| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/mm/page_alloc.c | 
|  | 3 | * | 
|  | 4 | *  Manages the free list, the system allocates free pages here. | 
|  | 5 | *  Note that kmalloc() lives in slab.c | 
|  | 6 | * | 
|  | 7 | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | 8 | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | 9 | *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
|  | 10 | *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
|  | 11 | *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
|  | 12 | *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
|  | 13 | *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
|  | 14 | *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #include <linux/stddef.h> | 
|  | 18 | #include <linux/mm.h> | 
|  | 19 | #include <linux/swap.h> | 
|  | 20 | #include <linux/interrupt.h> | 
|  | 21 | #include <linux/pagemap.h> | 
|  | 22 | #include <linux/jiffies.h> | 
|  | 23 | #include <linux/bootmem.h> | 
|  | 24 | #include <linux/memblock.h> | 
|  | 25 | #include <linux/compiler.h> | 
|  | 26 | #include <linux/kernel.h> | 
|  | 27 | #include <linux/kasan.h> | 
|  | 28 | #include <linux/module.h> | 
|  | 29 | #include <linux/suspend.h> | 
|  | 30 | #include <linux/pagevec.h> | 
|  | 31 | #include <linux/blkdev.h> | 
|  | 32 | #include <linux/slab.h> | 
|  | 33 | #include <linux/ratelimit.h> | 
|  | 34 | #include <linux/oom.h> | 
|  | 35 | #include <linux/topology.h> | 
|  | 36 | #include <linux/sysctl.h> | 
|  | 37 | #include <linux/cpu.h> | 
|  | 38 | #include <linux/cpuset.h> | 
|  | 39 | #include <linux/memory_hotplug.h> | 
|  | 40 | #include <linux/nodemask.h> | 
|  | 41 | #include <linux/vmalloc.h> | 
|  | 42 | #include <linux/vmstat.h> | 
|  | 43 | #include <linux/mempolicy.h> | 
|  | 44 | #include <linux/memremap.h> | 
|  | 45 | #include <linux/stop_machine.h> | 
|  | 46 | #include <linux/sort.h> | 
|  | 47 | #include <linux/pfn.h> | 
|  | 48 | #include <linux/backing-dev.h> | 
|  | 49 | #include <linux/fault-inject.h> | 
|  | 50 | #include <linux/page-isolation.h> | 
|  | 51 | #include <linux/page_ext.h> | 
|  | 52 | #include <linux/debugobjects.h> | 
|  | 53 | #include <linux/kmemleak.h> | 
|  | 54 | #include <linux/compaction.h> | 
|  | 55 | #include <trace/events/kmem.h> | 
|  | 56 | #include <trace/events/oom.h> | 
|  | 57 | #include <linux/prefetch.h> | 
|  | 58 | #include <linux/mm_inline.h> | 
|  | 59 | #include <linux/migrate.h> | 
|  | 60 | #include <linux/hugetlb.h> | 
|  | 61 | #include <linux/sched/rt.h> | 
|  | 62 | #include <linux/sched/mm.h> | 
|  | 63 | #include <linux/page_owner.h> | 
|  | 64 | #include <linux/kthread.h> | 
|  | 65 | #include <linux/memcontrol.h> | 
|  | 66 | #include <linux/ftrace.h> | 
|  | 67 | #include <linux/lockdep.h> | 
|  | 68 | #include <linux/nmi.h> | 
|  | 69 | #include <linux/psi.h> | 
|  | 70 |  | 
|  | 71 | #include <asm/sections.h> | 
|  | 72 | #include <asm/tlbflush.h> | 
|  | 73 | #include <asm/div64.h> | 
|  | 74 | #include "internal.h" | 
|  | 75 |  | 
|  | 76 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ | 
|  | 77 | static DEFINE_MUTEX(pcp_batch_high_lock); | 
|  | 78 | #define MIN_PERCPU_PAGELIST_FRACTION	(8) | 
|  | 79 |  | 
|  | 80 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID | 
|  | 81 | DEFINE_PER_CPU(int, numa_node); | 
|  | 82 | EXPORT_PER_CPU_SYMBOL(numa_node); | 
|  | 83 | #endif | 
|  | 84 |  | 
|  | 85 | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); | 
|  | 86 |  | 
|  | 87 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | 88 | /* | 
|  | 89 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | 
|  | 90 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | 
|  | 91 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | 
|  | 92 | * defined in <linux/topology.h>. | 
|  | 93 | */ | 
|  | 94 | DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */ | 
|  | 95 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | 
|  | 96 | int _node_numa_mem_[MAX_NUMNODES]; | 
|  | 97 | #endif | 
|  | 98 |  | 
|  | 99 | /* work_structs for global per-cpu drains */ | 
|  | 100 | DEFINE_MUTEX(pcpu_drain_mutex); | 
|  | 101 | DEFINE_PER_CPU(struct work_struct, pcpu_drain); | 
|  | 102 |  | 
|  | 103 | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY | 
|  | 104 | volatile unsigned long latent_entropy __latent_entropy; | 
|  | 105 | EXPORT_SYMBOL(latent_entropy); | 
|  | 106 | #endif | 
|  | 107 |  | 
|  | 108 | /* | 
|  | 109 | * Array of node states. | 
|  | 110 | */ | 
|  | 111 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { | 
|  | 112 | [N_POSSIBLE] = NODE_MASK_ALL, | 
|  | 113 | [N_ONLINE] = { { [0] = 1UL } }, | 
|  | 114 | #ifndef CONFIG_NUMA | 
|  | 115 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | 
|  | 116 | #ifdef CONFIG_HIGHMEM | 
|  | 117 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | 
|  | 118 | #endif | 
|  | 119 | [N_MEMORY] = { { [0] = 1UL } }, | 
|  | 120 | [N_CPU] = { { [0] = 1UL } }, | 
|  | 121 | #endif	/* NUMA */ | 
|  | 122 | }; | 
|  | 123 | EXPORT_SYMBOL(node_states); | 
|  | 124 |  | 
|  | 125 | /* Protect totalram_pages and zone->managed_pages */ | 
|  | 126 | static DEFINE_SPINLOCK(managed_page_count_lock); | 
|  | 127 |  | 
|  | 128 | unsigned long totalram_pages __read_mostly; | 
|  | 129 | unsigned long totalreserve_pages __read_mostly; | 
|  | 130 | unsigned long totalcma_pages __read_mostly; | 
|  | 131 |  | 
|  | 132 | int percpu_pagelist_fraction; | 
|  | 133 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; | 
|  | 134 | #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON | 
|  | 135 | DEFINE_STATIC_KEY_TRUE(init_on_alloc); | 
|  | 136 | #else | 
|  | 137 | DEFINE_STATIC_KEY_FALSE(init_on_alloc); | 
|  | 138 | #endif | 
|  | 139 | EXPORT_SYMBOL(init_on_alloc); | 
|  | 140 |  | 
|  | 141 | #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON | 
|  | 142 | DEFINE_STATIC_KEY_TRUE(init_on_free); | 
|  | 143 | #else | 
|  | 144 | DEFINE_STATIC_KEY_FALSE(init_on_free); | 
|  | 145 | #endif | 
|  | 146 | EXPORT_SYMBOL(init_on_free); | 
|  | 147 |  | 
|  | 148 | static int __init early_init_on_alloc(char *buf) | 
|  | 149 | { | 
|  | 150 | int ret; | 
|  | 151 | bool bool_result; | 
|  | 152 |  | 
|  | 153 | if (!buf) | 
|  | 154 | return -EINVAL; | 
|  | 155 | ret = kstrtobool(buf, &bool_result); | 
|  | 156 | if (bool_result && page_poisoning_enabled()) | 
|  | 157 | pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); | 
|  | 158 | if (bool_result) | 
|  | 159 | static_branch_enable(&init_on_alloc); | 
|  | 160 | else | 
|  | 161 | static_branch_disable(&init_on_alloc); | 
|  | 162 | return ret; | 
|  | 163 | } | 
|  | 164 | early_param("init_on_alloc", early_init_on_alloc); | 
|  | 165 |  | 
|  | 166 | static int __init early_init_on_free(char *buf) | 
|  | 167 | { | 
|  | 168 | int ret; | 
|  | 169 | bool bool_result; | 
|  | 170 |  | 
|  | 171 | if (!buf) | 
|  | 172 | return -EINVAL; | 
|  | 173 | ret = kstrtobool(buf, &bool_result); | 
|  | 174 | if (bool_result && page_poisoning_enabled()) | 
|  | 175 | pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); | 
|  | 176 | if (bool_result) | 
|  | 177 | static_branch_enable(&init_on_free); | 
|  | 178 | else | 
|  | 179 | static_branch_disable(&init_on_free); | 
|  | 180 | return ret; | 
|  | 181 | } | 
|  | 182 | early_param("init_on_free", early_init_on_free); | 
|  | 183 |  | 
|  | 184 | /* | 
|  | 185 | * A cached value of the page's pageblock's migratetype, used when the page is | 
|  | 186 | * put on a pcplist. Used to avoid the pageblock migratetype lookup when | 
|  | 187 | * freeing from pcplists in most cases, at the cost of possibly becoming stale. | 
|  | 188 | * Also the migratetype set in the page does not necessarily match the pcplist | 
|  | 189 | * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | 
|  | 190 | * other index - this ensures that it will be put on the correct CMA freelist. | 
|  | 191 | */ | 
|  | 192 | static inline int get_pcppage_migratetype(struct page *page) | 
|  | 193 | { | 
|  | 194 | return page->index; | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | 
|  | 198 | { | 
|  | 199 | page->index = migratetype; | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | #ifdef CONFIG_PM_SLEEP | 
|  | 203 | /* | 
|  | 204 | * The following functions are used by the suspend/hibernate code to temporarily | 
|  | 205 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | 
|  | 206 | * while devices are suspended.  To avoid races with the suspend/hibernate code, | 
|  | 207 | * they should always be called with system_transition_mutex held | 
|  | 208 | * (gfp_allowed_mask also should only be modified with system_transition_mutex | 
|  | 209 | * held, unless the suspend/hibernate code is guaranteed not to run in parallel | 
|  | 210 | * with that modification). | 
|  | 211 | */ | 
|  | 212 |  | 
|  | 213 | static gfp_t saved_gfp_mask; | 
|  | 214 |  | 
|  | 215 | void pm_restore_gfp_mask(void) | 
|  | 216 | { | 
|  | 217 | WARN_ON(!mutex_is_locked(&system_transition_mutex)); | 
|  | 218 | if (saved_gfp_mask) { | 
|  | 219 | gfp_allowed_mask = saved_gfp_mask; | 
|  | 220 | saved_gfp_mask = 0; | 
|  | 221 | } | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | void pm_restrict_gfp_mask(void) | 
|  | 225 | { | 
|  | 226 | WARN_ON(!mutex_is_locked(&system_transition_mutex)); | 
|  | 227 | WARN_ON(saved_gfp_mask); | 
|  | 228 | saved_gfp_mask = gfp_allowed_mask; | 
|  | 229 | gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); | 
|  | 230 | } | 
|  | 231 |  | 
|  | 232 | bool pm_suspended_storage(void) | 
|  | 233 | { | 
|  | 234 | if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) | 
|  | 235 | return false; | 
|  | 236 | return true; | 
|  | 237 | } | 
|  | 238 | #endif /* CONFIG_PM_SLEEP */ | 
|  | 239 |  | 
|  | 240 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
|  | 241 | unsigned int pageblock_order __read_mostly; | 
|  | 242 | #endif | 
|  | 243 |  | 
|  | 244 | static void __free_pages_ok(struct page *page, unsigned int order); | 
|  | 245 |  | 
|  | 246 | /* | 
|  | 247 | * results with 256, 32 in the lowmem_reserve sysctl: | 
|  | 248 | *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
|  | 249 | *	1G machine -> (16M dma, 784M normal, 224M high) | 
|  | 250 | *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
|  | 251 | *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
|  | 252 | *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA | 
|  | 253 | * | 
|  | 254 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | 
|  | 255 | * don't need any ZONE_NORMAL reservation | 
|  | 256 | */ | 
|  | 257 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { | 
|  | 258 | #ifdef CONFIG_ZONE_DMA | 
|  | 259 | [ZONE_DMA] = 256, | 
|  | 260 | #endif | 
|  | 261 | #ifdef CONFIG_ZONE_DMA32 | 
|  | 262 | [ZONE_DMA32] = 256, | 
|  | 263 | #endif | 
|  | 264 | [ZONE_NORMAL] = 32, | 
|  | 265 | #ifdef CONFIG_HIGHMEM | 
|  | 266 | [ZONE_HIGHMEM] = 0, | 
|  | 267 | #endif | 
|  | 268 | [ZONE_MOVABLE] = 0, | 
|  | 269 | }; | 
|  | 270 |  | 
|  | 271 | EXPORT_SYMBOL(totalram_pages); | 
|  | 272 |  | 
|  | 273 | static char * const zone_names[MAX_NR_ZONES] = { | 
|  | 274 | #ifdef CONFIG_ZONE_DMA | 
|  | 275 | "DMA", | 
|  | 276 | #endif | 
|  | 277 | #ifdef CONFIG_ZONE_DMA32 | 
|  | 278 | "DMA32", | 
|  | 279 | #endif | 
|  | 280 | "Normal", | 
|  | 281 | #ifdef CONFIG_HIGHMEM | 
|  | 282 | "HighMem", | 
|  | 283 | #endif | 
|  | 284 | "Movable", | 
|  | 285 | #ifdef CONFIG_ZONE_DEVICE | 
|  | 286 | "Device", | 
|  | 287 | #endif | 
|  | 288 | }; | 
|  | 289 |  | 
|  | 290 | char * const migratetype_names[MIGRATE_TYPES] = { | 
|  | 291 | "Unmovable", | 
|  | 292 | "Movable", | 
|  | 293 | "Reclaimable", | 
|  | 294 | "HighAtomic", | 
|  | 295 | #ifdef CONFIG_CMA | 
|  | 296 | "CMA", | 
|  | 297 | #endif | 
|  | 298 | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | 299 | "Isolate", | 
|  | 300 | #endif | 
|  | 301 | }; | 
|  | 302 |  | 
|  | 303 | compound_page_dtor * const compound_page_dtors[] = { | 
|  | 304 | NULL, | 
|  | 305 | free_compound_page, | 
|  | 306 | #ifdef CONFIG_HUGETLB_PAGE | 
|  | 307 | free_huge_page, | 
|  | 308 | #endif | 
|  | 309 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 310 | free_transhuge_page, | 
|  | 311 | #endif | 
|  | 312 | }; | 
|  | 313 |  | 
|  | 314 | /* | 
|  | 315 | * Try to keep at least this much lowmem free.  Do not allow normal | 
|  | 316 | * allocations below this point, only high priority ones. Automatically | 
|  | 317 | * tuned according to the amount of memory in the system. | 
|  | 318 | */ | 
|  | 319 | int min_free_kbytes = 1024; | 
|  | 320 | int user_min_free_kbytes = -1; | 
|  | 321 | int watermark_scale_factor = 10; | 
|  | 322 |  | 
|  | 323 | /* | 
|  | 324 | * Extra memory for the system to try freeing. Used to temporarily | 
|  | 325 | * free memory, to make space for new workloads. Anyone can allocate | 
|  | 326 | * down to the min watermarks controlled by min_free_kbytes above. | 
|  | 327 | */ | 
|  | 328 | int extra_free_kbytes = 0; | 
|  | 329 |  | 
|  | 330 | static unsigned long nr_kernel_pages __meminitdata; | 
|  | 331 | static unsigned long nr_all_pages __meminitdata; | 
|  | 332 | static unsigned long dma_reserve __meminitdata; | 
|  | 333 |  | 
|  | 334 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | 335 | static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata; | 
|  | 336 | static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata; | 
|  | 337 | static unsigned long required_kernelcore __initdata; | 
|  | 338 | static unsigned long required_kernelcore_percent __initdata; | 
|  | 339 | static unsigned long required_movablecore __initdata; | 
|  | 340 | static unsigned long required_movablecore_percent __initdata; | 
|  | 341 | static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata; | 
|  | 342 | static bool mirrored_kernelcore __meminitdata; | 
|  | 343 |  | 
|  | 344 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | 
|  | 345 | int movable_zone; | 
|  | 346 | EXPORT_SYMBOL(movable_zone); | 
|  | 347 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | 348 |  | 
|  | 349 | #if MAX_NUMNODES > 1 | 
|  | 350 | int nr_node_ids __read_mostly = MAX_NUMNODES; | 
|  | 351 | int nr_online_nodes __read_mostly = 1; | 
|  | 352 | EXPORT_SYMBOL(nr_node_ids); | 
|  | 353 | EXPORT_SYMBOL(nr_online_nodes); | 
|  | 354 | #endif | 
|  | 355 |  | 
|  | 356 | int page_group_by_mobility_disabled __read_mostly; | 
|  | 357 |  | 
|  | 358 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | 359 | /* | 
|  | 360 | * During boot we initialize deferred pages on-demand, as needed, but once | 
|  | 361 | * page_alloc_init_late() has finished, the deferred pages are all initialized, | 
|  | 362 | * and we can permanently disable that path. | 
|  | 363 | */ | 
|  | 364 | static DEFINE_STATIC_KEY_TRUE(deferred_pages); | 
|  | 365 |  | 
|  | 366 | /* | 
|  | 367 | * Calling kasan_free_pages() only after deferred memory initialization | 
|  | 368 | * has completed. Poisoning pages during deferred memory init will greatly | 
|  | 369 | * lengthen the process and cause problem in large memory systems as the | 
|  | 370 | * deferred pages initialization is done with interrupt disabled. | 
|  | 371 | * | 
|  | 372 | * Assuming that there will be no reference to those newly initialized | 
|  | 373 | * pages before they are ever allocated, this should have no effect on | 
|  | 374 | * KASAN memory tracking as the poison will be properly inserted at page | 
|  | 375 | * allocation time. The only corner case is when pages are allocated by | 
|  | 376 | * on-demand allocation and then freed again before the deferred pages | 
|  | 377 | * initialization is done, but this is not likely to happen. | 
|  | 378 | */ | 
|  | 379 | static inline void kasan_free_nondeferred_pages(struct page *page, int order) | 
|  | 380 | { | 
|  | 381 | if (!static_branch_unlikely(&deferred_pages)) | 
|  | 382 | kasan_free_pages(page, order); | 
|  | 383 | } | 
|  | 384 |  | 
|  | 385 | /* Returns true if the struct page for the pfn is uninitialised */ | 
|  | 386 | static inline bool __meminit early_page_uninitialised(unsigned long pfn) | 
|  | 387 | { | 
|  | 388 | int nid = early_pfn_to_nid(pfn); | 
|  | 389 |  | 
|  | 390 | if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) | 
|  | 391 | return true; | 
|  | 392 |  | 
|  | 393 | return false; | 
|  | 394 | } | 
|  | 395 |  | 
|  | 396 | /* | 
|  | 397 | * Returns false when the remaining initialisation should be deferred until | 
|  | 398 | * later in the boot cycle when it can be parallelised. | 
|  | 399 | */ | 
|  | 400 | static inline bool update_defer_init(pg_data_t *pgdat, | 
|  | 401 | unsigned long pfn, unsigned long zone_end, | 
|  | 402 | unsigned long *nr_initialised) | 
|  | 403 | { | 
|  | 404 | /* Always populate low zones for address-constrained allocations */ | 
|  | 405 | if (zone_end < pgdat_end_pfn(pgdat)) | 
|  | 406 | return true; | 
|  | 407 | (*nr_initialised)++; | 
|  | 408 | if ((*nr_initialised > pgdat->static_init_pgcnt) && | 
|  | 409 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { | 
|  | 410 | pgdat->first_deferred_pfn = pfn; | 
|  | 411 | return false; | 
|  | 412 | } | 
|  | 413 |  | 
|  | 414 | return true; | 
|  | 415 | } | 
|  | 416 | #else | 
|  | 417 | #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o) | 
|  | 418 |  | 
|  | 419 | static inline bool early_page_uninitialised(unsigned long pfn) | 
|  | 420 | { | 
|  | 421 | return false; | 
|  | 422 | } | 
|  | 423 |  | 
|  | 424 | static inline bool update_defer_init(pg_data_t *pgdat, | 
|  | 425 | unsigned long pfn, unsigned long zone_end, | 
|  | 426 | unsigned long *nr_initialised) | 
|  | 427 | { | 
|  | 428 | return true; | 
|  | 429 | } | 
|  | 430 | #endif | 
|  | 431 |  | 
|  | 432 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ | 
|  | 433 | static inline unsigned long *get_pageblock_bitmap(struct page *page, | 
|  | 434 | unsigned long pfn) | 
|  | 435 | { | 
|  | 436 | #ifdef CONFIG_SPARSEMEM | 
|  | 437 | return __pfn_to_section(pfn)->pageblock_flags; | 
|  | 438 | #else | 
|  | 439 | return page_zone(page)->pageblock_flags; | 
|  | 440 | #endif /* CONFIG_SPARSEMEM */ | 
|  | 441 | } | 
|  | 442 |  | 
|  | 443 | static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) | 
|  | 444 | { | 
|  | 445 | #ifdef CONFIG_SPARSEMEM | 
|  | 446 | pfn &= (PAGES_PER_SECTION-1); | 
|  | 447 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
|  | 448 | #else | 
|  | 449 | pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); | 
|  | 450 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
|  | 451 | #endif /* CONFIG_SPARSEMEM */ | 
|  | 452 | } | 
|  | 453 |  | 
|  | 454 | /** | 
|  | 455 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | 
|  | 456 | * @page: The page within the block of interest | 
|  | 457 | * @pfn: The target page frame number | 
|  | 458 | * @end_bitidx: The last bit of interest to retrieve | 
|  | 459 | * @mask: mask of bits that the caller is interested in | 
|  | 460 | * | 
|  | 461 | * Return: pageblock_bits flags | 
|  | 462 | */ | 
|  | 463 | static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, | 
|  | 464 | unsigned long pfn, | 
|  | 465 | unsigned long end_bitidx, | 
|  | 466 | unsigned long mask) | 
|  | 467 | { | 
|  | 468 | unsigned long *bitmap; | 
|  | 469 | unsigned long bitidx, word_bitidx; | 
|  | 470 | unsigned long word; | 
|  | 471 |  | 
|  | 472 | bitmap = get_pageblock_bitmap(page, pfn); | 
|  | 473 | bitidx = pfn_to_bitidx(page, pfn); | 
|  | 474 | word_bitidx = bitidx / BITS_PER_LONG; | 
|  | 475 | bitidx &= (BITS_PER_LONG-1); | 
|  | 476 |  | 
|  | 477 | word = bitmap[word_bitidx]; | 
|  | 478 | bitidx += end_bitidx; | 
|  | 479 | return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | 
|  | 480 | } | 
|  | 481 |  | 
|  | 482 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, | 
|  | 483 | unsigned long end_bitidx, | 
|  | 484 | unsigned long mask) | 
|  | 485 | { | 
|  | 486 | return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); | 
|  | 487 | } | 
|  | 488 |  | 
|  | 489 | static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) | 
|  | 490 | { | 
|  | 491 | return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); | 
|  | 492 | } | 
|  | 493 |  | 
|  | 494 | /** | 
|  | 495 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | 
|  | 496 | * @page: The page within the block of interest | 
|  | 497 | * @flags: The flags to set | 
|  | 498 | * @pfn: The target page frame number | 
|  | 499 | * @end_bitidx: The last bit of interest | 
|  | 500 | * @mask: mask of bits that the caller is interested in | 
|  | 501 | */ | 
|  | 502 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | 
|  | 503 | unsigned long pfn, | 
|  | 504 | unsigned long end_bitidx, | 
|  | 505 | unsigned long mask) | 
|  | 506 | { | 
|  | 507 | unsigned long *bitmap; | 
|  | 508 | unsigned long bitidx, word_bitidx; | 
|  | 509 | unsigned long old_word, word; | 
|  | 510 |  | 
|  | 511 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | 
|  | 512 |  | 
|  | 513 | bitmap = get_pageblock_bitmap(page, pfn); | 
|  | 514 | bitidx = pfn_to_bitidx(page, pfn); | 
|  | 515 | word_bitidx = bitidx / BITS_PER_LONG; | 
|  | 516 | bitidx &= (BITS_PER_LONG-1); | 
|  | 517 |  | 
|  | 518 | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | 
|  | 519 |  | 
|  | 520 | bitidx += end_bitidx; | 
|  | 521 | mask <<= (BITS_PER_LONG - bitidx - 1); | 
|  | 522 | flags <<= (BITS_PER_LONG - bitidx - 1); | 
|  | 523 |  | 
|  | 524 | word = READ_ONCE(bitmap[word_bitidx]); | 
|  | 525 | for (;;) { | 
|  | 526 | old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | 
|  | 527 | if (word == old_word) | 
|  | 528 | break; | 
|  | 529 | word = old_word; | 
|  | 530 | } | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | void set_pageblock_migratetype(struct page *page, int migratetype) | 
|  | 534 | { | 
|  | 535 | if (unlikely(page_group_by_mobility_disabled && | 
|  | 536 | migratetype < MIGRATE_PCPTYPES)) | 
|  | 537 | migratetype = MIGRATE_UNMOVABLE; | 
|  | 538 |  | 
|  | 539 | set_pageblock_flags_group(page, (unsigned long)migratetype, | 
|  | 540 | PB_migrate, PB_migrate_end); | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | #ifdef CONFIG_DEBUG_VM | 
|  | 544 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 
|  | 545 | { | 
|  | 546 | int ret = 0; | 
|  | 547 | unsigned seq; | 
|  | 548 | unsigned long pfn = page_to_pfn(page); | 
|  | 549 | unsigned long sp, start_pfn; | 
|  | 550 |  | 
|  | 551 | do { | 
|  | 552 | seq = zone_span_seqbegin(zone); | 
|  | 553 | start_pfn = zone->zone_start_pfn; | 
|  | 554 | sp = zone->spanned_pages; | 
|  | 555 | if (!zone_spans_pfn(zone, pfn)) | 
|  | 556 | ret = 1; | 
|  | 557 | } while (zone_span_seqretry(zone, seq)); | 
|  | 558 |  | 
|  | 559 | if (ret) | 
|  | 560 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", | 
|  | 561 | pfn, zone_to_nid(zone), zone->name, | 
|  | 562 | start_pfn, start_pfn + sp); | 
|  | 563 |  | 
|  | 564 | return ret; | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | static int page_is_consistent(struct zone *zone, struct page *page) | 
|  | 568 | { | 
|  | 569 | if (!pfn_valid_within(page_to_pfn(page))) | 
|  | 570 | return 0; | 
|  | 571 | if (zone != page_zone(page)) | 
|  | 572 | return 0; | 
|  | 573 |  | 
|  | 574 | return 1; | 
|  | 575 | } | 
|  | 576 | /* | 
|  | 577 | * Temporary debugging check for pages not lying within a given zone. | 
|  | 578 | */ | 
|  | 579 | static int __maybe_unused bad_range(struct zone *zone, struct page *page) | 
|  | 580 | { | 
|  | 581 | if (page_outside_zone_boundaries(zone, page)) | 
|  | 582 | return 1; | 
|  | 583 | if (!page_is_consistent(zone, page)) | 
|  | 584 | return 1; | 
|  | 585 |  | 
|  | 586 | return 0; | 
|  | 587 | } | 
|  | 588 | #else | 
|  | 589 | static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) | 
|  | 590 | { | 
|  | 591 | return 0; | 
|  | 592 | } | 
|  | 593 | #endif | 
|  | 594 |  | 
|  | 595 | static void bad_page(struct page *page, const char *reason, | 
|  | 596 | unsigned long bad_flags) | 
|  | 597 | { | 
|  | 598 | static unsigned long resume; | 
|  | 599 | static unsigned long nr_shown; | 
|  | 600 | static unsigned long nr_unshown; | 
|  | 601 |  | 
|  | 602 | /* | 
|  | 603 | * Allow a burst of 60 reports, then keep quiet for that minute; | 
|  | 604 | * or allow a steady drip of one report per second. | 
|  | 605 | */ | 
|  | 606 | if (nr_shown == 60) { | 
|  | 607 | if (time_before(jiffies, resume)) { | 
|  | 608 | nr_unshown++; | 
|  | 609 | goto out; | 
|  | 610 | } | 
|  | 611 | if (nr_unshown) { | 
|  | 612 | pr_alert( | 
|  | 613 | "BUG: Bad page state: %lu messages suppressed\n", | 
|  | 614 | nr_unshown); | 
|  | 615 | nr_unshown = 0; | 
|  | 616 | } | 
|  | 617 | nr_shown = 0; | 
|  | 618 | } | 
|  | 619 | if (nr_shown++ == 0) | 
|  | 620 | resume = jiffies + 60 * HZ; | 
|  | 621 |  | 
|  | 622 | pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n", | 
|  | 623 | current->comm, page_to_pfn(page)); | 
|  | 624 | __dump_page(page, reason); | 
|  | 625 | bad_flags &= page->flags; | 
|  | 626 | if (bad_flags) | 
|  | 627 | pr_alert("bad because of flags: %#lx(%pGp)\n", | 
|  | 628 | bad_flags, &bad_flags); | 
|  | 629 | dump_page_owner(page); | 
|  | 630 |  | 
|  | 631 | print_modules(); | 
|  | 632 | dump_stack(); | 
|  | 633 | out: | 
|  | 634 | /* Leave bad fields for debug, except PageBuddy could make trouble */ | 
|  | 635 | page_mapcount_reset(page); /* remove PageBuddy */ | 
|  | 636 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  | 637 | } | 
|  | 638 |  | 
|  | 639 | /* | 
|  | 640 | * Higher-order pages are called "compound pages".  They are structured thusly: | 
|  | 641 | * | 
|  | 642 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. | 
|  | 643 | * | 
|  | 644 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded | 
|  | 645 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | 
|  | 646 | * | 
|  | 647 | * The first tail page's ->compound_dtor holds the offset in array of compound | 
|  | 648 | * page destructors. See compound_page_dtors. | 
|  | 649 | * | 
|  | 650 | * The first tail page's ->compound_order holds the order of allocation. | 
|  | 651 | * This usage means that zero-order pages may not be compound. | 
|  | 652 | */ | 
|  | 653 |  | 
|  | 654 | void free_compound_page(struct page *page) | 
|  | 655 | { | 
|  | 656 | __free_pages_ok(page, compound_order(page)); | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | void prep_compound_page(struct page *page, unsigned int order) | 
|  | 660 | { | 
|  | 661 | int i; | 
|  | 662 | int nr_pages = 1 << order; | 
|  | 663 |  | 
|  | 664 | set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); | 
|  | 665 | set_compound_order(page, order); | 
|  | 666 | __SetPageHead(page); | 
|  | 667 | for (i = 1; i < nr_pages; i++) { | 
|  | 668 | struct page *p = page + i; | 
|  | 669 | set_page_count(p, 0); | 
|  | 670 | p->mapping = TAIL_MAPPING; | 
|  | 671 | set_compound_head(p, page); | 
|  | 672 | } | 
|  | 673 | atomic_set(compound_mapcount_ptr(page), -1); | 
|  | 674 | } | 
|  | 675 |  | 
|  | 676 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | 677 | unsigned int _debug_guardpage_minorder; | 
|  | 678 | bool _debug_pagealloc_enabled __read_mostly | 
|  | 679 | = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); | 
|  | 680 | EXPORT_SYMBOL(_debug_pagealloc_enabled); | 
|  | 681 | bool _debug_guardpage_enabled __read_mostly; | 
|  | 682 |  | 
|  | 683 | static int __init early_debug_pagealloc(char *buf) | 
|  | 684 | { | 
|  | 685 | if (!buf) | 
|  | 686 | return -EINVAL; | 
|  | 687 | return kstrtobool(buf, &_debug_pagealloc_enabled); | 
|  | 688 | } | 
|  | 689 | early_param("debug_pagealloc", early_debug_pagealloc); | 
|  | 690 |  | 
|  | 691 | static bool need_debug_guardpage(void) | 
|  | 692 | { | 
|  | 693 | /* If we don't use debug_pagealloc, we don't need guard page */ | 
|  | 694 | if (!debug_pagealloc_enabled()) | 
|  | 695 | return false; | 
|  | 696 |  | 
|  | 697 | if (!debug_guardpage_minorder()) | 
|  | 698 | return false; | 
|  | 699 |  | 
|  | 700 | return true; | 
|  | 701 | } | 
|  | 702 |  | 
|  | 703 | static void init_debug_guardpage(void) | 
|  | 704 | { | 
|  | 705 | if (!debug_pagealloc_enabled()) | 
|  | 706 | return; | 
|  | 707 |  | 
|  | 708 | if (!debug_guardpage_minorder()) | 
|  | 709 | return; | 
|  | 710 |  | 
|  | 711 | _debug_guardpage_enabled = true; | 
|  | 712 | } | 
|  | 713 |  | 
|  | 714 | struct page_ext_operations debug_guardpage_ops = { | 
|  | 715 | .need = need_debug_guardpage, | 
|  | 716 | .init = init_debug_guardpage, | 
|  | 717 | }; | 
|  | 718 |  | 
|  | 719 | static int __init debug_guardpage_minorder_setup(char *buf) | 
|  | 720 | { | 
|  | 721 | unsigned long res; | 
|  | 722 |  | 
|  | 723 | if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) { | 
|  | 724 | pr_err("Bad debug_guardpage_minorder value\n"); | 
|  | 725 | return 0; | 
|  | 726 | } | 
|  | 727 | _debug_guardpage_minorder = res; | 
|  | 728 | pr_info("Setting debug_guardpage_minorder to %lu\n", res); | 
|  | 729 | return 0; | 
|  | 730 | } | 
|  | 731 | early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); | 
|  | 732 |  | 
|  | 733 | static inline bool set_page_guard(struct zone *zone, struct page *page, | 
|  | 734 | unsigned int order, int migratetype) | 
|  | 735 | { | 
|  | 736 | struct page_ext *page_ext; | 
|  | 737 |  | 
|  | 738 | if (!debug_guardpage_enabled()) | 
|  | 739 | return false; | 
|  | 740 |  | 
|  | 741 | if (order >= debug_guardpage_minorder()) | 
|  | 742 | return false; | 
|  | 743 |  | 
|  | 744 | page_ext = lookup_page_ext(page); | 
|  | 745 | if (unlikely(!page_ext)) | 
|  | 746 | return false; | 
|  | 747 |  | 
|  | 748 | __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | 
|  | 749 |  | 
|  | 750 | INIT_LIST_HEAD(&page->lru); | 
|  | 751 | set_page_private(page, order); | 
|  | 752 | /* Guard pages are not available for any usage */ | 
|  | 753 | __mod_zone_freepage_state(zone, -(1 << order), migratetype); | 
|  | 754 |  | 
|  | 755 | return true; | 
|  | 756 | } | 
|  | 757 |  | 
|  | 758 | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
|  | 759 | unsigned int order, int migratetype) | 
|  | 760 | { | 
|  | 761 | struct page_ext *page_ext; | 
|  | 762 |  | 
|  | 763 | if (!debug_guardpage_enabled()) | 
|  | 764 | return; | 
|  | 765 |  | 
|  | 766 | page_ext = lookup_page_ext(page); | 
|  | 767 | if (unlikely(!page_ext)) | 
|  | 768 | return; | 
|  | 769 |  | 
|  | 770 | __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | 
|  | 771 |  | 
|  | 772 | set_page_private(page, 0); | 
|  | 773 | if (!is_migrate_isolate(migratetype)) | 
|  | 774 | __mod_zone_freepage_state(zone, (1 << order), migratetype); | 
|  | 775 | } | 
|  | 776 | #else | 
|  | 777 | struct page_ext_operations debug_guardpage_ops; | 
|  | 778 | static inline bool set_page_guard(struct zone *zone, struct page *page, | 
|  | 779 | unsigned int order, int migratetype) { return false; } | 
|  | 780 | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
|  | 781 | unsigned int order, int migratetype) {} | 
|  | 782 | #endif | 
|  | 783 |  | 
|  | 784 | static inline void set_page_order(struct page *page, unsigned int order) | 
|  | 785 | { | 
|  | 786 | set_page_private(page, order); | 
|  | 787 | __SetPageBuddy(page); | 
|  | 788 | } | 
|  | 789 |  | 
|  | 790 | static inline void rmv_page_order(struct page *page) | 
|  | 791 | { | 
|  | 792 | __ClearPageBuddy(page); | 
|  | 793 | set_page_private(page, 0); | 
|  | 794 | } | 
|  | 795 |  | 
|  | 796 | /* | 
|  | 797 | * This function checks whether a page is free && is the buddy | 
|  | 798 | * we can coalesce a page and its buddy if | 
|  | 799 | * (a) the buddy is not in a hole (check before calling!) && | 
|  | 800 | * (b) the buddy is in the buddy system && | 
|  | 801 | * (c) a page and its buddy have the same order && | 
|  | 802 | * (d) a page and its buddy are in the same zone. | 
|  | 803 | * | 
|  | 804 | * For recording whether a page is in the buddy system, we set PageBuddy. | 
|  | 805 | * Setting, clearing, and testing PageBuddy is serialized by zone->lock. | 
|  | 806 | * | 
|  | 807 | * For recording page's order, we use page_private(page). | 
|  | 808 | */ | 
|  | 809 | static inline int page_is_buddy(struct page *page, struct page *buddy, | 
|  | 810 | unsigned int order) | 
|  | 811 | { | 
|  | 812 | if (page_is_guard(buddy) && page_order(buddy) == order) { | 
|  | 813 | if (page_zone_id(page) != page_zone_id(buddy)) | 
|  | 814 | return 0; | 
|  | 815 |  | 
|  | 816 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); | 
|  | 817 |  | 
|  | 818 | return 1; | 
|  | 819 | } | 
|  | 820 |  | 
|  | 821 | if (PageBuddy(buddy) && page_order(buddy) == order) { | 
|  | 822 | /* | 
|  | 823 | * zone check is done late to avoid uselessly | 
|  | 824 | * calculating zone/node ids for pages that could | 
|  | 825 | * never merge. | 
|  | 826 | */ | 
|  | 827 | if (page_zone_id(page) != page_zone_id(buddy)) | 
|  | 828 | return 0; | 
|  | 829 |  | 
|  | 830 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); | 
|  | 831 |  | 
|  | 832 | return 1; | 
|  | 833 | } | 
|  | 834 | return 0; | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | /* | 
|  | 838 | * Freeing function for a buddy system allocator. | 
|  | 839 | * | 
|  | 840 | * The concept of a buddy system is to maintain direct-mapped table | 
|  | 841 | * (containing bit values) for memory blocks of various "orders". | 
|  | 842 | * The bottom level table contains the map for the smallest allocatable | 
|  | 843 | * units of memory (here, pages), and each level above it describes | 
|  | 844 | * pairs of units from the levels below, hence, "buddies". | 
|  | 845 | * At a high level, all that happens here is marking the table entry | 
|  | 846 | * at the bottom level available, and propagating the changes upward | 
|  | 847 | * as necessary, plus some accounting needed to play nicely with other | 
|  | 848 | * parts of the VM system. | 
|  | 849 | * At each level, we keep a list of pages, which are heads of continuous | 
|  | 850 | * free pages of length of (1 << order) and marked with PageBuddy. | 
|  | 851 | * Page's order is recorded in page_private(page) field. | 
|  | 852 | * So when we are allocating or freeing one, we can derive the state of the | 
|  | 853 | * other.  That is, if we allocate a small block, and both were | 
|  | 854 | * free, the remainder of the region must be split into blocks. | 
|  | 855 | * If a block is freed, and its buddy is also free, then this | 
|  | 856 | * triggers coalescing into a block of larger size. | 
|  | 857 | * | 
|  | 858 | * -- nyc | 
|  | 859 | */ | 
|  | 860 |  | 
|  | 861 | static inline void __free_one_page(struct page *page, | 
|  | 862 | unsigned long pfn, | 
|  | 863 | struct zone *zone, unsigned int order, | 
|  | 864 | int migratetype) | 
|  | 865 | { | 
|  | 866 | unsigned long combined_pfn; | 
|  | 867 | unsigned long uninitialized_var(buddy_pfn); | 
|  | 868 | struct page *buddy; | 
|  | 869 | unsigned int max_order; | 
|  | 870 |  | 
|  | 871 | max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); | 
|  | 872 |  | 
|  | 873 | VM_BUG_ON(!zone_is_initialized(zone)); | 
|  | 874 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); | 
|  | 875 |  | 
|  | 876 | VM_BUG_ON(migratetype == -1); | 
|  | 877 | if (likely(!is_migrate_isolate(migratetype))) | 
|  | 878 | __mod_zone_freepage_state(zone, 1 << order, migratetype); | 
|  | 879 |  | 
|  | 880 | VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); | 
|  | 881 | VM_BUG_ON_PAGE(bad_range(zone, page), page); | 
|  | 882 |  | 
|  | 883 | continue_merging: | 
|  | 884 | while (order < max_order - 1) { | 
|  | 885 | buddy_pfn = __find_buddy_pfn(pfn, order); | 
|  | 886 | buddy = page + (buddy_pfn - pfn); | 
|  | 887 |  | 
|  | 888 | if (!pfn_valid_within(buddy_pfn)) | 
|  | 889 | goto done_merging; | 
|  | 890 | if (!page_is_buddy(page, buddy, order)) | 
|  | 891 | goto done_merging; | 
|  | 892 | /* | 
|  | 893 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | 
