blob: bc62a37e7122366f45a9100fc267bb26eb5f54f0 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24#include <linux/export.h>
25#include <linux/slab.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include <linux/fscrypt.h>
36#include <linux/fsnotify.h>
37#include <linux/lockdep.h>
38#include <linux/user_namespace.h>
39#include "internal.h"
40
41static int thaw_super_locked(struct super_block *sb);
42
43static LIST_HEAD(super_blocks);
44static DEFINE_SPINLOCK(sb_lock);
45
46static char *sb_writers_name[SB_FREEZE_LEVELS] = {
47 "sb_writers",
48 "sb_pagefaults",
49 "sb_internal",
50};
51
52/*
53 * One thing we have to be careful of with a per-sb shrinker is that we don't
54 * drop the last active reference to the superblock from within the shrinker.
55 * If that happens we could trigger unregistering the shrinker from within the
56 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
57 * take a passive reference to the superblock to avoid this from occurring.
58 */
59static unsigned long super_cache_scan(struct shrinker *shrink,
60 struct shrink_control *sc)
61{
62 struct super_block *sb;
63 long fs_objects = 0;
64 long total_objects;
65 long freed = 0;
66 long dentries;
67 long inodes;
68
69 sb = container_of(shrink, struct super_block, s_shrink);
70
71 /*
72 * Deadlock avoidance. We may hold various FS locks, and we don't want
73 * to recurse into the FS that called us in clear_inode() and friends..
74 */
75 if (!(sc->gfp_mask & __GFP_FS))
76 return SHRINK_STOP;
77
78 if (!trylock_super(sb))
79 return SHRINK_STOP;
80
81 if (sb->s_op->nr_cached_objects)
82 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
83
84 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
85 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
86 total_objects = dentries + inodes + fs_objects + 1;
87 if (!total_objects)
88 total_objects = 1;
89
90 /* proportion the scan between the caches */
91 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
92 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
93 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
94
95 /*
96 * prune the dcache first as the icache is pinned by it, then
97 * prune the icache, followed by the filesystem specific caches
98 *
99 * Ensure that we always scan at least one object - memcg kmem
100 * accounting uses this to fully empty the caches.
101 */
102 sc->nr_to_scan = dentries + 1;
103 freed = prune_dcache_sb(sb, sc);
104 sc->nr_to_scan = inodes + 1;
105 freed += prune_icache_sb(sb, sc);
106
107 if (fs_objects) {
108 sc->nr_to_scan = fs_objects + 1;
109 freed += sb->s_op->free_cached_objects(sb, sc);
110 }
111
112 up_read(&sb->s_umount);
113 return freed;
114}
115
116static unsigned long super_cache_count(struct shrinker *shrink,
117 struct shrink_control *sc)
118{
119 struct super_block *sb;
120 long total_objects = 0;
121
122 sb = container_of(shrink, struct super_block, s_shrink);
123
124 /*
125 * We don't call trylock_super() here as it is a scalability bottleneck,
126 * so we're exposed to partial setup state. The shrinker rwsem does not
127 * protect filesystem operations backing list_lru_shrink_count() or
128 * s_op->nr_cached_objects(). Counts can change between
129 * super_cache_count and super_cache_scan, so we really don't need locks
130 * here.
131 *
132 * However, if we are currently mounting the superblock, the underlying
133 * filesystem might be in a state of partial construction and hence it
134 * is dangerous to access it. trylock_super() uses a SB_BORN check to
135 * avoid this situation, so do the same here. The memory barrier is
136 * matched with the one in mount_fs() as we don't hold locks here.
137 */
138 if (!(sb->s_flags & SB_BORN))
139 return 0;
140 smp_rmb();
141
142 if (sb->s_op && sb->s_op->nr_cached_objects)
143 total_objects = sb->s_op->nr_cached_objects(sb, sc);
144
145 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
146 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
147
148 if (!total_objects)
149 return SHRINK_EMPTY;
150
151 total_objects = vfs_pressure_ratio(total_objects);
152 return total_objects;
153}
154
155static void destroy_super_work(struct work_struct *work)
156{
157 struct super_block *s = container_of(work, struct super_block,
158 destroy_work);
159 int i;
160
161 for (i = 0; i < SB_FREEZE_LEVELS; i++)
162 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
163 kfree(s);
164}
165
166static void destroy_super_rcu(struct rcu_head *head)
167{
168 struct super_block *s = container_of(head, struct super_block, rcu);
169 INIT_WORK(&s->destroy_work, destroy_super_work);
170 schedule_work(&s->destroy_work);
171}
172
173/* Free a superblock that has never been seen by anyone */
174static void destroy_unused_super(struct super_block *s)
175{
176 if (!s)
177 return;
178 up_write(&s->s_umount);
179 list_lru_destroy(&s->s_dentry_lru);
180 list_lru_destroy(&s->s_inode_lru);
181 security_sb_free(s);
182 put_user_ns(s->s_user_ns);
183 kfree(s->s_subtype);
184 free_prealloced_shrinker(&s->s_shrink);
185 /* no delays needed */
186 destroy_super_work(&s->destroy_work);
187}
188
189/**
190 * alloc_super - create new superblock
191 * @type: filesystem type superblock should belong to
192 * @flags: the mount flags
193 * @user_ns: User namespace for the super_block
194 *
195 * Allocates and initializes a new &struct super_block. alloc_super()
196 * returns a pointer new superblock or %NULL if allocation had failed.
197 */
198static struct super_block *alloc_super(struct file_system_type *type, int flags,
199 struct user_namespace *user_ns)
200{
201 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
202 static const struct super_operations default_op;
203 int i;
204
205 if (!s)
206 return NULL;
207
208 INIT_LIST_HEAD(&s->s_mounts);
209 s->s_user_ns = get_user_ns(user_ns);
210 init_rwsem(&s->s_umount);
211 lockdep_set_class(&s->s_umount, &type->s_umount_key);
212 /*
213 * sget() can have s_umount recursion.
214 *
215 * When it cannot find a suitable sb, it allocates a new
216 * one (this one), and tries again to find a suitable old
217 * one.
