | ret = 0; |
| 893 | break; |
| 894 | } |
| 895 | |
| 896 | mutex_unlock(&kvm->slots_lock); |
| 897 | |
| 898 | eventfd_ctx_put(eventfd); |
| 899 | |
| 900 | return ret; |
| 901 | } |
| 902 | |
| 903 | static int kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) |
| 904 | { |
| 905 | enum kvm_bus bus_idx = ioeventfd_bus_from_flags(args->flags); |
| 906 | int ret = kvm_deassign_ioeventfd_idx(kvm, bus_idx, args); |
| 907 | |
| 908 | if (!args->len && bus_idx == KVM_MMIO_BUS) |
| 909 | kvm_deassign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args); |
| 910 | |
| 911 | return ret; |
| 912 | } |
| 913 | |
| 914 | static int |
| 915 | kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) |
| 916 | { |
| 917 | enum kvm_bus bus_idx; |
| 918 | int ret; |
| 919 | |
| 920 | bus_idx = ioeventfd_bus_from_flags(args->flags); |
| 921 | /* must be natural-word sized, or 0 to ignore length */ |
| 922 | switch (args->len) { |
| 923 | case 0: |
| 924 | case 1: |
| 925 | case 2: |
| 926 | case 4: |
| 927 | case 8: |
| 928 | break; |
| 929 | default: |
| 930 | return -EINVAL; |
| 931 | } |
| 932 | |
| 933 | /* check for range overflow */ |
| 934 | if (args->addr + args->len < args->addr) |
| 935 | return -EINVAL; |
| 936 | |
| 937 | /* check for extra flags that we don't understand */ |
| 938 | if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) |
| 939 | return -EINVAL; |
| 940 | |
| 941 | /* ioeventfd with no length can't be combined with DATAMATCH */ |
| 942 | if (!args->len && (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH)) |
| 943 | return -EINVAL; |
| 944 | |
| 945 | ret = kvm_assign_ioeventfd_idx(kvm, bus_idx, args); |
| 946 | if (ret) |
| 947 | goto fail; |
| 948 | |
| 949 | /* When length is ignored, MMIO is also put on a separate bus, for |
| 950 | * faster lookups. |
| 951 | */ |
| 952 | if (!args->len && bus_idx == KVM_MMIO_BUS) { |
| 953 | ret = kvm_assign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args); |
| 954 | if (ret < 0) |
| 955 | goto fast_fail; |
| 956 | } |
| 957 | |
| 958 | return 0; |
| 959 | |
| 960 | fast_fail: |
| 961 | kvm_deassign_ioeventfd_idx(kvm, bus_idx, args); |
| 962 | fail: |
| 963 | return ret; |
| 964 | } |
| 965 | |
| 966 | int |
| 967 | kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) |
| 968 | { |
| 969 | if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) |
| 970 | return kvm_deassign_ioeventfd(kvm, args); |
| 971 | |
| 972 | return kvm_assign_ioeventfd(kvm, args); |
| 973 | } |