|  | 894 | * merge with it and move up one order. | 
|  | 895 | */ | 
|  | 896 | if (page_is_guard(buddy)) { | 
|  | 897 | clear_page_guard(zone, buddy, order, migratetype); | 
|  | 898 | } else { | 
|  | 899 | list_del(&buddy->lru); | 
|  | 900 | zone->free_area[order].nr_free--; | 
|  | 901 | rmv_page_order(buddy); | 
|  | 902 | } | 
|  | 903 | combined_pfn = buddy_pfn & pfn; | 
|  | 904 | page = page + (combined_pfn - pfn); | 
|  | 905 | pfn = combined_pfn; | 
|  | 906 | order++; | 
|  | 907 | } | 
|  | 908 | if (max_order < MAX_ORDER) { | 
|  | 909 | /* If we are here, it means order is >= pageblock_order. | 
|  | 910 | * We want to prevent merge between freepages on isolate | 
|  | 911 | * pageblock and normal pageblock. Without this, pageblock | 
|  | 912 | * isolation could cause incorrect freepage or CMA accounting. | 
|  | 913 | * | 
|  | 914 | * We don't want to hit this code for the more frequent | 
|  | 915 | * low-order merging. | 
|  | 916 | */ | 
|  | 917 | if (unlikely(has_isolate_pageblock(zone))) { | 
|  | 918 | int buddy_mt; | 
|  | 919 |  | 
|  | 920 | buddy_pfn = __find_buddy_pfn(pfn, order); | 
|  | 921 | buddy = page + (buddy_pfn - pfn); | 
|  | 922 | buddy_mt = get_pageblock_migratetype(buddy); | 
|  | 923 |  | 
|  | 924 | if (migratetype != buddy_mt | 
|  | 925 | && (is_migrate_isolate(migratetype) || | 
|  | 926 | is_migrate_isolate(buddy_mt))) | 
|  | 927 | goto done_merging; | 
|  | 928 | } | 
|  | 929 | max_order++; | 
|  | 930 | goto continue_merging; | 
|  | 931 | } | 
|  | 932 |  | 
|  | 933 | done_merging: | 
|  | 934 | set_page_order(page, order); | 
|  | 935 |  | 
|  | 936 | /* | 
|  | 937 | * If this is not the largest possible page, check if the buddy | 
|  | 938 | * of the next-highest order is free. If it is, it's possible | 
|  | 939 | * that pages are being freed that will coalesce soon. In case, | 
|  | 940 | * that is happening, add the free page to the tail of the list | 
|  | 941 | * so it's less likely to be used soon and more likely to be merged | 
|  | 942 | * as a higher order page | 
|  | 943 | */ | 
|  | 944 | if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { | 
|  | 945 | struct page *higher_page, *higher_buddy; | 
|  | 946 | combined_pfn = buddy_pfn & pfn; | 
|  | 947 | higher_page = page + (combined_pfn - pfn); | 
|  | 948 | buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); | 
|  | 949 | higher_buddy = higher_page + (buddy_pfn - combined_pfn); | 
|  | 950 | if (pfn_valid_within(buddy_pfn) && | 
|  | 951 | page_is_buddy(higher_page, higher_buddy, order + 1)) { | 
|  | 952 | list_add_tail(&page->lru, | 
|  | 953 | &zone->free_area[order].free_list[migratetype]); | 
|  | 954 | goto out; | 
|  | 955 | } | 
|  | 956 | } | 
|  | 957 |  | 
|  | 958 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | 
|  | 959 | out: | 
|  | 960 | zone->free_area[order].nr_free++; | 
|  | 961 | } | 
|  | 962 |  | 
|  | 963 | /* | 
|  | 964 | * A bad page could be due to a number of fields. Instead of multiple branches, | 
|  | 965 | * try and check multiple fields with one check. The caller must do a detailed | 
|  | 966 | * check if necessary. | 
|  | 967 | */ | 
|  | 968 | static inline bool page_expected_state(struct page *page, | 
|  | 969 | unsigned long check_flags) | 
|  | 970 | { | 
|  | 971 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | 
|  | 972 | return false; | 
|  | 973 |  | 
|  | 974 | if (unlikely((unsigned long)page->mapping | | 
|  | 975 | page_ref_count(page) | | 
|  | 976 | #ifdef CONFIG_MEMCG | 
|  | 977 | (unsigned long)page->mem_cgroup | | 
|  | 978 | #endif | 
|  | 979 | (page->flags & check_flags))) | 
|  | 980 | return false; | 
|  | 981 |  | 
|  | 982 | return true; | 
|  | 983 | } | 
|  | 984 |  | 
|  | 985 | static void free_pages_check_bad(struct page *page) | 
|  | 986 | { | 
|  | 987 | const char *bad_reason; | 
|  | 988 | unsigned long bad_flags; | 
|  | 989 |  | 
|  | 990 | bad_reason = NULL; | 
|  | 991 | bad_flags = 0; | 
|  | 992 |  | 
|  | 993 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | 
|  | 994 | bad_reason = "nonzero mapcount"; | 
|  | 995 | if (unlikely(page->mapping != NULL)) | 
|  | 996 | bad_reason = "non-NULL mapping"; | 
|  | 997 | if (unlikely(page_ref_count(page) != 0)) | 
|  | 998 | bad_reason = "nonzero _refcount"; | 
|  | 999 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { | 
|  | 1000 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | 
|  | 1001 | bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | 
|  | 1002 | } | 
|  | 1003 | #ifdef CONFIG_MEMCG | 
|  | 1004 | if (unlikely(page->mem_cgroup)) | 
|  | 1005 | bad_reason = "page still charged to cgroup"; | 
|  | 1006 | #endif | 
|  | 1007 | bad_page(page, bad_reason, bad_flags); | 
|  | 1008 | } | 
|  | 1009 |  | 
|  | 1010 | static inline int free_pages_check(struct page *page) | 
|  | 1011 | { | 
|  | 1012 | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) | 
|  | 1013 | return 0; | 
|  | 1014 |  | 
|  | 1015 | /* Something has gone sideways, find it */ | 
|  | 1016 | free_pages_check_bad(page); | 
|  | 1017 | return 1; | 
|  | 1018 | } | 
|  | 1019 |  | 
|  | 1020 | static int free_tail_pages_check(struct page *head_page, struct page *page) | 
|  | 1021 | { | 
|  | 1022 | int ret = 1; | 
|  | 1023 |  | 
|  | 1024 | /* | 
|  | 1025 | * We rely page->lru.next never has bit 0 set, unless the page | 
|  | 1026 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | 
|  | 1027 | */ | 
|  | 1028 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | 
|  | 1029 |  | 
|  | 1030 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | 
|  | 1031 | ret = 0; | 
|  | 1032 | goto out; | 
|  | 1033 | } | 
|  | 1034 | switch (page - head_page) { | 
|  | 1035 | case 1: | 
|  | 1036 | /* the first tail page: ->mapping may be compound_mapcount() */ | 
|  | 1037 | if (unlikely(compound_mapcount(page))) { | 
|  | 1038 | bad_page(page, "nonzero compound_mapcount", 0); | 
|  | 1039 | goto out; | 
|  | 1040 | } | 
|  | 1041 | break; | 
|  | 1042 | case 2: | 
|  | 1043 | /* | 
|  | 1044 | * the second tail page: ->mapping is | 
|  | 1045 | * deferred_list.next -- ignore value. | 
|  | 1046 | */ | 
|  | 1047 | break; | 
|  | 1048 | default: | 
|  | 1049 | if (page->mapping != TAIL_MAPPING) { | 
|  | 1050 | bad_page(page, "corrupted mapping in tail page", 0); | 
|  | 1051 | goto out; | 
|  | 1052 | } | 
|  | 1053 | break; | 
|  | 1054 | } | 
|  | 1055 | if (unlikely(!PageTail(page))) { | 
|  | 1056 | bad_page(page, "PageTail not set", 0); | 
|  | 1057 | goto out; | 
|  | 1058 | } | 
|  | 1059 | if (unlikely(compound_head(page) != head_page)) { | 
|  | 1060 | bad_page(page, "compound_head not consistent", 0); | 
|  | 1061 | goto out; | 
|  | 1062 | } | 
|  | 1063 | ret = 0; | 
|  | 1064 | out: | 
|  | 1065 | page->mapping = NULL; | 
|  | 1066 | clear_compound_head(page); | 
|  | 1067 | return ret; | 
|  | 1068 | } | 
|  | 1069 |  | 
|  | 1070 | static void kernel_init_free_pages(struct page *page, int numpages) | 
|  | 1071 | { | 
|  | 1072 | int i; | 
|  | 1073 |  | 
|  | 1074 | for (i = 0; i < numpages; i++) | 
|  | 1075 | clear_highpage(page + i); | 
|  | 1076 | } | 
|  | 1077 |  | 
|  | 1078 | static __always_inline bool free_pages_prepare(struct page *page, | 
|  | 1079 | unsigned int order, bool check_free) | 
|  | 1080 | { | 
|  | 1081 | int bad = 0; | 
|  | 1082 |  | 
|  | 1083 | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | 1084 |  | 
|  | 1085 | trace_mm_page_free(page, order); | 
|  | 1086 |  | 
|  | 1087 | /* | 
|  | 1088 | * Check tail pages before head page information is cleared to | 
|  | 1089 | * avoid checking PageCompound for order-0 pages. | 
|  | 1090 | */ | 
|  | 1091 | if (unlikely(order)) { | 
|  | 1092 | bool compound = PageCompound(page); | 
|  | 1093 | int i; | 
|  | 1094 |  | 
|  | 1095 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | 
|  | 1096 |  | 
|  | 1097 | if (compound) | 
|  | 1098 | ClearPageDoubleMap(page); | 
|  | 1099 | for (i = 1; i < (1 << order); i++) { | 
|  | 1100 | if (compound) | 
|  | 1101 | bad += free_tail_pages_check(page, page + i); | 
|  | 1102 | if (unlikely(free_pages_check(page + i))) { | 
|  | 1103 | bad++; | 
|  | 1104 | continue; | 
|  | 1105 | } | 
|  | 1106 | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
|  | 1107 | } | 
|  | 1108 | } | 
|  | 1109 | if (PageMappingFlags(page)) | 
|  | 1110 | page->mapping = NULL; | 
|  | 1111 | if (memcg_kmem_enabled() && PageKmemcg(page)) | 
|  | 1112 | memcg_kmem_uncharge(page, order); | 
|  | 1113 | if (check_free) | 
|  | 1114 | bad += free_pages_check(page); | 
|  | 1115 | if (bad) | 
|  | 1116 | return false; | 
|  | 1117 |  | 
|  | 1118 | page_cpupid_reset_last(page); | 
|  | 1119 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
|  | 1120 | reset_page_owner(page, order); | 
|  | 1121 |  | 
|  | 1122 | if (!PageHighMem(page)) { | 
|  | 1123 | debug_check_no_locks_freed(page_address(page), | 
|  | 1124 | PAGE_SIZE << order); | 
|  | 1125 | debug_check_no_obj_freed(page_address(page), | 
|  | 1126 | PAGE_SIZE << order); | 
|  | 1127 | } | 
|  | 1128 | arch_free_page(page, order); | 
|  | 1129 | if (want_init_on_free()) | 
|  | 1130 | kernel_init_free_pages(page, 1 << order); | 
|  | 1131 |  | 
|  | 1132 | kernel_poison_pages(page, 1 << order, 0); | 
|  | 1133 | kernel_map_pages(page, 1 << order, 0); | 
|  | 1134 | kasan_free_nondeferred_pages(page, order); | 
|  | 1135 |  | 
|  | 1136 | return true; | 
|  | 1137 | } | 
|  | 1138 |  | 
|  | 1139 | #ifdef CONFIG_DEBUG_VM | 
|  | 1140 | static inline bool free_pcp_prepare(struct page *page) | 
|  | 1141 | { | 
|  | 1142 | return free_pages_prepare(page, 0, true); | 
|  | 1143 | } | 
|  | 1144 |  | 
|  | 1145 | static inline bool bulkfree_pcp_prepare(struct page *page) | 
|  | 1146 | { | 
|  | 1147 | return false; | 
|  | 1148 | } | 
|  | 1149 | #else | 
|  | 1150 | static bool free_pcp_prepare(struct page *page) | 
|  | 1151 | { | 
|  | 1152 | return free_pages_prepare(page, 0, false); | 
|  | 1153 | } | 
|  | 1154 |  | 
|  | 1155 | static bool bulkfree_pcp_prepare(struct page *page) | 
|  | 1156 | { | 
|  | 1157 | return free_pages_check(page); | 
|  | 1158 | } | 
|  | 1159 | #endif /* CONFIG_DEBUG_VM */ | 
|  | 1160 |  | 
|  | 1161 | static inline void prefetch_buddy(struct page *page) | 
|  | 1162 | { | 
|  | 1163 | unsigned long pfn = page_to_pfn(page); | 
|  | 1164 | unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); | 
|  | 1165 | struct page *buddy = page + (buddy_pfn - pfn); | 
|  | 1166 |  | 
|  | 1167 | prefetch(buddy); | 
|  | 1168 | } | 
|  | 1169 |  | 
|  | 1170 | /* | 
|  | 1171 | * Frees a number of pages from the PCP lists | 
|  | 1172 | * Assumes all pages on list are in same zone, and of same order. | 
|  | 1173 | * count is the number of pages to free. | 
|  | 1174 | * | 
|  | 1175 | * If the zone was previously in an "all pages pinned" state then look to | 
|  | 1176 | * see if this freeing clears that state. | 
|  | 1177 | * | 
|  | 1178 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | 
|  | 1179 | * pinned" detection logic. | 
|  | 1180 | */ | 
|  | 1181 | static void free_pcppages_bulk(struct zone *zone, int count, | 
|  | 1182 | struct per_cpu_pages *pcp) | 
|  | 1183 | { | 
|  | 1184 | int migratetype = 0; | 
|  | 1185 | int batch_free = 0; | 
|  | 1186 | int prefetch_nr = 0; | 
|  | 1187 | bool isolated_pageblocks; | 
|  | 1188 | struct page *page, *tmp; | 
|  | 1189 | LIST_HEAD(head); | 
|  | 1190 |  | 
|  | 1191 | while (count) { | 
|  | 1192 | struct list_head *list; | 
|  | 1193 |  | 
|  | 1194 | /* | 
|  | 1195 | * Remove pages from lists in a round-robin fashion. A | 
|  | 1196 | * batch_free count is maintained that is incremented when an | 
|  | 1197 | * empty list is encountered.  This is so more pages are freed | 
|  | 1198 | * off fuller lists instead of spinning excessively around empty | 
|  | 1199 | * lists | 
|  | 1200 | */ | 
|  | 1201 | do { | 
|  | 1202 | batch_free++; | 
|  | 1203 | if (++migratetype == MIGRATE_PCPTYPES) | 
|  | 1204 | migratetype = 0; | 
|  | 1205 | list = &pcp->lists[migratetype]; | 
|  | 1206 | } while (list_empty(list)); | 
|  | 1207 |  | 
|  | 1208 | /* This is the only non-empty list. Free them all. */ | 
|  | 1209 | if (batch_free == MIGRATE_PCPTYPES) | 
|  | 1210 | batch_free = count; | 
|  | 1211 |  | 
|  | 1212 | do { | 
|  | 1213 | page = list_last_entry(list, struct page, lru); | 
|  | 1214 | /* must delete to avoid corrupting pcp list */ | 
|  | 1215 | list_del(&page->lru); | 
|  | 1216 | pcp->count--; | 
|  | 1217 |  | 
|  | 1218 | if (bulkfree_pcp_prepare(page)) | 
|  | 1219 | continue; | 
|  | 1220 |  | 
|  | 1221 | list_add_tail(&page->lru, &head); | 
|  | 1222 |  | 
|  | 1223 | /* | 
|  | 1224 | * We are going to put the page back to the global | 
|  | 1225 | * pool, prefetch its buddy to speed up later access | 
|  | 1226 | * under zone->lock. It is believed the overhead of | 
|  | 1227 | * an additional test and calculating buddy_pfn here | 
|  | 1228 | * can be offset by reduced memory latency later. To | 
|  | 1229 | * avoid excessive prefetching due to large count, only | 
|  | 1230 | * prefetch buddy for the first pcp->batch nr of pages. | 
|  | 1231 | */ | 
|  | 1232 | if (prefetch_nr++ < pcp->batch) | 
|  | 1233 | prefetch_buddy(page); | 
|  | 1234 | } while (--count && --batch_free && !list_empty(list)); | 
|  | 1235 | } | 
|  | 1236 |  | 
|  | 1237 | spin_lock(&zone->lock); | 
|  | 1238 | isolated_pageblocks = has_isolate_pageblock(zone); | 
|  | 1239 |  | 
|  | 1240 | /* | 
|  | 1241 | * Use safe version since after __free_one_page(), | 
|  | 1242 | * page->lru.next will not point to original list. | 
|  | 1243 | */ | 
|  | 1244 | list_for_each_entry_safe(page, tmp, &head, lru) { | 
|  | 1245 | int mt = get_pcppage_migratetype(page); | 
|  | 1246 | /* MIGRATE_ISOLATE page should not go to pcplists */ | 
|  | 1247 | VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | 
|  | 1248 | /* Pageblock could have been isolated meanwhile */ | 
|  | 1249 | if (unlikely(isolated_pageblocks)) | 
|  | 1250 | mt = get_pageblock_migratetype(page); | 
|  | 1251 |  | 
|  | 1252 | __free_one_page(page, page_to_pfn(page), zone, 0, mt); | 
|  | 1253 | trace_mm_page_pcpu_drain(page, 0, mt); | 
|  | 1254 | } | 
|  | 1255 | spin_unlock(&zone->lock); | 
|  | 1256 | } | 
|  | 1257 |  | 
|  | 1258 | static void free_one_page(struct zone *zone, | 
|  | 1259 | struct page *page, unsigned long pfn, | 
|  | 1260 | unsigned int order, | 
|  | 1261 | int migratetype) | 
|  | 1262 | { | 
|  | 1263 | spin_lock(&zone->lock); | 
|  | 1264 | if (unlikely(has_isolate_pageblock(zone) || | 
|  | 1265 | is_migrate_isolate(migratetype))) { | 
|  | 1266 | migratetype = get_pfnblock_migratetype(page, pfn); | 
|  | 1267 | } | 
|  | 1268 | __free_one_page(page, pfn, zone, order, migratetype); | 
|  | 1269 | spin_unlock(&zone->lock); | 
|  | 1270 | } | 
|  | 1271 |  | 
|  | 1272 | static void __meminit __init_single_page(struct page *page, unsigned long pfn, | 
|  | 1273 | unsigned long zone, int nid) | 
|  | 1274 | { | 
|  | 1275 | mm_zero_struct_page(page); | 
|  | 1276 | set_page_links(page, zone, nid, pfn); | 
|  | 1277 | init_page_count(page); | 
|  | 1278 | page_mapcount_reset(page); | 
|  | 1279 | page_cpupid_reset_last(page); | 
|  | 1280 | page_kasan_tag_reset(page); | 
|  | 1281 |  | 
|  | 1282 | INIT_LIST_HEAD(&page->lru); | 
|  | 1283 | #ifdef WANT_PAGE_VIRTUAL | 
|  | 1284 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
|  | 1285 | if (!is_highmem_idx(zone)) | 
|  | 1286 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
|  | 1287 | #endif | 
|  | 1288 | } | 
|  | 1289 |  | 
|  | 1290 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | 1291 | static void __meminit init_reserved_page(unsigned long pfn) | 
|  | 1292 | { | 
|  | 1293 | pg_data_t *pgdat; | 
|  | 1294 | int nid, zid; | 
|  | 1295 |  | 
|  | 1296 | if (!early_page_uninitialised(pfn)) | 
|  | 1297 | return; | 
|  | 1298 |  | 
|  | 1299 | nid = early_pfn_to_nid(pfn); | 
|  | 1300 | pgdat = NODE_DATA(nid); | 
|  | 1301 |  | 
|  | 1302 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | 1303 | struct zone *zone = &pgdat->node_zones[zid]; | 
|  | 1304 |  | 
|  | 1305 | if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) | 
|  | 1306 | break; | 
|  | 1307 | } | 
|  | 1308 | __init_single_page(pfn_to_page(pfn), pfn, zid, nid); | 
|  | 1309 | } | 
|  | 1310 | #else | 
|  | 1311 | static inline void init_reserved_page(unsigned long pfn) | 
|  | 1312 | { | 
|  | 1313 | } | 
|  | 1314 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
|  | 1315 |  | 
|  | 1316 | /* | 
|  | 1317 | * Initialised pages do not have PageReserved set. This function is | 
|  | 1318 | * called for each range allocated by the bootmem allocator and | 
|  | 1319 | * marks the pages PageReserved. The remaining valid pages are later | 
|  | 1320 | * sent to the buddy page allocator. | 
|  | 1321 | */ | 
|  | 1322 | void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) | 
|  | 1323 | { | 
|  | 1324 | unsigned long start_pfn = PFN_DOWN(start); | 
|  | 1325 | unsigned long end_pfn = PFN_UP(end); | 
|  | 1326 |  | 
|  | 1327 | for (; start_pfn < end_pfn; start_pfn++) { | 
|  | 1328 | if (pfn_valid(start_pfn)) { | 
|  | 1329 | struct page *page = pfn_to_page(start_pfn); | 
|  | 1330 |  | 
|  | 1331 | init_reserved_page(start_pfn); | 
|  | 1332 |  | 
|  | 1333 | /* Avoid false-positive PageTail() */ | 
|  | 1334 | INIT_LIST_HEAD(&page->lru); | 
|  | 1335 |  | 
|  | 1336 | SetPageReserved(page); | 
|  | 1337 | } | 
|  | 1338 | } | 
|  | 1339 | } | 
|  | 1340 |  | 
|  | 1341 | static void __free_pages_ok(struct page *page, unsigned int order) | 
|  | 1342 | { | 
|  | 1343 | unsigned long flags; | 
|  | 1344 | int migratetype; | 
|  | 1345 | unsigned long pfn = page_to_pfn(page); | 
|  | 1346 |  | 
|  | 1347 | if (!free_pages_prepare(page, order, true)) | 
|  | 1348 | return; | 
|  | 1349 |  | 
|  | 1350 | migratetype = get_pfnblock_migratetype(page, pfn); | 
|  | 1351 | local_irq_save(flags); | 
|  | 1352 | __count_vm_events(PGFREE, 1 << order); | 
|  | 1353 | free_one_page(page_zone(page), page, pfn, order, migratetype); | 
|  | 1354 | local_irq_restore(flags); | 
|  | 1355 | } | 
|  | 1356 |  | 
|  | 1357 | static void __init __free_pages_boot_core(struct page *page, unsigned int order) | 
|  | 1358 | { | 
|  | 1359 | unsigned int nr_pages = 1 << order; | 
|  | 1360 | struct page *p = page; | 
|  | 1361 | unsigned int loop; | 
|  | 1362 |  | 
|  | 1363 | prefetchw(p); | 
|  | 1364 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | 
|  | 1365 | prefetchw(p + 1); | 
|  | 1366 | __ClearPageReserved(p); | 
|  | 1367 | set_page_count(p, 0); | 
|  | 1368 | } | 
|  | 1369 | __ClearPageReserved(p); | 
|  | 1370 | set_page_count(p, 0); | 
|  | 1371 |  | 
|  | 1372 | page_zone(page)->managed_pages += nr_pages; | 
|  | 1373 | set_page_refcounted(page); | 
|  | 1374 | __free_pages(page, order); | 
|  | 1375 | } | 
|  | 1376 |  | 
|  | 1377 | #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ | 
|  | 1378 | defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) | 
|  | 1379 |  | 
|  | 1380 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; | 
|  | 1381 |  | 
|  | 1382 | int __meminit early_pfn_to_nid(unsigned long pfn) | 
|  | 1383 | { | 
|  | 1384 | static DEFINE_SPINLOCK(early_pfn_lock); | 
|  | 1385 | int nid; | 
|  | 1386 |  | 
|  | 1387 | spin_lock(&early_pfn_lock); | 
|  | 1388 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); | 
|  | 1389 | if (nid < 0) | 
|  | 1390 | nid = first_online_node; | 
|  | 1391 | spin_unlock(&early_pfn_lock); | 
|  | 1392 |  | 
|  | 1393 | return nid; | 
|  | 1394 | } | 
|  | 1395 | #endif | 
|  | 1396 |  | 
|  | 1397 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | 
|  | 1398 | static inline bool __meminit __maybe_unused | 
|  | 1399 | meminit_pfn_in_nid(unsigned long pfn, int node, | 
|  | 1400 | struct mminit_pfnnid_cache *state) | 
|  | 1401 | { | 
|  | 1402 | int nid; | 
|  | 1403 |  | 
|  | 1404 | nid = __early_pfn_to_nid(pfn, state); | 
|  | 1405 | if (nid >= 0 && nid != node) | 
|  | 1406 | return false; | 
|  | 1407 | return true; | 
|  | 1408 | } | 
|  | 1409 |  | 
|  | 1410 | /* Only safe to use early in boot when initialisation is single-threaded */ | 
|  | 1411 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | 
|  | 1412 | { | 
|  | 1413 | return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); | 
|  | 1414 | } | 
|  | 1415 |  | 
|  | 1416 | #else | 
|  | 1417 |  | 
|  | 1418 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | 
|  | 1419 | { | 
|  | 1420 | return true; | 
|  | 1421 | } | 
|  | 1422 | static inline bool __meminit  __maybe_unused | 
|  | 1423 | meminit_pfn_in_nid(unsigned long pfn, int node, | 
|  | 1424 | struct mminit_pfnnid_cache *state) | 
|  | 1425 | { | 
|  | 1426 | return true; | 
|  | 1427 | } | 
|  | 1428 | #endif | 
|  | 1429 |  | 
|  | 1430 |  | 
|  | 1431 | void __init __free_pages_bootmem(struct page *page, unsigned long pfn, | 
|  | 1432 | unsigned int order) | 
|  | 1433 | { | 
|  | 1434 | if (early_page_uninitialised(pfn)) | 
|  | 1435 | return; | 
|  | 1436 | return __free_pages_boot_core(page, order); | 
|  | 1437 | } | 
|  | 1438 |  | 
|  | 1439 | /* | 
|  | 1440 | * Check that the whole (or subset of) a pageblock given by the interval of | 
|  | 1441 | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | 
|  | 1442 | * with the migration of free compaction scanner. The scanners then need to | 
|  | 1443 | * use only pfn_valid_within() check for arches that allow holes within | 
|  | 1444 | * pageblocks. | 
|  | 1445 | * | 
|  | 1446 | * Return struct page pointer of start_pfn, or NULL if checks were not passed. | 
|  | 1447 | * | 
|  | 1448 | * It's possible on some configurations to have a setup like node0 node1 node0 | 
|  | 1449 | * i.e. it's possible that all pages within a zones range of pages do not | 
|  | 1450 | * belong to a single zone. We assume that a border between node0 and node1 | 
|  | 1451 | * can occur within a single pageblock, but not a node0 node1 node0 | 
|  | 1452 | * interleaving within a single pageblock. It is therefore sufficient to check | 
|  | 1453 | * the first and last page of a pageblock and avoid checking each individual | 
|  | 1454 | * page in a pageblock. | 
|  | 1455 | */ | 
|  | 1456 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | 
|  | 1457 | unsigned long end_pfn, struct zone *zone) | 
|  | 1458 | { | 
|  | 1459 | struct page *start_page; | 
|  | 1460 | struct page *end_page; | 
|  | 1461 |  | 
|  | 1462 | /* end_pfn is one past the range we are checking */ | 
|  | 1463 | end_pfn--; | 
|  | 1464 |  | 
|  | 1465 | if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) | 
|  | 1466 | return NULL; | 
|  | 1467 |  | 
|  | 1468 | start_page = pfn_to_online_page(start_pfn); | 
|  | 1469 | if (!start_page) | 
|  | 1470 | return NULL; | 
|  | 1471 |  | 
|  | 1472 | if (page_zone(start_page) != zone) | 
|  | 1473 | return NULL; | 
|  | 1474 |  | 
|  | 1475 | end_page = pfn_to_page(end_pfn); | 
|  | 1476 |  | 
|  | 1477 | /* This gives a shorter code than deriving page_zone(end_page) */ | 
|  | 1478 | if (page_zone_id(start_page) != page_zone_id(end_page)) | 
|  | 1479 | return NULL; | 
|  | 1480 |  | 
|  | 1481 | return start_page; | 
|  | 1482 | } | 
|  | 1483 |  | 
|  | 1484 | void set_zone_contiguous(struct zone *zone) | 
|  | 1485 | { | 
|  | 1486 | unsigned long block_start_pfn = zone->zone_start_pfn; | 
|  | 1487 | unsigned long block_end_pfn; | 
|  | 1488 |  | 
|  | 1489 | block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); | 
|  | 1490 | for (; block_start_pfn < zone_end_pfn(zone); | 
|  | 1491 | block_start_pfn = block_end_pfn, | 
|  | 1492 | block_end_pfn += pageblock_nr_pages) { | 
|  | 1493 |  | 
|  | 1494 | block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | 
|  | 1495 |  | 
|  | 1496 | if (!__pageblock_pfn_to_page(block_start_pfn, | 
|  | 1497 | block_end_pfn, zone)) | 
|  | 1498 | return; | 
|  | 1499 | } | 
|  | 1500 |  | 
|  | 1501 | /* We confirm that there is no hole */ | 
|  | 1502 | zone->contiguous = true; | 
|  | 1503 | } | 
|  | 1504 |  | 
|  | 1505 | void clear_zone_contiguous(struct zone *zone) | 
|  | 1506 | { | 
|  | 1507 | zone->contiguous = false; | 
|  | 1508 | } | 
|  | 1509 |  | 
|  | 1510 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | 1511 | static void __init deferred_free_range(unsigned long pfn, | 
|  | 1512 | unsigned long nr_pages) | 
|  | 1513 | { | 
|  | 1514 | struct page *page; | 
|  | 1515 | unsigned long i; | 
|  | 1516 |  | 
|  | 1517 | if (!nr_pages) | 
|  | 1518 | return; | 
|  | 1519 |  | 
|  | 1520 | page = pfn_to_page(pfn); | 
|  | 1521 |  | 
|  | 1522 | /* Free a large naturally-aligned chunk if possible */ | 
|  | 1523 | if (nr_pages == pageblock_nr_pages && | 
|  | 1524 | (pfn & (pageblock_nr_pages - 1)) == 0) { | 
|  | 1525 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  | 1526 | __free_pages_boot_core(page, pageblock_order); | 
|  | 1527 | return; | 
|  | 1528 | } | 
|  | 1529 |  | 
|  | 1530 | for (i = 0; i < nr_pages; i++, page++, pfn++) { | 
|  | 1531 | if ((pfn & (pageblock_nr_pages - 1)) == 0) | 
|  | 1532 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  | 1533 | __free_pages_boot_core(page, 0); | 
|  | 1534 | } | 
|  | 1535 | } | 
|  | 1536 |  | 
|  | 1537 | /* Completion tracking for deferred_init_memmap() threads */ | 
|  | 1538 | static atomic_t pgdat_init_n_undone __initdata; | 
|  | 1539 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | 
|  | 1540 |  | 
|  | 1541 | static inline void __init pgdat_init_report_one_done(void) | 
|  | 1542 | { | 
|  | 1543 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | 
|  | 1544 | complete(&pgdat_init_all_done_comp); | 
|  | 1545 | } | 
|  | 1546 |  | 
|  | 1547 | /* | 
|  | 1548 | * Returns true if page needs to be initialized or freed to buddy allocator. | 
|  | 1549 | * | 
|  | 1550 | * First we check if pfn is valid on architectures where it is possible to have | 
|  | 1551 | * holes within pageblock_nr_pages. On systems where it is not possible, this | 
|  | 1552 | * function is optimized out. | 
|  | 1553 | * | 
|  | 1554 | * Then, we check if a current large page is valid by only checking the validity | 
|  | 1555 | * of the head pfn. | 
|  | 1556 | * | 
|  | 1557 | * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave | 
|  | 1558 | * within a node: a pfn is between start and end of a node, but does not belong | 
|  | 1559 | * to this memory node. | 
|  | 1560 | */ | 
|  | 1561 | static inline bool __init | 
|  | 1562 | deferred_pfn_valid(int nid, unsigned long pfn, | 
|  | 1563 | struct mminit_pfnnid_cache *nid_init_state) | 
|  | 1564 | { | 
|  | 1565 | if (!pfn_valid_within(pfn)) | 
|  | 1566 | return false; | 
|  | 1567 | if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) | 
|  | 1568 | return false; | 
|  | 1569 | if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) | 
|  | 1570 | return false; | 
|  | 1571 | return true; | 
|  | 1572 | } | 
|  | 1573 |  | 
|  | 1574 | /* | 
|  | 1575 | * Free pages to buddy allocator. Try to free aligned pages in | 
|  | 1576 | * pageblock_nr_pages sizes. | 
|  | 1577 | */ | 
|  | 1578 | static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, | 
|  | 1579 | unsigned long end_pfn) | 
|  | 1580 | { | 
|  | 1581 | struct mminit_pfnnid_cache nid_init_state = { }; | 
|  | 1582 | unsigned long nr_pgmask = pageblock_nr_pages - 1; | 
|  | 1583 | unsigned long nr_free = 0; | 
|  | 1584 |  | 
|  | 1585 | for (; pfn < end_pfn; pfn++) { | 
|  | 1586 | if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { | 
|  | 1587 | deferred_free_range(pfn - nr_free, nr_free); | 
|  | 1588 | nr_free = 0; | 
|  | 1589 | } else if (!(pfn & nr_pgmask)) { | 
|  | 1590 | deferred_free_range(pfn - nr_free, nr_free); | 
|  | 1591 | nr_free = 1; | 
|  | 1592 | touch_nmi_watchdog(); | 
|  | 1593 | } else { | 
|  | 1594 | nr_free++; | 
|  | 1595 | } | 
|  | 1596 | } | 
|  | 1597 | /* Free the last block of pages to allocator */ | 
|  | 1598 | deferred_free_range(pfn - nr_free, nr_free); | 
|  | 1599 | } | 
|  | 1600 |  | 
|  | 1601 | /* | 
|  | 1602 | * Initialize struct pages.  We minimize pfn page lookups and scheduler checks | 
|  | 1603 | * by performing it only once every pageblock_nr_pages. | 
|  | 1604 | * Return number of pages initialized. | 
|  | 1605 | */ | 
|  | 1606 | static unsigned long  __init deferred_init_pages(int nid, int zid, | 
|  | 1607 | unsigned long pfn, | 
|  | 1608 | unsigned long end_pfn) | 
|  | 1609 | { | 
|  | 1610 | struct mminit_pfnnid_cache nid_init_state = { }; | 
|  | 1611 | unsigned long nr_pgmask = pageblock_nr_pages - 1; | 
|  | 1612 | unsigned long nr_pages = 0; | 
|  | 1613 | struct page *page = NULL; | 
|  | 1614 |  | 
|  | 1615 | for (; pfn < end_pfn; pfn++) { | 
|  | 1616 | if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { | 
|  | 1617 | page = NULL; | 
|  | 1618 | continue; | 
|  | 1619 | } else if (!page || !(pfn & nr_pgmask)) { | 
|  | 1620 | page = pfn_to_page(pfn); | 
|  | 1621 | touch_nmi_watchdog(); | 
|  | 1622 | } else { | 
|  | 1623 | page++; | 
|  | 1624 | } | 
|  | 1625 | __init_single_page(page, pfn, zid, nid); | 
|  | 1626 | nr_pages++; | 
|  | 1627 | } | 
|  | 1628 | return (nr_pages); | 
|  | 1629 | } | 
|  | 1630 |  | 
|  | 1631 | /* Initialise remaining memory on a node */ | 
|  | 1632 | static int __init deferred_init_memmap(void *data) | 
|  | 1633 | { | 
|  | 1634 | pg_data_t *pgdat = data; | 
|  | 1635 | int nid = pgdat->node_id; | 
|  | 1636 | unsigned long start = jiffies; | 
|  | 1637 | unsigned long nr_pages = 0; | 
|  | 1638 | unsigned long spfn, epfn, first_init_pfn, flags; | 
|  | 1639 | phys_addr_t spa, epa; | 
|  | 1640 | int zid; | 
|  | 1641 | struct zone *zone; | 
|  | 1642 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
|  | 1643 | u64 i; | 
|  | 1644 |  | 
|  | 1645 | /* Bind memory initialisation thread to a local node if possible */ | 
|  | 1646 | if (!cpumask_empty(cpumask)) | 
|  | 1647 | set_cpus_allowed_ptr(current, cpumask); | 
|  | 1648 |  | 
|  | 1649 | pgdat_resize_lock(pgdat, &flags); | 
|  | 1650 | first_init_pfn = pgdat->first_deferred_pfn; | 
|  | 1651 | if (first_init_pfn == ULONG_MAX) { | 
|  | 1652 | pgdat_resize_unlock(pgdat, &flags); | 
|  | 1653 | pgdat_init_report_one_done(); | 
|  | 1654 | return 0; | 
|  | 1655 | } | 
|  | 1656 |  | 
|  | 1657 | /* Sanity check boundaries */ | 
|  | 1658 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | 
|  | 1659 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | 
|  | 1660 | pgdat->first_deferred_pfn = ULONG_MAX; | 
|  | 1661 |  | 
|  | 1662 | /* Only the highest zone is deferred so find it */ | 
|  | 1663 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | 1664 | zone = pgdat->node_zones + zid; | 
|  | 1665 | if (first_init_pfn < zone_end_pfn(zone)) | 
|  | 1666 | break; | 
|  | 1667 | } | 
|  | 1668 | first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); | 
|  | 1669 |  | 
|  | 1670 | /* | 
|  | 1671 | * Initialize and free pages. We do it in two loops: first we initialize | 
|  | 1672 | * struct page, than free to buddy allocator, because while we are | 
|  | 1673 | * freeing pages we can access pages that are ahead (computing buddy | 
|  | 1674 | * page in __free_one_page()). | 
|  | 1675 | */ | 
|  | 1676 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | 
|  | 1677 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | 
|  | 1678 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | 
|  | 1679 | nr_pages += deferred_init_pages(nid, zid, spfn, epfn); | 
|  | 1680 | } | 
|  | 1681 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | 
|  | 1682 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | 
|  | 1683 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | 
|  | 1684 | deferred_free_pages(nid, zid, spfn, epfn); | 
|  | 1685 | } | 
|  | 1686 | pgdat_resize_unlock(pgdat, &flags); | 
|  | 1687 |  | 
|  | 1688 | /* Sanity check that the next zone really is unpopulated */ | 
|  | 1689 | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | 
|  | 1690 |  | 
|  | 1691 | pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, | 
|  | 1692 | jiffies_to_msecs(jiffies - start)); | 
|  | 1693 |  | 
|  | 1694 | pgdat_init_report_one_done(); | 
|  | 1695 | return 0; | 
|  | 1696 | } | 
|  | 1697 |  | 
|  | 1698 | /* | 
|  | 1699 | * If this zone has deferred pages, try to grow it by initializing enough | 
|  | 1700 | * deferred pages to satisfy the allocation specified by order, rounded up to | 
|  | 1701 | * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments | 
|  | 1702 | * of SECTION_SIZE bytes by initializing struct pages in increments of | 
|  | 1703 | * PAGES_PER_SECTION * sizeof(struct page) bytes. | 
|  | 1704 | * | 
|  | 1705 | * Return true when zone was grown, otherwise return false. We return true even | 
|  | 1706 | * when we grow less than requested, to let the caller decide if there are | 
|  | 1707 | * enough pages to satisfy the allocation. | 
|  | 1708 | * | 
|  | 1709 | * Note: We use noinline because this function is needed only during boot, and | 
|  | 1710 | * it is called from a __ref function _deferred_grow_zone. This way we are | 
|  | 1711 | * making sure that it is not inlined into permanent text section. | 
|  | 1712 | */ | 
|  | 1713 | static noinline bool __init | 
|  | 1714 | deferred_grow_zone(struct zone *zone, unsigned int order) | 
|  | 1715 | { | 
|  | 1716 | int zid = zone_idx(zone); | 
|  | 1717 | int nid = zone_to_nid(zone); | 
|  | 1718 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 1719 | unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); | 
|  | 1720 | unsigned long nr_pages = 0; | 
|  | 1721 | unsigned long first_init_pfn, spfn, epfn, t, flags; | 
|  | 1722 | unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; | 
|  | 1723 | phys_addr_t spa, epa; | 
|  | 1724 | u64 i; | 
|  | 1725 |  | 
|  | 1726 | /* Only the last zone may have deferred pages */ | 
|  | 1727 | if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) | 
|  | 1728 | return false; | 
|  | 1729 |  | 
|  | 1730 | pgdat_resize_lock(pgdat, &flags); | 
|  | 1731 |  | 
|  | 1732 | /* | 
|  | 1733 | * If deferred pages have been initialized while we were waiting for | 
|  | 1734 | * the lock, return true, as the zone was grown.  The caller will retry | 
|  | 1735 | * this zone.  We won't return to this function since the caller also | 
|  | 1736 | * has this static branch. | 
|  | 1737 | */ | 
|  | 1738 | if (!static_branch_unlikely(&deferred_pages)) { | 
|  | 1739 | pgdat_resize_unlock(pgdat, &flags); | 
|  | 1740 | return true; | 
|  | 1741 | } | 
|  | 1742 |  | 
|  | 1743 | /* | 
|  | 1744 | * If someone grew this zone while we were waiting for spinlock, return | 
|  | 1745 | * true, as there might be enough pages already. | 
|  | 1746 | */ | 
|  | 1747 | if (first_deferred_pfn != pgdat->first_deferred_pfn) { | 
|  | 1748 | pgdat_resize_unlock(pgdat, &flags); | 
|  | 1749 | return true; | 
|  | 1750 | } | 
|  | 1751 |  | 
|  | 1752 | first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); | 
|  | 1753 |  | 
|  | 1754 | if (first_init_pfn >= pgdat_end_pfn(pgdat)) { | 
|  | 1755 | pgdat_resize_unlock(pgdat, &flags); | 
|  | 1756 | return false; | 
|  | 1757 | } | 
|  | 1758 |  | 
|  | 1759 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | 
|  | 1760 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | 
|  | 1761 | epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); | 
|  | 1762 |  | 
|  | 1763 | while (spfn < epfn && nr_pages < nr_pages_needed) { | 
|  | 1764 | t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); | 
|  | 1765 | first_deferred_pfn = min(t, epfn); | 
|  | 1766 | nr_pages += deferred_init_pages(nid, zid, spfn, | 
|  | 1767 | first_deferred_pfn); | 
|  | 1768 | spfn = first_deferred_pfn; | 
|  | 1769 | } | 
|  | 1770 |  | 
|  | 1771 | if (nr_pages >= nr_pages_needed) | 
|  | 1772 | break; | 
|  | 1773 | } | 
|  | 1774 |  | 
|  | 1775 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { | 
|  | 1776 | spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); | 
|  | 1777 | epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); | 