218 *
219 * In case that succeeds, it will acquire the s_umount
220 * lock of the old one. Since these are clearly distrinct
221 * locks, and this object isn't exposed yet, there's no
222 * risk of deadlocks.
223 *
224 * Annotate this by putting this lock in a different
225 * subclass.
226 */
227 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
228
229 if (security_sb_alloc(s))
230 goto fail;
231
232 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
233 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
234 sb_writers_name[i],
235 &type->s_writers_key[i]))
236 goto fail;
237 }
238 init_waitqueue_head(&s->s_writers.wait_unfrozen);
239 s->s_bdi = &noop_backing_dev_info;
240 s->s_flags = flags;
241 if (s->s_user_ns != &init_user_ns)
242 s->s_iflags |= SB_I_NODEV;
243 INIT_HLIST_NODE(&s->s_instances);
244 INIT_HLIST_BL_HEAD(&s->s_roots);
245 mutex_init(&s->s_sync_lock);
246 INIT_LIST_HEAD(&s->s_inodes);
247 spin_lock_init(&s->s_inode_list_lock);
248 INIT_LIST_HEAD(&s->s_inodes_wb);
249 spin_lock_init(&s->s_inode_wblist_lock);
250
251 s->s_count = 1;
252 atomic_set(&s->s_active, 1);
253 mutex_init(&s->s_vfs_rename_mutex);
254 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
255 init_rwsem(&s->s_dquot.dqio_sem);
256 s->s_maxbytes = MAX_NON_LFS;
257 s->s_op = &default_op;
258 s->s_time_gran = 1000000000;
259 s->cleancache_poolid = CLEANCACHE_NO_POOL;
260
261 s->s_shrink.seeks = DEFAULT_SEEKS;
262 s->s_shrink.scan_objects = super_cache_scan;
263 s->s_shrink.count_objects = super_cache_count;
264 s->s_shrink.batch = 1024;
265 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
266 if (prealloc_shrinker(&s->s_shrink))
267 goto fail;
268 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
269 goto fail;
270 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
271 goto fail;
272 return s;
273
274fail:
275 destroy_unused_super(s);
276 return NULL;
277}
278
279/* Superblock refcounting */
280
281/*
282 * Drop a superblock's refcount. The caller must hold sb_lock.
283 */
284static void __put_super(struct super_block *s)
285{
286 if (!--s->s_count) {
287 list_del_init(&s->s_list);
288 WARN_ON(s->s_dentry_lru.node);
289 WARN_ON(s->s_inode_lru.node);
290 WARN_ON(!list_empty(&s->s_mounts));
291 security_sb_free(s);
292 fscrypt_sb_free(s);
293 put_user_ns(s->s_user_ns);
294 kfree(s->s_subtype);
295 call_rcu(&s->rcu, destroy_super_rcu);
296 }
297}
298
299/**
300 * put_super - drop a temporary reference to superblock
301 * @sb: superblock in question
302 *
303 * Drops a temporary reference, frees superblock if there's no
304 * references left.
305 */
306static void put_super(struct super_block *sb)
307{
308 spin_lock(&sb_lock);
309 __put_super(sb);
310 spin_unlock(&sb_lock);
311}
312
313
314/**
315 * deactivate_locked_super - drop an active reference to superblock
316 * @s: superblock to deactivate
317 *
318 * Drops an active reference to superblock, converting it into a temporary
319 * one if there is no other active references left. In that case we
320 * tell fs driver to shut it down and drop the temporary reference we
321 * had just acquired.
322 *
323 * Caller holds exclusive lock on superblock; that lock is released.
324 */
325void deactivate_locked_super(struct super_block *s)
326{
327 struct file_system_type *fs = s->s_type;
328 if (atomic_dec_and_test(&s->s_active)) {
329 cleancache_invalidate_fs(s);
330 unregister_shrinker(&s->s_shrink);
331 fs->kill_sb(s);
332
333 /*
334 * Since list_lru_destroy() may sleep, we cannot call it from
335 * put_super(), where we hold the sb_lock. Therefore we destroy
336 * the lru lists right now.
337 */
338 list_lru_destroy(&s->s_dentry_lru);
339 list_lru_destroy(&s->s_inode_lru);
340
341 put_filesystem(fs);
342 put_super(s);
343 } else {
344 up_write(&s->s_umount);
345 }
346}
347
348EXPORT_SYMBOL(deactivate_locked_super);
349
350/**
351 * deactivate_super - drop an active reference to superblock
352 * @s: superblock to deactivate
353 *
354 * Variant of deactivate_locked_super(), except that superblock is *not*
355 * locked by caller. If we are going to drop the final active reference,
356 * lock will be acquired prior to that.
357 */
358void deactivate_super(struct super_block *s)
359{
360 if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 down_write(&s->s_umount);
362 deactivate_locked_super(s);
363 }
364}
365
366EXPORT_SYMBOL(deactivate_super);
367
368/**
369 * grab_super - acquire an active reference
370 * @s: reference we are trying to make active
371 *
372 * Tries to acquire an active reference. grab_super() is used when we
373 * had just found a superblock in super_blocks or fs_type->fs_supers
374 * and want to turn it into a full-blown active reference. grab_super()
375 * is called with sb_lock held and drops it. Returns 1 in case of
376 * success, 0 if we had failed (superblock contents was already dead or
377 * dying when grab_super() had been called). Note that this is only
378 * called for superblocks not in rundown mode (== ones still on ->fs_supers
379 * of their type), so increment of ->s_count is OK here.
380 */
381static int grab_super(struct super_block *s) __releases(sb_lock)
382{
383 s->s_count++;
384 spin_unlock(&sb_lock);
385 down_write(&s->s_umount);
386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 put_super(s);
388 return 1;
389 }
390 up_write(&s->s_umount);
391 put_super(s);
392 return 0;
393}
394
395/*
396 * trylock_super - try to grab ->s_umount shared
397 * @sb: reference we are trying to grab
398 *
399 * Try to prevent fs shutdown. This is used in places where we
400 * cannot take an active reference but we need to ensure that the
401 * filesystem is not shut down while we are working on it. It returns
402 * false if we cannot acquire s_umount or if we lose the race and
403 * filesystem already got into shutdown, and returns true with the s_umount
404 * lock held in read mode in case of success. On successful return,
405 * the caller must drop the s_umount lock when done.