|  | 1778 | deferred_free_pages(nid, zid, spfn, epfn); | 
|  | 1779 |  | 
|  | 1780 | if (first_deferred_pfn == epfn) | 
|  | 1781 | break; | 
|  | 1782 | } | 
|  | 1783 | pgdat->first_deferred_pfn = first_deferred_pfn; | 
|  | 1784 | pgdat_resize_unlock(pgdat, &flags); | 
|  | 1785 |  | 
|  | 1786 | return nr_pages > 0; | 
|  | 1787 | } | 
|  | 1788 |  | 
|  | 1789 | /* | 
|  | 1790 | * deferred_grow_zone() is __init, but it is called from | 
|  | 1791 | * get_page_from_freelist() during early boot until deferred_pages permanently | 
|  | 1792 | * disables this call. This is why we have refdata wrapper to avoid warning, | 
|  | 1793 | * and to ensure that the function body gets unloaded. | 
|  | 1794 | */ | 
|  | 1795 | static bool __ref | 
|  | 1796 | _deferred_grow_zone(struct zone *zone, unsigned int order) | 
|  | 1797 | { | 
|  | 1798 | return deferred_grow_zone(zone, order); | 
|  | 1799 | } | 
|  | 1800 |  | 
|  | 1801 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
|  | 1802 |  | 
|  | 1803 | void __init page_alloc_init_late(void) | 
|  | 1804 | { | 
|  | 1805 | struct zone *zone; | 
|  | 1806 |  | 
|  | 1807 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | 1808 | int nid; | 
|  | 1809 |  | 
|  | 1810 | /* There will be num_node_state(N_MEMORY) threads */ | 
|  | 1811 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | 
|  | 1812 | for_each_node_state(nid, N_MEMORY) { | 
|  | 1813 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); | 
|  | 1814 | } | 
|  | 1815 |  | 
|  | 1816 | /* Block until all are initialised */ | 
|  | 1817 | wait_for_completion(&pgdat_init_all_done_comp); | 
|  | 1818 |  | 
|  | 1819 | /* | 
|  | 1820 | * The number of managed pages has changed due to the initialisation | 
|  | 1821 | * so the pcpu batch and high limits needs to be updated or the limits | 
|  | 1822 | * will be artificially small. | 
|  | 1823 | */ | 
|  | 1824 | for_each_populated_zone(zone) | 
|  | 1825 | zone_pcp_update(zone); | 
|  | 1826 |  | 
|  | 1827 | /* | 
|  | 1828 | * We initialized the rest of the deferred pages.  Permanently disable | 
|  | 1829 | * on-demand struct page initialization. | 
|  | 1830 | */ | 
|  | 1831 | static_branch_disable(&deferred_pages); | 
|  | 1832 |  | 
|  | 1833 | /* Reinit limits that are based on free pages after the kernel is up */ | 
|  | 1834 | files_maxfiles_init(); | 
|  | 1835 | #endif | 
|  | 1836 | #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK | 
|  | 1837 | /* Discard memblock private memory */ | 
|  | 1838 | memblock_discard(); | 
|  | 1839 | #endif | 
|  | 1840 |  | 
|  | 1841 | for_each_populated_zone(zone) | 
|  | 1842 | set_zone_contiguous(zone); | 
|  | 1843 | } | 
|  | 1844 |  | 
|  | 1845 | #ifdef CONFIG_CMA | 
|  | 1846 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ | 
|  | 1847 | void __init init_cma_reserved_pageblock(struct page *page) | 
|  | 1848 | { | 
|  | 1849 | unsigned i = pageblock_nr_pages; | 
|  | 1850 | struct page *p = page; | 
|  | 1851 |  | 
|  | 1852 | do { | 
|  | 1853 | __ClearPageReserved(p); | 
|  | 1854 | set_page_count(p, 0); | 
|  | 1855 | } while (++p, --i); | 
|  | 1856 |  | 
|  | 1857 | set_pageblock_migratetype(page, MIGRATE_CMA); | 
|  | 1858 |  | 
|  | 1859 | if (pageblock_order >= MAX_ORDER) { | 
|  | 1860 | i = pageblock_nr_pages; | 
|  | 1861 | p = page; | 
|  | 1862 | do { | 
|  | 1863 | set_page_refcounted(p); | 
|  | 1864 | __free_pages(p, MAX_ORDER - 1); | 
|  | 1865 | p += MAX_ORDER_NR_PAGES; | 
|  | 1866 | } while (i -= MAX_ORDER_NR_PAGES); | 
|  | 1867 | } else { | 
|  | 1868 | set_page_refcounted(page); | 
|  | 1869 | __free_pages(page, pageblock_order); | 
|  | 1870 | } | 
|  | 1871 |  | 
|  | 1872 | adjust_managed_page_count(page, pageblock_nr_pages); | 
|  | 1873 | } | 
|  | 1874 | #endif | 
|  | 1875 |  | 
|  | 1876 | /* | 
|  | 1877 | * The order of subdivision here is critical for the IO subsystem. | 
|  | 1878 | * Please do not alter this order without good reasons and regression | 
|  | 1879 | * testing. Specifically, as large blocks of memory are subdivided, | 
|  | 1880 | * the order in which smaller blocks are delivered depends on the order | 
|  | 1881 | * they're subdivided in this function. This is the primary factor | 
|  | 1882 | * influencing the order in which pages are delivered to the IO | 
|  | 1883 | * subsystem according to empirical testing, and this is also justified | 
|  | 1884 | * by considering the behavior of a buddy system containing a single | 
|  | 1885 | * large block of memory acted on by a series of small allocations. | 
|  | 1886 | * This behavior is a critical factor in sglist merging's success. | 
|  | 1887 | * | 
|  | 1888 | * -- nyc | 
|  | 1889 | */ | 
|  | 1890 | static inline void expand(struct zone *zone, struct page *page, | 
|  | 1891 | int low, int high, struct free_area *area, | 
|  | 1892 | int migratetype) | 
|  | 1893 | { | 
|  | 1894 | unsigned long size = 1 << high; | 
|  | 1895 |  | 
|  | 1896 | while (high > low) { | 
|  | 1897 | area--; | 
|  | 1898 | high--; | 
|  | 1899 | size >>= 1; | 
|  | 1900 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); | 
|  | 1901 |  | 
|  | 1902 | /* | 
|  | 1903 | * Mark as guard pages (or page), that will allow to | 
|  | 1904 | * merge back to allocator when buddy will be freed. | 
|  | 1905 | * Corresponding page table entries will not be touched, | 
|  | 1906 | * pages will stay not present in virtual address space | 
|  | 1907 | */ | 
|  | 1908 | if (set_page_guard(zone, &page[size], high, migratetype)) | 
|  | 1909 | continue; | 
|  | 1910 |  | 
|  | 1911 | list_add(&page[size].lru, &area->free_list[migratetype]); | 
|  | 1912 | area->nr_free++; | 
|  | 1913 | set_page_order(&page[size], high); | 
|  | 1914 | } | 
|  | 1915 | } | 
|  | 1916 |  | 
|  | 1917 | static void check_new_page_bad(struct page *page) | 
|  | 1918 | { | 
|  | 1919 | const char *bad_reason = NULL; | 
|  | 1920 | unsigned long bad_flags = 0; | 
|  | 1921 |  | 
|  | 1922 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | 
|  | 1923 | bad_reason = "nonzero mapcount"; | 
|  | 1924 | if (unlikely(page->mapping != NULL)) | 
|  | 1925 | bad_reason = "non-NULL mapping"; | 
|  | 1926 | if (unlikely(page_ref_count(page) != 0)) | 
|  | 1927 | bad_reason = "nonzero _count"; | 
|  | 1928 | if (unlikely(page->flags & __PG_HWPOISON)) { | 
|  | 1929 | bad_reason = "HWPoisoned (hardware-corrupted)"; | 
|  | 1930 | bad_flags = __PG_HWPOISON; | 
|  | 1931 | /* Don't complain about hwpoisoned pages */ | 
|  | 1932 | page_mapcount_reset(page); /* remove PageBuddy */ | 
|  | 1933 | return; | 
|  | 1934 | } | 
|  | 1935 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { | 
|  | 1936 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | 
|  | 1937 | bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | 
|  | 1938 | } | 
|  | 1939 | #ifdef CONFIG_MEMCG | 
|  | 1940 | if (unlikely(page->mem_cgroup)) | 
|  | 1941 | bad_reason = "page still charged to cgroup"; | 
|  | 1942 | #endif | 
|  | 1943 | bad_page(page, bad_reason, bad_flags); | 
|  | 1944 | } | 
|  | 1945 |  | 
|  | 1946 | /* | 
|  | 1947 | * This page is about to be returned from the page allocator | 
|  | 1948 | */ | 
|  | 1949 | static inline int check_new_page(struct page *page) | 
|  | 1950 | { | 
|  | 1951 | if (likely(page_expected_state(page, | 
|  | 1952 | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | 
|  | 1953 | return 0; | 
|  | 1954 |  | 
|  | 1955 | check_new_page_bad(page); | 
|  | 1956 | return 1; | 
|  | 1957 | } | 
|  | 1958 |  | 
|  | 1959 | static inline bool free_pages_prezeroed(void) | 
|  | 1960 | { | 
|  | 1961 | return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && | 
|  | 1962 | page_poisoning_enabled()) || want_init_on_free(); | 
|  | 1963 | } | 
|  | 1964 |  | 
|  | 1965 | #ifdef CONFIG_DEBUG_VM | 
|  | 1966 | static bool check_pcp_refill(struct page *page) | 
|  | 1967 | { | 
|  | 1968 | return false; | 
|  | 1969 | } | 
|  | 1970 |  | 
|  | 1971 | static bool check_new_pcp(struct page *page) | 
|  | 1972 | { | 
|  | 1973 | return check_new_page(page); | 
|  | 1974 | } | 
|  | 1975 | #else | 
|  | 1976 | static bool check_pcp_refill(struct page *page) | 
|  | 1977 | { | 
|  | 1978 | return check_new_page(page); | 
|  | 1979 | } | 
|  | 1980 | static bool check_new_pcp(struct page *page) | 
|  | 1981 | { | 
|  | 1982 | return false; | 
|  | 1983 | } | 
|  | 1984 | #endif /* CONFIG_DEBUG_VM */ | 
|  | 1985 |  | 
|  | 1986 | static bool check_new_pages(struct page *page, unsigned int order) | 
|  | 1987 | { | 
|  | 1988 | int i; | 
|  | 1989 | for (i = 0; i < (1 << order); i++) { | 
|  | 1990 | struct page *p = page + i; | 
|  | 1991 |  | 
|  | 1992 | if (unlikely(check_new_page(p))) | 
|  | 1993 | return true; | 
|  | 1994 | } | 
|  | 1995 |  | 
|  | 1996 | return false; | 
|  | 1997 | } | 
|  | 1998 |  | 
|  | 1999 | inline void post_alloc_hook(struct page *page, unsigned int order, | 
|  | 2000 | gfp_t gfp_flags) | 
|  | 2001 | { | 
|  | 2002 | set_page_private(page, 0); | 
|  | 2003 | set_page_refcounted(page); | 
|  | 2004 |  | 
|  | 2005 | arch_alloc_page(page, order); | 
|  | 2006 | kernel_map_pages(page, 1 << order, 1); | 
|  | 2007 | kasan_alloc_pages(page, order); | 
|  | 2008 | kernel_poison_pages(page, 1 << order, 1); | 
|  | 2009 | set_page_owner(page, order, gfp_flags); | 
|  | 2010 | } | 
|  | 2011 |  | 
|  | 2012 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, | 
|  | 2013 | unsigned int alloc_flags) | 
|  | 2014 | { | 
|  | 2015 | post_alloc_hook(page, order, gfp_flags); | 
|  | 2016 |  | 
|  | 2017 | if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) | 
|  | 2018 | kernel_init_free_pages(page, 1 << order); | 
|  | 2019 |  | 
|  | 2020 | if (order && (gfp_flags & __GFP_COMP)) | 
|  | 2021 | prep_compound_page(page, order); | 
|  | 2022 |  | 
|  | 2023 | /* | 
|  | 2024 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to | 
|  | 2025 | * allocate the page. The expectation is that the caller is taking | 
|  | 2026 | * steps that will free more memory. The caller should avoid the page | 
|  | 2027 | * being used for !PFMEMALLOC purposes. | 
|  | 2028 | */ | 
|  | 2029 | if (alloc_flags & ALLOC_NO_WATERMARKS) | 
|  | 2030 | set_page_pfmemalloc(page); | 
|  | 2031 | else | 
|  | 2032 | clear_page_pfmemalloc(page); | 
|  | 2033 | } | 
|  | 2034 |  | 
|  | 2035 | /* | 
|  | 2036 | * Go through the free lists for the given migratetype and remove | 
|  | 2037 | * the smallest available page from the freelists | 
|  | 2038 | */ | 
|  | 2039 | static __always_inline | 
|  | 2040 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | 
|  | 2041 | int migratetype) | 
|  | 2042 | { | 
|  | 2043 | unsigned int current_order; | 
|  | 2044 | struct free_area *area; | 
|  | 2045 | struct page *page; | 
|  | 2046 |  | 
|  | 2047 | /* Find a page of the appropriate size in the preferred list */ | 
|  | 2048 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
|  | 2049 | area = &(zone->free_area[current_order]); | 
|  | 2050 | page = list_first_entry_or_null(&area->free_list[migratetype], | 
|  | 2051 | struct page, lru); | 
|  | 2052 | if (!page) | 
|  | 2053 | continue; | 
|  | 2054 | list_del(&page->lru); | 
|  | 2055 | rmv_page_order(page); | 
|  | 2056 | area->nr_free--; | 
|  | 2057 | expand(zone, page, order, current_order, area, migratetype); | 
|  | 2058 | set_pcppage_migratetype(page, migratetype); | 
|  | 2059 | return page; | 
|  | 2060 | } | 
|  | 2061 |  | 
|  | 2062 | return NULL; | 
|  | 2063 | } | 
|  | 2064 |  | 
|  | 2065 |  | 
|  | 2066 | /* | 
|  | 2067 | * This array describes the order lists are fallen back to when | 
|  | 2068 | * the free lists for the desirable migrate type are depleted | 
|  | 2069 | */ | 
|  | 2070 | static int fallbacks[MIGRATE_TYPES][4] = { | 
|  | 2071 | [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES }, | 
|  | 2072 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES }, | 
|  | 2073 | [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, | 
|  | 2074 | #ifdef CONFIG_CMA | 
|  | 2075 | [MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */ | 
|  | 2076 | #endif | 
|  | 2077 | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | 2078 | [MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */ | 
|  | 2079 | #endif | 
|  | 2080 | }; | 
|  | 2081 |  | 
|  | 2082 | #ifdef CONFIG_CMA | 
|  | 2083 | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, | 
|  | 2084 | unsigned int order) | 
|  | 2085 | { | 
|  | 2086 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | 
|  | 2087 | } | 
|  | 2088 | #else | 
|  | 2089 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | 
|  | 2090 | unsigned int order) { return NULL; } | 
|  | 2091 | #endif | 
|  | 2092 |  | 
|  | 2093 | /* | 
|  | 2094 | * Move the free pages in a range to the free lists of the requested type. | 
|  | 2095 | * Note that start_page and end_pages are not aligned on a pageblock | 
|  | 2096 | * boundary. If alignment is required, use move_freepages_block() | 
|  | 2097 | */ | 
|  | 2098 | static int move_freepages(struct zone *zone, | 
|  | 2099 | struct page *start_page, struct page *end_page, | 
|  | 2100 | int migratetype, int *num_movable) | 
|  | 2101 | { | 
|  | 2102 | struct page *page; | 
|  | 2103 | unsigned int order; | 
|  | 2104 | int pages_moved = 0; | 
|  | 2105 |  | 
|  | 2106 | #ifndef CONFIG_HOLES_IN_ZONE | 
|  | 2107 | /* | 
|  | 2108 | * page_zone is not safe to call in this context when | 
|  | 2109 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | 
|  | 2110 | * anyway as we check zone boundaries in move_freepages_block(). | 
|  | 2111 | * Remove at a later date when no bug reports exist related to | 
|  | 2112 | * grouping pages by mobility | 
|  | 2113 | */ | 
|  | 2114 | VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && | 
|  | 2115 | pfn_valid(page_to_pfn(end_page)) && | 
|  | 2116 | page_zone(start_page) != page_zone(end_page)); | 
|  | 2117 | #endif | 
|  | 2118 |  | 
|  | 2119 | if (num_movable) | 
|  | 2120 | *num_movable = 0; | 
|  | 2121 |  | 
|  | 2122 | for (page = start_page; page <= end_page;) { | 
|  | 2123 | if (!pfn_valid_within(page_to_pfn(page))) { | 
|  | 2124 | page++; | 
|  | 2125 | continue; | 
|  | 2126 | } | 
|  | 2127 |  | 
|  | 2128 | /* Make sure we are not inadvertently changing nodes */ | 
|  | 2129 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | 
|  | 2130 |  | 
|  | 2131 | if (!PageBuddy(page)) { | 
|  | 2132 | /* | 
|  | 2133 | * We assume that pages that could be isolated for | 
|  | 2134 | * migration are movable. But we don't actually try | 
|  | 2135 | * isolating, as that would be expensive. | 
|  | 2136 | */ | 
|  | 2137 | if (num_movable && | 
|  | 2138 | (PageLRU(page) || __PageMovable(page))) | 
|  | 2139 | (*num_movable)++; | 
|  | 2140 |  | 
|  | 2141 | page++; | 
|  | 2142 | continue; | 
|  | 2143 | } | 
|  | 2144 |  | 
|  | 2145 | order = page_order(page); | 
|  | 2146 | list_move(&page->lru, | 
|  | 2147 | &zone->free_area[order].free_list[migratetype]); | 
|  | 2148 | page += 1 << order; | 
|  | 2149 | pages_moved += 1 << order; | 
|  | 2150 | } | 
|  | 2151 |  | 
|  | 2152 | return pages_moved; | 
|  | 2153 | } | 
|  | 2154 |  | 
|  | 2155 | int move_freepages_block(struct zone *zone, struct page *page, | 
|  | 2156 | int migratetype, int *num_movable) | 
|  | 2157 | { | 
|  | 2158 | unsigned long start_pfn, end_pfn; | 
|  | 2159 | struct page *start_page, *end_page; | 
|  | 2160 |  | 
|  | 2161 | start_pfn = page_to_pfn(page); | 
|  | 2162 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); | 
|  | 2163 | start_page = pfn_to_page(start_pfn); | 
|  | 2164 | end_page = start_page + pageblock_nr_pages - 1; | 
|  | 2165 | end_pfn = start_pfn + pageblock_nr_pages - 1; | 
|  | 2166 |  | 
|  | 2167 | /* Do not cross zone boundaries */ | 
|  | 2168 | if (!zone_spans_pfn(zone, start_pfn)) | 
|  | 2169 | start_page = page; | 
|  | 2170 | if (!zone_spans_pfn(zone, end_pfn)) | 
|  | 2171 | return 0; | 
|  | 2172 |  | 
|  | 2173 | return move_freepages(zone, start_page, end_page, migratetype, | 
|  | 2174 | num_movable); | 
|  | 2175 | } | 
|  | 2176 |  | 
|  | 2177 | static void change_pageblock_range(struct page *pageblock_page, | 
|  | 2178 | int start_order, int migratetype) | 
|  | 2179 | { | 
|  | 2180 | int nr_pageblocks = 1 << (start_order - pageblock_order); | 
|  | 2181 |  | 
|  | 2182 | while (nr_pageblocks--) { | 
|  | 2183 | set_pageblock_migratetype(pageblock_page, migratetype); | 
|  | 2184 | pageblock_page += pageblock_nr_pages; | 
|  | 2185 | } | 
|  | 2186 | } | 
|  | 2187 |  | 
|  | 2188 | /* | 
|  | 2189 | * When we are falling back to another migratetype during allocation, try to | 
|  | 2190 | * steal extra free pages from the same pageblocks to satisfy further | 
|  | 2191 | * allocations, instead of polluting multiple pageblocks. | 
|  | 2192 | * | 
|  | 2193 | * If we are stealing a relatively large buddy page, it is likely there will | 
|  | 2194 | * be more free pages in the pageblock, so try to steal them all. For | 
|  | 2195 | * reclaimable and unmovable allocations, we steal regardless of page size, | 
|  | 2196 | * as fragmentation caused by those allocations polluting movable pageblocks | 
|  | 2197 | * is worse than movable allocations stealing from unmovable and reclaimable | 
|  | 2198 | * pageblocks. | 
|  | 2199 | */ | 
|  | 2200 | static bool can_steal_fallback(unsigned int order, int start_mt) | 
|  | 2201 | { | 
|  | 2202 | /* | 
|  | 2203 | * Leaving this order check is intended, although there is | 
|  | 2204 | * relaxed order check in next check. The reason is that | 
|  | 2205 | * we can actually steal whole pageblock if this condition met, | 
|  | 2206 | * but, below check doesn't guarantee it and that is just heuristic | 
|  | 2207 | * so could be changed anytime. | 
|  | 2208 | */ | 
|  | 2209 | if (order >= pageblock_order) | 
|  | 2210 | return true; | 
|  | 2211 |  | 
|  | 2212 | if (order >= pageblock_order / 2 || | 
|  | 2213 | start_mt == MIGRATE_RECLAIMABLE || | 
|  | 2214 | start_mt == MIGRATE_UNMOVABLE || | 
|  | 2215 | page_group_by_mobility_disabled) | 
|  | 2216 | return true; | 
|  | 2217 |  | 
|  | 2218 | return false; | 
|  | 2219 | } | 
|  | 2220 |  | 
|  | 2221 | /* | 
|  | 2222 | * This function implements actual steal behaviour. If order is large enough, | 
|  | 2223 | * we can steal whole pageblock. If not, we first move freepages in this | 
|  | 2224 | * pageblock to our migratetype and determine how many already-allocated pages | 
|  | 2225 | * are there in the pageblock with a compatible migratetype. If at least half | 
|  | 2226 | * of pages are free or compatible, we can change migratetype of the pageblock | 
|  | 2227 | * itself, so pages freed in the future will be put on the correct free list. | 
|  | 2228 | */ | 
|  | 2229 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | 
|  | 2230 | int start_type, bool whole_block) | 
|  | 2231 | { | 
|  | 2232 | unsigned int current_order = page_order(page); | 
|  | 2233 | struct free_area *area; | 
|  | 2234 | int free_pages, movable_pages, alike_pages; | 
|  | 2235 | int old_block_type; | 
|  | 2236 |  | 
|  | 2237 | old_block_type = get_pageblock_migratetype(page); | 
|  | 2238 |  | 
|  | 2239 | /* | 
|  | 2240 | * This can happen due to races and we want to prevent broken | 
|  | 2241 | * highatomic accounting. | 
|  | 2242 | */ | 
|  | 2243 | if (is_migrate_highatomic(old_block_type)) | 
|  | 2244 | goto single_page; | 
|  | 2245 |  | 
|  | 2246 | /* Take ownership for orders >= pageblock_order */ | 
|  | 2247 | if (current_order >= pageblock_order) { | 
|  | 2248 | change_pageblock_range(page, current_order, start_type); | 
|  | 2249 | goto single_page; | 
|  | 2250 | } | 
|  | 2251 |  | 
|  | 2252 | /* We are not allowed to try stealing from the whole block */ | 
|  | 2253 | if (!whole_block) | 
|  | 2254 | goto single_page; | 
|  | 2255 |  | 
|  | 2256 | free_pages = move_freepages_block(zone, page, start_type, | 
|  | 2257 | &movable_pages); | 
|  | 2258 | /* | 
|  | 2259 | * Determine how many pages are compatible with our allocation. | 
|  | 2260 | * For movable allocation, it's the number of movable pages which | 
|  | 2261 | * we just obtained. For other types it's a bit more tricky. | 
|  | 2262 | */ | 
|  | 2263 | if (start_type == MIGRATE_MOVABLE) { | 
|  | 2264 | alike_pages = movable_pages; | 
|  | 2265 | } else { | 
|  | 2266 | /* | 
|  | 2267 | * If we are falling back a RECLAIMABLE or UNMOVABLE allocation | 
|  | 2268 | * to MOVABLE pageblock, consider all non-movable pages as | 
|  | 2269 | * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or | 
|  | 2270 | * vice versa, be conservative since we can't distinguish the | 
|  | 2271 | * exact migratetype of non-movable pages. | 
|  | 2272 | */ | 
|  | 2273 | if (old_block_type == MIGRATE_MOVABLE) | 
|  | 2274 | alike_pages = pageblock_nr_pages | 
|  | 2275 | - (free_pages + movable_pages); | 
|  | 2276 | else | 
|  | 2277 | alike_pages = 0; | 
|  | 2278 | } | 
|  | 2279 |  | 
|  | 2280 | /* moving whole block can fail due to zone boundary conditions */ | 
|  | 2281 | if (!free_pages) | 
|  | 2282 | goto single_page; | 
|  | 2283 |  | 
|  | 2284 | /* | 
|  | 2285 | * If a sufficient number of pages in the block are either free or of | 
|  | 2286 | * comparable migratability as our allocation, claim the whole block. | 
|  | 2287 | */ | 
|  | 2288 | if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || | 
|  | 2289 | page_group_by_mobility_disabled) | 
|  | 2290 | set_pageblock_migratetype(page, start_type); | 
|  | 2291 |  | 
|  | 2292 | return; | 
|  | 2293 |  | 
|  | 2294 | single_page: | 
|  | 2295 | area = &zone->free_area[current_order]; | 
|  | 2296 | list_move(&page->lru, &area->free_list[start_type]); | 
|  | 2297 | } | 
|  | 2298 |  | 
|  | 2299 | /* | 
|  | 2300 | * Check whether there is a suitable fallback freepage with requested order. | 
|  | 2301 | * If only_stealable is true, this function returns fallback_mt only if | 
|  | 2302 | * we can steal other freepages all together. This would help to reduce | 
|  | 2303 | * fragmentation due to mixed migratetype pages in one pageblock. | 
|  | 2304 | */ | 
|  | 2305 | int find_suitable_fallback(struct free_area *area, unsigned int order, | 
|  | 2306 | int migratetype, bool only_stealable, bool *can_steal) | 
|  | 2307 | { | 
|  | 2308 | int i; | 
|  | 2309 | int fallback_mt; | 
|  | 2310 |  | 
|  | 2311 | if (area->nr_free == 0) | 
|  | 2312 | return -1; | 
|  | 2313 |  | 
|  | 2314 | *can_steal = false; | 
|  | 2315 | for (i = 0;; i++) { | 
|  | 2316 | fallback_mt = fallbacks[migratetype][i]; | 
|  | 2317 | if (fallback_mt == MIGRATE_TYPES) | 
|  | 2318 | break; | 
|  | 2319 |  | 
|  | 2320 | if (list_empty(&area->free_list[fallback_mt])) | 
|  | 2321 | continue; | 
|  | 2322 |  | 
|  | 2323 | if (can_steal_fallback(order, migratetype)) | 
|  | 2324 | *can_steal = true; | 
|  | 2325 |  | 
|  | 2326 | if (!only_stealable) | 
|  | 2327 | return fallback_mt; | 
|  | 2328 |  | 
|  | 2329 | if (*can_steal) | 
|  | 2330 | return fallback_mt; | 
|  | 2331 | } | 
|  | 2332 |  | 
|  | 2333 | return -1; | 
|  | 2334 | } | 
|  | 2335 |  | 
|  | 2336 | /* | 
|  | 2337 | * Reserve a pageblock for exclusive use of high-order atomic allocations if | 
|  | 2338 | * there are no empty page blocks that contain a page with a suitable order | 
|  | 2339 | */ | 
|  | 2340 | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | 
|  | 2341 | unsigned int alloc_order) | 
|  | 2342 | { | 
|  | 2343 | int mt; | 
|  | 2344 | unsigned long max_managed, flags; | 
|  | 2345 |  | 
|  | 2346 | /* | 
|  | 2347 | * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | 
|  | 2348 | * Check is race-prone but harmless. | 
|  | 2349 | */ | 
|  | 2350 | max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; | 
|  | 2351 | if (zone->nr_reserved_highatomic >= max_managed) | 
|  | 2352 | return; | 
|  | 2353 |  | 
|  | 2354 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 2355 |  | 
|  | 2356 | /* Recheck the nr_reserved_highatomic limit under the lock */ | 
|  | 2357 | if (zone->nr_reserved_highatomic >= max_managed) | 
|  | 2358 | goto out_unlock; | 
|  | 2359 |  | 
|  | 2360 | /* Yoink! */ | 
|  | 2361 | mt = get_pageblock_migratetype(page); | 
|  | 2362 | if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) | 
|  | 2363 | && !is_migrate_cma(mt)) { | 
|  | 2364 | zone->nr_reserved_highatomic += pageblock_nr_pages; | 
|  | 2365 | set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | 
|  | 2366 | move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); | 
|  | 2367 | } | 
|  | 2368 |  | 
|  | 2369 | out_unlock: | 
|  | 2370 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 2371 | } | 
|  | 2372 |  | 
|  | 2373 | /* | 
|  | 2374 | * Used when an allocation is about to fail under memory pressure. This | 
|  | 2375 | * potentially hurts the reliability of high-order allocations when under | 
|  | 2376 | * intense memory pressure but failed atomic allocations should be easier | 
|  | 2377 | * to recover from than an OOM. | 
|  | 2378 | * | 
|  | 2379 | * If @force is true, try to unreserve a pageblock even though highatomic | 
|  | 2380 | * pageblock is exhausted. | 
|  | 2381 | */ | 
|  | 2382 | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, | 
|  | 2383 | bool force) | 
|  | 2384 | { | 
|  | 2385 | struct zonelist *zonelist = ac->zonelist; | 
|  | 2386 | unsigned long flags; | 
|  | 2387 | struct zoneref *z; | 
|  | 2388 | struct zone *zone; | 
|  | 2389 | struct page *page; | 
|  | 2390 | int order; | 
|  | 2391 | bool ret; | 
|  | 2392 |  | 
|  | 2393 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, | 
|  | 2394 | ac->nodemask) { | 
|  | 2395 | /* | 
|  | 2396 | * Preserve at least one pageblock unless memory pressure | 
|  | 2397 | * is really high. | 
|  | 2398 | */ | 
|  | 2399 | if (!force && zone->nr_reserved_highatomic <= | 
|  | 2400 | pageblock_nr_pages) | 
|  | 2401 | continue; | 
|  | 2402 |  | 
|  | 2403 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 2404 | for (order = 0; order < MAX_ORDER; order++) { | 
|  | 2405 | struct free_area *area = &(zone->free_area[order]); | 
|  | 2406 |  | 
|  | 2407 | page = list_first_entry_or_null( | 
|  | 2408 | &area->free_list[MIGRATE_HIGHATOMIC], | 
|  | 2409 | struct page, lru); | 
|  | 2410 | if (!page) | 
|  | 2411 | continue; | 
|  | 2412 |  | 
|  | 2413 | /* | 
|  | 2414 | * In page freeing path, migratetype change is racy so | 
|  | 2415 | * we can counter several free pages in a pageblock | 
|  | 2416 | * in this loop althoug we changed the pageblock type | 
|  | 2417 | * from highatomic to ac->migratetype. So we should | 
|  | 2418 | * adjust the count once. | 
|  | 2419 | */ | 
|  | 2420 | if (is_migrate_highatomic_page(page)) { | 
|  | 2421 | /* | 
|  | 2422 | * It should never happen but changes to | 
|  | 2423 | * locking could inadvertently allow a per-cpu | 
|  | 2424 | * drain to add pages to MIGRATE_HIGHATOMIC | 
|  | 2425 | * while unreserving so be safe and watch for | 
|  | 2426 | * underflows. | 
|  | 2427 | */ | 
|  | 2428 | zone->nr_reserved_highatomic -= min( | 
|  | 2429 | pageblock_nr_pages, | 
|  | 2430 | zone->nr_reserved_highatomic); | 
|  | 2431 | } | 
|  | 2432 |  | 
|  | 2433 | /* | 
|  | 2434 | * Convert to ac->migratetype and avoid the normal | 
|  | 2435 | * pageblock stealing heuristics. Minimally, the caller | 
|  | 2436 | * is doing the work and needs the pages. More | 
|  | 2437 | * importantly, if the block was always converted to | 
|  | 2438 | * MIGRATE_UNMOVABLE or another type then the number | 
|  | 2439 | * of pageblocks that cannot be completely freed | 
|  | 2440 | * may increase. | 
|  | 2441 | */ | 
|  | 2442 | set_pageblock_migratetype(page, ac->migratetype); | 
|  | 2443 | ret = move_freepages_block(zone, page, ac->migratetype, | 
|  | 2444 | NULL); | 
|  | 2445 | if (ret) { | 
|  | 2446 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 2447 | return ret; | 
|  | 2448 | } | 
|  | 2449 | } | 
|  | 2450 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 2451 | } | 
|  | 2452 |  | 
|  | 2453 | return false; | 
|  | 2454 | } | 
|  | 2455 |  | 
|  | 2456 | /* | 
|  | 2457 | * Try finding a free buddy page on the fallback list and put it on the free | 
|  | 2458 | * list of requested migratetype, possibly along with other pages from the same | 
|  | 2459 | * block, depending on fragmentation avoidance heuristics. Returns true if | 
|  | 2460 | * fallback was found so that __rmqueue_smallest() can grab it. | 
|  | 2461 | * | 
|  | 2462 | * The use of signed ints for order and current_order is a deliberate | 
|  | 2463 | * deviation from the rest of this file, to make the for loop | 
|  | 2464 | * condition simpler. | 
|  | 2465 | */ | 
|  | 2466 | static __always_inline bool | 
|  | 2467 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) | 
|  | 2468 | { | 
|  | 2469 | struct free_area *area; | 
|  | 2470 | int current_order; | 
|  | 2471 | struct page *page; | 
|  | 2472 | int fallback_mt; | 
|  | 2473 | bool can_steal; | 
|  | 2474 |  | 
|  | 2475 | /* | 
|  | 2476 | * Find the largest available free page in the other list. This roughly | 
|  | 2477 | * approximates finding the pageblock with the most free pages, which | 
|  | 2478 | * would be too costly to do exactly. | 
|  | 2479 | */ | 
|  | 2480 | for (current_order = MAX_ORDER - 1; current_order >= order; | 
|  | 2481 | --current_order) { | 
|  | 2482 | area = &(zone->free_area[current_order]); | 
|  | 2483 | fallback_mt = find_suitable_fallback(area, current_order, | 
|  | 2484 | start_migratetype, false, &can_steal); | 
|  | 2485 | if (fallback_mt == -1) | 
|  | 2486 | continue; | 
|  | 2487 |  | 
|  | 2488 | /* | 
|  | 2489 | * We cannot steal all free pages from the pageblock and the | 
|  | 2490 | * requested migratetype is movable. In that case it's better to | 
|  | 2491 | * steal and split the smallest available page instead of the | 
|  | 2492 | * largest available page, because even if the next movable | 
|  | 2493 | * allocation falls back into a different pageblock than this | 
|  | 2494 | * one, it won't cause permanent fragmentation. | 
|  | 2495 | */ | 
|  | 2496 | if (!can_steal && start_migratetype == MIGRATE_MOVABLE | 
|  | 2497 | && current_order > order) | 
|  | 2498 | goto find_smallest; | 
|  | 2499 |  | 
|  | 2500 | goto do_steal; | 
|  | 2501 | } | 
|  | 2502 |  | 
|  | 2503 | return false; | 
|  | 2504 |  | 
|  | 2505 | find_smallest: | 
|  | 2506 | for (current_order = order; current_order < MAX_ORDER; | 
|  | 2507 | current_order++) { | 
|  | 2508 | area = &(zone->free_area[current_order]); | 
|  | 2509 | fallback_mt = find_suitable_fallback(area, current_order, | 
|  | 2510 | start_migratetype, false, &can_steal); | 
|  | 2511 | if (fallback_mt != -1) | 
|  | 2512 | break; | 
|  | 2513 | } | 
|  | 2514 |  | 
|  | 2515 | /* | 
|  | 2516 | * This should not happen - we already found a suitable fallback | 
|  | 2517 | * when looking for the largest page. | 
|  | 2518 | */ | 
|  | 2519 | VM_BUG_ON(current_order == MAX_ORDER); | 
|  | 2520 |  | 
|  | 2521 | do_steal: | 
|  | 2522 | page = list_first_entry(&area->free_list[fallback_mt], | 
|  | 2523 | struct page, lru); | 
|  | 2524 |  | 
|  | 2525 | steal_suitable_fallback(zone, page, start_migratetype, can_steal); | 
|  | 2526 |  | 
|  | 2527 | trace_mm_page_alloc_extfrag(page, order, current_order, | 
|  | 2528 | start_migratetype, fallback_mt); | 
|  | 2529 |  | 
|  | 2530 | return true; | 
|  | 2531 |  | 
|  | 2532 | } | 
|  | 2533 |  | 
|  | 2534 | /* | 
|  | 2535 | * Do the hard work of removing an element from the buddy allocator. | 
|  | 2536 | * Call me with the zone->lock already held. | 
|  | 2537 | */ | 
|  | 2538 | static __always_inline struct page * | 
|  | 2539 | __rmqueue(struct zone *zone, unsigned int order, int migratetype) | 
|  | 2540 | { | 
|  | 2541 | struct page *page; | 
|  | 2542 |  | 
|  | 2543 | retry: | 
|  | 2544 | page = __rmqueue_smallest(zone, order, migratetype); | 
|  | 2545 | if (unlikely(!page)) { | 
|  | 2546 | if (migratetype == MIGRATE_MOVABLE) | 
|  | 2547 | page = __rmqueue_cma_fallback(zone, order); | 
|  | 2548 |  | 
|  | 2549 | if (!page && __rmqueue_fallback(zone, order, migratetype)) | 
|  | 2550 | goto retry; | 
|  | 2551 | } | 
|  | 2552 |  | 
|  | 2553 | trace_mm_page_alloc_zone_locked(page, order, migratetype); | 
|  | 2554 | return page; | 
|  | 2555 | } | 
|  | 2556 |  | 
|  | 2557 | /* | 
|  | 2558 | * Obtain a specified number of elements from the buddy allocator, all under | 
|  | 2559 | * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
|  | 2560 | * Returns the number of new pages which were placed at *list. | 
|  | 2561 | */ | 
|  | 2562 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | 
|  | 2563 | unsigned long count, struct list_head *list, | 
|  | 2564 | int migratetype) | 
|  | 2565 | { | 
|  | 2566 | int i, alloced = 0; | 
|  | 2567 |  | 
|  | 2568 | spin_lock(&zone->lock); | 
|  | 2569 | for (i = 0; i < count; ++i) { | 
|  | 2570 | struct page *page = __rmqueue(zone, order, migratetype); | 
|  | 2571 | if (unlikely(page == NULL)) | 
|  | 2572 | break; | 
|  | 2573 |  | 
|  | 2574 | if (unlikely(check_pcp_refill(page))) | 
|  | 2575 | continue; | 
|  | 2576 |  | 
|  | 2577 | /* | 
|  | 2578 | * Split buddy pages returned by expand() are received here in | 
|  | 2579 | * physical page order. The page is added to the tail of | 
|  | 2580 | * caller's list. From the callers perspective, the linked list | 
|  | 2581 | * is ordered by page number under some conditions. This is | 
|  | 2582 | * useful for IO devices that can forward direction from the | 
|  | 2583 | * head, thus also in the physical page order. This is useful | 
|  | 2584 | * for IO devices that can merge IO requests if the physical | 
|  | 2585 | * pages are ordered properly. | 
|  | 2586 | */ | 
|  | 2587 | list_add_tail(&page->lru, list); | 
|  | 2588 | alloced++; | 
|  | 2589 | if (is_migrate_cma(get_pcppage_migratetype(page))) | 
|  | 2590 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, | 
|  | 2591 | -(1 << order)); | 
|  | 2592 | } | 
|  | 2593 |  | 
|  | 2594 | /* | 
|  | 2595 | * i pages were removed from the buddy list even if some leak due | 
|  | 2596 | * to check_pcp_refill failing so adjust NR_FREE_PAGES based | 
|  | 2597 | * on i. Do not confuse with 'alloced' which is the number of | 
|  | 2598 | * pages added to the pcp list. | 
|  | 2599 | */ | 
|  | 2600 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); | 
|  | 2601 | spin_unlock(&zone->lock); | 
|  | 2602 | return alloced; | 
|  | 2603 | } | 
|  | 2604 |  | 
|  | 2605 | #ifdef CONFIG_NUMA | 
|  | 2606 | /* | 
|  | 2607 | * Called from the vmstat counter updater to drain pagesets of this | 
|  | 2608 | * currently executing processor on remote nodes after they have | 
|  | 2609 | * expired. | 
|  | 2610 | * | 
|  | 2611 | * Note that this function must be called with the thread pinned to | 
|  | 2612 | * a single processor. | 
|  | 2613 | */ | 
|  | 2614 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) | 
|  | 2615 | { | 
|  | 2616 | unsigned long flags; | 
|  | 2617 | int to_drain, batch; | 
|  | 2618 |  | 
|  | 2619 | local_irq_save(flags); | 
|  | 2620 | batch = READ_ONCE(pcp->batch); | 
|  | 2621 | to_drain = min(pcp->count, batch); | 
|  | 2622 | if (to_drain > 0) | 
|  | 2623 | free_pcppages_bulk(zone, to_drain, pcp); | 
|  | 2624 | local_irq_restore(flags); | 
|  | 2625 | } | 
|  | 2626 | #endif | 
|  | 2627 |  | 
|  | 2628 | /* | 
|  | 2629 | * Drain pcplists of the indicated processor and zone. | 
|  | 2630 | * | 
|  | 2631 | * The processor must either be the current processor and the | 
|  | 2632 | * thread pinned to the current processor or a processor that | 
|  | 2633 | * is not online. | 
|  | 2634 | */ | 
|  | 2635 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) | 
|  | 2636 | { | 
|  | 2637 | unsigned long flags; | 
|  | 2638 | struct per_cpu_pageset *pset; | 
|  | 2639 | struct per_cpu_pages *pcp; | 
|  | 2640 |  | 
|  | 2641 | local_irq_save(flags); | 
|  | 2642 | pset = per_cpu_ptr(zone->pageset, cpu); | 
|  | 2643 |  | 
|  | 2644 | pcp = &pset->pcp; | 
|  | 2645 | if (pcp->count) | 
|  | 2646 | free_pcppages_bulk(zone, pcp->count, pcp); | 
|  | 2647 | local_irq_restore(flags); | 
|  | 2648 | } | 
|  | 2649 |  | 
|  | 2650 | /* | 
|  | 2651 | * Drain pcplists of all zones on the indicated processor. | 
|  | 2652 | * | 
|  | 2653 | * The processor must either be the current processor and the | 
|  | 2654 | * thread pinned to the current processor or a processor that | 
|  | 2655 | * is not online. | 
|  | 2656 | */ | 
|  | 2657 | static void drain_pages(unsigned int cpu) | 
|  | 2658 | { | 
|  | 2659 | struct zone *zone; | 
|  | 2660 |  | 
|  | 2661 | for_each_populated_zone(zone) { | 
|  | 2662 | drain_pages_zone(cpu, zone); | 
|  | 2663 | } | 
|  | 2664 | } | 
|  | 2665 |  | 
|  | 2666 | /* | 
|  | 2667 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
|  | 2668 | * | 
|  | 2669 | * The CPU has to be pinned. When zone parameter is non-NULL, spill just | 
|  | 2670 | * the single zone's pages. | 
|  | 2671 | */ | 
|  | 2672 | void drain_local_pages(struct zone *zone) | 
|  | 2673 | { | 
|  | 2674 | int cpu = smp_processor_id(); | 
|  | 2675 |  | 
|  | 2676 | if (zone) | 
|  | 2677 | drain_pages_zone(cpu, zone); | 
|  | 2678 | else | 
|  | 2679 | drain_pages(cpu); | 
|  | 2680 | } | 
|  | 2681 |  | 
|  | 2682 | static void drain_local_pages_wq(struct work_struct *work) | 
|  | 2683 | { | 
|  | 2684 | /* | 
|  | 2685 | * drain_all_pages doesn't use proper cpu hotplug protection so | 
|  | 2686 | * we can race with cpu offline when the WQ can move this from | 
|  | 2687 | * a cpu pinned worker to an unbound one. We can operate on a different | 
|  | 2688 | * cpu which is allright but we also have to make sure to not move to | 
|  | 2689 | * a different one. | 
|  | 2690 | */ | 
|  | 2691 | preempt_disable(); | 
|  | 2692 | drain_local_pages(NULL); | 
|  | 2693 | preempt_enable(); | 
|  | 2694 | } | 
|  | 2695 |  | 
|  | 2696 | /* | 
|  | 2697 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. | 
|  | 2698 | * | 
|  | 2699 | * When zone parameter is non-NULL, spill just the single zone's pages. | 
|  | 2700 | * | 
|  | 2701 | * Note that this can be extremely slow as the draining happens in a workqueue. | 
|  | 2702 | */ | 
|  | 2703 | void drain_all_pages(struct zone *zone) | 
|  | 2704 | { | 
|  | 2705 | int cpu; | 
|  | 2706 |  | 
|  | 2707 | /* | 
|  | 2708 | * Allocate in the BSS so we wont require allocation in | 
|  | 2709 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | 
|  | 2710 | */ | 
|  | 2711 | static cpumask_t cpus_with_pcps; | 
|  | 2712 |  | 
|  | 2713 | /* | 
|  | 2714 | * Make sure nobody triggers this path before mm_percpu_wq is fully | 
|  | 2715 | * initialized. | 
|  | 2716 | */ | 
|  | 2717 | if (WARN_ON_ONCE(!mm_percpu_wq)) | 
|  | 2718 | return; | 
|  | 2719 |  | 
|  | 2720 | /* | 
|  | 2721 | * Do not drain if one is already in progress unless it's specific to | 
|  | 2722 | * a zone. Such callers are primarily CMA and memory hotplug and need | 
|  | 2723 | * the drain to be complete when the call returns. | 
|  | 2724 | */ | 
|  | 2725 | if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { | 
|  | 2726 | if (!zone) | 
|  | 2727 | return; | 
|  | 2728 | mutex_lock(&pcpu_drain_mutex); | 
|  | 2729 | } | 
|  | 2730 |  | 
|  | 2731 | /* | 
|  | 2732 | * We don't care about racing with CPU hotplug event | 
|  | 2733 | * as offline notification will cause the notified | 
|  | 2734 | * cpu to drain that CPU pcps and on_each_cpu_mask | 
|  | 2735 | * disables preemption as part of its processing | 
|  | 2736 | */ | 
|  | 2737 | for_each_online_cpu(cpu) { | 
|  | 2738 | struct per_cpu_pageset *pcp; | 
|  | 2739 | struct zone *z; | 
|  | 2740 | bool has_pcps = false; | 
|  | 2741 |  | 
|  | 2742 | if (zone) { | 
|  | 2743 | pcp = per_cpu_ptr(zone->pageset, cpu); | 
|  | 2744 | if (pcp->pcp.count) | 
|  | 2745 | has_pcps = true; | 
|  | 2746 | } else { | 
|  | 2747 | for_each_populated_zone(z) { | 
|  | 2748 | pcp = per_cpu_ptr(z->pageset, cpu); | 
|  | 2749 | if (pcp->pcp.count) { | 
|  | 2750 | has_pcps = true; | 
|  | 2751 | break; | 
|  | 2752 | } | 
|  | 2753 | } | 
|  | 2754 | } | 
|  | 2755 |  | 
|  | 2756 | if (has_pcps) | 
|  | 2757 | cpumask_set_cpu(cpu, &cpus_with_pcps); | 
|  | 2758 | else | 
|  | 2759 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | 
|  | 2760 | } | 
|  | 2761 |  | 
|  | 2762 | for_each_cpu(cpu, &cpus_with_pcps) { | 
|  | 2763 | struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); | 
|  | 2764 | INIT_WORK(work, drain_local_pages_wq); | 
|  | 2765 | queue_work_on(cpu, mm_percpu_wq, work); | 
|  | 2766 | } | 
|  | 2767 | for_each_cpu(cpu, &cpus_with_pcps) | 
|  | 2768 | flush_work(per_cpu_ptr(&pcpu_drain, cpu)); | 
|  | 2769 |  | 
|  | 2770 | mutex_unlock(&pcpu_drain_mutex); | 
|  | 2771 | } | 
|  | 2772 |  | 
|  | 2773 | #ifdef CONFIG_HIBERNATION | 
|  | 2774 |  | 
|  | 2775 | /* | 
|  | 2776 | * Touch the watchdog for every WD_PAGE_COUNT pages. | 
|  | 2777 | */ | 
|  | 2778 | #define WD_PAGE_COUNT	(128*1024) | 
|  | 2779 |  | 
|  | 2780 | void mark_free_pages(struct zone *zone) | 
|  | 2781 | { | 
|  | 2782 | unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; | 
|  | 2783 | unsigned long flags; | 
|  | 2784 | unsigned int order, t; | 
|  | 2785 | struct page *page; | 
|  | 2786 |  | 
|  | 2787 | if (zone_is_empty(zone)) | 
|  | 2788 | return; | 
|  | 2789 |  | 
|  | 2790 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 2791 |  | 
|  | 2792 | max_zone_pfn = zone_end_pfn(zone); | 
|  | 2793 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 
|  | 2794 | if (pfn_valid(pfn)) { | 
|  | 2795 | page = pfn_to_page(pfn); | 
|  | 2796 |  | 
|  | 2797 | if (!--page_count) { | 
|  | 2798 | touch_nmi_watchdog(); | 
|  | 2799 | page_count = WD_PAGE_COUNT; | 
|  | 2800 | } | 
|  | 2801 |  | 
|  | 2802 | if (page_zone(page) != zone) | 
|  | 2803 | continue; | 
|  | 2804 |  | 
|  | 2805 | if (!swsusp_page_is_forbidden(page)) | 
|  | 2806 | swsusp_unset_page_free(page); | 
|  | 2807 | } | 
|  | 2808 |  | 
|  | 2809 | for_each_migratetype_order(order, t) { | 
|  | 2810 | list_for_each_entry(page, | 
|  | 2811 | &zone->free_area[order].free_list[t], lru) { | 
|  | 2812 | unsigned long i; | 
|  | 2813 |  | 
|  | 2814 | pfn = page_to_pfn(page); | 
|  | 2815 | for (i = 0; i < (1UL << order); i++) { | 
|  | 2816 | if (!--page_count) { | 
|  | 2817 | touch_nmi_watchdog(); | 
|  | 2818 | page_count = WD_PAGE_COUNT; | 
|  | 2819 | } | 
|  | 2820 | swsusp_set_page_free(pfn_to_page(pfn + i)); | 
|  | 2821 | } | 
|  | 2822 | } | 
|  | 2823 | } | 
|  | 2824 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 2825 | } | 
|  | 2826 | #endif /* CONFIG_PM */ | 
|  | 2827 |  | 
|  | 2828 | static bool free_unref_page_prepare(struct page *page, unsigned long pfn) | 
|  | 2829 | { | 
|  | 2830 | int migratetype; | 
|  | 2831 |  | 
|  | 2832 | if (!free_pcp_prepare(page)) | 
|  | 2833 | return false; | 
|  | 2834 |  | 
|  | 2835 | migratetype = get_pfnblock_migratetype(page, pfn); | 
|  | 2836 | set_pcppage_migratetype(page, migratetype); | 
|  | 2837 | return true; | 
|  | 2838 | } | 
|  | 2839 |  | 
|  | 2840 | static void free_unref_page_commit(struct page *page, unsigned long pfn) | 
|  | 2841 | { | 
|  | 2842 | struct zone *zone = page_zone(page); | 
|  | 2843 | struct per_cpu_pages *pcp; | 
|  | 2844 | int migratetype; | 
|  | 2845 |  | 
|  | 2846 | migratetype = get_pcppage_migratetype(page); | 
|  | 2847 | __count_vm_event(PGFREE); | 
|  | 2848 |  | 
|  | 2849 | /* | 
|  | 2850 | * We only track unmovable, reclaimable and movable on pcp lists. | 
|  | 2851 | * Free ISOLATE pages back to the allocator because they are being | 
|  | 2852 | * offlined but treat HIGHATOMIC as movable pages so we can get those | 
|  | 2853 | * areas back if necessary. Otherwise, we may have to free | 
|  | 2854 | * excessively into the page allocator | 
|  | 2855 | */ | 
|  | 2856 | if (migratetype >= MIGRATE_PCPTYPES) { | 
|  | 2857 | if (unlikely(is_migrate_isolate(migratetype))) { | 
|  | 2858 | free_one_page(zone, page, pfn, 0, migratetype); | 
|  | 2859 | return; | 
|  | 2860 | } | 
|  | 2861 | migratetype = MIGRATE_MOVABLE; | 
|  | 2862 | } | 
|  | 2863 |  | 
|  | 2864 | pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
|  | 2865 | list_add(&page->lru, &pcp->lists[migratetype]); | 
|  | 2866 | pcp->count++; | 
|  | 2867 | if (pcp->count >= pcp->high) { | 
|  | 2868 | unsigned long batch = READ_ONCE(pcp->batch); | 
|  | 2869 | free_pcppages_bulk(zone, batch, pcp); | 
|  | 2870 | } | 
|  | 2871 | } | 
|  | 2872 |  | 
|  | 2873 | /* | 
|  | 2874 | * Free a 0-order page | 
|  | 2875 | */ | 
|  | 2876 | void free_unref_page(struct page *page) | 
|  | 2877 | { | 
|  | 2878 | unsigned long flags; | 
|  | 2879 | unsigned long pfn = page_to_pfn(page); | 
|  | 2880 |  | 
|  | 2881 | if (!free_unref_page_prepare(page, pfn)) | 
|  | 2882 | return; | 
|  | 2883 |  | 
|  | 2884 | local_irq_save(flags); | 
|  | 2885 | free_unref_page_commit(page, pfn); | 
|  | 2886 | local_irq_restore(flags); | 
|  | 2887 | } | 
|  | 2888 |  | 
|  | 2889 | /* | 
|  | 2890 | * Free a list of 0-order pages | 
|  | 2891 | */ | 
|  | 2892 | void free_unref_page_list(struct list_head *list) | 
|  | 2893 | { | 
|  | 2894 | struct page *page, *next; | 
|  | 2895 | unsigned long flags, pfn; | 
|  | 2896 | int batch_count = 0; | 
|  | 2897 |  | 
|  | 2898 | /* Prepare pages for freeing */ | 
|  | 2899 | list_for_each_entry_safe(page, next, list, lru) { | 
|  | 2900 | pfn = page_to_pfn(page); | 
|  | 2901 | if (!free_unref_page_prepare(page, pfn)) | 
|  | 2902 | list_del(&page->lru); | 
|  | 2903 | set_page_private(page, pfn); | 
|  | 2904 | } | 
|  | 2905 |  | 
|  | 2906 | local_irq_save(flags); | 
|  | 2907 | list_for_each_entry_safe(page, next, list, lru) { | 
|  | 2908 | unsigned long pfn = page_private(page); | 
|  | 2909 |  | 
|  | 2910 | set_page_private(page, 0); | 
|  | 2911 | trace_mm_page_free_batched(page); | 
|  | 2912 | free_unref_page_commit(page, pfn); | 
|  | 2913 |  | 
|  | 2914 | /* | 
|  | 2915 | * Guard against excessive IRQ disabled times when we get | 
|  | 2916 | * a large list of pages to free. | 
|  | 2917 | */ | 
|  | 2918 | if (++batch_count == SWAP_CLUSTER_MAX) { | 
|  | 2919 | local_irq_restore(flags); | 
|  | 2920 | batch_count = 0; | 
|  | 2921 | local_irq_save(flags); | 
|  | 2922 | } | 
|  | 2923 | } | 
|  | 2924 | local_irq_restore(flags); | 
|  | 2925 | } | 
|  | 2926 |  | 
|  | 2927 | /* | 
|  | 2928 | * split_page takes a non-compound higher-order page, and splits it into | 
|  | 2929 | * n (1<<order) sub-pages: page[0..n] | 
|  | 2930 | * Each sub-page must be freed individually. | 
|  | 2931 | * | 
|  | 2932 | * Note: this is probably too low level an operation for use in drivers. | 
|  | 2933 | * Please consult with lkml before using this in your driver. | 
|  | 2934 | */ | 
|  | 2935 | void split_page(struct page *page, unsigned int order) | 
|  | 2936 | { | 
|  | 2937 | int i; | 
|  | 2938 |  | 
|  | 2939 | VM_BUG_ON_PAGE(PageCompound(page), page); | 
|  | 2940 | VM_BUG_ON_PAGE(!page_count(page), page); | 
|  | 2941 |  | 
|  | 2942 | for (i = 1; i < (1 << order); i++) | 
|  | 2943 | set_page_refcounted(page + i); | 
|  | 2944 | split_page_owner(page, order); | 
|  | 2945 | } | 
|  | 2946 | EXPORT_SYMBOL_GPL(split_page); | 
|  | 2947 |  | 
|  | 2948 | int __isolate_free_page(struct page *page, unsigned int order) | 
|  | 2949 | { | 
|  | 2950 | unsigned long watermark; | 
|  | 2951 | struct zone *zone; | 
|  | 2952 | int mt; | 
|  | 2953 |  | 
|  | 2954 | BUG_ON(!PageBuddy(page)); | 
|  | 2955 |  | 
|  | 2956 | zone = page_zone(page); | 
|  | 2957 | mt = get_pageblock_migratetype(page); | 
|  | 2958 |  | 
|  | 2959 | if (!is_migrate_isolate(mt)) { | 
|  | 2960 | /* | 
|  | 2961 | * Obey watermarks as if the page was being allocated. We can | 
|  | 2962 | * emulate a high-order watermark check with a raised order-0 | 
|  | 2963 | * watermark, because we already know our high-order page | 
|  | 2964 | * exists. | 
|  | 2965 | */ | 
|  | 2966 | watermark = min_wmark_pages(zone) + (1UL << order); | 
|  | 2967 | if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) | 
|  | 2968 | return 0; | 
|  | 2969 |  | 
|  | 2970 | __mod_zone_freepage_state(zone, -(1UL << order), mt); | 
|  | 2971 | } | 
|  | 2972 |  | 
|  | 2973 | /* Remove page from free list */ | 
|  | 2974 | list_del(&page->lru); | 
|  | 2975 | zone->free_area[order].nr_free--; | 
|  | 2976 | rmv_page_order(page); | 
|  | 2977 |  | 
|  | 2978 | /* | 
|  | 2979 | * Set the pageblock if the isolated page is at least half of a | 
|  | 2980 | * pageblock | 
|  | 2981 | */ | 
|  | 2982 | if (order >= pageblock_order - 1) { | 
|  | 2983 | struct page *endpage = page + (1 << order) - 1; | 
|  | 2984 | for (; page < endpage; page += pageblock_nr_pages) { | 
|  | 2985 | int mt = get_pageblock_migratetype(page); | 
|  | 2986 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) | 
|  | 2987 | && !is_migrate_highatomic(mt)) | 
|  | 2988 | set_pageblock_migratetype(page, | 
|  | 2989 | MIGRATE_MOVABLE); | 
|  | 2990 | } | 
|  | 2991 | } | 
|  | 2992 |  | 
|  | 2993 |  | 
|  | 2994 | return 1UL << order; | 
|  | 2995 | } | 
|  | 2996 |  | 
|  | 2997 | /* | 
|  | 2998 | * Update NUMA hit/miss statistics | 
|  | 2999 | * | 
|  | 3000 | * Must be called with interrupts disabled. | 
|  | 3001 | */ | 
|  | 3002 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) | 
|  | 3003 | { | 
|  | 3004 | #ifdef CONFIG_NUMA | 
|  | 3005 | enum numa_stat_item local_stat = NUMA_LOCAL; | 
|  | 3006 |  | 
|  | 3007 | /* skip numa counters update if numa stats is disabled */ | 
|  | 3008 | if (!static_branch_likely(&vm_numa_stat_key)) | 
|  | 3009 | return; | 
|  | 3010 |  | 
|  | 3011 | if (zone_to_nid(z) != numa_node_id()) | 
|  | 3012 | local_stat = NUMA_OTHER; | 
|  | 3013 |  | 
|  | 3014 | if (zone_to_nid(z) == zone_to_nid(preferred_zone)) | 
|  | 3015 | __inc_numa_state(z, NUMA_HIT); | 
|  | 3016 | else { | 
|  | 3017 | __inc_numa_state(z, NUMA_MISS); | 
|  | 3018 | __inc_numa_state(preferred_zone, NUMA_FOREIGN); | 
|  | 3019 | } | 
|  | 3020 | __inc_numa_state(z, local_stat); | 
|  | 3021 | #endif | 
|  | 3022 | } | 
|  | 3023 |  | 
|  | 3024 | /* Remove page from the per-cpu list, caller must protect the list */ | 
|  | 3025 | static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, | 
|  | 3026 | struct per_cpu_pages *pcp, | 
|  | 3027 | struct list_head *list) | 
|  | 3028 | { | 
|  | 3029 | struct page *page; | 
|  | 3030 |  | 
|  | 3031 | do { | 
|  | 3032 | if (list_empty(list)) { | 
|  | 3033 | pcp->count += rmqueue_bulk(zone, 0, | 
|  | 3034 | pcp->batch, list, | 
|  | 3035 | migratetype); | 
|  | 3036 | if (unlikely(list_empty(list))) | 
|  | 3037 | return NULL; | 
|  | 3038 | } | 
|  | 3039 |  | 
|  | 3040 | page = list_first_entry(list, struct page, lru); | 
|  | 3041 | list_del(&page->lru); | 
|  | 3042 | pcp->count--; | 
|  | 3043 | } while (check_new_pcp(page)); | 
|  | 3044 |  | 
|  | 3045 | return page; | 
|  | 3046 | } | 
|  | 3047 |  | 
|  | 3048 | /* Lock and remove page from the per-cpu list */ | 
|  | 3049 | static struct page *rmqueue_pcplist(struct zone *preferred_zone, | 
|  | 3050 | struct zone *zone, unsigned int order, | 
|  | 3051 | gfp_t gfp_flags, int migratetype) | 
|  | 3052 | { | 
|  | 3053 | struct per_cpu_pages *pcp; | 
|  | 3054 | struct list_head *list; | 
|  | 3055 | struct page *page; | 
|  | 3056 | unsigned long flags; | 
|  | 3057 |  | 
|  | 3058 | local_irq_save(flags); | 
|  | 3059 | pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
|  | 3060 | list = &pcp->lists[migratetype]; | 
|  | 3061 | page = __rmqueue_pcplist(zone,  migratetype, pcp, list); | 
|  | 3062 | if (page) { | 
|  | 3063 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | 
|  | 3064 | zone_statistics(preferred_zone, zone); | 
|  | 3065 | } | 
|  | 3066 | local_irq_restore(flags); | 
|  | 3067 | return page; | 
|  | 3068 | } | 
|  | 3069 |  | 
|  | 3070 | /* | 
|  | 3071 | * Allocate a page from the given zone. Use pcplists for order-0 allocations. | 
|  | 3072 | */ | 
|  | 3073 | static inline | 
|  | 3074 | struct page *rmqueue(struct zone *preferred_zone, | 
|  | 3075 | struct zone *zone, unsigned int order, | 
|  | 3076 | gfp_t gfp_flags, unsigned int alloc_flags, | 
|  | 3077 | int migratetype) | 
|  | 3078 | { | 
|  | 3079 | unsigned long flags; | 
|  | 3080 | struct page *page; | 
|  | 3081 |  | 
|  | 3082 | if (likely(order == 0)) { | 
|  | 3083 | page = rmqueue_pcplist(preferred_zone, zone, order, | 
|  | 3084 | gfp_flags, migratetype); | 
|  | 3085 | goto out; | 
|  | 3086 | } | 
|  | 3087 |  | 
|  | 3088 | /* | 
|  | 3089 | * We most definitely don't want callers attempting to | 
|  | 3090 | * allocate greater than order-1 page units with __GFP_NOFAIL. | 
|  | 3091 | */ | 
|  | 3092 | WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); | 
|  | 3093 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 3094 |  | 
|  | 3095 | do { | 
|  | 3096 | page = NULL; | 
|  | 3097 | if (alloc_flags & ALLOC_HARDER) { | 
|  | 3098 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | 
|  | 3099 | if (page) | 
|  | 3100 | trace_mm_page_alloc_zone_locked(page, order, migratetype); | 
|  | 3101 | } | 
|  | 3102 | if (!page) | 
|  | 3103 | page = __rmqueue(zone, order, migratetype); | 
|  | 3104 | } while (page && check_new_pages(page, order)); | 
|  | 3105 | spin_unlock(&zone->lock); | 
|  | 3106 | if (!page) | 
|  | 3107 | goto failed; | 
|  | 3108 | __mod_zone_freepage_state(zone, -(1 << order), | 
|  | 3109 | get_pcppage_migratetype(page)); | 
|  | 3110 |  | 
|  | 3111 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | 
|  | 3112 | zone_statistics(preferred_zone, zone); | 
|  | 3113 | local_irq_restore(flags); | 
|  | 3114 |  | 
|  | 3115 | out: | 
|  | 3116 | VM_BUG_ON_PAGE(page && bad_range(zone, page), page); | 
|  | 3117 | return page; | 
|  | 3118 |  | 
|  | 3119 | failed: | 
|  | 3120 | local_irq_restore(flags); | 
|  | 3121 | return NULL; | 
|  | 3122 | } | 
|  | 3123 |  | 
|  | 3124 | #ifdef CONFIG_FAIL_PAGE_ALLOC | 
|  | 3125 |  | 
|  | 3126 | static struct { | 
|  | 3127 | struct fault_attr attr; | 
|  | 3128 |  | 
|  | 3129 | bool ignore_gfp_highmem; | 
|  | 3130 | bool ignore_gfp_reclaim; | 
|  | 3131 | u32 min_order; | 
|  | 3132 | } fail_page_alloc = { | 
|  | 3133 | .attr = FAULT_ATTR_INITIALIZER, | 
|  | 3134 | .ignore_gfp_reclaim = true, | 
|  | 3135 | .ignore_gfp_highmem = true, | 
|  | 3136 | .min_order = 1, | 
|  | 3137 | }; | 
|  | 3138 |  | 
|  | 3139 | static int __init setup_fail_page_alloc(char *str) | 
|  | 3140 | { | 
|  | 3141 | return setup_fault_attr(&fail_page_alloc.attr, str); | 
|  | 3142 | } | 
|  | 3143 | __setup("fail_page_alloc=", setup_fail_page_alloc); | 
|  | 3144 |  | 
|  | 3145 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
|  | 3146 | { | 
|  | 3147 | if (order < fail_page_alloc.min_order) | 
|  | 3148 | return false; | 
|  | 3149 | if (gfp_mask & __GFP_NOFAIL) | 
|  | 3150 | return false; | 
|  | 3151 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) | 
|  | 3152 | return false; | 
|  | 3153 | if (fail_page_alloc.ignore_gfp_reclaim && | 
|  | 3154 | (gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | 3155 | return false; | 
|  | 3156 |  | 
|  | 3157 | return should_fail(&fail_page_alloc.attr, 1 << order); | 
|  | 3158 | } | 
|  | 3159 |  | 
|  | 3160 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | 
|  | 3161 |  | 
|  | 3162 | static int __init fail_page_alloc_debugfs(void) | 
|  | 3163 | { | 
|  | 3164 | umode_t mode = S_IFREG | 0600; | 
|  | 3165 | struct dentry *dir; | 
|  | 3166 |  | 
|  | 3167 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, | 
|  | 3168 | &fail_page_alloc.attr); | 
|  | 3169 | if (IS_ERR(dir)) | 
|  | 3170 | return PTR_ERR(dir); | 
|  | 3171 |  | 
|  | 3172 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, | 
|  | 3173 | &fail_page_alloc.ignore_gfp_reclaim)) | 
|  | 3174 | goto fail; | 
|  | 3175 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | 
|  | 3176 | &fail_page_alloc.ignore_gfp_highmem)) | 
|  | 3177 | goto fail; | 
|  | 3178 | if (!debugfs_create_u32("min-order", mode, dir, | 
|  | 3179 | &fail_page_alloc.min_order)) | 
|  | 3180 | goto fail; | 
|  | 3181 |  | 
|  | 3182 | return 0; | 
|  | 3183 | fail: | 
|  | 3184 | debugfs_remove_recursive(dir); | 
|  | 3185 |  | 
|  | 3186 | return -ENOMEM; | 
|  | 3187 | } | 
|  | 3188 |  | 
|  | 3189 | late_initcall(fail_page_alloc_debugfs); | 
|  | 3190 |  | 
|  | 3191 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | 
|  | 3192 |  | 
|  | 3193 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | 
|  | 3194 |  | 
|  | 3195 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
|  | 3196 | { | 
|  | 3197 | return false; | 
|  | 3198 | } | 
|  | 3199 |  | 
|  | 3200 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | 
|  | 3201 |  | 
|  | 3202 | /* | 
|  | 3203 | * Return true if free base pages are above 'mark'. For high-order checks it | 
|  | 3204 | * will return true of the order-0 watermark is reached and there is at least | 
|  | 3205 | * one free page of a suitable size. Checking now avoids taking the zone lock | 
|  | 3206 | * to check in the allocation paths if no pages are free. | 
|  | 3207 | */ | 
|  | 3208 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
|  | 3209 | int classzone_idx, unsigned int alloc_flags, | 
|  | 3210 | long free_pages) | 
|  | 3211 | { | 
|  | 3212 | long min = mark; | 
|  | 3213 | int o; | 
|  | 3214 | const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); | 
|  | 3215 |  | 
|  | 3216 | /* free_pages may go negative - that's OK */ | 
|  | 3217 | free_pages -= (1 << order) - 1; | 
|  | 3218 |  | 
|  | 3219 | if (alloc_flags & ALLOC_HIGH) | 
|  | 3220 | min -= min / 2; | 
|  | 3221 |  | 
|  | 3222 | /* | 
|  | 3223 | * If the caller does not have rights to ALLOC_HARDER then subtract | 
|  | 3224 | * the high-atomic reserves. This will over-estimate the size of the | 
|  | 3225 | * atomic reserve but it avoids a search. | 
|  | 3226 | */ | 
|  | 3227 | if (likely(!alloc_harder)) { | 
|  | 3228 | free_pages -= z->nr_reserved_highatomic; | 
|  | 3229 | } else { | 
|  | 3230 | /* | 
|  | 3231 | * OOM victims can try even harder than normal ALLOC_HARDER | 
|  | 3232 | * users on the grounds that it's definitely going to be in | 
|  | 3233 | * the exit path shortly and free memory. Any allocation it | 
|  | 3234 | * makes during the free path will be small and short-lived. | 
|  | 3235 | */ | 
|  | 3236 | if (alloc_flags & ALLOC_OOM) | 
|  | 3237 | min -= min / 2; | 
|  | 3238 | else | 
|  | 3239 | min -= min / 4; | 
|  | 3240 | } | 
|  | 3241 |  | 
|  | 3242 |  | 
|  | 3243 | #ifdef CONFIG_CMA | 
|  | 3244 | /* If allocation can't use CMA areas don't use free CMA pages */ | 
|  | 3245 | if (!(alloc_flags & ALLOC_CMA)) | 
|  | 3246 | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); | 
|  | 3247 | #endif | 
|  | 3248 |  | 
|  | 3249 | /* | 
|  | 3250 | * Check watermarks for an order-0 allocation request. If these | 
|  | 3251 | * are not met, then a high-order request also cannot go ahead | 
|  | 3252 | * even if a suitable page happened to be free. | 
|  | 3253 | */ | 
|  | 3254 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | 
|  | 3255 | return false; | 
|  | 3256 |  | 
|  | 3257 | /* If this is an order-0 request then the watermark is fine */ | 
|  | 3258 | if (!order) | 
|  | 3259 | return true; | 
|  | 3260 |  | 
|  | 3261 | /* For a high-order request, check at least one suitable page is free */ | 
|  | 3262 | for (o = order; o < MAX_ORDER; o++) { | 
|  | 3263 | struct free_area *area = &z->free_area[o]; | 
|  | 3264 | int mt; | 
|  | 3265 |  | 
|  | 3266 | if (!area->nr_free) | 
|  | 3267 | continue; | 
|  | 3268 |  | 
|  | 3269 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { | 
|  | 3270 | if (!list_empty(&area->free_list[mt])) | 
|  | 3271 | return true; | 
|  | 3272 | } | 
|  | 3273 |  | 
|  | 3274 | #ifdef CONFIG_CMA | 
|  | 3275 | if ((alloc_flags & ALLOC_CMA) && | 
|  | 3276 | !list_empty(&area->free_list[MIGRATE_CMA])) { | 
|  | 3277 | return true; | 
|  | 3278 | } | 
|  | 3279 | #endif | 
|  | 3280 | if (alloc_harder && | 
|  | 3281 | !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) | 
|  | 3282 | return true; | 
|  | 3283 | } | 
|  | 3284 | return false; | 
|  | 3285 | } | 
|  | 3286 |  | 
|  | 3287 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
|  | 3288 | int classzone_idx, unsigned int alloc_flags) | 
|  | 3289 | { | 
|  | 3290 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | 
|  | 3291 | zone_page_state(z, NR_FREE_PAGES)); | 
|  | 3292 | } | 
|  | 3293 |  | 
|  | 3294 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, | 
|  | 3295 | unsigned long mark, int classzone_idx, unsigned int alloc_flags) | 
|  | 3296 | { | 
|  | 3297 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | 
|  | 3298 | long cma_pages = 0; | 
|  | 3299 |  | 
|  | 3300 | #ifdef CONFIG_CMA | 
|  | 3301 | /* If allocation can't use CMA areas don't use free CMA pages */ | 
|  | 3302 | if (!(alloc_flags & ALLOC_CMA)) | 
|  | 3303 | cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); | 
|  | 3304 | #endif | 
|  | 3305 |  | 
|  | 3306 | /* | 
|  | 3307 | * Fast check for order-0 only. If this fails then the reserves | 
|  | 3308 | * need to be calculated. There is a corner case where the check | 
|  | 3309 | * passes but only the high-order atomic reserve are free. If | 
|  | 3310 | * the caller is !atomic then it'll uselessly search the free | 
|  | 3311 | * list. That corner case is then slower but it is harmless. | 
|  | 3312 | */ | 
|  | 3313 | if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) | 
|  | 3314 | return true; | 
|  | 3315 |  | 
|  | 3316 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | 
|  | 3317 | free_pages); | 
|  | 3318 | } | 
|  | 3319 |  | 
|  | 3320 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, | 
|  | 3321 | unsigned long mark, int classzone_idx) | 
|  | 3322 | { | 
|  | 3323 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | 
|  | 3324 |  | 
|  | 3325 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | 
|  | 3326 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | 
|  | 3327 |  | 
|  | 3328 | return __zone_watermark_ok(z, order, mark, classzone_idx, 0, | 
|  | 3329 | free_pages); | 
|  | 3330 | } | 
|  | 3331 |  | 
|  | 3332 | #ifdef CONFIG_NUMA | 
|  | 3333 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
|  | 3334 | { | 
|  | 3335 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= | 
|  | 3336 | RECLAIM_DISTANCE; | 
|  | 3337 | } | 
|  | 3338 | #else	/* CONFIG_NUMA */ | 
|  | 3339 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
|  | 3340 | { | 
|  | 3341 | return true; | 
|  | 3342 | } | 
|  | 3343 | #endif	/* CONFIG_NUMA */ | 
|  | 3344 |  | 
|  | 3345 | /* | 
|  | 3346 | * get_page_from_freelist goes through the zonelist trying to allocate | 
|  | 3347 | * a page. | 
|  | 3348 | */ | 
|  | 3349 | static struct page * | 
|  | 3350 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, | 
|  | 3351 | const struct alloc_context *ac) | 
|  | 3352 | { | 
|  | 3353 | struct zoneref *z = ac->preferred_zoneref; | 
|  | 3354 | struct zone *zone; | 
|  | 3355 | struct pglist_data *last_pgdat_dirty_limit = NULL; | 
|  | 3356 |  | 
|  | 3357 | /* | 
|  | 3358 | * Scan zonelist, looking for a zone with enough free. | 
|  | 3359 | * See also __cpuset_node_allowed() comment in kernel/cpuset.c. | 
|  | 3360 | */ | 
|  | 3361 | for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | 
|  | 3362 | ac->nodemask) { | 
|  | 3363 | struct page *page; | 
|  | 3364 | unsigned long mark; | 
|  | 3365 |  | 
|  | 3366 | if (cpusets_enabled() && | 
|  | 3367 | (alloc_flags & ALLOC_CPUSET) && | 
|  | 3368 | !__cpuset_zone_allowed(zone, gfp_mask)) | 
|  | 3369 | continue; | 
|  | 3370 | /* | 
|  | 3371 | * When allocating a page cache page for writing, we | 
|  | 3372 | * want to get it from a node that is within its dirty | 
|  | 3373 | * limit, such that no single node holds more than its | 
|  | 3374 | * proportional share of globally allowed dirty pages. | 
|  | 3375 | * The dirty limits take into account the node's | 
|  | 3376 | * lowmem reserves and high watermark so that kswapd | 
|  | 3377 | * should be able to balance it without having to | 
|  | 3378 | * write pages from its LRU list. | 
|  | 3379 | * | 
|  | 3380 | * XXX: For now, allow allocations to potentially | 
|  | 3381 | * exceed the per-node dirty limit in the slowpath | 
|  | 3382 | * (spread_dirty_pages unset) before going into reclaim, | 
|  | 3383 | * which is important when on a NUMA setup the allowed | 
|  | 3384 | * nodes are together not big enough to reach the | 
|  | 3385 | * global limit.  The proper fix for these situations | 
|  | 3386 | * will require awareness of nodes in the | 
|  | 3387 | * dirty-throttling and the flusher threads. | 
|  | 3388 | */ | 
|  | 3389 | if (ac->spread_dirty_pages) { | 
|  | 3390 | if (last_pgdat_dirty_limit == zone->zone_pgdat) | 
|  | 3391 | continue; | 
|  | 3392 |  | 
|  | 3393 | if (!node_dirty_ok(zone->zone_pgdat)) { | 
|  | 3394 | last_pgdat_dirty_limit = zone->zone_pgdat; | 
|  | 3395 | continue; | 
|  | 3396 | } | 
|  | 3397 | } | 
|  | 3398 |  | 
|  | 3399 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; | 
|  | 3400 | if (!zone_watermark_fast(zone, order, mark, | 
|  | 3401 | ac_classzone_idx(ac), alloc_flags)) { | 
|  | 3402 | int ret; | 
|  | 3403 |  | 
|  | 3404 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | 3405 | /* | 
|  | 3406 | * Watermark failed for this zone, but see if we can | 
|  | 3407 | * grow this zone if it contains deferred pages. | 
|  | 3408 | */ | 
|  | 3409 | if (static_branch_unlikely(&deferred_pages)) { | 
|  | 3410 | if (_deferred_grow_zone(zone, order)) | 
|  | 3411 | goto try_this_zone; | 
|  | 3412 | } | 
|  | 3413 | #endif | 
|  | 3414 | /* Checked here to keep the fast path fast */ | 
|  | 3415 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | 
|  | 3416 | if (alloc_flags & ALLOC_NO_WATERMARKS) | 
|  | 3417 | goto try_this_zone; | 
|  | 3418 |  | 
|  | 3419 | if (node_reclaim_mode == 0 || | 
|  | 3420 | !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) | 
|  | 3421 | continue; | 
|  | 3422 |  | 
|  | 3423 | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); | 
|  | 3424 | switch (ret) { | 
|  | 3425 | case NODE_RECLAIM_NOSCAN: | 
|  | 3426 | /* did not scan */ | 
|  | 3427 | continue; | 
|  | 3428 | case NODE_RECLAIM_FULL: | 
|  | 3429 | /* scanned but unreclaimable */ | 
|  | 3430 | continue; | 
|  | 3431 | default: | 
|  | 3432 | /* did we reclaim enough */ | 
|  | 3433 | if (zone_watermark_ok(zone, order, mark, | 
|  | 3434 | ac_classzone_idx(ac), alloc_flags)) | 
|  | 3435 | goto try_this_zone; | 
|  | 3436 |  | 
|  | 3437 | continue; | 
|  | 3438 | } | 
|  | 3439 | } | 
|  | 3440 |  | 
|  | 3441 | try_this_zone: | 
|  | 3442 | page = rmqueue(ac->preferred_zoneref->zone, zone, order, | 
|  | 3443 | gfp_mask, alloc_flags, ac->migratetype); | 
|  | 3444 | if (page) { | 
|  | 3445 | prep_new_page(page, order, gfp_mask, alloc_flags); | 
|  | 3446 |  | 
|  | 3447 | /* | 
|  | 3448 | * If this is a high-order atomic allocation then check | 
|  | 3449 | * if the pageblock should be reserved for the future | 
|  | 3450 | */ | 
|  | 3451 | if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | 
|  | 3452 | reserve_highatomic_pageblock(page, zone, order); | 
|  | 3453 |  | 
|  | 3454 | return page; | 
|  | 3455 | } else { | 
|  | 3456 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | 3457 | /* Try again if zone has deferred pages */ | 
|  | 3458 | if (static_branch_unlikely(&deferred_pages)) { | 
|  | 3459 | if (_deferred_grow_zone(zone, order)) | 
|  | 3460 | goto try_this_zone; | 
|  | 3461 | } | 
|  | 3462 | #endif | 
|  | 3463 | } | 
|  | 3464 | } | 
|  | 3465 |  | 
|  | 3466 | return NULL; | 
|  | 3467 | } | 
|  | 3468 |  | 
|  | 3469 | /* | 
|  | 3470 | * Large machines with many possible nodes should not always dump per-node | 
|  | 3471 | * meminfo in irq context. | 
|  | 3472 | */ | 
|  | 3473 | static inline bool should_suppress_show_mem(void) | 
|  | 3474 | { | 
|  | 3475 | bool ret = false; | 
|  | 3476 |  | 
|  | 3477 | #if NODES_SHIFT > 8 | 
|  | 3478 | ret = in_interrupt(); | 
|  | 3479 | #endif | 
|  | 3480 | return ret; | 
|  | 3481 | } | 
|  | 3482 |  | 
|  | 3483 | /* | 
|  | 3484 | * Dump task info when page allocation failure | 
|  | 3485 | */ | 
|  | 3486 | static void dump_extra_info(void) | 
|  | 3487 | { | 
|  | 3488 | struct task_struct *p; | 
|  | 3489 | struct task_struct *task; | 
|  | 3490 |  | 
|  | 3491 | pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n"); | 
|  | 3492 | rcu_read_lock(); | 
|  | 3493 | for_each_process(p) { | 
|  | 3494 | task = find_lock_task_mm(p); | 
|  | 3495 | if (!task) { | 
|  | 3496 | continue; | 
|  | 3497 | } | 
|  | 3498 |  | 
|  | 3499 | pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n", | 
|  | 3500 | task->pid, from_kuid(&init_user_ns, task_uid(task)), | 
|  | 3501 | task->tgid, task->mm->total_vm, get_mm_rss(task->mm), | 
|  | 3502 | mm_pgtables_bytes(task->mm), | 
|  | 3503 | get_mm_counter(task->mm, MM_SWAPENTS), | 
|  | 3504 | task->signal->oom_score_adj, task->comm); | 
|  | 3505 | task_unlock(task); | 
|  | 3506 | } | 
|  | 3507 | rcu_read_unlock(); | 
|  | 3508 | } | 
|  | 3509 |  | 
|  | 3510 | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) | 
|  | 3511 | { | 
|  | 3512 | unsigned int filter = SHOW_MEM_FILTER_NODES; | 
|  | 3513 | static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); | 
|  | 3514 |  | 
|  | 3515 | if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) | 
|  | 3516 | return; | 
|  | 3517 |  | 
|  | 3518 | /* | 
|  | 3519 | * This documents exceptions given to allocations in certain | 
|  | 3520 | * contexts that are allowed to allocate outside current's set | 
|  | 3521 | * of allowed nodes. | 
|  | 3522 | */ | 
|  | 3523 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | 3524 | if (tsk_is_oom_victim(current) || | 
|  | 3525 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | 
|  | 3526 | filter &= ~SHOW_MEM_FILTER_NODES; | 
|  | 3527 | if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | 3528 | filter &= ~SHOW_MEM_FILTER_NODES; | 
|  | 3529 |  | 
|  | 3530 | show_mem(filter, nodemask); | 
|  | 3531 | dump_extra_info(); | 
|  | 3532 | } | 
|  | 3533 |  | 
|  | 3534 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) | 
|  | 3535 | { | 
|  | 3536 | struct va_format vaf; | 
|  | 3537 | va_list args; | 
|  | 3538 | static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | 3539 | DEFAULT_RATELIMIT_BURST); | 
|  | 3540 |  | 
|  | 3541 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) | 
|  | 3542 | return; | 
|  | 3543 |  | 
|  | 3544 | va_start(args, fmt); | 
|  | 3545 | vaf.fmt = fmt; | 
|  | 3546 | vaf.va = &args; | 
|  | 3547 | pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", | 
|  | 3548 | current->comm, &vaf, gfp_mask, &gfp_mask, | 
|  | 3549 | nodemask_pr_args(nodemask)); | 
|  | 3550 | va_end(args); | 
|  | 3551 |  | 
|  | 3552 | cpuset_print_current_mems_allowed(); | 
|  | 3553 |  | 
|  | 3554 | dump_stack(); | 
|  | 3555 | warn_alloc_show_mem(gfp_mask, nodemask); | 
|  | 3556 | } | 
|  | 3557 |  | 
|  | 3558 | static inline struct page * | 
|  | 3559 | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, | 
|  | 3560 | unsigned int alloc_flags, | 
|  | 3561 | const struct alloc_context *ac) | 
|  | 3562 | { | 
|  | 3563 | struct page *page; | 
|  | 3564 |  | 
|  | 3565 | page = get_page_from_freelist(gfp_mask, order, | 
|  | 3566 | alloc_flags|ALLOC_CPUSET, ac); | 
|  | 3567 | /* | 
|  | 3568 | * fallback to ignore cpuset restriction if our nodes | 
|  | 3569 | * are depleted | 
|  | 3570 | */ | 
|  | 3571 | if (!page) | 
|  | 3572 | page = get_page_from_freelist(gfp_mask, order, | 
|  | 3573 | alloc_flags, ac); | 
|  | 3574 |  | 
|  | 3575 | return page; | 
|  | 3576 | } | 
|  | 3577 |  | 
|  | 3578 | static inline struct page * | 
|  | 3579 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | 
|  | 3580 | const struct alloc_context *ac, unsigned long *did_some_progress) | 
|  | 3581 | { | 
|  | 3582 | struct oom_control oc = { | 