406 *
407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408 * The reason why it's safe is that we are OK with doing trylock instead
409 * of down_read(). There's a couple of places that are OK with that, but
410 * it's very much not a general-purpose interface.
411 */
412bool trylock_super(struct super_block *sb)
413{
414 if (down_read_trylock(&sb->s_umount)) {
415 if (!hlist_unhashed(&sb->s_instances) &&
416 sb->s_root && (sb->s_flags & SB_BORN))
417 return true;
418 up_read(&sb->s_umount);
419 }
420
421 return false;
422}
423
424/**
425 * generic_shutdown_super - common helper for ->kill_sb()
426 * @sb: superblock to kill
427 *
428 * generic_shutdown_super() does all fs-independent work on superblock
429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
430 * that need destruction out of superblock, call generic_shutdown_super()
431 * and release aforementioned objects. Note: dentries and inodes _are_
432 * taken care of and do not need specific handling.
433 *
434 * Upon calling this function, the filesystem may no longer alter or
435 * rearrange the set of dentries belonging to this super_block, nor may it
436 * change the attachments of dentries to inodes.
437 */
438void generic_shutdown_super(struct super_block *sb)
439{
440 const struct super_operations *sop = sb->s_op;
441
442 if (sb->s_root) {
443 shrink_dcache_for_umount(sb);
444 sync_filesystem(sb);
445 sb->s_flags &= ~SB_ACTIVE;
446
447 fsnotify_unmount_inodes(sb);
448 cgroup_writeback_umount();
449
450 evict_inodes(sb);
451
452 if (sb->s_dio_done_wq) {
453 destroy_workqueue(sb->s_dio_done_wq);
454 sb->s_dio_done_wq = NULL;
455 }
456
457 if (sop->put_super)
458 sop->put_super(sb);
459
460 if (!list_empty(&sb->s_inodes)) {
461 printk("VFS: Busy inodes after unmount of %s. "
462 "Self-destruct in 5 seconds. Have a nice day...\n",
463 sb->s_id);
464 }
465 }
466 spin_lock(&sb_lock);
467 /* should be initialized for __put_super_and_need_restart() */
468 hlist_del_init(&sb->s_instances);
469 spin_unlock(&sb_lock);
470 up_write(&sb->s_umount);
471 if (sb->s_bdi != &noop_backing_dev_info) {
472 bdi_put(sb->s_bdi);
473 sb->s_bdi = &noop_backing_dev_info;
474 }
475}
476
477EXPORT_SYMBOL(generic_shutdown_super);
478
479/**
480 * sget_userns - find or create a superblock
481 * @type: filesystem type superblock should belong to
482 * @test: comparison callback
483 * @set: setup callback
484 * @flags: mount flags
485 * @user_ns: User namespace for the super_block
486 * @data: argument to each of them
487 */
488struct super_block *sget_userns(struct file_system_type *type,
489 int (*test)(struct super_block *,void *),
490 int (*set)(struct super_block *,void *),
491 int flags, struct user_namespace *user_ns,
492 void *data)
493{
494 struct super_block *s = NULL;
495 struct super_block *old;
496 int err;
497
498 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
499 !(type->fs_flags & FS_USERNS_MOUNT) &&
500 !capable(CAP_SYS_ADMIN))
501 return ERR_PTR(-EPERM);
502retry:
503 spin_lock(&sb_lock);
504 if (test) {
505 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
506 if (!test(old, data))
507 continue;
508 if (user_ns != old->s_user_ns) {
509 spin_unlock(&sb_lock);
510 destroy_unused_super(s);
511 return ERR_PTR(-EBUSY);
512 }
513 if (!grab_super(old))
514 goto retry;
515 destroy_unused_super(s);
516 return old;
517 }
518 }
519 if (!s) {
520 spin_unlock(&sb_lock);
521 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
522 if (!s)
523 return ERR_PTR(-ENOMEM);
524 goto retry;
525 }
526
527 err = set(s, data);
528 if (err) {
529 spin_unlock(&sb_lock);
530 destroy_unused_super(s);
531 return ERR_PTR(err);
532 }
533 s->s_type = type;
534 strlcpy(s->s_id, type->name, sizeof(s->s_id));
535 list_add_tail(&s->s_list, &super_blocks);
536 hlist_add_head(&s->s_instances, &type->fs_supers);
537 spin_unlock(&sb_lock);
538 get_filesystem(type);
539 register_shrinker_prepared(&s->s_shrink);
540 return s;
541}
542
543EXPORT_SYMBOL(sget_userns);
544
545/**
546 * sget - find or create a superblock
547 * @type: filesystem type superblock should belong to
548 * @test: comparison callback
549 * @set: setup callback
550 * @flags: mount flags
551 * @data: argument to each of them
552 */
553struct super_block *sget(struct file_system_type *type,
554 int (*test)(struct super_block *,void *),
555 int (*set)(struct super_block *,void *),
556 int flags,
557 void *data)
558{
559 struct user_namespace *user_ns = current_user_ns();
560
561 /* We don't yet pass the user namespace of the parent
562 * mount through to here so always use &init_user_ns
563 * until that changes.