|  | 3583 | .zonelist = ac->zonelist, | 
|  | 3584 | .nodemask = ac->nodemask, | 
|  | 3585 | .memcg = NULL, | 
|  | 3586 | .gfp_mask = gfp_mask, | 
|  | 3587 | .order = order, | 
|  | 3588 | }; | 
|  | 3589 | struct page *page; | 
|  | 3590 |  | 
|  | 3591 | *did_some_progress = 0; | 
|  | 3592 |  | 
|  | 3593 | /* | 
|  | 3594 | * Acquire the oom lock.  If that fails, somebody else is | 
|  | 3595 | * making progress for us. | 
|  | 3596 | */ | 
|  | 3597 | if (!mutex_trylock(&oom_lock)) { | 
|  | 3598 | *did_some_progress = 1; | 
|  | 3599 | schedule_timeout_uninterruptible(1); | 
|  | 3600 | return NULL; | 
|  | 3601 | } | 
|  | 3602 |  | 
|  | 3603 | /* | 
|  | 3604 | * Go through the zonelist yet one more time, keep very high watermark | 
|  | 3605 | * here, this is only to catch a parallel oom killing, we must fail if | 
|  | 3606 | * we're still under heavy pressure. But make sure that this reclaim | 
|  | 3607 | * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY | 
|  | 3608 | * allocation which will never fail due to oom_lock already held. | 
|  | 3609 | */ | 
|  | 3610 | page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & | 
|  | 3611 | ~__GFP_DIRECT_RECLAIM, order, | 
|  | 3612 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | 
|  | 3613 | if (page) | 
|  | 3614 | goto out; | 
|  | 3615 |  | 
|  | 3616 | /* Coredumps can quickly deplete all memory reserves */ | 
|  | 3617 | if (current->flags & PF_DUMPCORE) | 
|  | 3618 | goto out; | 
|  | 3619 | /* The OOM killer will not help higher order allocs */ | 
|  | 3620 | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | 3621 | goto out; | 
|  | 3622 | /* | 
|  | 3623 | * We have already exhausted all our reclaim opportunities without any | 
|  | 3624 | * success so it is time to admit defeat. We will skip the OOM killer | 
|  | 3625 | * because it is very likely that the caller has a more reasonable | 
|  | 3626 | * fallback than shooting a random task. | 
|  | 3627 | */ | 
|  | 3628 | if (gfp_mask & __GFP_RETRY_MAYFAIL) | 
|  | 3629 | goto out; | 
|  | 3630 | /* The OOM killer does not needlessly kill tasks for lowmem */ | 
|  | 3631 | if (ac->high_zoneidx < ZONE_NORMAL) | 
|  | 3632 | goto out; | 
|  | 3633 | if (pm_suspended_storage()) | 
|  | 3634 | goto out; | 
|  | 3635 | /* | 
|  | 3636 | * XXX: GFP_NOFS allocations should rather fail than rely on | 
|  | 3637 | * other request to make a forward progress. | 
|  | 3638 | * We are in an unfortunate situation where out_of_memory cannot | 
|  | 3639 | * do much for this context but let's try it to at least get | 
|  | 3640 | * access to memory reserved if the current task is killed (see | 
|  | 3641 | * out_of_memory). Once filesystems are ready to handle allocation | 
|  | 3642 | * failures more gracefully we should just bail out here. | 
|  | 3643 | */ | 
|  | 3644 |  | 
|  | 3645 | /* The OOM killer may not free memory on a specific node */ | 
|  | 3646 | if (gfp_mask & __GFP_THISNODE) | 
|  | 3647 | goto out; | 
|  | 3648 |  | 
|  | 3649 | /* Exhausted what can be done so it's blame time */ | 
|  | 3650 | if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { | 
|  | 3651 | *did_some_progress = 1; | 
|  | 3652 |  | 
|  | 3653 | /* | 
|  | 3654 | * Help non-failing allocations by giving them access to memory | 
|  | 3655 | * reserves | 
|  | 3656 | */ | 
|  | 3657 | if (gfp_mask & __GFP_NOFAIL) | 
|  | 3658 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, | 
|  | 3659 | ALLOC_NO_WATERMARKS, ac); | 
|  | 3660 | } | 
|  | 3661 | out: | 
|  | 3662 | mutex_unlock(&oom_lock); | 
|  | 3663 | return page; | 
|  | 3664 | } | 
|  | 3665 |  | 
|  | 3666 | /* | 
|  | 3667 | * Maximum number of compaction retries wit a progress before OOM | 
|  | 3668 | * killer is consider as the only way to move forward. | 
|  | 3669 | */ | 
|  | 3670 | #define MAX_COMPACT_RETRIES 16 | 
|  | 3671 |  | 
|  | 3672 | #ifdef CONFIG_COMPACTION | 
|  | 3673 | /* Try memory compaction for high-order allocations before reclaim */ | 
|  | 3674 | static struct page * | 
|  | 3675 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
|  | 3676 | unsigned int alloc_flags, const struct alloc_context *ac, | 
|  | 3677 | enum compact_priority prio, enum compact_result *compact_result) | 
|  | 3678 | { | 
|  | 3679 | struct page *page; | 
|  | 3680 | unsigned long pflags; | 
|  | 3681 | unsigned int noreclaim_flag; | 
|  | 3682 |  | 
|  | 3683 | if (!order) | 
|  | 3684 | return NULL; | 
|  | 3685 |  | 
|  | 3686 | psi_memstall_enter(&pflags); | 
|  | 3687 | noreclaim_flag = memalloc_noreclaim_save(); | 
|  | 3688 |  | 
|  | 3689 | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, | 
|  | 3690 | prio); | 
|  | 3691 |  | 
|  | 3692 | memalloc_noreclaim_restore(noreclaim_flag); | 
|  | 3693 | psi_memstall_leave(&pflags); | 
|  | 3694 |  | 
|  | 3695 | if (*compact_result <= COMPACT_INACTIVE) | 
|  | 3696 | return NULL; | 
|  | 3697 |  | 
|  | 3698 | /* | 
|  | 3699 | * At least in one zone compaction wasn't deferred or skipped, so let's | 
|  | 3700 | * count a compaction stall | 
|  | 3701 | */ | 
|  | 3702 | count_vm_event(COMPACTSTALL); | 
|  | 3703 |  | 
|  | 3704 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  | 3705 |  | 
|  | 3706 | if (page) { | 
|  | 3707 | struct zone *zone = page_zone(page); | 
|  | 3708 |  | 
|  | 3709 | zone->compact_blockskip_flush = false; | 
|  | 3710 | compaction_defer_reset(zone, order, true); | 
|  | 3711 | count_vm_event(COMPACTSUCCESS); | 
|  | 3712 | return page; | 
|  | 3713 | } | 
|  | 3714 |  | 
|  | 3715 | /* | 
|  | 3716 | * It's bad if compaction run occurs and fails. The most likely reason | 
|  | 3717 | * is that pages exist, but not enough to satisfy watermarks. | 
|  | 3718 | */ | 
|  | 3719 | count_vm_event(COMPACTFAIL); | 
|  | 3720 |  | 
|  | 3721 | cond_resched(); | 
|  | 3722 |  | 
|  | 3723 | return NULL; | 
|  | 3724 | } | 
|  | 3725 |  | 
|  | 3726 | static inline bool | 
|  | 3727 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, | 
|  | 3728 | enum compact_result compact_result, | 
|  | 3729 | enum compact_priority *compact_priority, | 
|  | 3730 | int *compaction_retries) | 
|  | 3731 | { | 
|  | 3732 | int max_retries = MAX_COMPACT_RETRIES; | 
|  | 3733 | int min_priority; | 
|  | 3734 | bool ret = false; | 
|  | 3735 | int retries = *compaction_retries; | 
|  | 3736 | enum compact_priority priority = *compact_priority; | 
|  | 3737 |  | 
|  | 3738 | if (!order) | 
|  | 3739 | return false; | 
|  | 3740 |  | 
|  | 3741 | if (compaction_made_progress(compact_result)) | 
|  | 3742 | (*compaction_retries)++; | 
|  | 3743 |  | 
|  | 3744 | /* | 
|  | 3745 | * compaction considers all the zone as desperately out of memory | 
|  | 3746 | * so it doesn't really make much sense to retry except when the | 
|  | 3747 | * failure could be caused by insufficient priority | 
|  | 3748 | */ | 
|  | 3749 | if (compaction_failed(compact_result)) | 
|  | 3750 | goto check_priority; | 
|  | 3751 |  | 
|  | 3752 | /* | 
|  | 3753 | * make sure the compaction wasn't deferred or didn't bail out early | 
|  | 3754 | * due to locks contention before we declare that we should give up. | 
|  | 3755 | * But do not retry if the given zonelist is not suitable for | 
|  | 3756 | * compaction. | 
|  | 3757 | */ | 
|  | 3758 | if (compaction_withdrawn(compact_result)) { | 
|  | 3759 | ret = compaction_zonelist_suitable(ac, order, alloc_flags); | 
|  | 3760 | goto out; | 
|  | 3761 | } | 
|  | 3762 |  | 
|  | 3763 | /* | 
|  | 3764 | * !costly requests are much more important than __GFP_RETRY_MAYFAIL | 
|  | 3765 | * costly ones because they are de facto nofail and invoke OOM | 
|  | 3766 | * killer to move on while costly can fail and users are ready | 
|  | 3767 | * to cope with that. 1/4 retries is rather arbitrary but we | 
|  | 3768 | * would need much more detailed feedback from compaction to | 
|  | 3769 | * make a better decision. | 
|  | 3770 | */ | 
|  | 3771 | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | 3772 | max_retries /= 4; | 
|  | 3773 | if (*compaction_retries <= max_retries) { | 
|  | 3774 | ret = true; | 
|  | 3775 | goto out; | 
|  | 3776 | } | 
|  | 3777 |  | 
|  | 3778 | /* | 
|  | 3779 | * Make sure there are attempts at the highest priority if we exhausted | 
|  | 3780 | * all retries or failed at the lower priorities. | 
|  | 3781 | */ | 
|  | 3782 | check_priority: | 
|  | 3783 | min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? | 
|  | 3784 | MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; | 
|  | 3785 |  | 
|  | 3786 | if (*compact_priority > min_priority) { | 
|  | 3787 | (*compact_priority)--; | 
|  | 3788 | *compaction_retries = 0; | 
|  | 3789 | ret = true; | 
|  | 3790 | } | 
|  | 3791 | out: | 
|  | 3792 | trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); | 
|  | 3793 | return ret; | 
|  | 3794 | } | 
|  | 3795 | #else | 
|  | 3796 | static inline struct page * | 
|  | 3797 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
|  | 3798 | unsigned int alloc_flags, const struct alloc_context *ac, | 
|  | 3799 | enum compact_priority prio, enum compact_result *compact_result) | 
|  | 3800 | { | 
|  | 3801 | *compact_result = COMPACT_SKIPPED; | 
|  | 3802 | return NULL; | 
|  | 3803 | } | 
|  | 3804 |  | 
|  | 3805 | static inline bool | 
|  | 3806 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, | 
|  | 3807 | enum compact_result compact_result, | 
|  | 3808 | enum compact_priority *compact_priority, | 
|  | 3809 | int *compaction_retries) | 
|  | 3810 | { | 
|  | 3811 | struct zone *zone; | 
|  | 3812 | struct zoneref *z; | 
|  | 3813 |  | 
|  | 3814 | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | 3815 | return false; | 
|  | 3816 |  | 
|  | 3817 | /* | 
|  | 3818 | * There are setups with compaction disabled which would prefer to loop | 
|  | 3819 | * inside the allocator rather than hit the oom killer prematurely. | 
|  | 3820 | * Let's give them a good hope and keep retrying while the order-0 | 
|  | 3821 | * watermarks are OK. | 
|  | 3822 | */ | 
|  | 3823 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | 
|  | 3824 | ac->nodemask) { | 
|  | 3825 | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), | 
|  | 3826 | ac_classzone_idx(ac), alloc_flags)) | 
|  | 3827 | return true; | 
|  | 3828 | } | 
|  | 3829 | return false; | 
|  | 3830 | } | 
|  | 3831 | #endif /* CONFIG_COMPACTION */ | 
|  | 3832 |  | 
|  | 3833 | #ifdef CONFIG_LOCKDEP | 
|  | 3834 | static struct lockdep_map __fs_reclaim_map = | 
|  | 3835 | STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); | 
|  | 3836 |  | 
|  | 3837 | static bool __need_fs_reclaim(gfp_t gfp_mask) | 
|  | 3838 | { | 
|  | 3839 | gfp_mask = current_gfp_context(gfp_mask); | 
|  | 3840 |  | 
|  | 3841 | /* no reclaim without waiting on it */ | 
|  | 3842 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | 3843 | return false; | 
|  | 3844 |  | 
|  | 3845 | /* this guy won't enter reclaim */ | 
|  | 3846 | if (current->flags & PF_MEMALLOC) | 
|  | 3847 | return false; | 
|  | 3848 |  | 
|  | 3849 | /* We're only interested __GFP_FS allocations for now */ | 
|  | 3850 | if (!(gfp_mask & __GFP_FS)) | 
|  | 3851 | return false; | 
|  | 3852 |  | 
|  | 3853 | if (gfp_mask & __GFP_NOLOCKDEP) | 
|  | 3854 | return false; | 
|  | 3855 |  | 
|  | 3856 | return true; | 
|  | 3857 | } | 
|  | 3858 |  | 
|  | 3859 | void __fs_reclaim_acquire(void) | 
|  | 3860 | { | 
|  | 3861 | lock_map_acquire(&__fs_reclaim_map); | 
|  | 3862 | } | 
|  | 3863 |  | 
|  | 3864 | void __fs_reclaim_release(void) | 
|  | 3865 | { | 
|  | 3866 | lock_map_release(&__fs_reclaim_map); | 
|  | 3867 | } | 
|  | 3868 |  | 
|  | 3869 | void fs_reclaim_acquire(gfp_t gfp_mask) | 
|  | 3870 | { | 
|  | 3871 | if (__need_fs_reclaim(gfp_mask)) | 
|  | 3872 | __fs_reclaim_acquire(); | 
|  | 3873 | } | 
|  | 3874 | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); | 
|  | 3875 |  | 
|  | 3876 | void fs_reclaim_release(gfp_t gfp_mask) | 
|  | 3877 | { | 
|  | 3878 | if (__need_fs_reclaim(gfp_mask)) | 
|  | 3879 | __fs_reclaim_release(); | 
|  | 3880 | } | 
|  | 3881 | EXPORT_SYMBOL_GPL(fs_reclaim_release); | 
|  | 3882 | #endif | 
|  | 3883 |  | 
|  | 3884 | /* Perform direct synchronous page reclaim */ | 
|  | 3885 | static int | 
|  | 3886 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, | 
|  | 3887 | const struct alloc_context *ac) | 
|  | 3888 | { | 
|  | 3889 | struct reclaim_state reclaim_state; | 
|  | 3890 | int progress; | 
|  | 3891 | unsigned int noreclaim_flag; | 
|  | 3892 | unsigned long pflags; | 
|  | 3893 |  | 
|  | 3894 | cond_resched(); | 
|  | 3895 |  | 
|  | 3896 | /* We now go into synchronous reclaim */ | 
|  | 3897 | cpuset_memory_pressure_bump(); | 
|  | 3898 | psi_memstall_enter(&pflags); | 
|  | 3899 | fs_reclaim_acquire(gfp_mask); | 
|  | 3900 | noreclaim_flag = memalloc_noreclaim_save(); | 
|  | 3901 | reclaim_state.reclaimed_slab = 0; | 
|  | 3902 | current->reclaim_state = &reclaim_state; | 
|  | 3903 |  | 
|  | 3904 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, | 
|  | 3905 | ac->nodemask); | 
|  | 3906 |  | 
|  | 3907 | current->reclaim_state = NULL; | 
|  | 3908 | memalloc_noreclaim_restore(noreclaim_flag); | 
|  | 3909 | fs_reclaim_release(gfp_mask); | 
|  | 3910 | psi_memstall_leave(&pflags); | 
|  | 3911 |  | 
|  | 3912 | cond_resched(); | 
|  | 3913 |  | 
|  | 3914 | return progress; | 
|  | 3915 | } | 
|  | 3916 |  | 
|  | 3917 | /* The really slow allocator path where we enter direct reclaim */ | 
|  | 3918 | static inline struct page * | 
|  | 3919 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | 
|  | 3920 | unsigned int alloc_flags, const struct alloc_context *ac, | 
|  | 3921 | unsigned long *did_some_progress) | 
|  | 3922 | { | 
|  | 3923 | struct page *page = NULL; | 
|  | 3924 | bool drained = false; | 
|  | 3925 |  | 
|  | 3926 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); | 
|  | 3927 | if (unlikely(!(*did_some_progress))) | 
|  | 3928 | return NULL; | 
|  | 3929 |  | 
|  | 3930 | retry: | 
|  | 3931 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  | 3932 |  | 
|  | 3933 | /* | 
|  | 3934 | * If an allocation failed after direct reclaim, it could be because | 
|  | 3935 | * pages are pinned on the per-cpu lists or in high alloc reserves. | 
|  | 3936 | * Shrink them them and try again | 
|  | 3937 | */ | 
|  | 3938 | if (!page && !drained) { | 
|  | 3939 | unreserve_highatomic_pageblock(ac, false); | 
|  | 3940 | drain_all_pages(NULL); | 
|  | 3941 | drained = true; | 
|  | 3942 | goto retry; | 
|  | 3943 | } | 
|  | 3944 |  | 
|  | 3945 | return page; | 
|  | 3946 | } | 
|  | 3947 |  | 
|  | 3948 | static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, | 
|  | 3949 | const struct alloc_context *ac) | 
|  | 3950 | { | 
|  | 3951 | struct zoneref *z; | 
|  | 3952 | struct zone *zone; | 
|  | 3953 | pg_data_t *last_pgdat = NULL; | 
|  | 3954 | enum zone_type high_zoneidx = ac->high_zoneidx; | 
|  | 3955 |  | 
|  | 3956 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, | 
|  | 3957 | ac->nodemask) { | 
|  | 3958 | if (last_pgdat != zone->zone_pgdat) | 
|  | 3959 | wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); | 
|  | 3960 | last_pgdat = zone->zone_pgdat; | 
|  | 3961 | } | 
|  | 3962 | } | 
|  | 3963 |  | 
|  | 3964 | static inline unsigned int | 
|  | 3965 | gfp_to_alloc_flags(gfp_t gfp_mask) | 
|  | 3966 | { | 
|  | 3967 | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; | 
|  | 3968 |  | 
|  | 3969 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ | 
|  | 3970 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); | 
|  | 3971 |  | 
|  | 3972 | /* | 
|  | 3973 | * The caller may dip into page reserves a bit more if the caller | 
|  | 3974 | * cannot run direct reclaim, or if the caller has realtime scheduling | 
|  | 3975 | * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will | 
|  | 3976 | * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). | 
|  | 3977 | */ | 
|  | 3978 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); | 
|  | 3979 |  | 
|  | 3980 | if (gfp_mask & __GFP_ATOMIC) { | 
|  | 3981 | /* | 
|  | 3982 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even | 
|  | 3983 | * if it can't schedule. | 
|  | 3984 | */ | 
|  | 3985 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | 3986 | alloc_flags |= ALLOC_HARDER; | 
|  | 3987 | /* | 
|  | 3988 | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the | 
|  | 3989 | * comment for __cpuset_node_allowed(). | 
|  | 3990 | */ | 
|  | 3991 | alloc_flags &= ~ALLOC_CPUSET; | 
|  | 3992 | } else if (unlikely(rt_task(current)) && !in_interrupt()) | 
|  | 3993 | alloc_flags |= ALLOC_HARDER; | 
|  | 3994 |  | 
|  | 3995 | #ifdef CONFIG_CMA | 
|  | 3996 | if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | 
|  | 3997 | alloc_flags |= ALLOC_CMA; | 
|  | 3998 | #endif | 
|  | 3999 | return alloc_flags; | 
|  | 4000 | } | 
|  | 4001 |  | 
|  | 4002 | static bool oom_reserves_allowed(struct task_struct *tsk) | 
|  | 4003 | { | 
|  | 4004 | if (!tsk_is_oom_victim(tsk)) | 
|  | 4005 | return false; | 
|  | 4006 |  | 
|  | 4007 | /* | 
|  | 4008 | * !MMU doesn't have oom reaper so give access to memory reserves | 
|  | 4009 | * only to the thread with TIF_MEMDIE set | 
|  | 4010 | */ | 
|  | 4011 | if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) | 
|  | 4012 | return false; | 
|  | 4013 |  | 
|  | 4014 | return true; | 
|  | 4015 | } | 
|  | 4016 |  | 
|  | 4017 | /* | 
|  | 4018 | * Distinguish requests which really need access to full memory | 
|  | 4019 | * reserves from oom victims which can live with a portion of it | 
|  | 4020 | */ | 
|  | 4021 | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) | 
|  | 4022 | { | 
|  | 4023 | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | 4024 | return 0; | 
|  | 4025 | if (gfp_mask & __GFP_MEMALLOC) | 
|  | 4026 | return ALLOC_NO_WATERMARKS; | 
|  | 4027 | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) | 
|  | 4028 | return ALLOC_NO_WATERMARKS; | 
|  | 4029 | if (!in_interrupt()) { | 
|  | 4030 | if (current->flags & PF_MEMALLOC) | 
|  | 4031 | return ALLOC_NO_WATERMARKS; | 
|  | 4032 | else if (oom_reserves_allowed(current)) | 
|  | 4033 | return ALLOC_OOM; | 
|  | 4034 | } | 
|  | 4035 |  | 
|  | 4036 | return 0; | 
|  | 4037 | } | 
|  | 4038 |  | 
|  | 4039 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | 
|  | 4040 | { | 
|  | 4041 | return !!__gfp_pfmemalloc_flags(gfp_mask); | 
|  | 4042 | } | 
|  | 4043 |  | 
|  | 4044 | /* | 
|  | 4045 | * Checks whether it makes sense to retry the reclaim to make a forward progress | 
|  | 4046 | * for the given allocation request. | 
|  | 4047 | * | 
|  | 4048 | * We give up when we either have tried MAX_RECLAIM_RETRIES in a row | 
|  | 4049 | * without success, or when we couldn't even meet the watermark if we | 
|  | 4050 | * reclaimed all remaining pages on the LRU lists. | 
|  | 4051 | * | 
|  | 4052 | * Returns true if a retry is viable or false to enter the oom path. | 
|  | 4053 | */ | 
|  | 4054 | static inline bool | 
|  | 4055 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | 
|  | 4056 | struct alloc_context *ac, int alloc_flags, | 
|  | 4057 | bool did_some_progress, int *no_progress_loops) | 
|  | 4058 | { | 
|  | 4059 | struct zone *zone; | 
|  | 4060 | struct zoneref *z; | 
|  | 4061 |  | 
|  | 4062 | /* | 
|  | 4063 | * Costly allocations might have made a progress but this doesn't mean | 
|  | 4064 | * their order will become available due to high fragmentation so | 
|  | 4065 | * always increment the no progress counter for them | 
|  | 4066 | */ | 
|  | 4067 | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | 
|  | 4068 | *no_progress_loops = 0; | 
|  | 4069 | else | 
|  | 4070 | (*no_progress_loops)++; | 
|  | 4071 |  | 
|  | 4072 | /* | 
|  | 4073 | * Make sure we converge to OOM if we cannot make any progress | 
|  | 4074 | * several times in the row. | 
|  | 4075 | */ | 
|  | 4076 | if (*no_progress_loops > MAX_RECLAIM_RETRIES) { | 
|  | 4077 | /* Before OOM, exhaust highatomic_reserve */ | 
|  | 4078 | return unreserve_highatomic_pageblock(ac, true); | 
|  | 4079 | } | 
|  | 4080 |  | 
|  | 4081 | /* | 
|  | 4082 | * Keep reclaiming pages while there is a chance this will lead | 
|  | 4083 | * somewhere.  If none of the target zones can satisfy our allocation | 
|  | 4084 | * request even if all reclaimable pages are considered then we are | 
|  | 4085 | * screwed and have to go OOM. | 
|  | 4086 | */ | 
|  | 4087 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | 
|  | 4088 | ac->nodemask) { | 
|  | 4089 | unsigned long available; | 
|  | 4090 | unsigned long reclaimable; | 
|  | 4091 | unsigned long min_wmark = min_wmark_pages(zone); | 
|  | 4092 | bool wmark; | 
|  | 4093 |  | 
|  | 4094 | available = reclaimable = zone_reclaimable_pages(zone); | 
|  | 4095 | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); | 
|  | 4096 |  | 
|  | 4097 | /* | 
|  | 4098 | * Would the allocation succeed if we reclaimed all | 
|  | 4099 | * reclaimable pages? | 
|  | 4100 | */ | 
|  | 4101 | wmark = __zone_watermark_ok(zone, order, min_wmark, | 
|  | 4102 | ac_classzone_idx(ac), alloc_flags, available); | 
|  | 4103 | trace_reclaim_retry_zone(z, order, reclaimable, | 
|  | 4104 | available, min_wmark, *no_progress_loops, wmark); | 
|  | 4105 | if (wmark) { | 
|  | 4106 | /* | 
|  | 4107 | * If we didn't make any progress and have a lot of | 
|  | 4108 | * dirty + writeback pages then we should wait for | 
|  | 4109 | * an IO to complete to slow down the reclaim and | 
|  | 4110 | * prevent from pre mature OOM | 
|  | 4111 | */ | 
|  | 4112 | if (!did_some_progress) { | 
|  | 4113 | unsigned long write_pending; | 
|  | 4114 |  | 
|  | 4115 | write_pending = zone_page_state_snapshot(zone, | 
|  | 4116 | NR_ZONE_WRITE_PENDING); | 
|  | 4117 |  | 
|  | 4118 | if (2 * write_pending > reclaimable) { | 
|  | 4119 | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | 4120 | return true; | 
|  | 4121 | } | 
|  | 4122 | } | 
|  | 4123 |  | 
|  | 4124 | /* | 
|  | 4125 | * Memory allocation/reclaim might be called from a WQ | 
|  | 4126 | * context and the current implementation of the WQ | 
|  | 4127 | * concurrency control doesn't recognize that | 
|  | 4128 | * a particular WQ is congested if the worker thread is | 
|  | 4129 | * looping without ever sleeping. Therefore we have to | 
|  | 4130 | * do a short sleep here rather than calling | 
|  | 4131 | * cond_resched(). | 
|  | 4132 | */ | 
|  | 4133 | if (current->flags & PF_WQ_WORKER) | 
|  | 4134 | schedule_timeout_uninterruptible(1); | 
|  | 4135 | else | 
|  | 4136 | cond_resched(); | 
|  | 4137 |  | 
|  | 4138 | return true; | 
|  | 4139 | } | 
|  | 4140 | } | 
|  | 4141 |  | 
|  | 4142 | return false; | 
|  | 4143 | } | 
|  | 4144 |  | 
|  | 4145 | static inline bool | 
|  | 4146 | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) | 
|  | 4147 | { | 
|  | 4148 | /* | 
|  | 4149 | * It's possible that cpuset's mems_allowed and the nodemask from | 
|  | 4150 | * mempolicy don't intersect. This should be normally dealt with by | 
|  | 4151 | * policy_nodemask(), but it's possible to race with cpuset update in | 
|  | 4152 | * such a way the check therein was true, and then it became false | 
|  | 4153 | * before we got our cpuset_mems_cookie here. | 
|  | 4154 | * This assumes that for all allocations, ac->nodemask can come only | 
|  | 4155 | * from MPOL_BIND mempolicy (whose documented semantics is to be ignored | 
|  | 4156 | * when it does not intersect with the cpuset restrictions) or the | 
|  | 4157 | * caller can deal with a violated nodemask. | 
|  | 4158 | */ | 
|  | 4159 | if (cpusets_enabled() && ac->nodemask && | 
|  | 4160 | !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { | 
|  | 4161 | ac->nodemask = NULL; | 
|  | 4162 | return true; | 
|  | 4163 | } | 
|  | 4164 |  | 
|  | 4165 | /* | 
|  | 4166 | * When updating a task's mems_allowed or mempolicy nodemask, it is | 
|  | 4167 | * possible to race with parallel threads in such a way that our | 
|  | 4168 | * allocation can fail while the mask is being updated. If we are about | 
|  | 4169 | * to fail, check if the cpuset changed during allocation and if so, | 
|  | 4170 | * retry. | 
|  | 4171 | */ | 
|  | 4172 | if (read_mems_allowed_retry(cpuset_mems_cookie)) | 
|  | 4173 | return true; | 
|  | 4174 |  | 
|  | 4175 | return false; | 
|  | 4176 | } | 
|  | 4177 |  | 
|  | 4178 | static inline struct page * | 
|  | 4179 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | 
|  | 4180 | struct alloc_context *ac) | 
|  | 4181 | { | 
|  | 4182 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; | 
|  | 4183 | const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; | 
|  | 4184 | struct page *page = NULL; | 
|  | 4185 | unsigned int alloc_flags; | 
|  | 4186 | unsigned long did_some_progress; | 
|  | 4187 | enum compact_priority compact_priority; | 
|  | 4188 | enum compact_result compact_result; | 
|  | 4189 | int compaction_retries; | 
|  | 4190 | int no_progress_loops; | 
|  | 4191 | unsigned int cpuset_mems_cookie; | 
|  | 4192 | int reserve_flags; | 
|  | 4193 |  | 
|  | 4194 | /* | 
|  | 4195 | * We also sanity check to catch abuse of atomic reserves being used by | 
|  | 4196 | * callers that are not in atomic context. | 
|  | 4197 | */ | 
|  | 4198 | if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | 
|  | 4199 | (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | 
|  | 4200 | gfp_mask &= ~__GFP_ATOMIC; | 
|  | 4201 |  | 
|  | 4202 | retry_cpuset: | 
|  | 4203 | compaction_retries = 0; | 
|  | 4204 | no_progress_loops = 0; | 
|  | 4205 | compact_priority = DEF_COMPACT_PRIORITY; | 
|  | 4206 | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | 4207 |  | 
|  | 4208 | /* | 
|  | 4209 | * The fast path uses conservative alloc_flags to succeed only until | 
|  | 4210 | * kswapd needs to be woken up, and to avoid the cost of setting up | 
|  | 4211 | * alloc_flags precisely. So we do that now. | 
|  | 4212 | */ | 
|  | 4213 | alloc_flags = gfp_to_alloc_flags(gfp_mask); | 
|  | 4214 |  | 
|  | 4215 | /* | 
|  | 4216 | * We need to recalculate the starting point for the zonelist iterator | 
|  | 4217 | * because we might have used different nodemask in the fast path, or | 
|  | 4218 | * there was a cpuset modification and we are retrying - otherwise we | 
|  | 4219 | * could end up iterating over non-eligible zones endlessly. | 
|  | 4220 | */ | 
|  | 4221 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
|  | 4222 | ac->high_zoneidx, ac->nodemask); | 
|  | 4223 | if (!ac->preferred_zoneref->zone) | 
|  | 4224 | goto nopage; | 
|  | 4225 |  | 
|  | 4226 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) | 
|  | 4227 | wake_all_kswapds(order, gfp_mask, ac); | 
|  | 4228 |  | 
|  | 4229 | /* | 
|  | 4230 | * The adjusted alloc_flags might result in immediate success, so try | 
|  | 4231 | * that first | 
|  | 4232 | */ | 
|  | 4233 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  | 4234 | if (page) | 
|  | 4235 | goto got_pg; | 
|  | 4236 |  | 
|  | 4237 | /* | 
|  | 4238 | * For costly allocations, try direct compaction first, as it's likely | 
|  | 4239 | * that we have enough base pages and don't need to reclaim. For non- | 
|  | 4240 | * movable high-order allocations, do that as well, as compaction will | 
|  | 4241 | * try prevent permanent fragmentation by migrating from blocks of the | 
|  | 4242 | * same migratetype. | 
|  | 4243 | * Don't try this for allocations that are allowed to ignore | 
|  | 4244 | * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. | 
|  | 4245 | */ | 
|  | 4246 | if (can_direct_reclaim && | 
|  | 4247 | (costly_order || | 
|  | 4248 | (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) | 
|  | 4249 | && !gfp_pfmemalloc_allowed(gfp_mask)) { | 
|  | 4250 | page = __alloc_pages_direct_compact(gfp_mask, order, | 
|  | 4251 | alloc_flags, ac, | 
|  | 4252 | INIT_COMPACT_PRIORITY, | 
|  | 4253 | &compact_result); | 
|  | 4254 | if (page) | 
|  | 4255 | goto got_pg; | 
|  | 4256 |  | 
|  | 4257 | /* | 
|  | 4258 | * Checks for costly allocations with __GFP_NORETRY, which | 
|  | 4259 | * includes THP page fault allocations | 
|  | 4260 | */ | 
|  | 4261 | if (costly_order && (gfp_mask & __GFP_NORETRY)) { | 
|  | 4262 | /* | 
|  | 4263 | * If compaction is deferred for high-order allocations, | 
|  | 4264 | * it is because sync compaction recently failed. If | 
|  | 4265 | * this is the case and the caller requested a THP | 
|  | 4266 | * allocation, we do not want to heavily disrupt the | 
|  | 4267 | * system, so we fail the allocation instead of entering | 
|  | 4268 | * direct reclaim. | 
|  | 4269 | */ | 
|  | 4270 | if (compact_result == COMPACT_DEFERRED) | 
|  | 4271 | goto nopage; | 
|  | 4272 |  | 
|  | 4273 | /* | 
|  | 4274 | * Looks like reclaim/compaction is worth trying, but | 
|  | 4275 | * sync compaction could be very expensive, so keep | 
|  | 4276 | * using async compaction. | 
|  | 4277 | */ | 
|  | 4278 | compact_priority = INIT_COMPACT_PRIORITY; | 
|  | 4279 | } | 
|  | 4280 | } | 
|  | 4281 |  | 
|  | 4282 | retry: | 
|  | 4283 | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ | 
|  | 4284 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) | 
|  | 4285 | wake_all_kswapds(order, gfp_mask, ac); | 
|  | 4286 |  | 
|  | 4287 | reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); | 
|  | 4288 | if (reserve_flags) | 
|  | 4289 | alloc_flags = reserve_flags; | 
|  | 4290 |  | 
|  | 4291 | /* | 
|  | 4292 | * Reset the nodemask and zonelist iterators if memory policies can be | 
|  | 4293 | * ignored. These allocations are high priority and system rather than | 
|  | 4294 | * user oriented. | 
|  | 4295 | */ | 
|  | 4296 | if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { | 
|  | 4297 | ac->nodemask = NULL; | 
|  | 4298 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
|  | 4299 | ac->high_zoneidx, ac->nodemask); | 
|  | 4300 | } | 
|  | 4301 |  | 
|  | 4302 | /* Attempt with potentially adjusted zonelist and alloc_flags */ | 
|  | 4303 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  | 4304 | if (page) | 
|  | 4305 | goto got_pg; | 
|  | 4306 |  | 
|  | 4307 | /* Caller is not willing to reclaim, we can't balance anything */ | 
|  | 4308 | if (!can_direct_reclaim) | 
|  | 4309 | goto nopage; | 
|  | 4310 |  | 
|  | 4311 | /* Avoid recursion of direct reclaim */ | 
|  | 4312 | if (current->flags & PF_MEMALLOC) | 
|  | 4313 | goto nopage; | 
|  | 4314 |  | 
|  | 4315 | /* Try direct reclaim and then allocating */ | 
|  | 4316 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | 
|  | 4317 | &did_some_progress); | 
|  | 4318 | if (page) | 
|  | 4319 | goto got_pg; | 
|  | 4320 |  | 
|  | 4321 | /* Try direct compaction and then allocating */ | 
|  | 4322 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, | 
|  | 4323 | compact_priority, &compact_result); | 
|  | 4324 | if (page) | 
|  | 4325 | goto got_pg; | 
|  | 4326 |  | 
|  | 4327 | /* Do not loop if specifically requested */ | 
|  | 4328 | if (gfp_mask & __GFP_NORETRY) | 
|  | 4329 | goto nopage; | 
|  | 4330 |  | 
|  | 4331 | /* | 
|  | 4332 | * Do not retry costly high order allocations unless they are | 
|  | 4333 | * __GFP_RETRY_MAYFAIL | 
|  | 4334 | */ | 
|  | 4335 | if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) | 
|  | 4336 | goto nopage; | 
|  | 4337 |  | 
|  | 4338 | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, | 
|  | 4339 | did_some_progress > 0, &no_progress_loops)) | 
|  | 4340 | goto retry; | 
|  | 4341 |  | 
|  | 4342 | /* | 
|  | 4343 | * It doesn't make any sense to retry for the compaction if the order-0 | 
|  | 4344 | * reclaim is not able to make any progress because the current | 
|  | 4345 | * implementation of the compaction depends on the sufficient amount | 
|  | 4346 | * of free memory (see __compaction_suitable) | 
|  | 4347 | */ | 
|  | 4348 | if (did_some_progress > 0 && | 
|  | 4349 | should_compact_retry(ac, order, alloc_flags, | 
|  | 4350 | compact_result, &compact_priority, | 
|  | 4351 | &compaction_retries)) | 
|  | 4352 | goto retry; | 
|  | 4353 |  | 
|  | 4354 |  | 
|  | 4355 | /* Deal with possible cpuset update races before we start OOM killing */ | 
|  | 4356 | if (check_retry_cpuset(cpuset_mems_cookie, ac)) | 
|  | 4357 | goto retry_cpuset; | 
|  | 4358 |  | 
|  | 4359 | /* Reclaim has failed us, start killing things */ | 
|  | 4360 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | 
|  | 4361 | if (page) | 
|  | 4362 | goto got_pg; | 
|  | 4363 |  | 
|  | 4364 | /* Avoid allocations with no watermarks from looping endlessly */ | 
|  | 4365 | if (tsk_is_oom_victim(current) && | 
|  | 4366 | (alloc_flags == ALLOC_OOM || | 
|  | 4367 | (gfp_mask & __GFP_NOMEMALLOC))) | 
|  | 4368 | goto nopage; | 
|  | 4369 |  | 
|  | 4370 | /* Retry as long as the OOM killer is making progress */ | 
|  | 4371 | if (did_some_progress) { | 
|  | 4372 | no_progress_loops = 0; | 
|  | 4373 | goto retry; | 
|  | 4374 | } | 
|  | 4375 |  | 
|  | 4376 | nopage: | 
|  | 4377 | /* Deal with possible cpuset update races before we fail */ | 
|  | 4378 | if (check_retry_cpuset(cpuset_mems_cookie, ac)) | 
|  | 4379 | goto retry_cpuset; | 
|  | 4380 |  | 
|  | 4381 | /* | 
|  | 4382 | * Make sure that __GFP_NOFAIL request doesn't leak out and make sure | 
|  | 4383 | * we always retry | 
|  | 4384 | */ | 
|  | 4385 | if (gfp_mask & __GFP_NOFAIL) { | 
|  | 4386 | /* | 
|  | 4387 | * All existing users of the __GFP_NOFAIL are blockable, so warn | 
|  | 4388 | * of any new users that actually require GFP_NOWAIT | 
|  | 4389 | */ | 
|  | 4390 | if (WARN_ON_ONCE(!can_direct_reclaim)) | 
|  | 4391 | goto fail; | 
|  | 4392 |  | 
|  | 4393 | /* | 
|  | 4394 | * PF_MEMALLOC request from this context is rather bizarre | 
|  | 4395 | * because we cannot reclaim anything and only can loop waiting | 
|  | 4396 | * for somebody to do a work for us | 
|  | 4397 | */ | 
|  | 4398 | WARN_ON_ONCE(current->flags & PF_MEMALLOC); | 
|  | 4399 |  | 
|  | 4400 | /* | 
|  | 4401 | * non failing costly orders are a hard requirement which we | 
|  | 4402 | * are not prepared for much so let's warn about these users | 
|  | 4403 | * so that we can identify them and convert them to something | 
|  | 4404 | * else. | 
|  | 4405 | */ | 
|  | 4406 | WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); | 
|  | 4407 |  | 
|  | 4408 | /* | 
|  | 4409 | * Help non-failing allocations by giving them access to memory | 
|  | 4410 | * reserves but do not use ALLOC_NO_WATERMARKS because this | 
|  | 4411 | * could deplete whole memory reserves which would just make | 
|  | 4412 | * the situation worse | 
|  | 4413 | */ | 
|  | 4414 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); | 
|  | 4415 | if (page) | 
|  | 4416 | goto got_pg; | 
|  | 4417 |  | 
|  | 4418 | cond_resched(); | 
|  | 4419 | goto retry; | 
|  | 4420 | } | 
|  | 4421 | fail: | 
|  | 4422 | warn_alloc(gfp_mask, ac->nodemask, | 
|  | 4423 | "page allocation failure: order:%u", order); | 
|  | 4424 | got_pg: | 
|  | 4425 | return page; | 
|  | 4426 | } | 
|  | 4427 |  | 
|  | 4428 | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, | 
|  | 4429 | int preferred_nid, nodemask_t *nodemask, | 
|  | 4430 | struct alloc_context *ac, gfp_t *alloc_mask, | 
|  | 4431 | unsigned int *alloc_flags) | 
|  | 4432 | { | 
|  | 4433 | ac->high_zoneidx = gfp_zone(gfp_mask); | 
|  | 4434 | ac->zonelist = node_zonelist(preferred_nid, gfp_mask); | 
|  | 4435 | ac->nodemask = nodemask; | 
|  | 4436 | ac->migratetype = gfpflags_to_migratetype(gfp_mask); | 
|  | 4437 |  | 
|  | 4438 | if (cpusets_enabled()) { | 
|  | 4439 | *alloc_mask |= __GFP_HARDWALL; | 
|  | 4440 | if (!ac->nodemask) | 
|  | 4441 | ac->nodemask = &cpuset_current_mems_allowed; | 
|  | 4442 | else | 
|  | 4443 | *alloc_flags |= ALLOC_CPUSET; | 
|  | 4444 | } | 
|  | 4445 |  | 
|  | 4446 | fs_reclaim_acquire(gfp_mask); | 
|  | 4447 | fs_reclaim_release(gfp_mask); | 
|  | 4448 |  | 
|  | 4449 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); | 
|  | 4450 |  | 
|  | 4451 | if (should_fail_alloc_page(gfp_mask, order)) | 
|  | 4452 | return false; | 