564 */
565 if (flags & SB_SUBMOUNT)
566 user_ns = &init_user_ns;
567
568 /* Ensure the requestor has permissions over the target filesystem */
569 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
570 return ERR_PTR(-EPERM);
571
572 return sget_userns(type, test, set, flags, user_ns, data);
573}
574
575EXPORT_SYMBOL(sget);
576
577void drop_super(struct super_block *sb)
578{
579 up_read(&sb->s_umount);
580 put_super(sb);
581}
582
583EXPORT_SYMBOL(drop_super);
584
585void drop_super_exclusive(struct super_block *sb)
586{
587 up_write(&sb->s_umount);
588 put_super(sb);
589}
590EXPORT_SYMBOL(drop_super_exclusive);
591
592static void __iterate_supers(void (*f)(struct super_block *))
593{
594 struct super_block *sb, *p = NULL;
595
596 spin_lock(&sb_lock);
597 list_for_each_entry(sb, &super_blocks, s_list) {
598 if (hlist_unhashed(&sb->s_instances))
599 continue;
600 sb->s_count++;
601 spin_unlock(&sb_lock);
602
603 f(sb);
604
605 spin_lock(&sb_lock);
606 if (p)
607 __put_super(p);
608 p = sb;
609 }
610 if (p)
611 __put_super(p);
612 spin_unlock(&sb_lock);
613}
614/**
615 * iterate_supers - call function for all active superblocks
616 * @f: function to call
617 * @arg: argument to pass to it
618 *
619 * Scans the superblock list and calls given function, passing it
620 * locked superblock and given argument.
621 */
622void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
623{
624 struct super_block *sb, *p = NULL;
625
626 spin_lock(&sb_lock);
627 list_for_each_entry(sb, &super_blocks, s_list) {
628 if (hlist_unhashed(&sb->s_instances))
629 continue;
630 sb->s_count++;
631 spin_unlock(&sb_lock);
632
633 down_read(&sb->s_umount);
634 if (sb->s_root && (sb->s_flags & SB_BORN))
635 f(sb, arg);
636 up_read(&sb->s_umount);
637
638 spin_lock(&sb_lock);
639 if (p)
640 __put_super(p);
641 p = sb;
642 }
643 if (p)
644 __put_super(p);
645 spin_unlock(&sb_lock);
646}
647
648/**
649 * iterate_supers_type - call function for superblocks of given type
650 * @type: fs type
651 * @f: function to call
652 * @arg: argument to pass to it
653 *
654 * Scans the superblock list and calls given function, passing it
655 * locked superblock and given argument.
656 */
657void iterate_supers_type(struct file_system_type *type,
658 void (*f)(struct super_block *, void *), void *arg)
659{
660 struct super_block *sb, *p = NULL;
661
662 spin_lock(&sb_lock);
663 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
664 sb->s_count++;
665 spin_unlock(&sb_lock);
666
667 down_read(&sb->s_umount);
668 if (sb->s_root && (sb->s_flags & SB_BORN))
669 f(sb, arg);
670 up_read(&sb->s_umount);
671
672 spin_lock(&sb_lock);
673 if (p)
674 __put_super(p);
675 p = sb;
676 }
677 if (p)
678 __put_super(p);
679 spin_unlock(&sb_lock);
680}
681
682EXPORT_SYMBOL(iterate_supers_type);
683
684static struct super_block *__get_super(struct block_device *bdev, bool excl)
685{
686 struct super_block *sb;
687
688 if (!bdev)
689 return NULL;
690
691 spin_lock(&sb_lock);
692rescan:
693 list_for_each_entry(sb, &super_blocks, s_list) {
694 if (hlist_unhashed(&sb->s_instances))
695 continue;
696 if (sb->s_bdev == bdev) {
697 sb->s_count++;
698 spin_unlock(&sb_lock);
699 if (!excl)
700 down_read(&sb->s_umount);
701 else
702 down_write(&sb->s_umount);
703 /* still alive? */
704 if (sb->s_root && (sb->s_flags & SB_BORN))
705 return sb;
706 if (!excl)
707 up_read(&sb->s_umount);
708 else
709 up_write(&sb->s_umount);
710 /* nope, got unmounted */
711 spin_lock(&sb_lock);
712 __put_super(sb);
713 goto rescan;
714 }
715 }
716 spin_unlock(&sb_lock);
717 return NULL;
718}
719
720/**
721 * get_super - get the superblock of a device
722 * @bdev: device to get the superblock for
723 *
724 * Scans the superblock list and finds the superblock of the file system
725 * mounted on the device given. %NULL is returned if no match is found.
726 */
727struct super_block *get_super(struct block_device *bdev)
728{
729 return __get_super(bdev, false);
730}
731EXPORT_SYMBOL(get_super);
732
733static struct super_block *__get_super_thawed(struct block_device *bdev,
734 bool excl)
735{
736 while (1) {
737 struct super_block *s = __get_super(bdev, excl);
738 if (!s || s->s_writers.frozen == SB_UNFROZEN)
739 return s;
740 if (!excl)
741 up_read(&s->s_umount);
742 else
743 up_write(&s->s_umount);
744 wait_event(s->s_writers.wait_unfrozen,
745 s->s_writers.frozen == SB_UNFROZEN);
746 put_super(s);
747 }
748}
749
750/**
751 * get_super_thawed - get thawed superblock of a device
752 * @bdev: device to get the superblock for
753 *
754 * Scans the superblock list and finds the superblock of the file system
755 * mounted on the device. The superblock is returned once it is thawed
756 * (or immediately if it was not frozen). %NULL is returned if no match
757 * is found.
758 */
759struct super_block *get_super_thawed(struct block_device *bdev)
760{
761 return __get_super_thawed(bdev, false);
762}
763EXPORT_SYMBOL(get_super_thawed);
764
765/**
766 * get_super_exclusive_thawed - get thawed superblock of a device
767 * @bdev: device to get the superblock for
768 *
769 * Scans the superblock list and finds the superblock of the file system
770 * mounted on the device. The superblock is returned once it is thawed
771 * (or immediately if it was not frozen) and s_umount semaphore is held
772 * in exclusive mode. %NULL is returned if no match is found.
773 */
774struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
775{
776 return __get_super_thawed(bdev, true);
777}
778EXPORT_SYMBOL(get_super_exclusive_thawed);
779
780/**
781 * get_active_super - get an active reference to the superblock of a device
782 * @bdev: device to get the superblock for
783 *
784 * Scans the superblock list and finds the superblock of the file system
785 * mounted on the device given. Returns the superblock with an active
786 * reference or %NULL if none was found.
787 */
788struct super_block *get_active_super(struct block_device *bdev)
789{
790 struct super_block *sb;
791
792 if (!bdev)
793 return NULL;
794
795restart:
796 spin_lock(&sb_lock);
797 list_for_each_entry(sb, &super_blocks, s_list) {
798 if (hlist_unhashed(&sb->s_instances))
799 continue;
800 if (sb->s_bdev == bdev) {
801 if (!grab_super(sb))
802 goto restart;
803 up_write(&sb->s_umount);
804 return sb;
805 }
806 }
807 spin_unlock(&sb_lock);
808 return NULL;
809}
810
811struct super_block *user_get_super(dev_t dev)
812{
813 struct super_block *sb;
814
815 spin_lock(&sb_lock);
816rescan:
817 list_for_each_entry(sb, &super_blocks, s_list) {
818 if (hlist_unhashed(&sb->s_instances))
819 continue;
820 if (sb->s_dev == dev) {
821 sb->s_count++;
822 spin_unlock(&sb_lock);
823 down_read(&sb->s_umount);
824 /* still alive? */
825 if (sb->s_root && (sb->s_flags & SB_BORN))
826 return sb;
827 up_read(&sb->s_umount);
828 /* nope, got unmounted */
829 spin_lock(&sb_lock);
830 __put_super(sb);
831 goto rescan;
832 }
833 }
834 spin_unlock(&sb_lock);
835 return NULL;
836}
837
838/**
839 * do_remount_sb2 - asks filesystem to change mount options.
840 * @mnt: mount we are looking at
841 * @sb: superblock in question
842 * @sb_flags: revised superblock flags
843 * @data: the rest of options
844 * @force: whether or not to force the change
845 *
846 * Alters the mount options of a mounted file system.
847 */
848int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int sb_flags, void *data, int force)
849{
850 int retval;
851 int remount_ro;
852
853 if (sb->s_writers.frozen != SB_UNFROZEN)
854 return -EBUSY;
855
856#ifdef CONFIG_BLOCK
857 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
858 return -EACCES;
859#endif
860
861 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
862
863 if (remount_ro) {
864 if (!hlist_empty(&sb->s_pins)) {
865 up_write(&sb->s_umount);
866 group_pin_kill(&sb->s_pins);
867 down_write(&sb->s_umount);
868 if (!sb->s_root)
869 return 0;
870 if (sb->s_writers.frozen != SB_UNFROZEN)
871 return -EBUSY;
872 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
873 }
874 }
875 shrink_dcache_sb(sb);
876
877 /* If we are remounting RDONLY and current sb is read/write,
878 make sure there are no rw files opened */
879 if (remount_ro) {
880 if (force) {
881 sb->s_readonly_remount = 1;
882 smp_wmb();
883 } else {
884 retval = sb_prepare_remount_readonly(sb);
885 if (retval)
886 return retval;
887 }
888 }
889
890 if (mnt && sb->s_op->remount_fs2) {
891 retval = sb->s_op->remount_fs2(mnt, sb, &sb_flags, data);
892 if (retval) {
893 if (!force)
894 goto cancel_readonly;
895 /* If forced remount, go ahead despite any errors */
896 WARN(1, "forced remount of a %s fs returned %i\n",
897 sb->s_type->name, retval);
898 }
899 } else if (sb->s_op->remount_fs) {
900 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
901 if (retval) {
902 if (!force)
903 goto cancel_readonly;
904 /* If forced remount, go ahead despite any errors */
905 WARN(1, "forced remount of a %s fs returned %i\n",
906 sb->s_type->name, retval);
907 }
908 }
909 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
910 /* Needs to be ordered wrt mnt_is_readonly() */
911 smp_wmb();
912 sb->s_readonly_remount = 0;
913
914 /*
915 * Some filesystems modify their metadata via some other path than the
916 * bdev buffer cache (eg. use a private mapping, or directories in
917 * pagecache, etc). Also file data modifications go via their own
918 * mappings. So If we try to mount readonly then copy the filesystem
919 * from bdev, we could get stale data, so invalidate it to give a best
920 * effort at coherency.
921 */
922 if (remount_ro && sb->s_bdev)
923 invalidate_bdev(sb->s_bdev);
924 return 0;
925
926cancel_readonly:
927 sb->s_readonly_remount = 0;
928 return retval;
929}
930
931int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
932{
933 return do_remount_sb2(NULL, sb, flags, data, force);
934}
935
936static void do_emergency_remount_callback(struct super_block *sb)
937{
938 down_write(&sb->s_umount);
939 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
940 !sb_rdonly(sb)) {
941 /*
942 * What lock protects sb->s_flags??
943 */
944 do_remount_sb(sb, SB_RDONLY, NULL, 1);
945 }
946 up_write(&sb->s_umount);
947}
948
949static void do_emergency_remount(struct work_struct *work)
950{
951 __iterate_supers(do_emergency_remount_callback);
952 kfree(work);
953 printk("Emergency Remount complete\n");
954}
955
956void emergency_remount(void)
957{
958 struct work_struct *work;
959
960 work = kmalloc(sizeof(*work), GFP_ATOMIC);
961 if (work) {
962 INIT_WORK(work, do_emergency_remount);
963 schedule_work(work);
964 }
965}
966
967static void do_thaw_all_callback(struct super_block *sb)
968{
969 down_write(&sb->s_umount);
970 if (sb->s_root && sb->s_flags & SB_BORN) {
971 emergency_thaw_bdev(sb);
972 thaw_super_locked(sb);
973 } else {
974 up_write(&sb->s_umount);
975 }
976}
977
978static void do_thaw_all(struct work_struct *work)
979{
980 __iterate_supers(do_thaw_all_callback);
981 kfree(work);
982 printk(KERN_WARNING "Emergency Thaw complete\n");
983}
984
985/**
986 * emergency_thaw_all -- forcibly thaw every frozen filesystem
987 *
988 * Used for emergency unfreeze of all filesystems via SysRq
989 */
990void emergency_thaw_all(void)
991{
992 struct work_struct *work;
993
994 work = kmalloc(sizeof(*work), GFP_ATOMIC);
995 if (work) {
996 INIT_WORK(work, do_thaw_all);
997 schedule_work(work);
998 }
999}
1000
1001static DEFINE_IDA(unnamed_dev_ida);
1002
1003/**
1004 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1005 * @p: Pointer to a dev_t.