|  | 4453 |  | 
|  | 4454 | if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) | 
|  | 4455 | *alloc_flags |= ALLOC_CMA; | 
|  | 4456 |  | 
|  | 4457 | return true; | 
|  | 4458 | } | 
|  | 4459 |  | 
|  | 4460 | /* Determine whether to spread dirty pages and what the first usable zone */ | 
|  | 4461 | static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) | 
|  | 4462 | { | 
|  | 4463 | /* Dirty zone balancing only done in the fast path */ | 
|  | 4464 | ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); | 
|  | 4465 |  | 
|  | 4466 | /* | 
|  | 4467 | * The preferred zone is used for statistics but crucially it is | 
|  | 4468 | * also used as the starting point for the zonelist iterator. It | 
|  | 4469 | * may get reset for allocations that ignore memory policies. | 
|  | 4470 | */ | 
|  | 4471 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
|  | 4472 | ac->high_zoneidx, ac->nodemask); | 
|  | 4473 | } | 
|  | 4474 |  | 
|  | 4475 | /* | 
|  | 4476 | * This is the 'heart' of the zoned buddy allocator. | 
|  | 4477 | */ | 
|  | 4478 | struct page * | 
|  | 4479 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, | 
|  | 4480 | nodemask_t *nodemask) | 
|  | 4481 | { | 
|  | 4482 | struct page *page; | 
|  | 4483 | unsigned int alloc_flags = ALLOC_WMARK_LOW; | 
|  | 4484 | gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ | 
|  | 4485 | struct alloc_context ac = { }; | 
|  | 4486 |  | 
|  | 4487 | /* | 
|  | 4488 | * There are several places where we assume that the order value is sane | 
|  | 4489 | * so bail out early if the request is out of bound. | 
|  | 4490 | */ | 
|  | 4491 | if (unlikely(order >= MAX_ORDER)) { | 
|  | 4492 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | 
|  | 4493 | return NULL; | 
|  | 4494 | } | 
|  | 4495 |  | 
|  | 4496 | gfp_mask &= gfp_allowed_mask; | 
|  | 4497 | alloc_mask = gfp_mask; | 
|  | 4498 | if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) | 
|  | 4499 | return NULL; | 
|  | 4500 |  | 
|  | 4501 | finalise_ac(gfp_mask, &ac); | 
|  | 4502 |  | 
|  | 4503 | /* First allocation attempt */ | 
|  | 4504 | page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); | 
|  | 4505 | if (likely(page)) | 
|  | 4506 | goto out; | 
|  | 4507 |  | 
|  | 4508 | /* | 
|  | 4509 | * Apply scoped allocation constraints. This is mainly about GFP_NOFS | 
|  | 4510 | * resp. GFP_NOIO which has to be inherited for all allocation requests | 
|  | 4511 | * from a particular context which has been marked by | 
|  | 4512 | * memalloc_no{fs,io}_{save,restore}. | 
|  | 4513 | */ | 
|  | 4514 | alloc_mask = current_gfp_context(gfp_mask); | 
|  | 4515 | ac.spread_dirty_pages = false; | 
|  | 4516 |  | 
|  | 4517 | /* | 
|  | 4518 | * Restore the original nodemask if it was potentially replaced with | 
|  | 4519 | * &cpuset_current_mems_allowed to optimize the fast-path attempt. | 
|  | 4520 | */ | 
|  | 4521 | if (unlikely(ac.nodemask != nodemask)) | 
|  | 4522 | ac.nodemask = nodemask; | 
|  | 4523 |  | 
|  | 4524 | page = __alloc_pages_slowpath(alloc_mask, order, &ac); | 
|  | 4525 |  | 
|  | 4526 | out: | 
|  | 4527 | if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && | 
|  | 4528 | unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { | 
|  | 4529 | __free_pages(page, order); | 
|  | 4530 | page = NULL; | 
|  | 4531 | } | 
|  | 4532 |  | 
|  | 4533 | trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); | 
|  | 4534 |  | 
|  | 4535 | return page; | 
|  | 4536 | } | 
|  | 4537 | EXPORT_SYMBOL(__alloc_pages_nodemask); | 
|  | 4538 |  | 
|  | 4539 | /* | 
|  | 4540 | * Common helper functions. Never use with __GFP_HIGHMEM because the returned | 
|  | 4541 | * address cannot represent highmem pages. Use alloc_pages and then kmap if | 
|  | 4542 | * you need to access high mem. | 
|  | 4543 | */ | 
|  | 4544 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 
|  | 4545 | { | 
|  | 4546 | struct page *page; | 
|  | 4547 |  | 
|  | 4548 | page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); | 
|  | 4549 | if (!page) | 
|  | 4550 | return 0; | 
|  | 4551 | return (unsigned long) page_address(page); | 
|  | 4552 | } | 
|  | 4553 | EXPORT_SYMBOL(__get_free_pages); | 
|  | 4554 |  | 
|  | 4555 | unsigned long get_zeroed_page(gfp_t gfp_mask) | 
|  | 4556 | { | 
|  | 4557 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); | 
|  | 4558 | } | 
|  | 4559 | EXPORT_SYMBOL(get_zeroed_page); | 
|  | 4560 |  | 
|  | 4561 | static inline void free_the_page(struct page *page, unsigned int order) | 
|  | 4562 | { | 
|  | 4563 | if (order == 0)		/* Via pcp? */ | 
|  | 4564 | free_unref_page(page); | 
|  | 4565 | else | 
|  | 4566 | __free_pages_ok(page, order); | 
|  | 4567 | } | 
|  | 4568 |  | 
|  | 4569 | void __free_pages(struct page *page, unsigned int order) | 
|  | 4570 | { | 
|  | 4571 | if (put_page_testzero(page)) | 
|  | 4572 | free_the_page(page, order); | 
|  | 4573 | } | 
|  | 4574 | EXPORT_SYMBOL(__free_pages); | 
|  | 4575 |  | 
|  | 4576 | void free_pages(unsigned long addr, unsigned int order) | 
|  | 4577 | { | 
|  | 4578 | if (addr != 0) { | 
|  | 4579 | VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
|  | 4580 | __free_pages(virt_to_page((void *)addr), order); | 
|  | 4581 | } | 
|  | 4582 | } | 
|  | 4583 |  | 
|  | 4584 | EXPORT_SYMBOL(free_pages); | 
|  | 4585 |  | 
|  | 4586 | /* | 
|  | 4587 | * Page Fragment: | 
|  | 4588 | *  An arbitrary-length arbitrary-offset area of memory which resides | 
|  | 4589 | *  within a 0 or higher order page.  Multiple fragments within that page | 
|  | 4590 | *  are individually refcounted, in the page's reference counter. | 
|  | 4591 | * | 
|  | 4592 | * The page_frag functions below provide a simple allocation framework for | 
|  | 4593 | * page fragments.  This is used by the network stack and network device | 
|  | 4594 | * drivers to provide a backing region of memory for use as either an | 
|  | 4595 | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | 
|  | 4596 | */ | 
|  | 4597 | static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, | 
|  | 4598 | gfp_t gfp_mask) | 
|  | 4599 | { | 
|  | 4600 | struct page *page = NULL; | 
|  | 4601 | gfp_t gfp = gfp_mask; | 
|  | 4602 |  | 
|  | 4603 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
|  | 4604 | gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | 
|  | 4605 | __GFP_NOMEMALLOC; | 
|  | 4606 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | 
|  | 4607 | PAGE_FRAG_CACHE_MAX_ORDER); | 
|  | 4608 | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | 
|  | 4609 | #endif | 
|  | 4610 | if (unlikely(!page)) | 
|  | 4611 | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | 
|  | 4612 |  | 
|  | 4613 | nc->va = page ? page_address(page) : NULL; | 
|  | 4614 |  | 
|  | 4615 | return page; | 
|  | 4616 | } | 
|  | 4617 |  | 
|  | 4618 | void __page_frag_cache_drain(struct page *page, unsigned int count) | 
|  | 4619 | { | 
|  | 4620 | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); | 
|  | 4621 |  | 
|  | 4622 | if (page_ref_sub_and_test(page, count)) | 
|  | 4623 | free_the_page(page, compound_order(page)); | 
|  | 4624 | } | 
|  | 4625 | EXPORT_SYMBOL(__page_frag_cache_drain); | 
|  | 4626 |  | 
|  | 4627 | void *page_frag_alloc(struct page_frag_cache *nc, | 
|  | 4628 | unsigned int fragsz, gfp_t gfp_mask) | 
|  | 4629 | { | 
|  | 4630 | unsigned int size = PAGE_SIZE; | 
|  | 4631 | struct page *page; | 
|  | 4632 | int offset; | 
|  | 4633 |  | 
|  | 4634 | if (unlikely(!nc->va)) { | 
|  | 4635 | refill: | 
|  | 4636 | page = __page_frag_cache_refill(nc, gfp_mask); | 
|  | 4637 | if (!page) | 
|  | 4638 | return NULL; | 
|  | 4639 |  | 
|  | 4640 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
|  | 4641 | /* if size can vary use size else just use PAGE_SIZE */ | 
|  | 4642 | size = nc->size; | 
|  | 4643 | #endif | 
|  | 4644 | /* Even if we own the page, we do not use atomic_set(). | 
|  | 4645 | * This would break get_page_unless_zero() users. | 
|  | 4646 | */ | 
|  | 4647 | page_ref_add(page, size); | 
|  | 4648 |  | 
|  | 4649 | /* reset page count bias and offset to start of new frag */ | 
|  | 4650 | nc->pfmemalloc = page_is_pfmemalloc(page); | 
|  | 4651 | nc->pagecnt_bias = size + 1; | 
|  | 4652 | nc->offset = size; | 
|  | 4653 | } | 
|  | 4654 |  | 
|  | 4655 | offset = nc->offset - fragsz; | 
|  | 4656 | if (unlikely(offset < 0)) { | 
|  | 4657 | page = virt_to_page(nc->va); | 
|  | 4658 |  | 
|  | 4659 | if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) | 
|  | 4660 | goto refill; | 
|  | 4661 |  | 
|  | 4662 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
|  | 4663 | /* if size can vary use size else just use PAGE_SIZE */ | 
|  | 4664 | size = nc->size; | 
|  | 4665 | #endif | 
|  | 4666 | /* OK, page count is 0, we can safely set it */ | 
|  | 4667 | set_page_count(page, size + 1); | 
|  | 4668 |  | 
|  | 4669 | /* reset page count bias and offset to start of new frag */ | 
|  | 4670 | nc->pagecnt_bias = size + 1; | 
|  | 4671 | offset = size - fragsz; | 
|  | 4672 | } | 
|  | 4673 |  | 
|  | 4674 | nc->pagecnt_bias--; | 
|  | 4675 | nc->offset = offset; | 
|  | 4676 |  | 
|  | 4677 | return nc->va + offset; | 
|  | 4678 | } | 
|  | 4679 | EXPORT_SYMBOL(page_frag_alloc); | 
|  | 4680 |  | 
|  | 4681 | /* | 
|  | 4682 | * Frees a page fragment allocated out of either a compound or order 0 page. | 
|  | 4683 | */ | 
|  | 4684 | void page_frag_free(void *addr) | 
|  | 4685 | { | 
|  | 4686 | struct page *page = virt_to_head_page(addr); | 
|  | 4687 |  | 
|  | 4688 | if (unlikely(put_page_testzero(page))) | 
|  | 4689 | free_the_page(page, compound_order(page)); | 
|  | 4690 | } | 
|  | 4691 | EXPORT_SYMBOL(page_frag_free); | 
|  | 4692 |  | 
|  | 4693 | static void *make_alloc_exact(unsigned long addr, unsigned int order, | 
|  | 4694 | size_t size) | 
|  | 4695 | { | 
|  | 4696 | if (addr) { | 
|  | 4697 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | 
|  | 4698 | unsigned long used = addr + PAGE_ALIGN(size); | 
|  | 4699 |  | 
|  | 4700 | split_page(virt_to_page((void *)addr), order); | 
|  | 4701 | while (used < alloc_end) { | 
|  | 4702 | free_page(used); | 
|  | 4703 | used += PAGE_SIZE; | 
|  | 4704 | } | 
|  | 4705 | } | 
|  | 4706 | return (void *)addr; | 
|  | 4707 | } | 
|  | 4708 |  | 
|  | 4709 | /** | 
|  | 4710 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | 
|  | 4711 | * @size: the number of bytes to allocate | 
|  | 4712 | * @gfp_mask: GFP flags for the allocation | 
|  | 4713 | * | 
|  | 4714 | * This function is similar to alloc_pages(), except that it allocates the | 
|  | 4715 | * minimum number of pages to satisfy the request.  alloc_pages() can only | 
|  | 4716 | * allocate memory in power-of-two pages. | 
|  | 4717 | * | 
|  | 4718 | * This function is also limited by MAX_ORDER. | 
|  | 4719 | * | 
|  | 4720 | * Memory allocated by this function must be released by free_pages_exact(). | 
|  | 4721 | */ | 
|  | 4722 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | 
|  | 4723 | { | 
|  | 4724 | unsigned int order = get_order(size); | 
|  | 4725 | unsigned long addr; | 
|  | 4726 |  | 
|  | 4727 | addr = __get_free_pages(gfp_mask, order); | 
|  | 4728 | return make_alloc_exact(addr, order, size); | 
|  | 4729 | } | 
|  | 4730 | EXPORT_SYMBOL(alloc_pages_exact); | 
|  | 4731 |  | 
|  | 4732 | /** | 
|  | 4733 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | 
|  | 4734 | *			   pages on a node. | 
|  | 4735 | * @nid: the preferred node ID where memory should be allocated | 
|  | 4736 | * @size: the number of bytes to allocate | 
|  | 4737 | * @gfp_mask: GFP flags for the allocation | 
|  | 4738 | * | 
|  | 4739 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | 
|  | 4740 | * back. | 
|  | 4741 | */ | 
|  | 4742 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | 
|  | 4743 | { | 
|  | 4744 | unsigned int order = get_order(size); | 
|  | 4745 | struct page *p = alloc_pages_node(nid, gfp_mask, order); | 
|  | 4746 | if (!p) | 
|  | 4747 | return NULL; | 
|  | 4748 | return make_alloc_exact((unsigned long)page_address(p), order, size); | 
|  | 4749 | } | 
|  | 4750 |  | 
|  | 4751 | /** | 
|  | 4752 | * free_pages_exact - release memory allocated via alloc_pages_exact() | 
|  | 4753 | * @virt: the value returned by alloc_pages_exact. | 
|  | 4754 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | 
|  | 4755 | * | 
|  | 4756 | * Release the memory allocated by a previous call to alloc_pages_exact. | 
|  | 4757 | */ | 
|  | 4758 | void free_pages_exact(void *virt, size_t size) | 
|  | 4759 | { | 
|  | 4760 | unsigned long addr = (unsigned long)virt; | 
|  | 4761 | unsigned long end = addr + PAGE_ALIGN(size); | 
|  | 4762 |  | 
|  | 4763 | while (addr < end) { | 
|  | 4764 | free_page(addr); | 
|  | 4765 | addr += PAGE_SIZE; | 
|  | 4766 | } | 
|  | 4767 | } | 
|  | 4768 | EXPORT_SYMBOL(free_pages_exact); | 
|  | 4769 |  | 
|  | 4770 | /** | 
|  | 4771 | * nr_free_zone_pages - count number of pages beyond high watermark | 
|  | 4772 | * @offset: The zone index of the highest zone | 
|  | 4773 | * | 
|  | 4774 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | 
|  | 4775 | * high watermark within all zones at or below a given zone index.  For each | 
|  | 4776 | * zone, the number of pages is calculated as: | 
|  | 4777 | * | 
|  | 4778 | *     nr_free_zone_pages = managed_pages - high_pages | 
|  | 4779 | */ | 
|  | 4780 | static unsigned long nr_free_zone_pages(int offset) | 
|  | 4781 | { | 
|  | 4782 | struct zoneref *z; | 
|  | 4783 | struct zone *zone; | 
|  | 4784 |  | 
|  | 4785 | /* Just pick one node, since fallback list is circular */ | 
|  | 4786 | unsigned long sum = 0; | 
|  | 4787 |  | 
|  | 4788 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); | 
|  | 4789 |  | 
|  | 4790 | for_each_zone_zonelist(zone, z, zonelist, offset) { | 
|  | 4791 | unsigned long size = zone->managed_pages; | 
|  | 4792 | unsigned long high = high_wmark_pages(zone); | 
|  | 4793 | if (size > high) | 
|  | 4794 | sum += size - high; | 
|  | 4795 | } | 
|  | 4796 |  | 
|  | 4797 | return sum; | 
|  | 4798 | } | 
|  | 4799 |  | 
|  | 4800 | /** | 
|  | 4801 | * nr_free_buffer_pages - count number of pages beyond high watermark | 
|  | 4802 | * | 
|  | 4803 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | 
|  | 4804 | * watermark within ZONE_DMA and ZONE_NORMAL. | 
|  | 4805 | */ | 
|  | 4806 | unsigned long nr_free_buffer_pages(void) | 
|  | 4807 | { | 
|  | 4808 | return nr_free_zone_pages(gfp_zone(GFP_USER)); | 
|  | 4809 | } | 
|  | 4810 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); | 
|  | 4811 |  | 
|  | 4812 | /** | 
|  | 4813 | * nr_free_pagecache_pages - count number of pages beyond high watermark | 
|  | 4814 | * | 
|  | 4815 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | 
|  | 4816 | * high watermark within all zones. | 
|  | 4817 | */ | 
|  | 4818 | unsigned long nr_free_pagecache_pages(void) | 
|  | 4819 | { | 
|  | 4820 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); | 
|  | 4821 | } | 
|  | 4822 |  | 
|  | 4823 | static inline void show_node(struct zone *zone) | 
|  | 4824 | { | 
|  | 4825 | if (IS_ENABLED(CONFIG_NUMA)) | 
|  | 4826 | printk("Node %d ", zone_to_nid(zone)); | 
|  | 4827 | } | 
|  | 4828 |  | 
|  | 4829 | long si_mem_available(void) | 
|  | 4830 | { | 
|  | 4831 | long available; | 
|  | 4832 | unsigned long pagecache; | 
|  | 4833 | unsigned long wmark_low = 0; | 
|  | 4834 | unsigned long pages[NR_LRU_LISTS]; | 
|  | 4835 | unsigned long reclaimable; | 
|  | 4836 | struct zone *zone; | 
|  | 4837 | int lru; | 
|  | 4838 |  | 
|  | 4839 | for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) | 
|  | 4840 | pages[lru] = global_node_page_state(NR_LRU_BASE + lru); | 
|  | 4841 |  | 
|  | 4842 | for_each_zone(zone) | 
|  | 4843 | wmark_low += zone->watermark[WMARK_LOW]; | 
|  | 4844 |  | 
|  | 4845 | /* | 
|  | 4846 | * Estimate the amount of memory available for userspace allocations, | 
|  | 4847 | * without causing swapping. | 
|  | 4848 | */ | 
|  | 4849 | available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; | 
|  | 4850 |  | 
|  | 4851 | /* | 
|  | 4852 | * Not all the page cache can be freed, otherwise the system will | 
|  | 4853 | * start swapping. Assume at least half of the page cache, or the | 
|  | 4854 | * low watermark worth of cache, needs to stay. | 
|  | 4855 | */ | 
|  | 4856 | pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; | 
|  | 4857 | pagecache -= min(pagecache / 2, wmark_low); | 
|  | 4858 | available += pagecache; | 
|  | 4859 |  | 
|  | 4860 | /* | 
|  | 4861 | * Part of the reclaimable slab and other kernel memory consists of | 
|  | 4862 | * items that are in use, and cannot be freed. Cap this estimate at the | 
|  | 4863 | * low watermark. | 
|  | 4864 | */ | 
|  | 4865 | reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + | 
|  | 4866 | global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); | 
|  | 4867 | available += reclaimable - min(reclaimable / 2, wmark_low); | 
|  | 4868 |  | 
|  | 4869 | if (available < 0) | 
|  | 4870 | available = 0; | 
|  | 4871 | return available; | 
|  | 4872 | } | 
|  | 4873 | EXPORT_SYMBOL_GPL(si_mem_available); | 
|  | 4874 |  | 
|  | 4875 | void si_meminfo(struct sysinfo *val) | 
|  | 4876 | { | 
|  | 4877 | val->totalram = totalram_pages; | 
|  | 4878 | val->sharedram = global_node_page_state(NR_SHMEM); | 
|  | 4879 | val->freeram = global_zone_page_state(NR_FREE_PAGES); | 
|  | 4880 | val->bufferram = nr_blockdev_pages(); | 
|  | 4881 | val->totalhigh = totalhigh_pages; | 
|  | 4882 | val->freehigh = nr_free_highpages(); | 
|  | 4883 | val->mem_unit = PAGE_SIZE; | 
|  | 4884 | } | 
|  | 4885 |  | 
|  | 4886 | EXPORT_SYMBOL(si_meminfo); | 
|  | 4887 |  | 
|  | 4888 | #ifdef CONFIG_NUMA | 
|  | 4889 | void si_meminfo_node(struct sysinfo *val, int nid) | 
|  | 4890 | { | 
|  | 4891 | int zone_type;		/* needs to be signed */ | 
|  | 4892 | unsigned long managed_pages = 0; | 
|  | 4893 | unsigned long managed_highpages = 0; | 
|  | 4894 | unsigned long free_highpages = 0; | 
|  | 4895 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 4896 |  | 
|  | 4897 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) | 
|  | 4898 | managed_pages += pgdat->node_zones[zone_type].managed_pages; | 
|  | 4899 | val->totalram = managed_pages; | 
|  | 4900 | val->sharedram = node_page_state(pgdat, NR_SHMEM); | 
|  | 4901 | val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); | 
|  | 4902 | #ifdef CONFIG_HIGHMEM | 
|  | 4903 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | 
|  | 4904 | struct zone *zone = &pgdat->node_zones[zone_type]; | 
|  | 4905 |  | 
|  | 4906 | if (is_highmem(zone)) { | 
|  | 4907 | managed_highpages += zone->managed_pages; | 
|  | 4908 | free_highpages += zone_page_state(zone, NR_FREE_PAGES); | 
|  | 4909 | } | 
|  | 4910 | } | 
|  | 4911 | val->totalhigh = managed_highpages; | 
|  | 4912 | val->freehigh = free_highpages; | 
|  | 4913 | #else | 
|  | 4914 | val->totalhigh = managed_highpages; | 
|  | 4915 | val->freehigh = free_highpages; | 
|  | 4916 | #endif | 
|  | 4917 | val->mem_unit = PAGE_SIZE; | 
|  | 4918 | } | 
|  | 4919 | #endif | 
|  | 4920 |  | 
|  | 4921 | /* | 
|  | 4922 | * Determine whether the node should be displayed or not, depending on whether | 
|  | 4923 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | 
|  | 4924 | */ | 
|  | 4925 | static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) | 
|  | 4926 | { | 
|  | 4927 | if (!(flags & SHOW_MEM_FILTER_NODES)) | 
|  | 4928 | return false; | 
|  | 4929 |  | 
|  | 4930 | /* | 
|  | 4931 | * no node mask - aka implicit memory numa policy. Do not bother with | 
|  | 4932 | * the synchronization - read_mems_allowed_begin - because we do not | 
|  | 4933 | * have to be precise here. | 
|  | 4934 | */ | 
|  | 4935 | if (!nodemask) | 
|  | 4936 | nodemask = &cpuset_current_mems_allowed; | 
|  | 4937 |  | 
|  | 4938 | return !node_isset(nid, *nodemask); | 
|  | 4939 | } | 
|  | 4940 |  | 
|  | 4941 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  | 4942 |  | 
|  | 4943 | static void show_migration_types(unsigned char type) | 
|  | 4944 | { | 
|  | 4945 | static const char types[MIGRATE_TYPES] = { | 
|  | 4946 | [MIGRATE_UNMOVABLE]	= 'U', | 
|  | 4947 | [MIGRATE_MOVABLE]	= 'M', | 
|  | 4948 | [MIGRATE_RECLAIMABLE]	= 'E', | 
|  | 4949 | [MIGRATE_HIGHATOMIC]	= 'H', | 
|  | 4950 | #ifdef CONFIG_CMA | 
|  | 4951 | [MIGRATE_CMA]		= 'C', | 
|  | 4952 | #endif | 
|  | 4953 | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | 4954 | [MIGRATE_ISOLATE]	= 'I', | 
|  | 4955 | #endif | 
|  | 4956 | }; | 
|  | 4957 | char tmp[MIGRATE_TYPES + 1]; | 
|  | 4958 | char *p = tmp; | 
|  | 4959 | int i; | 
|  | 4960 |  | 
|  | 4961 | for (i = 0; i < MIGRATE_TYPES; i++) { | 
|  | 4962 | if (type & (1 << i)) | 
|  | 4963 | *p++ = types[i]; | 
|  | 4964 | } | 
|  | 4965 |  | 
|  | 4966 | *p = '\0'; | 
|  | 4967 | printk(KERN_CONT "(%s) ", tmp); | 
|  | 4968 | } | 
|  | 4969 |  | 
|  | 4970 | /* | 
|  | 4971 | * Show free area list (used inside shift_scroll-lock stuff) | 
|  | 4972 | * We also calculate the percentage fragmentation. We do this by counting the | 
|  | 4973 | * memory on each free list with the exception of the first item on the list. | 
|  | 4974 | * | 
|  | 4975 | * Bits in @filter: | 
|  | 4976 | * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | 
|  | 4977 | *   cpuset. | 
|  | 4978 | */ | 
|  | 4979 | void show_free_areas(unsigned int filter, nodemask_t *nodemask) | 
|  | 4980 | { | 
|  | 4981 | unsigned long free_pcp = 0; | 
|  | 4982 | int cpu; | 
|  | 4983 | struct zone *zone; | 
|  | 4984 | pg_data_t *pgdat; | 
|  | 4985 |  | 
|  | 4986 | for_each_populated_zone(zone) { | 
|  | 4987 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
|  | 4988 | continue; | 
|  | 4989 |  | 
|  | 4990 | for_each_online_cpu(cpu) | 
|  | 4991 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | 
|  | 4992 | } | 
|  | 4993 |  | 
|  | 4994 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" | 
|  | 4995 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | 
|  | 4996 | " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" | 
|  | 4997 | " slab_reclaimable:%lu slab_unreclaimable:%lu\n" | 
|  | 4998 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" | 
|  | 4999 | " free:%lu free_pcp:%lu free_cma:%lu\n", | 
|  | 5000 | global_node_page_state(NR_ACTIVE_ANON), | 
|  | 5001 | global_node_page_state(NR_INACTIVE_ANON), | 
|  | 5002 | global_node_page_state(NR_ISOLATED_ANON), | 
|  | 5003 | global_node_page_state(NR_ACTIVE_FILE), | 
|  | 5004 | global_node_page_state(NR_INACTIVE_FILE), | 
|  | 5005 | global_node_page_state(NR_ISOLATED_FILE), | 
|  | 5006 | global_node_page_state(NR_UNEVICTABLE), | 
|  | 5007 | global_node_page_state(NR_FILE_DIRTY), | 
|  | 5008 | global_node_page_state(NR_WRITEBACK), | 
|  | 5009 | global_node_page_state(NR_UNSTABLE_NFS), | 
|  | 5010 | global_node_page_state(NR_SLAB_RECLAIMABLE), | 
|  | 5011 | global_node_page_state(NR_SLAB_UNRECLAIMABLE), | 
|  | 5012 | global_node_page_state(NR_FILE_MAPPED), | 
|  | 5013 | global_node_page_state(NR_SHMEM), | 
|  | 5014 | global_zone_page_state(NR_PAGETABLE), | 
|  | 5015 | global_zone_page_state(NR_BOUNCE), | 
|  | 5016 | global_zone_page_state(NR_FREE_PAGES), | 
|  | 5017 | free_pcp, | 
|  | 5018 | global_zone_page_state(NR_FREE_CMA_PAGES)); | 
|  | 5019 |  | 
|  | 5020 | for_each_online_pgdat(pgdat) { | 
|  | 5021 | if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) | 
|  | 5022 | continue; | 
|  | 5023 |  | 
|  | 5024 | printk("Node %d" | 
|  | 5025 | " active_anon:%lukB" | 
|  | 5026 | " inactive_anon:%lukB" | 
|  | 5027 | " active_file:%lukB" | 
|  | 5028 | " inactive_file:%lukB" | 
|  | 5029 | " unevictable:%lukB" | 
|  | 5030 | " isolated(anon):%lukB" | 
|  | 5031 | " isolated(file):%lukB" | 
|  | 5032 | " mapped:%lukB" | 
|  | 5033 | " dirty:%lukB" | 
|  | 5034 | " writeback:%lukB" | 
|  | 5035 | " shmem:%lukB" | 
|  | 5036 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 5037 | " shmem_thp: %lukB" | 
|  | 5038 | " shmem_pmdmapped: %lukB" | 
|  | 5039 | " anon_thp: %lukB" | 
|  | 5040 | #endif | 
|  | 5041 | " writeback_tmp:%lukB" | 
|  | 5042 | " unstable:%lukB" | 
|  | 5043 | " all_unreclaimable? %s" | 
|  | 5044 | "\n", | 
|  | 5045 | pgdat->node_id, | 
|  | 5046 | K(node_page_state(pgdat, NR_ACTIVE_ANON)), | 
|  | 5047 | K(node_page_state(pgdat, NR_INACTIVE_ANON)), | 
|  | 5048 | K(node_page_state(pgdat, NR_ACTIVE_FILE)), | 
|  | 5049 | K(node_page_state(pgdat, NR_INACTIVE_FILE)), | 
|  | 5050 | K(node_page_state(pgdat, NR_UNEVICTABLE)), | 
|  | 5051 | K(node_page_state(pgdat, NR_ISOLATED_ANON)), | 
|  | 5052 | K(node_page_state(pgdat, NR_ISOLATED_FILE)), | 
|  | 5053 | K(node_page_state(pgdat, NR_FILE_MAPPED)), | 
|  | 5054 | K(node_page_state(pgdat, NR_FILE_DIRTY)), | 
|  | 5055 | K(node_page_state(pgdat, NR_WRITEBACK)), | 
|  | 5056 | K(node_page_state(pgdat, NR_SHMEM)), | 
|  | 5057 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 5058 | K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), | 
|  | 5059 | K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) | 
|  | 5060 | * HPAGE_PMD_NR), | 
|  | 5061 | K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), | 
|  | 5062 | #endif | 
|  | 5063 | K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), | 
|  | 5064 | K(node_page_state(pgdat, NR_UNSTABLE_NFS)), | 
|  | 5065 | pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? | 
|  | 5066 | "yes" : "no"); | 
|  | 5067 | } | 
|  | 5068 |  | 
|  | 5069 | for_each_populated_zone(zone) { | 
|  | 5070 | int i; | 
|  | 5071 |  | 
|  | 5072 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
|  | 5073 | continue; | 
|  | 5074 |  | 
|  | 5075 | free_pcp = 0; | 
|  | 5076 | for_each_online_cpu(cpu) | 
|  | 5077 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | 
|  | 5078 |  | 
|  | 5079 | show_node(zone); | 
|  | 5080 | printk(KERN_CONT | 
|  | 5081 | "%s" | 
|  | 5082 | " free:%lukB" | 
|  | 5083 | " min:%lukB" | 
|  | 5084 | " low:%lukB" | 
|  | 5085 | " high:%lukB" | 
|  | 5086 | " active_anon:%lukB" | 
|  | 5087 | " inactive_anon:%lukB" | 
|  | 5088 | " active_file:%lukB" | 
|  | 5089 | " inactive_file:%lukB" | 
|  | 5090 | " unevictable:%lukB" | 
|  | 5091 | " writepending:%lukB" | 
|  | 5092 | " present:%lukB" | 
|  | 5093 | " managed:%lukB" | 
|  | 5094 | " mlocked:%lukB" | 
|  | 5095 | " kernel_stack:%lukB" | 
|  | 5096 | #ifdef CONFIG_SHADOW_CALL_STACK | 
|  | 5097 | " shadow_call_stack:%lukB" | 
|  | 5098 | #endif | 
|  | 5099 | " pagetables:%lukB" | 
|  | 5100 | " bounce:%lukB" | 
|  | 5101 | " free_pcp:%lukB" | 
|  | 5102 | " local_pcp:%ukB" | 
|  | 5103 | " free_cma:%lukB" | 
|  | 5104 | "\n", | 
|  | 5105 | zone->name, | 
|  | 5106 | K(zone_page_state(zone, NR_FREE_PAGES)), | 
|  | 5107 | K(min_wmark_pages(zone)), | 
|  | 5108 | K(low_wmark_pages(zone)), | 
|  | 5109 | K(high_wmark_pages(zone)), | 
|  | 5110 | K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), | 
|  | 5111 | K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), | 
|  | 5112 | K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), | 
|  | 5113 | K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), | 
|  | 5114 | K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), | 
|  | 5115 | K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), | 
|  | 5116 | K(zone->present_pages), | 
|  | 5117 | K(zone->managed_pages), | 
|  | 5118 | K(zone_page_state(zone, NR_MLOCK)), | 
|  | 5119 | zone_page_state(zone, NR_KERNEL_STACK_KB), | 
|  | 5120 | #ifdef CONFIG_SHADOW_CALL_STACK | 
|  | 5121 | zone_page_state(zone, NR_KERNEL_SCS_BYTES) / 1024, | 
|  | 5122 | #endif | 
|  | 5123 | K(zone_page_state(zone, NR_PAGETABLE)), | 
|  | 5124 | K(zone_page_state(zone, NR_BOUNCE)), | 
|  | 5125 | K(free_pcp), | 
|  | 5126 | K(this_cpu_read(zone->pageset->pcp.count)), | 
|  | 5127 | K(zone_page_state(zone, NR_FREE_CMA_PAGES))); | 
|  | 5128 | printk("lowmem_reserve[]:"); | 
|  | 5129 | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | 5130 | printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); | 
|  | 5131 | printk(KERN_CONT "\n"); | 
|  | 5132 | } | 
|  | 5133 |  | 
|  | 5134 | for_each_populated_zone(zone) { | 
|  | 5135 | unsigned int order; | 
|  | 5136 | unsigned long nr[MAX_ORDER], flags, total = 0; | 
|  | 5137 | unsigned char types[MAX_ORDER]; | 
|  | 5138 |  | 
|  | 5139 | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
|  | 5140 | continue; | 
|  | 5141 | show_node(zone); | 
|  | 5142 | printk(KERN_CONT "%s: ", zone->name); | 
|  | 5143 |  | 
|  | 5144 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 5145 | for (order = 0; order < MAX_ORDER; order++) { | 
|  | 5146 | struct free_area *area = &zone->free_area[order]; | 
|  | 5147 | int type; | 
|  | 5148 |  | 
|  | 5149 | nr[order] = area->nr_free; | 
|  | 5150 | total += nr[order] << order; | 
|  | 5151 |  | 
|  | 5152 | types[order] = 0; | 
|  | 5153 | for (type = 0; type < MIGRATE_TYPES; type++) { | 
|  | 5154 | if (!list_empty(&area->free_list[type])) | 
|  | 5155 | types[order] |= 1 << type; | 
|  | 5156 | } | 
|  | 5157 | } | 
|  | 5158 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 5159 | for (order = 0; order < MAX_ORDER; order++) { | 
|  | 5160 | printk(KERN_CONT "%lu*%lukB ", | 
|  | 5161 | nr[order], K(1UL) << order); | 
|  | 5162 | if (nr[order]) | 
|  | 5163 | show_migration_types(types[order]); | 
|  | 5164 | } | 
|  | 5165 | printk(KERN_CONT "= %lukB\n", K(total)); | 
|  | 5166 | } | 
|  | 5167 |  | 
|  | 5168 | hugetlb_show_meminfo(); | 
|  | 5169 |  | 
|  | 5170 | printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); | 
|  | 5171 |  | 
|  | 5172 | show_swap_cache_info(); | 
|  | 5173 | } | 
|  | 5174 |  | 
|  | 5175 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) | 
|  | 5176 | { | 
|  | 5177 | zoneref->zone = zone; | 
|  | 5178 | zoneref->zone_idx = zone_idx(zone); | 
|  | 5179 | } | 
|  | 5180 |  | 
|  | 5181 | /* | 
|  | 5182 | * Builds allocation fallback zone lists. | 
|  | 5183 | * | 
|  | 5184 | * Add all populated zones of a node to the zonelist. | 
|  | 5185 | */ | 
|  | 5186 | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) | 
|  | 5187 | { | 
|  | 5188 | struct zone *zone; | 
|  | 5189 | enum zone_type zone_type = MAX_NR_ZONES; | 
|  | 5190 | int nr_zones = 0; | 
|  | 5191 |  | 
|  | 5192 | do { | 
|  | 5193 | zone_type--; | 
|  | 5194 | zone = pgdat->node_zones + zone_type; | 
|  | 5195 | if (managed_zone(zone)) { | 
|  | 5196 | zoneref_set_zone(zone, &zonerefs[nr_zones++]); | 
|  | 5197 | check_highest_zone(zone_type); | 
|  | 5198 | } | 
|  | 5199 | } while (zone_type); | 
|  | 5200 |  | 
|  | 5201 | return nr_zones; | 
|  | 5202 | } | 
|  | 5203 |  | 
|  | 5204 | #ifdef CONFIG_NUMA | 
|  | 5205 |  | 
|  | 5206 | static int __parse_numa_zonelist_order(char *s) | 
|  | 5207 | { | 
|  | 5208 | /* | 
|  | 5209 | * We used to support different zonlists modes but they turned | 
|  | 5210 | * out to be just not useful. Let's keep the warning in place | 
|  | 5211 | * if somebody still use the cmd line parameter so that we do | 
|  | 5212 | * not fail it silently | 
|  | 5213 | */ | 
|  | 5214 | if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { | 
|  | 5215 | pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s); | 
|  | 5216 | return -EINVAL; | 
|  | 5217 | } | 
|  | 5218 | return 0; | 
|  | 5219 | } | 
|  | 5220 |  | 
|  | 5221 | static __init int setup_numa_zonelist_order(char *s) | 
|  | 5222 | { | 
|  | 5223 | if (!s) | 
|  | 5224 | return 0; | 
|  | 5225 |  | 
|  | 5226 | return __parse_numa_zonelist_order(s); | 
|  | 5227 | } | 
|  | 5228 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | 
|  | 5229 |  | 
|  | 5230 | char numa_zonelist_order[] = "Node"; | 
|  | 5231 |  | 
|  | 5232 | /* | 
|  | 5233 | * sysctl handler for numa_zonelist_order | 
|  | 5234 | */ | 
|  | 5235 | int numa_zonelist_order_handler(struct ctl_table *table, int write, | 
|  | 5236 | void __user *buffer, size_t *length, | 
|  | 5237 | loff_t *ppos) | 
|  | 5238 | { | 
|  | 5239 | char *str; | 
|  | 5240 | int ret; | 
|  | 5241 |  | 
|  | 5242 | if (!write) | 
|  | 5243 | return proc_dostring(table, write, buffer, length, ppos); | 
|  | 5244 | str = memdup_user_nul(buffer, 16); | 
|  | 5245 | if (IS_ERR(str)) | 
|  | 5246 | return PTR_ERR(str); | 
|  | 5247 |  | 
|  | 5248 | ret = __parse_numa_zonelist_order(str); | 
|  | 5249 | kfree(str); | 
|  | 5250 | return ret; | 
|  | 5251 | } | 
|  | 5252 |  | 
|  | 5253 |  | 
|  | 5254 | #define MAX_NODE_LOAD (nr_online_nodes) | 
|  | 5255 | static int node_load[MAX_NUMNODES]; | 
|  | 5256 |  | 
|  | 5257 | /** | 
|  | 5258 | * find_next_best_node - find the next node that should appear in a given node's fallback list | 
|  | 5259 | * @node: node whose fallback list we're appending | 
|  | 5260 | * @used_node_mask: nodemask_t of already used nodes | 
|  | 5261 | * | 
|  | 5262 | * We use a number of factors to determine which is the next node that should | 
|  | 5263 | * appear on a given node's fallback list.  The node should not have appeared | 
|  | 5264 | * already in @node's fallback list, and it should be the next closest node | 
|  | 5265 | * according to the distance array (which contains arbitrary distance values | 
|  | 5266 | * from each node to each node in the system), and should also prefer nodes | 
|  | 5267 | * with no CPUs, since presumably they'll have very little allocation pressure | 
|  | 5268 | * on them otherwise. | 
|  | 5269 | * It returns -1 if no node is found. | 
|  | 5270 | */ | 
|  | 5271 | static int find_next_best_node(int node, nodemask_t *used_node_mask) | 
|  | 5272 | { | 
|  | 5273 | int n, val; | 
|  | 5274 | int min_val = INT_MAX; | 
|  | 5275 | int best_node = NUMA_NO_NODE; | 
|  | 5276 | const struct cpumask *tmp = cpumask_of_node(0); | 
|  | 5277 |  | 
|  | 5278 | /* Use the local node if we haven't already */ | 
|  | 5279 | if (!node_isset(node, *used_node_mask)) { | 
|  | 5280 | node_set(node, *used_node_mask); | 
|  | 5281 | return node; | 
|  | 5282 | } | 
|  | 5283 |  | 
|  | 5284 | for_each_node_state(n, N_MEMORY) { | 
|  | 5285 |  | 
|  | 5286 | /* Don't want a node to appear more than once */ | 
|  | 5287 | if (node_isset(n, *used_node_mask)) | 
|  | 5288 | continue; | 
|  | 5289 |  | 
|  | 5290 | /* Use the distance array to find the distance */ | 
|  | 5291 | val = node_distance(node, n); | 
|  | 5292 |  | 
|  | 5293 | /* Penalize nodes under us ("prefer the next node") */ | 
|  | 5294 | val += (n < node); | 
|  | 5295 |  | 
|  | 5296 | /* Give preference to headless and unused nodes */ | 
|  | 5297 | tmp = cpumask_of_node(n); | 
|  | 5298 | if (!cpumask_empty(tmp)) | 
|  | 5299 | val += PENALTY_FOR_NODE_WITH_CPUS; | 
|  | 5300 |  | 
|  | 5301 | /* Slight preference for less loaded node */ | 
|  | 5302 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 
|  | 5303 | val += node_load[n]; | 
|  | 5304 |  | 
|  | 5305 | if (val < min_val) { | 
|  | 5306 | min_val = val; | 
|  | 5307 | best_node = n; | 
|  | 5308 | } | 
|  | 5309 | } | 
|  | 5310 |  | 
|  | 5311 | if (best_node >= 0) | 
|  | 5312 | node_set(best_node, *used_node_mask); | 
|  | 5313 |  | 
|  | 5314 | return best_node; | 
|  | 5315 | } | 
|  | 5316 |  | 
|  | 5317 |  | 
|  | 5318 | /* | 
|  | 5319 | * Build zonelists ordered by node and zones within node. | 
|  | 5320 | * This results in maximum locality--normal zone overflows into local | 
|  | 5321 | * DMA zone, if any--but risks exhausting DMA zone. | 
|  | 5322 | */ | 
|  | 5323 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, | 
|  | 5324 | unsigned nr_nodes) | 
|  | 5325 | { | 
|  | 5326 | struct zoneref *zonerefs; | 
|  | 5327 | int i; | 
|  | 5328 |  | 
|  | 5329 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | 
|  | 5330 |  | 
|  | 5331 | for (i = 0; i < nr_nodes; i++) { | 
|  | 5332 | int nr_zones; | 
|  | 5333 |  | 
|  | 5334 | pg_data_t *node = NODE_DATA(node_order[i]); | 
|  | 5335 |  | 
|  | 5336 | nr_zones = build_zonerefs_node(node, zonerefs); | 
|  | 5337 | zonerefs += nr_zones; | 
|  | 5338 | } | 
|  | 5339 | zonerefs->zone = NULL; | 
|  | 5340 | zonerefs->zone_idx = 0; | 