1006 *
1007 * Filesystems which don't use real block devices can call this function
1008 * to allocate a virtual block device.
1009 *
1010 * Context: Any context. Frequently called while holding sb_lock.
1011 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1012 * or -ENOMEM if memory allocation failed.
1013 */
1014int get_anon_bdev(dev_t *p)
1015{
1016 int dev;
1017
1018 /*
1019 * Many userspace utilities consider an FSID of 0 invalid.
1020 * Always return at least 1 from get_anon_bdev.
1021 */
1022 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1023 GFP_ATOMIC);
1024 if (dev == -ENOSPC)
1025 dev = -EMFILE;
1026 if (dev < 0)
1027 return dev;
1028
1029 *p = MKDEV(0, dev);
1030 return 0;
1031}
1032EXPORT_SYMBOL(get_anon_bdev);
1033
1034void free_anon_bdev(dev_t dev)
1035{
1036 ida_free(&unnamed_dev_ida, MINOR(dev));
1037}
1038EXPORT_SYMBOL(free_anon_bdev);
1039
1040int set_anon_super(struct super_block *s, void *data)
1041{
1042 return get_anon_bdev(&s->s_dev);
1043}
1044EXPORT_SYMBOL(set_anon_super);
1045
1046void kill_anon_super(struct super_block *sb)
1047{
1048 dev_t dev = sb->s_dev;
1049 generic_shutdown_super(sb);
1050 free_anon_bdev(dev);
1051}
1052EXPORT_SYMBOL(kill_anon_super);
1053
1054void kill_litter_super(struct super_block *sb)
1055{
1056 if (sb->s_root)
1057 d_genocide(sb->s_root);
1058 kill_anon_super(sb);
1059}
1060EXPORT_SYMBOL(kill_litter_super);
1061
1062static int ns_test_super(struct super_block *sb, void *data)
1063{
1064 return sb->s_fs_info == data;
1065}
1066
1067static int ns_set_super(struct super_block *sb, void *data)
1068{
1069 sb->s_fs_info = data;
1070 return set_anon_super(sb, NULL);
1071}
1072
1073struct dentry *mount_ns(struct file_system_type *fs_type,
1074 int flags, void *data, void *ns, struct user_namespace *user_ns,
1075 int (*fill_super)(struct super_block *, void *, int))
1076{
1077 struct super_block *sb;
1078
1079 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1080 * over the namespace.
1081 */
1082 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1083 return ERR_PTR(-EPERM);
1084
1085 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1086 user_ns, ns);
1087 if (IS_ERR(sb))
1088 return ERR_CAST(sb);
1089
1090 if (!sb->s_root) {
1091 int err;
1092 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1093 if (err) {
1094 deactivate_locked_super(sb);
1095 return ERR_PTR(err);
1096 }
1097
1098 sb->s_flags |= SB_ACTIVE;
1099 }
1100
1101 return dget(sb->s_root);
1102}
1103
1104EXPORT_SYMBOL(mount_ns);
1105
1106#ifdef CONFIG_BLOCK
1107static int set_bdev_super(struct super_block *s, void *data)
1108{
1109 s->s_bdev = data;
1110 s->s_dev = s->s_bdev->bd_dev;
1111 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1112
1113 return 0;
1114}
1115
1116static int test_bdev_super(struct super_block *s, void *data)
1117{
1118 return (void *)s->s_bdev == data;
1119}
1120
1121struct dentry *mount_bdev(struct file_system_type *fs_type,
1122 int flags, const char *dev_name, void *data,
1123 int (*fill_super)(struct super_block *, void *, int))
1124{
1125 struct block_device *bdev;
1126 struct super_block *s;
1127 fmode_t mode = FMODE_READ | FMODE_EXCL;
1128 int error = 0;
1129
1130 if (!(flags & SB_RDONLY))
1131 mode |= FMODE_WRITE;
1132
1133 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1134 if (IS_ERR(bdev))
1135 return ERR_CAST(bdev);
1136
1137 /*
1138 * once the super is inserted into the list by sget, s_umount
1139 * will protect the lockfs code from trying to start a snapshot
1140 * while we are mounting
1141 */
1142 mutex_lock(&bdev->bd_fsfreeze_mutex);
1143 if (bdev->bd_fsfreeze_count > 0) {
1144 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1145 error = -EBUSY;
1146 goto error_bdev;
1147 }
1148 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1149 bdev);
1150 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1151 if (IS_ERR(s))
1152 goto error_s;
1153
1154 if (s->s_root) {
1155 if ((flags ^ s->s_flags) & SB_RDONLY) {
1156 deactivate_locked_super(s);
1157 error = -EBUSY;
1158 goto error_bdev;
1159 }
1160
1161 /*
1162 * s_umount nests inside bd_mutex during
1163 * __invalidate_device(). blkdev_put() acquires
1164 * bd_mutex and can't be called under s_umount. Drop
1165 * s_umount temporarily. This is safe as we're
1166 * holding an active reference.
1167 */
1168 up_write(&s->s_umount);
1169 blkdev_put(bdev, mode);
1170 down_write(&s->s_umount);
1171 } else {
1172 s->s_mode = mode;
1173 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1174 sb_set_blocksize(s, block_size(bdev));
1175 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1176 if (error) {
1177 deactivate_locked_super(s);
1178 goto error;
1179 }
1180
1181 s->s_flags |= SB_ACTIVE;
1182 bdev->bd_super = s;
1183 }
1184
1185 return dget(s->s_root);
1186
1187error_s:
1188 error = PTR_ERR(s);
1189error_bdev:
1190 blkdev_put(bdev, mode);
1191error:
1192 return ERR_PTR(error);
1193}
1194EXPORT_SYMBOL(mount_bdev);
1195
1196void kill_block_super(struct super_block *sb)
1197{
1198 struct block_device *bdev = sb->s_bdev;
1199 fmode_t mode = sb->s_mode;
1200
1201 bdev->bd_super = NULL;
1202 generic_shutdown_super(sb);
1203 sync_blockdev(bdev);
1204 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1205 blkdev_put(bdev, mode | FMODE_EXCL);
1206}
1207
1208EXPORT_SYMBOL(kill_block_super);
1209#endif
1210
1211struct dentry *mount_nodev(struct file_system_type *fs_type,
1212 int flags, void *data,
1213 int (*fill_super)(struct super_block *, void *, int))
1214{
1215 int error;
1216 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1217
1218 if (IS_ERR(s))
1219 return ERR_CAST(s);
1220
1221 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1222 if (error) {
1223 deactivate_locked_super(s);
1224 return ERR_PTR(error);
1225 }
1226 s->s_flags |= SB_ACTIVE;
1227 return dget(s->s_root);
1228}
1229EXPORT_SYMBOL(mount_nodev);
1230
1231static int compare_single(struct super_block *s, void *p)
1232{
1233 return 1;
1234}
1235
1236struct dentry *mount_single(struct file_system_type *fs_type,
1237 int flags, void *data,
1238 int (*fill_super)(struct super_block *, void *, int))
1239{
1240 struct super_block *s;
1241 int error;
1242
1243 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1244 if (IS_ERR(s))
1245 return ERR_CAST(s);
1246 if (!s->s_root) {
1247 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1248 if (error) {
1249 deactivate_locked_super(s);
1250 return ERR_PTR(error);
1251 }
1252 s->s_flags |= SB_ACTIVE;
1253 } else {
1254 do_remount_sb(s, flags, data, 0);
1255 }
1256 return dget(s->s_root);
1257}
1258EXPORT_SYMBOL(mount_single);
1259
1260struct dentry *
1261mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1262{
1263 struct dentry *root;
1264 struct super_block *sb;
1265 char *secdata = NULL;
1266 int error = -ENOMEM;
1267
1268 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1269 secdata = alloc_secdata();
1270 if (!secdata)
1271 goto out;
1272
1273 error = security_sb_copy_data(data, secdata);
1274 if (error)
1275 goto out_free_secdata;
1276 }
1277
1278 if (type->mount2)
1279 root = type->mount2(mnt, type, flags, name, data);
1280 else
1281 root = type->mount(type, flags, name, data);
1282 if (IS_ERR(root)) {
1283 error = PTR_ERR(root);
1284 goto out_free_secdata;
1285 }
1286 sb = root->d_sb;
1287 BUG_ON(!sb);
1288 WARN_ON(!sb->s_bdi);
1289
1290 /*
1291 * Write barrier is for super_cache_count(). We place it before setting
1292 * SB_BORN as the data dependency between the two functions is the
1293 * superblock structure contents that we just set up, not the SB_BORN
1294 * flag.
1295 */
1296 smp_wmb();
1297 sb->s_flags |= SB_BORN;
1298
1299 error = security_sb_kern_mount(sb, flags, secdata);
1300 if (error)
1301 goto out_sb;
1302
1303 /*
1304 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1305 * but s_maxbytes was an unsigned long long for many releases. Throw
1306 * this warning for a little while to try and catch filesystems that
1307 * violate this rule.
1308 */
1309 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1310 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1311
1312 up_write(&sb->s_umount);
1313 free_secdata(secdata);
1314 return root;
1315out_sb:
1316 dput(root);
1317 deactivate_locked_super(sb);
1318out_free_secdata:
1319 free_secdata(secdata);
1320out:
1321 return ERR_PTR(error);
1322}
1323
1324/*
1325 * Setup private BDI for given superblock. It gets automatically cleaned up
1326 * in generic_shutdown_super().
1327 */
1328int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1329{
1330 struct backing_dev_info *bdi;
1331 int err;
1332 va_list args;
1333
1334 bdi = bdi_alloc(GFP_KERNEL);
1335 if (!bdi)
1336 return -ENOMEM;
1337
1338 bdi->name = sb->s_type->name;
1339
1340 va_start(args, fmt);
1341 err = bdi_register_va(bdi, fmt, args);
1342 va_end(args);
1343 if (err) {
1344 bdi_put(bdi);
1345 return err;
1346 }
1347 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1348 sb->s_bdi = bdi;
1349
1350 return 0;
1351}
1352EXPORT_SYMBOL(super_setup_bdi_name);
1353
1354/*
1355 * Setup private BDI for given superblock. I gets automatically cleaned up
1356 * in generic_shutdown_super().
1357 */
1358int super_setup_bdi(struct super_block *sb)
1359{
1360 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1361
1362 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1363 atomic_long_inc_return(&bdi_seq));
1364}
1365EXPORT_SYMBOL(super_setup_bdi);
1366
1367/*
1368 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1369 * instead.
1370 */
1371void __sb_end_write(struct super_block *sb, int level)
1372{
1373 percpu_up_read(sb->s_writers.rw_sem + level-1);
1374}
1375EXPORT_SYMBOL(__sb_end_write);
1376
1377/*
1378 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1379 * instead.
1380 */
1381int __sb_start_write(struct super_block *sb, int level, bool wait)
1382{
1383 bool force_trylock = false;
1384 int ret = 1;
1385
1386#ifdef CONFIG_LOCKDEP
1387 /*
1388 * We want lockdep to tell us about possible deadlocks with freezing
1389 * but it's it bit tricky to properly instrument it. Getting a freeze
1390 * protection works as getting a read lock but there are subtle
1391 * problems. XFS for example gets freeze protection on internal level
1392 * twice in some cases, which is OK only because we already hold a
1393 * freeze protection also on higher level. Due to these cases we have
1394 * to use wait == F (trylock mode) which must not fail.