|  | 5341 | } | 
|  | 5342 |  | 
|  | 5343 | /* | 
|  | 5344 | * Build gfp_thisnode zonelists | 
|  | 5345 | */ | 
|  | 5346 | static void build_thisnode_zonelists(pg_data_t *pgdat) | 
|  | 5347 | { | 
|  | 5348 | struct zoneref *zonerefs; | 
|  | 5349 | int nr_zones; | 
|  | 5350 |  | 
|  | 5351 | zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; | 
|  | 5352 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | 
|  | 5353 | zonerefs += nr_zones; | 
|  | 5354 | zonerefs->zone = NULL; | 
|  | 5355 | zonerefs->zone_idx = 0; | 
|  | 5356 | } | 
|  | 5357 |  | 
|  | 5358 | /* | 
|  | 5359 | * Build zonelists ordered by zone and nodes within zones. | 
|  | 5360 | * This results in conserving DMA zone[s] until all Normal memory is | 
|  | 5361 | * exhausted, but results in overflowing to remote node while memory | 
|  | 5362 | * may still exist in local DMA zone. | 
|  | 5363 | */ | 
|  | 5364 |  | 
|  | 5365 | static void build_zonelists(pg_data_t *pgdat) | 
|  | 5366 | { | 
|  | 5367 | static int node_order[MAX_NUMNODES]; | 
|  | 5368 | int node, load, nr_nodes = 0; | 
|  | 5369 | nodemask_t used_mask; | 
|  | 5370 | int local_node, prev_node; | 
|  | 5371 |  | 
|  | 5372 | /* NUMA-aware ordering of nodes */ | 
|  | 5373 | local_node = pgdat->node_id; | 
|  | 5374 | load = nr_online_nodes; | 
|  | 5375 | prev_node = local_node; | 
|  | 5376 | nodes_clear(used_mask); | 
|  | 5377 |  | 
|  | 5378 | memset(node_order, 0, sizeof(node_order)); | 
|  | 5379 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
|  | 5380 | /* | 
|  | 5381 | * We don't want to pressure a particular node. | 
|  | 5382 | * So adding penalty to the first node in same | 
|  | 5383 | * distance group to make it round-robin. | 
|  | 5384 | */ | 
|  | 5385 | if (node_distance(local_node, node) != | 
|  | 5386 | node_distance(local_node, prev_node)) | 
|  | 5387 | node_load[node] = load; | 
|  | 5388 |  | 
|  | 5389 | node_order[nr_nodes++] = node; | 
|  | 5390 | prev_node = node; | 
|  | 5391 | load--; | 
|  | 5392 | } | 
|  | 5393 |  | 
|  | 5394 | build_zonelists_in_node_order(pgdat, node_order, nr_nodes); | 
|  | 5395 | build_thisnode_zonelists(pgdat); | 
|  | 5396 | } | 
|  | 5397 |  | 
|  | 5398 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | 5399 | /* | 
|  | 5400 | * Return node id of node used for "local" allocations. | 
|  | 5401 | * I.e., first node id of first zone in arg node's generic zonelist. | 
|  | 5402 | * Used for initializing percpu 'numa_mem', which is used primarily | 
|  | 5403 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | 
|  | 5404 | */ | 
|  | 5405 | int local_memory_node(int node) | 
|  | 5406 | { | 
|  | 5407 | struct zoneref *z; | 
|  | 5408 |  | 
|  | 5409 | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | 
|  | 5410 | gfp_zone(GFP_KERNEL), | 
|  | 5411 | NULL); | 
|  | 5412 | return zone_to_nid(z->zone); | 
|  | 5413 | } | 
|  | 5414 | #endif | 
|  | 5415 |  | 
|  | 5416 | static void setup_min_unmapped_ratio(void); | 
|  | 5417 | static void setup_min_slab_ratio(void); | 
|  | 5418 | #else	/* CONFIG_NUMA */ | 
|  | 5419 |  | 
|  | 5420 | static void build_zonelists(pg_data_t *pgdat) | 
|  | 5421 | { | 
|  | 5422 | int node, local_node; | 
|  | 5423 | struct zoneref *zonerefs; | 
|  | 5424 | int nr_zones; | 
|  | 5425 |  | 
|  | 5426 | local_node = pgdat->node_id; | 
|  | 5427 |  | 
|  | 5428 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | 
|  | 5429 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | 
|  | 5430 | zonerefs += nr_zones; | 
|  | 5431 |  | 
|  | 5432 | /* | 
|  | 5433 | * Now we build the zonelist so that it contains the zones | 
|  | 5434 | * of all the other nodes. | 
|  | 5435 | * We don't want to pressure a particular node, so when | 
|  | 5436 | * building the zones for node N, we make sure that the | 
|  | 5437 | * zones coming right after the local ones are those from | 
|  | 5438 | * node N+1 (modulo N) | 
|  | 5439 | */ | 
|  | 5440 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
|  | 5441 | if (!node_online(node)) | 
|  | 5442 | continue; | 
|  | 5443 | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); | 
|  | 5444 | zonerefs += nr_zones; | 
|  | 5445 | } | 
|  | 5446 | for (node = 0; node < local_node; node++) { | 
|  | 5447 | if (!node_online(node)) | 
|  | 5448 | continue; | 
|  | 5449 | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); | 
|  | 5450 | zonerefs += nr_zones; | 
|  | 5451 | } | 
|  | 5452 |  | 
|  | 5453 | zonerefs->zone = NULL; | 
|  | 5454 | zonerefs->zone_idx = 0; | 
|  | 5455 | } | 
|  | 5456 |  | 
|  | 5457 | #endif	/* CONFIG_NUMA */ | 
|  | 5458 |  | 
|  | 5459 | /* | 
|  | 5460 | * Boot pageset table. One per cpu which is going to be used for all | 
|  | 5461 | * zones and all nodes. The parameters will be set in such a way | 
|  | 5462 | * that an item put on a list will immediately be handed over to | 
|  | 5463 | * the buddy list. This is safe since pageset manipulation is done | 
|  | 5464 | * with interrupts disabled. | 
|  | 5465 | * | 
|  | 5466 | * The boot_pagesets must be kept even after bootup is complete for | 
|  | 5467 | * unused processors and/or zones. They do play a role for bootstrapping | 
|  | 5468 | * hotplugged processors. | 
|  | 5469 | * | 
|  | 5470 | * zoneinfo_show() and maybe other functions do | 
|  | 5471 | * not check if the processor is online before following the pageset pointer. | 
|  | 5472 | * Other parts of the kernel may not check if the zone is available. | 
|  | 5473 | */ | 
|  | 5474 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | 
|  | 5475 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | 
|  | 5476 | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); | 
|  | 5477 |  | 
|  | 5478 | static void __build_all_zonelists(void *data) | 
|  | 5479 | { | 
|  | 5480 | int nid; | 
|  | 5481 | int __maybe_unused cpu; | 
|  | 5482 | pg_data_t *self = data; | 
|  | 5483 | static DEFINE_SPINLOCK(lock); | 
|  | 5484 |  | 
|  | 5485 | spin_lock(&lock); | 
|  | 5486 |  | 
|  | 5487 | #ifdef CONFIG_NUMA | 
|  | 5488 | memset(node_load, 0, sizeof(node_load)); | 
|  | 5489 | #endif | 
|  | 5490 |  | 
|  | 5491 | /* | 
|  | 5492 | * This node is hotadded and no memory is yet present.   So just | 
|  | 5493 | * building zonelists is fine - no need to touch other nodes. | 
|  | 5494 | */ | 
|  | 5495 | if (self && !node_online(self->node_id)) { | 
|  | 5496 | build_zonelists(self); | 
|  | 5497 | } else { | 
|  | 5498 | for_each_online_node(nid) { | 
|  | 5499 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 5500 |  | 
|  | 5501 | build_zonelists(pgdat); | 
|  | 5502 | } | 
|  | 5503 |  | 
|  | 5504 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | 5505 | /* | 
|  | 5506 | * We now know the "local memory node" for each node-- | 
|  | 5507 | * i.e., the node of the first zone in the generic zonelist. | 
|  | 5508 | * Set up numa_mem percpu variable for on-line cpus.  During | 
|  | 5509 | * boot, only the boot cpu should be on-line;  we'll init the | 
|  | 5510 | * secondary cpus' numa_mem as they come on-line.  During | 
|  | 5511 | * node/memory hotplug, we'll fixup all on-line cpus. | 
|  | 5512 | */ | 
|  | 5513 | for_each_online_cpu(cpu) | 
|  | 5514 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | 
|  | 5515 | #endif | 
|  | 5516 | } | 
|  | 5517 |  | 
|  | 5518 | spin_unlock(&lock); | 
|  | 5519 | } | 
|  | 5520 |  | 
|  | 5521 | static noinline void __init | 
|  | 5522 | build_all_zonelists_init(void) | 
|  | 5523 | { | 
|  | 5524 | int cpu; | 
|  | 5525 |  | 
|  | 5526 | __build_all_zonelists(NULL); | 
|  | 5527 |  | 
|  | 5528 | /* | 
|  | 5529 | * Initialize the boot_pagesets that are going to be used | 
|  | 5530 | * for bootstrapping processors. The real pagesets for | 
|  | 5531 | * each zone will be allocated later when the per cpu | 
|  | 5532 | * allocator is available. | 
|  | 5533 | * | 
|  | 5534 | * boot_pagesets are used also for bootstrapping offline | 
|  | 5535 | * cpus if the system is already booted because the pagesets | 
|  | 5536 | * are needed to initialize allocators on a specific cpu too. | 
|  | 5537 | * F.e. the percpu allocator needs the page allocator which | 
|  | 5538 | * needs the percpu allocator in order to allocate its pagesets | 
|  | 5539 | * (a chicken-egg dilemma). | 
|  | 5540 | */ | 
|  | 5541 | for_each_possible_cpu(cpu) | 
|  | 5542 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); | 
|  | 5543 |  | 
|  | 5544 | mminit_verify_zonelist(); | 
|  | 5545 | cpuset_init_current_mems_allowed(); | 
|  | 5546 | } | 
|  | 5547 |  | 
|  | 5548 | /* | 
|  | 5549 | * unless system_state == SYSTEM_BOOTING. | 
|  | 5550 | * | 
|  | 5551 | * __ref due to call of __init annotated helper build_all_zonelists_init | 
|  | 5552 | * [protected by SYSTEM_BOOTING]. | 
|  | 5553 | */ | 
|  | 5554 | void __ref build_all_zonelists(pg_data_t *pgdat) | 
|  | 5555 | { | 
|  | 5556 | if (system_state == SYSTEM_BOOTING) { | 
|  | 5557 | build_all_zonelists_init(); | 
|  | 5558 | } else { | 
|  | 5559 | __build_all_zonelists(pgdat); | 
|  | 5560 | /* cpuset refresh routine should be here */ | 
|  | 5561 | } | 
|  | 5562 | vm_total_pages = nr_free_pagecache_pages(); | 
|  | 5563 | /* | 
|  | 5564 | * Disable grouping by mobility if the number of pages in the | 
|  | 5565 | * system is too low to allow the mechanism to work. It would be | 
|  | 5566 | * more accurate, but expensive to check per-zone. This check is | 
|  | 5567 | * made on memory-hotadd so a system can start with mobility | 
|  | 5568 | * disabled and enable it later | 
|  | 5569 | */ | 
|  | 5570 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) | 
|  | 5571 | page_group_by_mobility_disabled = 1; | 
|  | 5572 | else | 
|  | 5573 | page_group_by_mobility_disabled = 0; | 
|  | 5574 |  | 
|  | 5575 | pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n", | 
|  | 5576 | nr_online_nodes, | 
|  | 5577 | page_group_by_mobility_disabled ? "off" : "on", | 
|  | 5578 | vm_total_pages); | 
|  | 5579 | #ifdef CONFIG_NUMA | 
|  | 5580 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); | 
|  | 5581 | #endif | 
|  | 5582 | } | 
|  | 5583 |  | 
|  | 5584 | /* | 
|  | 5585 | * Initially all pages are reserved - free ones are freed | 
|  | 5586 | * up by free_all_bootmem() once the early boot process is | 
|  | 5587 | * done. Non-atomic initialization, single-pass. | 
|  | 5588 | */ | 
|  | 5589 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 
|  | 5590 | unsigned long start_pfn, enum memmap_context context, | 
|  | 5591 | struct vmem_altmap *altmap) | 
|  | 5592 | { | 
|  | 5593 | unsigned long end_pfn = start_pfn + size; | 
|  | 5594 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 5595 | unsigned long pfn; | 
|  | 5596 | unsigned long nr_initialised = 0; | 
|  | 5597 | struct page *page; | 
|  | 5598 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | 5599 | struct memblock_region *r = NULL, *tmp; | 
|  | 5600 | #endif | 
|  | 5601 |  | 
|  | 5602 | if (highest_memmap_pfn < end_pfn - 1) | 
|  | 5603 | highest_memmap_pfn = end_pfn - 1; | 
|  | 5604 |  | 
|  | 5605 | /* | 
|  | 5606 | * Honor reservation requested by the driver for this ZONE_DEVICE | 
|  | 5607 | * memory | 
|  | 5608 | */ | 
|  | 5609 | if (altmap && start_pfn == altmap->base_pfn) | 
|  | 5610 | start_pfn += altmap->reserve; | 
|  | 5611 |  | 
|  | 5612 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
|  | 5613 | /* | 
|  | 5614 | * There can be holes in boot-time mem_map[]s handed to this | 
|  | 5615 | * function.  They do not exist on hotplugged memory. | 
|  | 5616 | */ | 
|  | 5617 | if (context != MEMMAP_EARLY) | 
|  | 5618 | goto not_early; | 
|  | 5619 |  | 
|  | 5620 | if (!early_pfn_valid(pfn)) | 
|  | 5621 | continue; | 
|  | 5622 | if (!early_pfn_in_nid(pfn, nid)) | 
|  | 5623 | continue; | 
|  | 5624 | if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) | 
|  | 5625 | break; | 
|  | 5626 |  | 
|  | 5627 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | 5628 | /* | 
|  | 5629 | * Check given memblock attribute by firmware which can affect | 
|  | 5630 | * kernel memory layout.  If zone==ZONE_MOVABLE but memory is | 
|  | 5631 | * mirrored, it's an overlapped memmap init. skip it. | 
|  | 5632 | */ | 
|  | 5633 | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | 
|  | 5634 | if (!r || pfn >= memblock_region_memory_end_pfn(r)) { | 
|  | 5635 | for_each_memblock(memory, tmp) | 
|  | 5636 | if (pfn < memblock_region_memory_end_pfn(tmp)) | 
|  | 5637 | break; | 
|  | 5638 | r = tmp; | 
|  | 5639 | } | 
|  | 5640 | if (pfn >= memblock_region_memory_base_pfn(r) && | 
|  | 5641 | memblock_is_mirror(r)) { | 
|  | 5642 | /* already initialized as NORMAL */ | 
|  | 5643 | pfn = memblock_region_memory_end_pfn(r); | 
|  | 5644 | continue; | 
|  | 5645 | } | 
|  | 5646 | } | 
|  | 5647 | #endif | 
|  | 5648 |  | 
|  | 5649 | not_early: | 
|  | 5650 | page = pfn_to_page(pfn); | 
|  | 5651 | __init_single_page(page, pfn, zone, nid); | 
|  | 5652 | if (context == MEMMAP_HOTPLUG) | 
|  | 5653 | SetPageReserved(page); | 
|  | 5654 |  | 
|  | 5655 | /* | 
|  | 5656 | * Mark the block movable so that blocks are reserved for | 
|  | 5657 | * movable at startup. This will force kernel allocations | 
|  | 5658 | * to reserve their blocks rather than leaking throughout | 
|  | 5659 | * the address space during boot when many long-lived | 
|  | 5660 | * kernel allocations are made. | 
|  | 5661 | * | 
|  | 5662 | * bitmap is created for zone's valid pfn range. but memmap | 
|  | 5663 | * can be created for invalid pages (for alignment) | 
|  | 5664 | * check here not to call set_pageblock_migratetype() against | 
|  | 5665 | * pfn out of zone. | 
|  | 5666 | * | 
|  | 5667 | * Please note that MEMMAP_HOTPLUG path doesn't clear memmap | 
|  | 5668 | * because this is done early in sparse_add_one_section | 
|  | 5669 | */ | 
|  | 5670 | if (!(pfn & (pageblock_nr_pages - 1))) { | 
|  | 5671 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  | 5672 | cond_resched(); | 
|  | 5673 | } | 
|  | 5674 | } | 
|  | 5675 | } | 
|  | 5676 |  | 
|  | 5677 | static void __meminit zone_init_free_lists(struct zone *zone) | 
|  | 5678 | { | 
|  | 5679 | unsigned int order, t; | 
|  | 5680 | for_each_migratetype_order(order, t) { | 
|  | 5681 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | 
|  | 5682 | zone->free_area[order].nr_free = 0; | 
|  | 5683 | } | 
|  | 5684 | } | 
|  | 5685 |  | 
|  | 5686 | #ifndef __HAVE_ARCH_MEMMAP_INIT | 
|  | 5687 | #define memmap_init(size, nid, zone, start_pfn) \ | 
|  | 5688 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) | 
|  | 5689 | #endif | 
|  | 5690 |  | 
|  | 5691 | static int zone_batchsize(struct zone *zone) | 
|  | 5692 | { | 
|  | 5693 | #ifdef CONFIG_MMU | 
|  | 5694 | int batch; | 
|  | 5695 |  | 
|  | 5696 | /* | 
|  | 5697 | * The per-cpu-pages pools are set to around 1000th of the | 
|  | 5698 | * size of the zone. | 
|  | 5699 | */ | 
|  | 5700 | batch = zone->managed_pages / 1024; | 
|  | 5701 | /* But no more than a meg. */ | 
|  | 5702 | if (batch * PAGE_SIZE > 1024 * 1024) | 
|  | 5703 | batch = (1024 * 1024) / PAGE_SIZE; | 
|  | 5704 | batch /= 4;		/* We effectively *= 4 below */ | 
|  | 5705 | if (batch < 1) | 
|  | 5706 | batch = 1; | 
|  | 5707 |  | 
|  | 5708 | /* | 
|  | 5709 | * Clamp the batch to a 2^n - 1 value. Having a power | 
|  | 5710 | * of 2 value was found to be more likely to have | 
|  | 5711 | * suboptimal cache aliasing properties in some cases. | 
|  | 5712 | * | 
|  | 5713 | * For example if 2 tasks are alternately allocating | 
|  | 5714 | * batches of pages, one task can end up with a lot | 
|  | 5715 | * of pages of one half of the possible page colors | 
|  | 5716 | * and the other with pages of the other colors. | 
|  | 5717 | */ | 
|  | 5718 | batch = rounddown_pow_of_two(batch + batch/2) - 1; | 
|  | 5719 |  | 
|  | 5720 | return batch; | 
|  | 5721 |  | 
|  | 5722 | #else | 
|  | 5723 | /* The deferral and batching of frees should be suppressed under NOMMU | 
|  | 5724 | * conditions. | 
|  | 5725 | * | 
|  | 5726 | * The problem is that NOMMU needs to be able to allocate large chunks | 
|  | 5727 | * of contiguous memory as there's no hardware page translation to | 
|  | 5728 | * assemble apparent contiguous memory from discontiguous pages. | 
|  | 5729 | * | 
|  | 5730 | * Queueing large contiguous runs of pages for batching, however, | 
|  | 5731 | * causes the pages to actually be freed in smaller chunks.  As there | 
|  | 5732 | * can be a significant delay between the individual batches being | 
|  | 5733 | * recycled, this leads to the once large chunks of space being | 
|  | 5734 | * fragmented and becoming unavailable for high-order allocations. | 
|  | 5735 | */ | 
|  | 5736 | return 0; | 
|  | 5737 | #endif | 
|  | 5738 | } | 
|  | 5739 |  | 
|  | 5740 | /* | 
|  | 5741 | * pcp->high and pcp->batch values are related and dependent on one another: | 
|  | 5742 | * ->batch must never be higher then ->high. | 
|  | 5743 | * The following function updates them in a safe manner without read side | 
|  | 5744 | * locking. | 
|  | 5745 | * | 
|  | 5746 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | 
|  | 5747 | * those fields changing asynchronously (acording the the above rule). | 
|  | 5748 | * | 
|  | 5749 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | 
|  | 5750 | * outside of boot time (or some other assurance that no concurrent updaters | 
|  | 5751 | * exist). | 
|  | 5752 | */ | 
|  | 5753 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | 
|  | 5754 | unsigned long batch) | 
|  | 5755 | { | 
|  | 5756 | /* start with a fail safe value for batch */ | 
|  | 5757 | pcp->batch = 1; | 
|  | 5758 | smp_wmb(); | 
|  | 5759 |  | 
|  | 5760 | /* Update high, then batch, in order */ | 
|  | 5761 | pcp->high = high; | 
|  | 5762 | smp_wmb(); | 
|  | 5763 |  | 
|  | 5764 | pcp->batch = batch; | 
|  | 5765 | } | 
|  | 5766 |  | 
|  | 5767 | /* a companion to pageset_set_high() */ | 
|  | 5768 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) | 
|  | 5769 | { | 
|  | 5770 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); | 
|  | 5771 | } | 
|  | 5772 |  | 
|  | 5773 | static void pageset_init(struct per_cpu_pageset *p) | 
|  | 5774 | { | 
|  | 5775 | struct per_cpu_pages *pcp; | 
|  | 5776 | int migratetype; | 
|  | 5777 |  | 
|  | 5778 | memset(p, 0, sizeof(*p)); | 
|  | 5779 |  | 
|  | 5780 | pcp = &p->pcp; | 
|  | 5781 | pcp->count = 0; | 
|  | 5782 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) | 
|  | 5783 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | 
|  | 5784 | } | 
|  | 5785 |  | 
|  | 5786 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 
|  | 5787 | { | 
|  | 5788 | pageset_init(p); | 
|  | 5789 | pageset_set_batch(p, batch); | 
|  | 5790 | } | 
|  | 5791 |  | 
|  | 5792 | /* | 
|  | 5793 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist | 
|  | 5794 | * to the value high for the pageset p. | 
|  | 5795 | */ | 
|  | 5796 | static void pageset_set_high(struct per_cpu_pageset *p, | 
|  | 5797 | unsigned long high) | 
|  | 5798 | { | 
|  | 5799 | unsigned long batch = max(1UL, high / 4); | 
|  | 5800 | if ((high / 4) > (PAGE_SHIFT * 8)) | 
|  | 5801 | batch = PAGE_SHIFT * 8; | 
|  | 5802 |  | 
|  | 5803 | pageset_update(&p->pcp, high, batch); | 
|  | 5804 | } | 
|  | 5805 |  | 
|  | 5806 | static void pageset_set_high_and_batch(struct zone *zone, | 
|  | 5807 | struct per_cpu_pageset *pcp) | 
|  | 5808 | { | 
|  | 5809 | if (percpu_pagelist_fraction) | 
|  | 5810 | pageset_set_high(pcp, | 
|  | 5811 | (zone->managed_pages / | 
|  | 5812 | percpu_pagelist_fraction)); | 
|  | 5813 | else | 
|  | 5814 | pageset_set_batch(pcp, zone_batchsize(zone)); | 
|  | 5815 | } | 
|  | 5816 |  | 
|  | 5817 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) | 
|  | 5818 | { | 
|  | 5819 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | 
|  | 5820 |  | 
|  | 5821 | pageset_init(pcp); | 
|  | 5822 | pageset_set_high_and_batch(zone, pcp); | 
|  | 5823 | } | 
|  | 5824 |  | 
|  | 5825 | void __meminit setup_zone_pageset(struct zone *zone) | 
|  | 5826 | { | 
|  | 5827 | int cpu; | 
|  | 5828 | zone->pageset = alloc_percpu(struct per_cpu_pageset); | 
|  | 5829 | for_each_possible_cpu(cpu) | 
|  | 5830 | zone_pageset_init(zone, cpu); | 
|  | 5831 | } | 
|  | 5832 |  | 
|  | 5833 | /* | 
|  | 5834 | * Allocate per cpu pagesets and initialize them. | 
|  | 5835 | * Before this call only boot pagesets were available. | 
|  | 5836 | */ | 
|  | 5837 | void __init setup_per_cpu_pageset(void) | 
|  | 5838 | { | 
|  | 5839 | struct pglist_data *pgdat; | 
|  | 5840 | struct zone *zone; | 
|  | 5841 |  | 
|  | 5842 | for_each_populated_zone(zone) | 
|  | 5843 | setup_zone_pageset(zone); | 
|  | 5844 |  | 
|  | 5845 | for_each_online_pgdat(pgdat) | 
|  | 5846 | pgdat->per_cpu_nodestats = | 
|  | 5847 | alloc_percpu(struct per_cpu_nodestat); | 
|  | 5848 | } | 
|  | 5849 |  | 
|  | 5850 | static __meminit void zone_pcp_init(struct zone *zone) | 
|  | 5851 | { | 
|  | 5852 | /* | 
|  | 5853 | * per cpu subsystem is not up at this point. The following code | 
|  | 5854 | * relies on the ability of the linker to provide the | 
|  | 5855 | * offset of a (static) per cpu variable into the per cpu area. | 
|  | 5856 | */ | 
|  | 5857 | zone->pageset = &boot_pageset; | 
|  | 5858 |  | 
|  | 5859 | if (populated_zone(zone)) | 
|  | 5860 | printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n", | 
|  | 5861 | zone->name, zone->present_pages, | 
|  | 5862 | zone_batchsize(zone)); | 
|  | 5863 | } | 
|  | 5864 |  | 
|  | 5865 | void __meminit init_currently_empty_zone(struct zone *zone, | 
|  | 5866 | unsigned long zone_start_pfn, | 
|  | 5867 | unsigned long size) | 
|  | 5868 | { | 
|  | 5869 | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | 5870 | int zone_idx = zone_idx(zone) + 1; | 
|  | 5871 |  | 
|  | 5872 | if (zone_idx > pgdat->nr_zones) | 
|  | 5873 | pgdat->nr_zones = zone_idx; | 
|  | 5874 |  | 
|  | 5875 | zone->zone_start_pfn = zone_start_pfn; | 
|  | 5876 |  | 
|  | 5877 | mminit_dprintk(MMINIT_TRACE, "memmap_init", | 
|  | 5878 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | 
|  | 5879 | pgdat->node_id, | 
|  | 5880 | (unsigned long)zone_idx(zone), | 
|  | 5881 | zone_start_pfn, (zone_start_pfn + size)); | 
|  | 5882 |  | 
|  | 5883 | zone_init_free_lists(zone); | 
|  | 5884 | zone->initialized = 1; | 
|  | 5885 | } | 
|  | 5886 |  | 
|  | 5887 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | 5888 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
|  | 5889 |  | 
|  | 5890 | /* | 
|  | 5891 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | 
|  | 5892 | */ | 
|  | 5893 | int __meminit __early_pfn_to_nid(unsigned long pfn, | 
|  | 5894 | struct mminit_pfnnid_cache *state) | 
|  | 5895 | { | 
|  | 5896 | unsigned long start_pfn, end_pfn; | 
|  | 5897 | int nid; | 
|  | 5898 |  | 
|  | 5899 | if (state->last_start <= pfn && pfn < state->last_end) | 
|  | 5900 | return state->last_nid; | 
|  | 5901 |  | 
|  | 5902 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); | 
|  | 5903 | if (nid != -1) { | 
|  | 5904 | state->last_start = start_pfn; | 
|  | 5905 | state->last_end = end_pfn; | 
|  | 5906 | state->last_nid = nid; | 
|  | 5907 | } | 
|  | 5908 |  | 
|  | 5909 | return nid; | 
|  | 5910 | } | 
|  | 5911 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 
|  | 5912 |  | 
|  | 5913 | /** | 
|  | 5914 | * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range | 
|  | 5915 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. | 
|  | 5916 | * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid | 
|  | 5917 | * | 
|  | 5918 | * If an architecture guarantees that all ranges registered contain no holes | 
|  | 5919 | * and may be freed, this this function may be used instead of calling | 
|  | 5920 | * memblock_free_early_nid() manually. | 
|  | 5921 | */ | 
|  | 5922 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) | 
|  | 5923 | { | 
|  | 5924 | unsigned long start_pfn, end_pfn; | 
|  | 5925 | int i, this_nid; | 
|  | 5926 |  | 
|  | 5927 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { | 
|  | 5928 | start_pfn = min(start_pfn, max_low_pfn); | 
|  | 5929 | end_pfn = min(end_pfn, max_low_pfn); | 
|  | 5930 |  | 
|  | 5931 | if (start_pfn < end_pfn) | 
|  | 5932 | memblock_free_early_nid(PFN_PHYS(start_pfn), | 
|  | 5933 | (end_pfn - start_pfn) << PAGE_SHIFT, | 
|  | 5934 | this_nid); | 
|  | 5935 | } | 
|  | 5936 | } | 
|  | 5937 |  | 
|  | 5938 | /** | 
|  | 5939 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | 
|  | 5940 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. | 
|  | 5941 | * | 
|  | 5942 | * If an architecture guarantees that all ranges registered contain no holes and may | 
|  | 5943 | * be freed, this function may be used instead of calling memory_present() manually. | 
|  | 5944 | */ | 
|  | 5945 | void __init sparse_memory_present_with_active_regions(int nid) | 
|  | 5946 | { | 
|  | 5947 | unsigned long start_pfn, end_pfn; | 
|  | 5948 | int i, this_nid; | 
|  | 5949 |  | 
|  | 5950 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) | 
|  | 5951 | memory_present(this_nid, start_pfn, end_pfn); | 
|  | 5952 | } | 
|  | 5953 |  | 
|  | 5954 | /** | 
|  | 5955 | * get_pfn_range_for_nid - Return the start and end page frames for a node | 
|  | 5956 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | 
|  | 5957 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | 
|  | 5958 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | 
|  | 5959 | * | 
|  | 5960 | * It returns the start and end page frame of a node based on information | 
|  | 5961 | * provided by memblock_set_node(). If called for a node | 
|  | 5962 | * with no available memory, a warning is printed and the start and end | 
|  | 5963 | * PFNs will be 0. | 
|  | 5964 | */ | 
|  | 5965 | void __meminit get_pfn_range_for_nid(unsigned int nid, | 
|  | 5966 | unsigned long *start_pfn, unsigned long *end_pfn) | 
|  | 5967 | { | 
|  | 5968 | unsigned long this_start_pfn, this_end_pfn; | 
|  | 5969 | int i; | 
|  | 5970 |  | 
|  | 5971 | *start_pfn = -1UL; | 
|  | 5972 | *end_pfn = 0; | 
|  | 5973 |  | 
|  | 5974 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | 
|  | 5975 | *start_pfn = min(*start_pfn, this_start_pfn); | 
|  | 5976 | *end_pfn = max(*end_pfn, this_end_pfn); | 
|  | 5977 | } | 
|  | 5978 |  | 
|  | 5979 | if (*start_pfn == -1UL) | 
|  | 5980 | *start_pfn = 0; | 
|  | 5981 | } | 
|  | 5982 |  | 
|  | 5983 | /* | 
|  | 5984 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | 
|  | 5985 | * assumption is made that zones within a node are ordered in monotonic | 
|  | 5986 | * increasing memory addresses so that the "highest" populated zone is used | 
|  | 5987 | */ | 
|  | 5988 | static void __init find_usable_zone_for_movable(void) | 
|  | 5989 | { | 
|  | 5990 | int zone_index; | 
|  | 5991 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 
|  | 5992 | if (zone_index == ZONE_MOVABLE) | 
|  | 5993 | continue; | 
|  | 5994 |  | 
|  | 5995 | if (arch_zone_highest_possible_pfn[zone_index] > | 
|  | 5996 | arch_zone_lowest_possible_pfn[zone_index]) | 
|  | 5997 | break; | 
|  | 5998 | } | 
|  | 5999 |  | 
|  | 6000 | VM_BUG_ON(zone_index == -1); | 
|  | 6001 | movable_zone = zone_index; | 
|  | 6002 | } | 
|  | 6003 |  | 
|  | 6004 | /* | 
|  | 6005 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | 
|  | 6006 | * because it is sized independent of architecture. Unlike the other zones, | 
|  | 6007 | * the starting point for ZONE_MOVABLE is not fixed. It may be different | 
|  | 6008 | * in each node depending on the size of each node and how evenly kernelcore | 
|  | 6009 | * is distributed. This helper function adjusts the zone ranges | 
|  | 6010 | * provided by the architecture for a given node by using the end of the | 
|  | 6011 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 
|  | 6012 | * zones within a node are in order of monotonic increases memory addresses | 
|  | 6013 | */ | 
|  | 6014 | static void __meminit adjust_zone_range_for_zone_movable(int nid, | 
|  | 6015 | unsigned long zone_type, | 
|  | 6016 | unsigned long node_start_pfn, | 
|  | 6017 | unsigned long node_end_pfn, | 
|  | 6018 | unsigned long *zone_start_pfn, | 
|  | 6019 | unsigned long *zone_end_pfn) | 
|  | 6020 | { | 
|  | 6021 | /* Only adjust if ZONE_MOVABLE is on this node */ | 
|  | 6022 | if (zone_movable_pfn[nid]) { | 
|  | 6023 | /* Size ZONE_MOVABLE */ | 
|  | 6024 | if (zone_type == ZONE_MOVABLE) { | 
|  | 6025 | *zone_start_pfn = zone_movable_pfn[nid]; | 
|  | 6026 | *zone_end_pfn = min(node_end_pfn, | 
|  | 6027 | arch_zone_highest_possible_pfn[movable_zone]); | 
|  | 6028 |  | 
|  | 6029 | /* Adjust for ZONE_MOVABLE starting within this range */ | 
|  | 6030 | } else if (!mirrored_kernelcore && | 
|  | 6031 | *zone_start_pfn < zone_movable_pfn[nid] && | 
|  | 6032 | *zone_end_pfn > zone_movable_pfn[nid]) { | 
|  | 6033 | *zone_end_pfn = zone_movable_pfn[nid]; | 
|  | 6034 |  | 
|  | 6035 | /* Check if this whole range is within ZONE_MOVABLE */ | 
|  | 6036 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | 
|  | 6037 | *zone_start_pfn = *zone_end_pfn; | 
|  | 6038 | } | 
|  | 6039 | } | 
|  | 6040 |  | 
|  | 6041 | /* | 
|  | 6042 | * Return the number of pages a zone spans in a node, including holes | 
|  | 6043 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | 
|  | 6044 | */ | 
|  | 6045 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, | 
|  | 6046 | unsigned long zone_type, | 
|  | 6047 | unsigned long node_start_pfn, | 
|  | 6048 | unsigned long node_end_pfn, | 
|  | 6049 | unsigned long *zone_start_pfn, | 
|  | 6050 | unsigned long *zone_end_pfn, | 
|  | 6051 | unsigned long *ignored) | 
|  | 6052 | { | 
|  | 6053 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
|  | 6054 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
|  | 6055 | /* When hotadd a new node from cpu_up(), the node should be empty */ | 
|  | 6056 | if (!node_start_pfn && !node_end_pfn) | 
|  | 6057 | return 0; | 
|  | 6058 |  | 
|  | 6059 | /* Get the start and end of the zone */ | 
|  | 6060 | *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
|  | 6061 | *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
|  | 6062 | adjust_zone_range_for_zone_movable(nid, zone_type, | 
|  | 6063 | node_start_pfn, node_end_pfn, | 
|  | 6064 | zone_start_pfn, zone_end_pfn); | 
|  | 6065 |  | 
|  | 6066 | /* Check that this node has pages within the zone's required range */ | 
|  | 6067 | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) | 
|  | 6068 | return 0; | 
|  | 6069 |  | 
|  | 6070 | /* Move the zone boundaries inside the node if necessary */ | 
|  | 6071 | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); | 
|  | 6072 | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | 
|  | 6073 |  | 
|  | 6074 | /* Return the spanned pages */ | 
|  | 6075 | return *zone_end_pfn - *zone_start_pfn; | 
|  | 6076 | } | 
|  | 6077 |  | 
|  | 6078 | /* | 
|  | 6079 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 
|  | 6080 | * then all holes in the requested range will be accounted for. | 
|  | 6081 | */ | 
|  | 6082 | unsigned long __meminit __absent_pages_in_range(int nid, | 
|  | 6083 | unsigned long range_start_pfn, | 
|  | 6084 | unsigned long range_end_pfn) | 
|  | 6085 | { | 
|  | 6086 | unsigned long nr_absent = range_end_pfn - range_start_pfn; | 
|  | 6087 | unsigned long start_pfn, end_pfn; | 
|  | 6088 | int i; | 
|  | 6089 |  | 
|  | 6090 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
|  | 6091 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | 
|  | 6092 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | 
|  | 6093 | nr_absent -= end_pfn - start_pfn; | 
|  | 6094 | } | 
|  | 6095 | return nr_absent; | 
|  | 6096 | } | 
|  | 6097 |  | 
|  | 6098 | /** | 
|  | 6099 | * absent_pages_in_range - Return number of page frames in holes within a range | 
|  | 6100 | * @start_pfn: The start PFN to start searching for holes | 
|  | 6101 | * @end_pfn: The end PFN to stop searching for holes | 
|  | 6102 | * | 
|  | 6103 | * It returns the number of pages frames in memory holes within a range. | 
|  | 6104 | */ | 
|  | 6105 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | 
|  | 6106 | unsigned long end_pfn) | 
|  | 6107 | { | 
|  | 6108 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | 
|  | 6109 | } | 
|  | 6110 |  | 
|  | 6111 | /* Return the number of page frames in holes in a zone on a node */ | 
|  | 6112 | static unsigned long __meminit zone_absent_pages_in_node(int nid, | 
|  | 6113 | unsigned long zone_type, | 
|  | 6114 | unsigned long node_start_pfn, | 
|  | 6115 | unsigned long node_end_pfn, | 
|  | 6116 | unsigned long *ignored) | 
|  | 6117 | { | 
|  | 6118 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
|  | 6119 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
|  | 6120 | unsigned long zone_start_pfn, zone_end_pfn; | 
|  | 6121 | unsigned long nr_absent; | 
|  | 6122 |  | 
|  | 6123 | /* When hotadd a new node from cpu_up(), the node should be empty */ | 
|  | 6124 | if (!node_start_pfn && !node_end_pfn) | 
|  | 6125 | return 0; | 
|  | 6126 |  | 
|  | 6127 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
|  | 6128 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
|  | 6129 |  | 
|  | 6130 | adjust_zone_range_for_zone_movable(nid, zone_type, | 
|  | 6131 | node_start_pfn, node_end_pfn, | 
|  | 6132 | &zone_start_pfn, &zone_end_pfn); | 
|  | 6133 | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); | 
|  | 6134 |  | 
|  | 6135 | /* | 
|  | 6136 | * ZONE_MOVABLE handling. | 
|  | 6137 | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | 
|  | 6138 | * and vice versa. | 
|  | 6139 | */ | 
|  | 6140 | if (mirrored_kernelcore && zone_movable_pfn[nid]) { | 
|  | 6141 | unsigned long start_pfn, end_pfn; | 
|  | 6142 | struct memblock_region *r; | 
|  | 6143 |  | 
|  | 6144 | for_each_memblock(memory, r) { | 
|  | 6145 | start_pfn = clamp(memblock_region_memory_base_pfn(r), | 
|  | 6146 | zone_start_pfn, zone_end_pfn); | 
|  | 6147 | end_pfn = clamp(memblock_region_memory_end_pfn(r), | 
|  | 6148 | zone_start_pfn, zone_end_pfn); | 
|  | 6149 |  | 
|  | 6150 | if (zone_type == ZONE_MOVABLE && | 
|  | 6151 | memblock_is_mirror(r)) | 
|  | 6152 | nr_absent += end_pfn - start_pfn; | 
|  | 6153 |  | 
|  | 6154 | if (zone_type == ZONE_NORMAL && | 
|  | 6155 | !memblock_is_mirror(r)) | 
|  | 6156 | nr_absent += end_pfn - start_pfn; | 
|  | 6157 | } | 
|  | 6158 | } | 
|  | 6159 |  | 
|  | 6160 | return nr_absent; | 
|  | 6161 | } | 
|  | 6162 |  | 
|  | 6163 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | 6164 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, | 
|  | 6165 | unsigned long zone_type, | 
|  | 6166 | unsigned long node_start_pfn, | 
|  | 6167 | unsigned long node_end_pfn, | 
|  | 6168 | unsigned long *zone_start_pfn, | 
|  | 6169 | unsigned long *zone_end_pfn, | 
|  | 6170 | unsigned long *zones_size) | 
|  | 6171 | { | 
|  | 6172 | unsigned int zone; | 
|  | 6173 |  | 
|  | 6174 | *zone_start_pfn = node_start_pfn; | 
|  | 6175 | for (zone = 0; zone < zone_type; zone++) | 
|  | 6176 | *zone_start_pfn += zones_size[zone]; | 
|  | 6177 |  | 
|  | 6178 | *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; | 
|  | 6179 |  | 
|  | 6180 | return zones_size[zone_type]; | 
|  | 6181 | } | 
|  | 6182 |  | 
|  | 6183 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, | 
|  | 6184 | unsigned long zone_type, | 
|  | 6185 | unsigned long node_start_pfn, | 
|  | 6186 | unsigned long node_end_pfn, | 
|  | 6187 | unsigned long *zholes_size) | 
|  | 6188 | { | 
|  | 6189 | if (!zholes_size) | 
|  | 6190 | return 0; | 
|  | 6191 |  | 
|  | 6192 | return zholes_size[zone_type]; | 
|  | 6193 | } | 
|  | 6194 |  | 
|  | 6195 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | 6196 |  | 
|  | 6197 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, | 
|  | 6198 | unsigned long node_start_pfn, | 
|  | 6199 | unsigned long node_end_pfn, | 
|  | 6200 | unsigned long *zones_size, | 
|  | 6201 | unsigned long *zholes_size) | 
|  | 6202 | { | 
|  | 6203 | unsigned long realtotalpages = 0, totalpages = 0; | 