1395 */
1396 if (wait) {
1397 int i;
1398
1399 for (i = 0; i < level - 1; i++)
1400 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1401 force_trylock = true;
1402 break;
1403 }
1404 }
1405#endif
1406 if (wait && !force_trylock)
1407 percpu_down_read(sb->s_writers.rw_sem + level-1);
1408 else
1409 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1410
1411 WARN_ON(force_trylock && !ret);
1412 return ret;
1413}
1414EXPORT_SYMBOL(__sb_start_write);
1415
1416/**
1417 * sb_wait_write - wait until all writers to given file system finish
1418 * @sb: the super for which we wait
1419 * @level: type of writers we wait for (normal vs page fault)
1420 *
1421 * This function waits until there are no writers of given type to given file
1422 * system.
1423 */
1424static void sb_wait_write(struct super_block *sb, int level)
1425{
1426 percpu_down_write(sb->s_writers.rw_sem + level-1);
1427}
1428
1429/*
1430 * We are going to return to userspace and forget about these locks, the
1431 * ownership goes to the caller of thaw_super() which does unlock().
1432 */
1433static void lockdep_sb_freeze_release(struct super_block *sb)
1434{
1435 int level;
1436
1437 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1438 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1439}
1440
1441/*
1442 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1443 */
1444static void lockdep_sb_freeze_acquire(struct super_block *sb)
1445{
1446 int level;
1447
1448 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1449 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1450}
1451
1452static void sb_freeze_unlock(struct super_block *sb)
1453{
1454 int level;
1455
1456 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1457 percpu_up_write(sb->s_writers.rw_sem + level);
1458}
1459
1460/**
1461 * freeze_super - lock the filesystem and force it into a consistent state
1462 * @sb: the super to lock
1463 *
1464 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1465 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1466 * -EBUSY.
1467 *
1468 * During this function, sb->s_writers.frozen goes through these values:
1469 *
1470 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1471 *
1472 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1473 * writes should be blocked, though page faults are still allowed. We wait for
1474 * all writes to complete and then proceed to the next stage.
1475 *
1476 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1477 * but internal fs threads can still modify the filesystem (although they
1478 * should not dirty new pages or inodes), writeback can run etc. After waiting
1479 * for all running page faults we sync the filesystem which will clean all
1480 * dirty pages and inodes (no new dirty pages or inodes can be created when
1481 * sync is running).
1482 *
1483 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1484 * modification are blocked (e.g. XFS preallocation truncation on inode
1485 * reclaim). This is usually implemented by blocking new transactions for
1486 * filesystems that have them and need this additional guard. After all
1487 * internal writers are finished we call ->freeze_fs() to finish filesystem
1488 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1489 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1490 *
1491 * sb->s_writers.frozen is protected by sb->s_umount.
1492 */
1493int freeze_super(struct super_block *sb)
1494{
1495 int ret;
1496
1497 atomic_inc(&sb->s_active);
1498 down_write(&sb->s_umount);
1499 if (sb->s_writers.frozen != SB_UNFROZEN) {
1500 deactivate_locked_super(sb);
1501 return -EBUSY;
1502 }
1503
1504 if (!(sb->s_flags & SB_BORN)) {
1505 up_write(&sb->s_umount);
1506 return 0; /* sic - it's "nothing to do" */
1507 }
1508
1509 if (sb_rdonly(sb)) {
1510 /* Nothing to do really... */
1511 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1512 up_write(&sb->s_umount);
1513 return 0;
1514 }
1515
1516 sb->s_writers.frozen = SB_FREEZE_WRITE;
1517 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1518 up_write(&sb->s_umount);
1519 sb_wait_write(sb, SB_FREEZE_WRITE);
1520 down_write(&sb->s_umount);
1521
1522 /* Now we go and block page faults... */
1523 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1524 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1525
1526 /* All writers are done so after syncing there won't be dirty data */
1527 sync_filesystem(sb);
1528
1529 /* Now wait for internal filesystem counter */
1530 sb->s_writers.frozen = SB_FREEZE_FS;
1531 sb_wait_write(sb, SB_FREEZE_FS);
1532
1533 if (sb->s_op->freeze_fs) {
1534 ret = sb->s_op->freeze_fs(sb);
1535 if (ret) {
1536 printk(KERN_ERR
1537 "VFS:Filesystem freeze failed\n");
1538 sb->s_writers.frozen = SB_UNFROZEN;
1539 sb_freeze_unlock(sb);
1540 wake_up(&sb->s_writers.wait_unfrozen);
1541 deactivate_locked_super(sb);
1542 return ret;
1543 }
1544 }
1545 /*
1546 * For debugging purposes so that fs can warn if it sees write activity
1547 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1548 */
1549 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1550 lockdep_sb_freeze_release(sb);
1551 up_write(&sb->s_umount);
1552 return 0;
1553}
1554EXPORT_SYMBOL(freeze_super);
1555
1556/**
1557 * thaw_super -- unlock filesystem
1558 * @sb: the super to thaw
1559 *
1560 * Unlocks the filesystem and marks it writeable again after freeze_super().
1561 */
1562static int thaw_super_locked(struct super_block *sb)
1563{
1564 int error;
1565
1566 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1567 up_write(&sb->s_umount);
1568 return -EINVAL;
1569 }
1570
1571 if (sb_rdonly(sb)) {
1572 sb->s_writers.frozen = SB_UNFROZEN;
1573 goto out;
1574 }
1575
1576 lockdep_sb_freeze_acquire(sb);
1577
1578 if (sb->s_op->unfreeze_fs) {
1579 error = sb->s_op->unfreeze_fs(sb);
1580 if (error) {
1581 printk(KERN_ERR
1582 "VFS:Filesystem thaw failed\n");
1583 lockdep_sb_freeze_release(sb);
1584 up_write(&sb->s_umount);
1585 return error;
1586 }
1587 }
1588
1589 sb->s_writers.frozen = SB_UNFROZEN;
1590 sb_freeze_unlock(sb);
1591out:
1592 wake_up(&sb->s_writers.wait_unfrozen);
1593 deactivate_locked_super(sb);
1594 return 0;
1595}
1596
1597int thaw_super(struct super_block *sb)
1598{
1599 down_write(&sb->s_umount);
1600 return thaw_super_locked(sb);
1601}
1602EXPORT_SYMBOL(thaw_super);