|  | 6204 | enum zone_type i; | 
|  | 6205 |  | 
|  | 6206 | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | 6207 | struct zone *zone = pgdat->node_zones + i; | 
|  | 6208 | unsigned long zone_start_pfn, zone_end_pfn; | 
|  | 6209 | unsigned long size, real_size; | 
|  | 6210 |  | 
|  | 6211 | size = zone_spanned_pages_in_node(pgdat->node_id, i, | 
|  | 6212 | node_start_pfn, | 
|  | 6213 | node_end_pfn, | 
|  | 6214 | &zone_start_pfn, | 
|  | 6215 | &zone_end_pfn, | 
|  | 6216 | zones_size); | 
|  | 6217 | real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, | 
|  | 6218 | node_start_pfn, node_end_pfn, | 
|  | 6219 | zholes_size); | 
|  | 6220 | if (size) | 
|  | 6221 | zone->zone_start_pfn = zone_start_pfn; | 
|  | 6222 | else | 
|  | 6223 | zone->zone_start_pfn = 0; | 
|  | 6224 | zone->spanned_pages = size; | 
|  | 6225 | zone->present_pages = real_size; | 
|  | 6226 |  | 
|  | 6227 | totalpages += size; | 
|  | 6228 | realtotalpages += real_size; | 
|  | 6229 | } | 
|  | 6230 |  | 
|  | 6231 | pgdat->node_spanned_pages = totalpages; | 
|  | 6232 | pgdat->node_present_pages = realtotalpages; | 
|  | 6233 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | 
|  | 6234 | realtotalpages); | 
|  | 6235 | } | 
|  | 6236 |  | 
|  | 6237 | #ifndef CONFIG_SPARSEMEM | 
|  | 6238 | /* | 
|  | 6239 | * Calculate the size of the zone->blockflags rounded to an unsigned long | 
|  | 6240 | * Start by making sure zonesize is a multiple of pageblock_order by rounding | 
|  | 6241 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | 
|  | 6242 | * round what is now in bits to nearest long in bits, then return it in | 
|  | 6243 | * bytes. | 
|  | 6244 | */ | 
|  | 6245 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) | 
|  | 6246 | { | 
|  | 6247 | unsigned long usemapsize; | 
|  | 6248 |  | 
|  | 6249 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); | 
|  | 6250 | usemapsize = roundup(zonesize, pageblock_nr_pages); | 
|  | 6251 | usemapsize = usemapsize >> pageblock_order; | 
|  | 6252 | usemapsize *= NR_PAGEBLOCK_BITS; | 
|  | 6253 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | 
|  | 6254 |  | 
|  | 6255 | return usemapsize / 8; | 
|  | 6256 | } | 
|  | 6257 |  | 
|  | 6258 | static void __ref setup_usemap(struct pglist_data *pgdat, | 
|  | 6259 | struct zone *zone, | 
|  | 6260 | unsigned long zone_start_pfn, | 
|  | 6261 | unsigned long zonesize) | 
|  | 6262 | { | 
|  | 6263 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); | 
|  | 6264 | zone->pageblock_flags = NULL; | 
|  | 6265 | if (usemapsize) | 
|  | 6266 | zone->pageblock_flags = | 
|  | 6267 | memblock_virt_alloc_node_nopanic(usemapsize, | 
|  | 6268 | pgdat->node_id); | 
|  | 6269 | } | 
|  | 6270 | #else | 
|  | 6271 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, | 
|  | 6272 | unsigned long zone_start_pfn, unsigned long zonesize) {} | 
|  | 6273 | #endif /* CONFIG_SPARSEMEM */ | 
|  | 6274 |  | 
|  | 6275 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
|  | 6276 |  | 
|  | 6277 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | 
|  | 6278 | void __init set_pageblock_order(void) | 
|  | 6279 | { | 
|  | 6280 | unsigned int order; | 
|  | 6281 |  | 
|  | 6282 | /* Check that pageblock_nr_pages has not already been setup */ | 
|  | 6283 | if (pageblock_order) | 
|  | 6284 | return; | 
|  | 6285 |  | 
|  | 6286 | if (HPAGE_SHIFT > PAGE_SHIFT) | 
|  | 6287 | order = HUGETLB_PAGE_ORDER; | 
|  | 6288 | else | 
|  | 6289 | order = MAX_ORDER - 1; | 
|  | 6290 |  | 
|  | 6291 | /* | 
|  | 6292 | * Assume the largest contiguous order of interest is a huge page. | 
|  | 6293 | * This value may be variable depending on boot parameters on IA64 and | 
|  | 6294 | * powerpc. | 
|  | 6295 | */ | 
|  | 6296 | pageblock_order = order; | 
|  | 6297 | } | 
|  | 6298 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
|  | 6299 |  | 
|  | 6300 | /* | 
|  | 6301 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | 
|  | 6302 | * is unused as pageblock_order is set at compile-time. See | 
|  | 6303 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | 
|  | 6304 | * the kernel config | 
|  | 6305 | */ | 
|  | 6306 | void __init set_pageblock_order(void) | 
|  | 6307 | { | 
|  | 6308 | } | 
|  | 6309 |  | 
|  | 6310 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
|  | 6311 |  | 
|  | 6312 | static unsigned long __init calc_memmap_size(unsigned long spanned_pages, | 
|  | 6313 | unsigned long present_pages) | 
|  | 6314 | { | 
|  | 6315 | unsigned long pages = spanned_pages; | 
|  | 6316 |  | 
|  | 6317 | /* | 
|  | 6318 | * Provide a more accurate estimation if there are holes within | 
|  | 6319 | * the zone and SPARSEMEM is in use. If there are holes within the | 
|  | 6320 | * zone, each populated memory region may cost us one or two extra | 
|  | 6321 | * memmap pages due to alignment because memmap pages for each | 
|  | 6322 | * populated regions may not be naturally aligned on page boundary. | 
|  | 6323 | * So the (present_pages >> 4) heuristic is a tradeoff for that. | 
|  | 6324 | */ | 
|  | 6325 | if (spanned_pages > present_pages + (present_pages >> 4) && | 
|  | 6326 | IS_ENABLED(CONFIG_SPARSEMEM)) | 
|  | 6327 | pages = present_pages; | 
|  | 6328 |  | 
|  | 6329 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | 
|  | 6330 | } | 
|  | 6331 |  | 
|  | 6332 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 6333 | static void pgdat_init_split_queue(struct pglist_data *pgdat) | 
|  | 6334 | { | 
|  | 6335 | spin_lock_init(&pgdat->split_queue_lock); | 
|  | 6336 | INIT_LIST_HEAD(&pgdat->split_queue); | 
|  | 6337 | pgdat->split_queue_len = 0; | 
|  | 6338 | } | 
|  | 6339 | #else | 
|  | 6340 | static void pgdat_init_split_queue(struct pglist_data *pgdat) {} | 
|  | 6341 | #endif | 
|  | 6342 |  | 
|  | 6343 | #ifdef CONFIG_COMPACTION | 
|  | 6344 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) | 
|  | 6345 | { | 
|  | 6346 | init_waitqueue_head(&pgdat->kcompactd_wait); | 
|  | 6347 | } | 
|  | 6348 | #else | 
|  | 6349 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} | 
|  | 6350 | #endif | 
|  | 6351 |  | 
|  | 6352 | static void __meminit pgdat_init_internals(struct pglist_data *pgdat) | 
|  | 6353 | { | 
|  | 6354 | pgdat_resize_init(pgdat); | 
|  | 6355 |  | 
|  | 6356 | pgdat_init_split_queue(pgdat); | 
|  | 6357 | pgdat_init_kcompactd(pgdat); | 
|  | 6358 |  | 
|  | 6359 | init_waitqueue_head(&pgdat->kswapd_wait); | 
|  | 6360 | init_waitqueue_head(&pgdat->pfmemalloc_wait); | 
|  | 6361 |  | 
|  | 6362 | pgdat_page_ext_init(pgdat); | 
|  | 6363 | spin_lock_init(&pgdat->lru_lock); | 
|  | 6364 | lruvec_init(node_lruvec(pgdat)); | 
|  | 6365 | } | 
|  | 6366 |  | 
|  | 6367 | static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, | 
|  | 6368 | unsigned long remaining_pages) | 
|  | 6369 | { | 
|  | 6370 | zone->managed_pages = remaining_pages; | 
|  | 6371 | zone_set_nid(zone, nid); | 
|  | 6372 | zone->name = zone_names[idx]; | 
|  | 6373 | zone->zone_pgdat = NODE_DATA(nid); | 
|  | 6374 | spin_lock_init(&zone->lock); | 
|  | 6375 | zone_seqlock_init(zone); | 
|  | 6376 | zone_pcp_init(zone); | 
|  | 6377 | } | 
|  | 6378 |  | 
|  | 6379 | /* | 
|  | 6380 | * Set up the zone data structures | 
|  | 6381 | * - init pgdat internals | 
|  | 6382 | * - init all zones belonging to this node | 
|  | 6383 | * | 
|  | 6384 | * NOTE: this function is only called during memory hotplug | 
|  | 6385 | */ | 
|  | 6386 | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | 6387 | void __ref free_area_init_core_hotplug(int nid) | 
|  | 6388 | { | 
|  | 6389 | enum zone_type z; | 
|  | 6390 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 6391 |  | 
|  | 6392 | pgdat_init_internals(pgdat); | 
|  | 6393 | for (z = 0; z < MAX_NR_ZONES; z++) | 
|  | 6394 | zone_init_internals(&pgdat->node_zones[z], z, nid, 0); | 
|  | 6395 | } | 
|  | 6396 | #endif | 
|  | 6397 |  | 
|  | 6398 | /* | 
|  | 6399 | * Set up the zone data structures: | 
|  | 6400 | *   - mark all pages reserved | 
|  | 6401 | *   - mark all memory queues empty | 
|  | 6402 | *   - clear the memory bitmaps | 
|  | 6403 | * | 
|  | 6404 | * NOTE: pgdat should get zeroed by caller. | 
|  | 6405 | * NOTE: this function is only called during early init. | 
|  | 6406 | */ | 
|  | 6407 | static void __init free_area_init_core(struct pglist_data *pgdat) | 
|  | 6408 | { | 
|  | 6409 | enum zone_type j; | 
|  | 6410 | int nid = pgdat->node_id; | 
|  | 6411 |  | 
|  | 6412 | pgdat_init_internals(pgdat); | 
|  | 6413 | pgdat->per_cpu_nodestats = &boot_nodestats; | 
|  | 6414 |  | 
|  | 6415 | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | 6416 | struct zone *zone = pgdat->node_zones + j; | 
|  | 6417 | unsigned long size, freesize, memmap_pages; | 
|  | 6418 | unsigned long zone_start_pfn = zone->zone_start_pfn; | 
|  | 6419 |  | 
|  | 6420 | size = zone->spanned_pages; | 
|  | 6421 | freesize = zone->present_pages; | 
|  | 6422 |  | 
|  | 6423 | /* | 
|  | 6424 | * Adjust freesize so that it accounts for how much memory | 
|  | 6425 | * is used by this zone for memmap. This affects the watermark | 
|  | 6426 | * and per-cpu initialisations | 
|  | 6427 | */ | 
|  | 6428 | memmap_pages = calc_memmap_size(size, freesize); | 
|  | 6429 | if (!is_highmem_idx(j)) { | 
|  | 6430 | if (freesize >= memmap_pages) { | 
|  | 6431 | freesize -= memmap_pages; | 
|  | 6432 | if (memmap_pages) | 
|  | 6433 | printk(KERN_DEBUG | 
|  | 6434 | "  %s zone: %lu pages used for memmap\n", | 
|  | 6435 | zone_names[j], memmap_pages); | 
|  | 6436 | } else | 
|  | 6437 | pr_warn("  %s zone: %lu pages exceeds freesize %lu\n", | 
|  | 6438 | zone_names[j], memmap_pages, freesize); | 
|  | 6439 | } | 
|  | 6440 |  | 
|  | 6441 | /* Account for reserved pages */ | 
|  | 6442 | if (j == 0 && freesize > dma_reserve) { | 
|  | 6443 | freesize -= dma_reserve; | 
|  | 6444 | printk(KERN_DEBUG "  %s zone: %lu pages reserved\n", | 
|  | 6445 | zone_names[0], dma_reserve); | 
|  | 6446 | } | 
|  | 6447 |  | 
|  | 6448 | if (!is_highmem_idx(j)) | 
|  | 6449 | nr_kernel_pages += freesize; | 
|  | 6450 | /* Charge for highmem memmap if there are enough kernel pages */ | 
|  | 6451 | else if (nr_kernel_pages > memmap_pages * 2) | 
|  | 6452 | nr_kernel_pages -= memmap_pages; | 
|  | 6453 | nr_all_pages += freesize; | 
|  | 6454 |  | 
|  | 6455 | /* | 
|  | 6456 | * Set an approximate value for lowmem here, it will be adjusted | 
|  | 6457 | * when the bootmem allocator frees pages into the buddy system. | 
|  | 6458 | * And all highmem pages will be managed by the buddy system. | 
|  | 6459 | */ | 
|  | 6460 | zone_init_internals(zone, j, nid, freesize); | 
|  | 6461 |  | 
|  | 6462 | if (!size) | 
|  | 6463 | continue; | 
|  | 6464 |  | 
|  | 6465 | set_pageblock_order(); | 
|  | 6466 | setup_usemap(pgdat, zone, zone_start_pfn, size); | 
|  | 6467 | init_currently_empty_zone(zone, zone_start_pfn, size); | 
|  | 6468 | memmap_init(size, nid, j, zone_start_pfn); | 
|  | 6469 | } | 
|  | 6470 | } | 
|  | 6471 |  | 
|  | 6472 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | 6473 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) | 
|  | 6474 | { | 
|  | 6475 | unsigned long __maybe_unused start = 0; | 
|  | 6476 | unsigned long __maybe_unused offset = 0; | 
|  | 6477 |  | 
|  | 6478 | /* Skip empty nodes */ | 
|  | 6479 | if (!pgdat->node_spanned_pages) | 
|  | 6480 | return; | 
|  | 6481 |  | 
|  | 6482 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 
|  | 6483 | offset = pgdat->node_start_pfn - start; | 
|  | 6484 | /* ia64 gets its own node_mem_map, before this, without bootmem */ | 
|  | 6485 | if (!pgdat->node_mem_map) { | 
|  | 6486 | unsigned long size, end; | 
|  | 6487 | struct page *map; | 
|  | 6488 |  | 
|  | 6489 | /* | 
|  | 6490 | * The zone's endpoints aren't required to be MAX_ORDER | 
|  | 6491 | * aligned but the node_mem_map endpoints must be in order | 
|  | 6492 | * for the buddy allocator to function correctly. | 
|  | 6493 | */ | 
|  | 6494 | end = pgdat_end_pfn(pgdat); | 
|  | 6495 | end = ALIGN(end, MAX_ORDER_NR_PAGES); | 
|  | 6496 | size =  (end - start) * sizeof(struct page); | 
|  | 6497 | map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id); | 
|  | 6498 | pgdat->node_mem_map = map + offset; | 
|  | 6499 | } | 
|  | 6500 | pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", | 
|  | 6501 | __func__, pgdat->node_id, (unsigned long)pgdat, | 
|  | 6502 | (unsigned long)pgdat->node_mem_map); | 
|  | 6503 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | 6504 | /* | 
|  | 6505 | * With no DISCONTIG, the global mem_map is just set as node 0's | 
|  | 6506 | */ | 
|  | 6507 | if (pgdat == NODE_DATA(0)) { | 
|  | 6508 | mem_map = NODE_DATA(0)->node_mem_map; | 
|  | 6509 | #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) | 
|  | 6510 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | 
|  | 6511 | mem_map -= offset + (pgdat->node_start_pfn - ARCH_PFN_OFFSET); | 
|  | 6512 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | 6513 | } | 
|  | 6514 | #endif | 
|  | 6515 | } | 
|  | 6516 | #else | 
|  | 6517 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } | 
|  | 6518 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 
|  | 6519 |  | 
|  | 6520 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | 6521 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) | 
|  | 6522 | { | 
|  | 6523 | /* | 
|  | 6524 | * We start only with one section of pages, more pages are added as | 
|  | 6525 | * needed until the rest of deferred pages are initialized. | 
|  | 6526 | */ | 
|  | 6527 | pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, | 
|  | 6528 | pgdat->node_spanned_pages); | 
|  | 6529 | pgdat->first_deferred_pfn = ULONG_MAX; | 
|  | 6530 | } | 
|  | 6531 | #else | 
|  | 6532 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} | 
|  | 6533 | #endif | 
|  | 6534 |  | 
|  | 6535 | void __init free_area_init_node(int nid, unsigned long *zones_size, | 
|  | 6536 | unsigned long node_start_pfn, | 
|  | 6537 | unsigned long *zholes_size) | 
|  | 6538 | { | 
|  | 6539 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 6540 | unsigned long start_pfn = 0; | 
|  | 6541 | unsigned long end_pfn = 0; | 
|  | 6542 |  | 
|  | 6543 | /* pg_data_t should be reset to zero when it's allocated */ | 
|  | 6544 | WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); | 
|  | 6545 |  | 
|  | 6546 | pgdat->node_id = nid; | 
|  | 6547 | pgdat->node_start_pfn = node_start_pfn; | 
|  | 6548 | pgdat->per_cpu_nodestats = NULL; | 
|  | 6549 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | 6550 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
|  | 6551 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, | 
|  | 6552 | (u64)start_pfn << PAGE_SHIFT, | 
|  | 6553 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | 
|  | 6554 | #else | 
|  | 6555 | start_pfn = node_start_pfn; | 
|  | 6556 | #endif | 
|  | 6557 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | 
|  | 6558 | zones_size, zholes_size); | 
|  | 6559 |  | 
|  | 6560 | alloc_node_mem_map(pgdat); | 
|  | 6561 | pgdat_set_deferred_range(pgdat); | 
|  | 6562 |  | 
|  | 6563 | free_area_init_core(pgdat); | 
|  | 6564 | } | 
|  | 6565 |  | 
|  | 6566 | #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP) | 
|  | 6567 | /* | 
|  | 6568 | * Only struct pages that are backed by physical memory are zeroed and | 
|  | 6569 | * initialized by going through __init_single_page(). But, there are some | 
|  | 6570 | * struct pages which are reserved in memblock allocator and their fields | 
|  | 6571 | * may be accessed (for example page_to_pfn() on some configuration accesses | 
|  | 6572 | * flags). We must explicitly zero those struct pages. | 
|  | 6573 | */ | 
|  | 6574 | void __init zero_resv_unavail(void) | 
|  | 6575 | { | 
|  | 6576 | phys_addr_t start, end; | 
|  | 6577 | unsigned long pfn; | 
|  | 6578 | u64 i, pgcnt; | 
|  | 6579 |  | 
|  | 6580 | /* | 
|  | 6581 | * Loop through ranges that are reserved, but do not have reported | 
|  | 6582 | * physical memory backing. | 
|  | 6583 | */ | 
|  | 6584 | pgcnt = 0; | 
|  | 6585 | for_each_resv_unavail_range(i, &start, &end) { | 
|  | 6586 | for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { | 
|  | 6587 | if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { | 
|  | 6588 | pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) | 
|  | 6589 | + pageblock_nr_pages - 1; | 
|  | 6590 | continue; | 
|  | 6591 | } | 
|  | 6592 | mm_zero_struct_page(pfn_to_page(pfn)); | 
|  | 6593 | pgcnt++; | 
|  | 6594 | } | 
|  | 6595 | } | 
|  | 6596 |  | 
|  | 6597 | /* | 
|  | 6598 | * Struct pages that do not have backing memory. This could be because | 
|  | 6599 | * firmware is using some of this memory, or for some other reasons. | 
|  | 6600 | * Once memblock is changed so such behaviour is not allowed: i.e. | 
|  | 6601 | * list of "reserved" memory must be a subset of list of "memory", then | 
|  | 6602 | * this code can be removed. | 
|  | 6603 | */ | 
|  | 6604 | if (pgcnt) | 
|  | 6605 | pr_info("Reserved but unavailable: %lld pages", pgcnt); | 
|  | 6606 | } | 
|  | 6607 | #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */ | 
|  | 6608 |  | 
|  | 6609 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | 6610 |  | 
|  | 6611 | #if MAX_NUMNODES > 1 | 
|  | 6612 | /* | 
|  | 6613 | * Figure out the number of possible node ids. | 
|  | 6614 | */ | 
|  | 6615 | void __init setup_nr_node_ids(void) | 
|  | 6616 | { | 
|  | 6617 | unsigned int highest; | 
|  | 6618 |  | 
|  | 6619 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); | 
|  | 6620 | nr_node_ids = highest + 1; | 
|  | 6621 | } | 
|  | 6622 | #endif | 
|  | 6623 |  | 
|  | 6624 | /** | 
|  | 6625 | * node_map_pfn_alignment - determine the maximum internode alignment | 
|  | 6626 | * | 
|  | 6627 | * This function should be called after node map is populated and sorted. | 
|  | 6628 | * It calculates the maximum power of two alignment which can distinguish | 
|  | 6629 | * all the nodes. | 
|  | 6630 | * | 
|  | 6631 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | 
|  | 6632 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the | 
|  | 6633 | * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is | 
|  | 6634 | * shifted, 1GiB is enough and this function will indicate so. | 
|  | 6635 | * | 
|  | 6636 | * This is used to test whether pfn -> nid mapping of the chosen memory | 
|  | 6637 | * model has fine enough granularity to avoid incorrect mapping for the | 
|  | 6638 | * populated node map. | 
|  | 6639 | * | 
|  | 6640 | * Returns the determined alignment in pfn's.  0 if there is no alignment | 
|  | 6641 | * requirement (single node). | 
|  | 6642 | */ | 
|  | 6643 | unsigned long __init node_map_pfn_alignment(void) | 
|  | 6644 | { | 
|  | 6645 | unsigned long accl_mask = 0, last_end = 0; | 
|  | 6646 | unsigned long start, end, mask; | 
|  | 6647 | int last_nid = -1; | 
|  | 6648 | int i, nid; | 
|  | 6649 |  | 
|  | 6650 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | 
|  | 6651 | if (!start || last_nid < 0 || last_nid == nid) { | 
|  | 6652 | last_nid = nid; | 
|  | 6653 | last_end = end; | 
|  | 6654 | continue; | 
|  | 6655 | } | 
|  | 6656 |  | 
|  | 6657 | /* | 
|  | 6658 | * Start with a mask granular enough to pin-point to the | 
|  | 6659 | * start pfn and tick off bits one-by-one until it becomes | 
|  | 6660 | * too coarse to separate the current node from the last. | 
|  | 6661 | */ | 
|  | 6662 | mask = ~((1 << __ffs(start)) - 1); | 
|  | 6663 | while (mask && last_end <= (start & (mask << 1))) | 
|  | 6664 | mask <<= 1; | 
|  | 6665 |  | 
|  | 6666 | /* accumulate all internode masks */ | 
|  | 6667 | accl_mask |= mask; | 
|  | 6668 | } | 
|  | 6669 |  | 
|  | 6670 | /* convert mask to number of pages */ | 
|  | 6671 | return ~accl_mask + 1; | 
|  | 6672 | } | 
|  | 6673 |  | 
|  | 6674 | /* Find the lowest pfn for a node */ | 
|  | 6675 | static unsigned long __init find_min_pfn_for_node(int nid) | 
|  | 6676 | { | 
|  | 6677 | unsigned long min_pfn = ULONG_MAX; | 
|  | 6678 | unsigned long start_pfn; | 
|  | 6679 | int i; | 
|  | 6680 |  | 
|  | 6681 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) | 
|  | 6682 | min_pfn = min(min_pfn, start_pfn); | 
|  | 6683 |  | 
|  | 6684 | if (min_pfn == ULONG_MAX) { | 
|  | 6685 | pr_warn("Could not find start_pfn for node %d\n", nid); | 
|  | 6686 | return 0; | 
|  | 6687 | } | 
|  | 6688 |  | 
|  | 6689 | return min_pfn; | 
|  | 6690 | } | 
|  | 6691 |  | 
|  | 6692 | /** | 
|  | 6693 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | 
|  | 6694 | * | 
|  | 6695 | * It returns the minimum PFN based on information provided via | 
|  | 6696 | * memblock_set_node(). | 
|  | 6697 | */ | 
|  | 6698 | unsigned long __init find_min_pfn_with_active_regions(void) | 
|  | 6699 | { | 
|  | 6700 | return find_min_pfn_for_node(MAX_NUMNODES); | 
|  | 6701 | } | 
|  | 6702 |  | 
|  | 6703 | /* | 
|  | 6704 | * early_calculate_totalpages() | 
|  | 6705 | * Sum pages in active regions for movable zone. | 
|  | 6706 | * Populate N_MEMORY for calculating usable_nodes. | 
|  | 6707 | */ | 
|  | 6708 | static unsigned long __init early_calculate_totalpages(void) | 
|  | 6709 | { | 
|  | 6710 | unsigned long totalpages = 0; | 
|  | 6711 | unsigned long start_pfn, end_pfn; | 
|  | 6712 | int i, nid; | 
|  | 6713 |  | 
|  | 6714 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
|  | 6715 | unsigned long pages = end_pfn - start_pfn; | 
|  | 6716 |  | 
|  | 6717 | totalpages += pages; | 
|  | 6718 | if (pages) | 
|  | 6719 | node_set_state(nid, N_MEMORY); | 
|  | 6720 | } | 
|  | 6721 | return totalpages; | 
|  | 6722 | } | 
|  | 6723 |  | 
|  | 6724 | /* | 
|  | 6725 | * Find the PFN the Movable zone begins in each node. Kernel memory | 
|  | 6726 | * is spread evenly between nodes as long as the nodes have enough | 
|  | 6727 | * memory. When they don't, some nodes will have more kernelcore than | 
|  | 6728 | * others | 
|  | 6729 | */ | 
|  | 6730 | static void __init find_zone_movable_pfns_for_nodes(void) | 
|  | 6731 | { | 
|  | 6732 | int i, nid; | 
|  | 6733 | unsigned long usable_startpfn; | 
|  | 6734 | unsigned long kernelcore_node, kernelcore_remaining; | 
|  | 6735 | /* save the state before borrow the nodemask */ | 
|  | 6736 | nodemask_t saved_node_state = node_states[N_MEMORY]; | 
|  | 6737 | unsigned long totalpages = early_calculate_totalpages(); | 
|  | 6738 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); | 
|  | 6739 | struct memblock_region *r; | 
|  | 6740 |  | 
|  | 6741 | /* Need to find movable_zone earlier when movable_node is specified. */ | 
|  | 6742 | find_usable_zone_for_movable(); | 
|  | 6743 |  | 
|  | 6744 | /* | 
|  | 6745 | * If movable_node is specified, ignore kernelcore and movablecore | 
|  | 6746 | * options. | 
|  | 6747 | */ | 
|  | 6748 | if (movable_node_is_enabled()) { | 
|  | 6749 | for_each_memblock(memory, r) { | 
|  | 6750 | if (!memblock_is_hotpluggable(r)) | 
|  | 6751 | continue; | 
|  | 6752 |  | 
|  | 6753 | nid = r->nid; | 
|  | 6754 |  | 
|  | 6755 | usable_startpfn = PFN_DOWN(r->base); | 
|  | 6756 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
|  | 6757 | min(usable_startpfn, zone_movable_pfn[nid]) : | 
|  | 6758 | usable_startpfn; | 
|  | 6759 | } | 
|  | 6760 |  | 
|  | 6761 | goto out2; | 
|  | 6762 | } | 
|  | 6763 |  | 
|  | 6764 | /* | 
|  | 6765 | * If kernelcore=mirror is specified, ignore movablecore option | 
|  | 6766 | */ | 
|  | 6767 | if (mirrored_kernelcore) { | 
|  | 6768 | bool mem_below_4gb_not_mirrored = false; | 
|  | 6769 |  | 
|  | 6770 | for_each_memblock(memory, r) { | 
|  | 6771 | if (memblock_is_mirror(r)) | 
|  | 6772 | continue; | 
|  | 6773 |  | 
|  | 6774 | nid = r->nid; | 
|  | 6775 |  | 
|  | 6776 | usable_startpfn = memblock_region_memory_base_pfn(r); | 
|  | 6777 |  | 
|  | 6778 | if (usable_startpfn < 0x100000) { | 
|  | 6779 | mem_below_4gb_not_mirrored = true; | 
|  | 6780 | continue; | 
|  | 6781 | } | 
|  | 6782 |  | 
|  | 6783 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
|  | 6784 | min(usable_startpfn, zone_movable_pfn[nid]) : | 
|  | 6785 | usable_startpfn; | 
|  | 6786 | } | 
|  | 6787 |  | 
|  | 6788 | if (mem_below_4gb_not_mirrored) | 
|  | 6789 | pr_warn("This configuration results in unmirrored kernel memory."); | 
|  | 6790 |  | 
|  | 6791 | goto out2; | 
|  | 6792 | } | 
|  | 6793 |  | 
|  | 6794 | /* | 
|  | 6795 | * If kernelcore=nn% or movablecore=nn% was specified, calculate the | 
|  | 6796 | * amount of necessary memory. | 
|  | 6797 | */ | 
|  | 6798 | if (required_kernelcore_percent) | 
|  | 6799 | required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / | 
|  | 6800 | 10000UL; | 
|  | 6801 | if (required_movablecore_percent) | 
|  | 6802 | required_movablecore = (totalpages * 100 * required_movablecore_percent) / | 
|  | 6803 | 10000UL; | 
|  | 6804 |  | 
|  | 6805 | /* | 
|  | 6806 | * If movablecore= was specified, calculate what size of | 
|  | 6807 | * kernelcore that corresponds so that memory usable for | 
|  | 6808 | * any allocation type is evenly spread. If both kernelcore | 
|  | 6809 | * and movablecore are specified, then the value of kernelcore | 
|  | 6810 | * will be used for required_kernelcore if it's greater than | 
|  | 6811 | * what movablecore would have allowed. | 
|  | 6812 | */ | 
|  | 6813 | if (required_movablecore) { | 
|  | 6814 | unsigned long corepages; | 
|  | 6815 |  | 
|  | 6816 | /* | 
|  | 6817 | * Round-up so that ZONE_MOVABLE is at least as large as what | 
|  | 6818 | * was requested by the user | 
|  | 6819 | */ | 
|  | 6820 | required_movablecore = | 
|  | 6821 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | 
|  | 6822 | required_movablecore = min(totalpages, required_movablecore); | 
|  | 6823 | corepages = totalpages - required_movablecore; | 
|  | 6824 |  | 
|  | 6825 | required_kernelcore = max(required_kernelcore, corepages); | 
|  | 6826 | } | 
|  | 6827 |  | 
|  | 6828 | /* | 
|  | 6829 | * If kernelcore was not specified or kernelcore size is larger | 
|  | 6830 | * than totalpages, there is no ZONE_MOVABLE. | 
|  | 6831 | */ | 
|  | 6832 | if (!required_kernelcore || required_kernelcore >= totalpages) | 
|  | 6833 | goto out; | 
|  | 6834 |  | 
|  | 6835 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | 
|  | 6836 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | 
|  | 6837 |  | 
|  | 6838 | restart: | 
|  | 6839 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | 
|  | 6840 | kernelcore_node = required_kernelcore / usable_nodes; | 
|  | 6841 | for_each_node_state(nid, N_MEMORY) { | 
|  | 6842 | unsigned long start_pfn, end_pfn; | 
|  | 6843 |  | 
|  | 6844 | /* | 
|  | 6845 | * Recalculate kernelcore_node if the division per node | 
|  | 6846 | * now exceeds what is necessary to satisfy the requested | 
|  | 6847 | * amount of memory for the kernel | 
|  | 6848 | */ | 
|  | 6849 | if (required_kernelcore < kernelcore_node) | 
|  | 6850 | kernelcore_node = required_kernelcore / usable_nodes; | 
|  | 6851 |  | 
|  | 6852 | /* | 
|  | 6853 | * As the map is walked, we track how much memory is usable | 
|  | 6854 | * by the kernel using kernelcore_remaining. When it is | 
|  | 6855 | * 0, the rest of the node is usable by ZONE_MOVABLE | 
|  | 6856 | */ | 
|  | 6857 | kernelcore_remaining = kernelcore_node; | 
|  | 6858 |  | 
|  | 6859 | /* Go through each range of PFNs within this node */ | 
|  | 6860 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
|  | 6861 | unsigned long size_pages; | 
|  | 6862 |  | 
|  | 6863 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); | 
|  | 6864 | if (start_pfn >= end_pfn) | 
|  | 6865 | continue; | 
|  | 6866 |  | 
|  | 6867 | /* Account for what is only usable for kernelcore */ | 
|  | 6868 | if (start_pfn < usable_startpfn) { | 
|  | 6869 | unsigned long kernel_pages; | 
|  | 6870 | kernel_pages = min(end_pfn, usable_startpfn) | 
|  | 6871 | - start_pfn; | 
|  | 6872 |  | 
|  | 6873 | kernelcore_remaining -= min(kernel_pages, | 
|  | 6874 | kernelcore_remaining); | 
|  | 6875 | required_kernelcore -= min(kernel_pages, | 
|  | 6876 | required_kernelcore); | 
|  | 6877 |  | 
|  | 6878 | /* Continue if range is now fully accounted */ | 
|  | 6879 | if (end_pfn <= usable_startpfn) { | 
|  | 6880 |  | 
|  | 6881 | /* | 
|  | 6882 | * Push zone_movable_pfn to the end so | 
|  | 6883 | * that if we have to rebalance | 
|  | 6884 | * kernelcore across nodes, we will | 
|  | 6885 | * not double account here | 
|  | 6886 | */ | 
|  | 6887 | zone_movable_pfn[nid] = end_pfn; | 
|  | 6888 | continue; | 
|  | 6889 | } | 
|  | 6890 | start_pfn = usable_startpfn; | 
|  | 6891 | } | 
|  | 6892 |  | 
|  | 6893 | /* | 
|  | 6894 | * The usable PFN range for ZONE_MOVABLE is from | 
|  | 6895 | * start_pfn->end_pfn. Calculate size_pages as the | 
|  | 6896 | * number of pages used as kernelcore | 
|  | 6897 | */ | 
|  | 6898 | size_pages = end_pfn - start_pfn; | 
|  | 6899 | if (size_pages > kernelcore_remaining) | 
|  | 6900 | size_pages = kernelcore_remaining; | 
|  | 6901 | zone_movable_pfn[nid] = start_pfn + size_pages; | 
|  | 6902 |  | 
|  | 6903 | /* | 
|  | 6904 | * Some kernelcore has been met, update counts and | 
|  | 6905 | * break if the kernelcore for this node has been | 
|  | 6906 | * satisfied | 
|  | 6907 | */ | 
|  | 6908 | required_kernelcore -= min(required_kernelcore, | 
|  | 6909 | size_pages); | 
|  | 6910 | kernelcore_remaining -= size_pages; | 
|  | 6911 | if (!kernelcore_remaining) | 
|  | 6912 | break; | 
|  | 6913 | } | 
|  | 6914 | } | 
|  | 6915 |  | 
|  | 6916 | /* | 
|  | 6917 | * If there is still required_kernelcore, we do another pass with one | 
|  | 6918 | * less node in the count. This will push zone_movable_pfn[nid] further | 
|  | 6919 | * along on the nodes that still have memory until kernelcore is | 
|  | 6920 | * satisfied | 
|  | 6921 | */ | 
|  | 6922 | usable_nodes--; | 
|  | 6923 | if (usable_nodes && required_kernelcore > usable_nodes) | 
|  | 6924 | goto restart; | 
|  | 6925 |  | 
|  | 6926 | out2: | 
|  | 6927 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | 
|  | 6928 | for (nid = 0; nid < MAX_NUMNODES; nid++) | 
|  | 6929 | zone_movable_pfn[nid] = | 
|  | 6930 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | 
|  | 6931 |  | 
|  | 6932 | out: | 
|  | 6933 | /* restore the node_state */ | 
|  | 6934 | node_states[N_MEMORY] = saved_node_state; | 
|  | 6935 | } | 
|  | 6936 |  | 
|  | 6937 | /* Any regular or high memory on that node ? */ | 
|  | 6938 | static void check_for_memory(pg_data_t *pgdat, int nid) | 
|  | 6939 | { | 
|  | 6940 | enum zone_type zone_type; | 
|  | 6941 |  | 
|  | 6942 | if (N_MEMORY == N_NORMAL_MEMORY) | 
|  | 6943 | return; | 
|  | 6944 |  | 
|  | 6945 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | 
|  | 6946 | struct zone *zone = &pgdat->node_zones[zone_type]; | 
|  | 6947 | if (populated_zone(zone)) { | 
|  | 6948 | node_set_state(nid, N_HIGH_MEMORY); | 
|  | 6949 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | 
|  | 6950 | zone_type <= ZONE_NORMAL) | 
|  | 6951 | node_set_state(nid, N_NORMAL_MEMORY); | 
|  | 6952 | break; | 
|  | 6953 | } | 
|  | 6954 | } | 
|  | 6955 | } | 
|  | 6956 |  | 
|  | 6957 | /** | 
|  | 6958 | * free_area_init_nodes - Initialise all pg_data_t and zone data | 
|  | 6959 | * @max_zone_pfn: an array of max PFNs for each zone | 
|  | 6960 | * | 
|  | 6961 | * This will call free_area_init_node() for each active node in the system. | 
|  | 6962 | * Using the page ranges provided by memblock_set_node(), the size of each | 
|  | 6963 | * zone in each node and their holes is calculated. If the maximum PFN | 
|  | 6964 | * between two adjacent zones match, it is assumed that the zone is empty. | 
|  | 6965 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | 
|  | 6966 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | 
|  | 6967 | * starts where the previous one ended. For example, ZONE_DMA32 starts | 
|  | 6968 | * at arch_max_dma_pfn. | 
|  | 6969 | */ | 
|  | 6970 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | 
|  | 6971 | { | 
|  | 6972 | unsigned long start_pfn, end_pfn; | 
|  | 6973 | int i, nid; | 
|  | 6974 |  | 
|  | 6975 | /* Record where the zone boundaries are */ | 
|  | 6976 | memset(arch_zone_lowest_possible_pfn, 0, | 
|  | 6977 | sizeof(arch_zone_lowest_possible_pfn)); | 
|  | 6978 | memset(arch_zone_highest_possible_pfn, 0, | 
|  | 6979 | sizeof(arch_zone_highest_possible_pfn)); | 
|  | 6980 |  | 
|  | 6981 | start_pfn = find_min_pfn_with_active_regions(); | 
|  | 6982 |  | 
|  | 6983 | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | 6984 | if (i == ZONE_MOVABLE) | 
|  | 6985 | continue; | 
|  | 6986 |  | 
|  | 6987 | end_pfn = max(max_zone_pfn[i], start_pfn); | 
|  | 6988 | arch_zone_lowest_possible_pfn[i] = start_pfn; | 
|  | 6989 | arch_zone_highest_possible_pfn[i] = end_pfn; | 
|  | 6990 |  | 
|  | 6991 | start_pfn = end_pfn; | 
|  | 6992 | } | 
|  | 6993 |  | 
|  | 6994 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | 
|  | 6995 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | 
|  | 6996 | find_zone_movable_pfns_for_nodes(); | 
|  | 6997 |  | 
|  | 6998 | /* Print out the zone ranges */ | 
|  | 6999 | pr_info("Zone ranges:\n"); | 
|  | 7000 | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | 7001 | if (i == ZONE_MOVABLE) | 
|  | 7002 | continue; | 
|  | 7003 | pr_info("  %-8s ", zone_names[i]); | 
|  | 7004 | if (arch_zone_lowest_possible_pfn[i] == | 
|  | 7005 | arch_zone_highest_possible_pfn[i]) | 
|  | 7006 | pr_cont("empty\n"); | 
|  | 7007 | else | 
|  | 7008 | pr_cont("[mem %#018Lx-%#018Lx]\n", | 
|  | 7009 | (u64)arch_zone_lowest_possible_pfn[i] | 
|  | 7010 | << PAGE_SHIFT, | 
|  | 7011 | ((u64)arch_zone_highest_possible_pfn[i] | 
|  | 7012 | << PAGE_SHIFT) - 1); | 
|  | 7013 | } | 
|  | 7014 |  | 
|  | 7015 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | 
|  | 7016 | pr_info("Movable zone start for each node\n"); | 
|  | 7017 | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | 7018 | if (zone_movable_pfn[i]) | 
|  | 7019 | pr_info("  Node %d: %#018Lx\n", i, | 
|  | 7020 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | 
|  | 7021 | } | 
|  | 7022 |  | 
|  | 7023 | /* Print out the early node map */ | 
|  | 7024 | pr_info("Early memory node ranges\n"); | 
|  | 7025 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) | 
|  | 7026 | pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid, | 
|  | 7027 | (u64)start_pfn << PAGE_SHIFT, | 
|  | 7028 | ((u64)end_pfn << PAGE_SHIFT) - 1); | 
|  | 7029 |  | 
|  | 7030 | /* Initialise every node */ | 
|  | 7031 | mminit_verify_pageflags_layout(); | 
|  | 7032 | setup_nr_node_ids(); | 
|  | 7033 | zero_resv_unavail(); | 
|  | 7034 | for_each_online_node(nid) { | 
|  | 7035 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 7036 | free_area_init_node(nid, NULL, | 
|  | 7037 | find_min_pfn_for_node(nid), NULL); | 
|  | 7038 |  | 
|  | 7039 | /* Any memory on that node */ | 
|  | 7040 | if (pgdat->node_present_pages) | 
|  | 7041 | node_set_state(nid, N_MEMORY); | 
|  | 7042 | check_for_memory(pgdat, nid); | 
|  | 7043 | } | 
|  | 7044 | } | 
|  | 7045 |  | 
|  | 7046 | static int __init cmdline_parse_core(char *p, unsigned long *core, | 
|  | 7047 | unsigned long *percent) | 
|  | 7048 | { | 
|  | 7049 | unsigned long long coremem; | 
|  | 7050 | char *endptr; | 
|  | 7051 |  | 
|  | 7052 | if (!p) | 
|  | 7053 | return -EINVAL; | 
|  | 7054 |  | 
|  | 7055 | /* Value may be a percentage of total memory, otherwise bytes */ | 
|  | 7056 | coremem = simple_strtoull(p, &endptr, 0); | 
|  | 7057 | if (*endptr == '%') { | 
|  | 7058 | /* Paranoid check for percent values greater than 100 */ | 
|  | 7059 | WARN_ON(coremem > 100); | 
|  | 7060 |  | 
|  | 7061 | *percent = coremem; | 
|  | 7062 | } else { | 
|  | 7063 | coremem = memparse(p, &p); | 
|  | 7064 | /* Paranoid check that UL is enough for the coremem value */ | 
|  | 7065 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | 
|  | 7066 |  | 
|  | 7067 | *core = coremem >> PAGE_SHIFT; | 
|  | 7068 | *percent = 0UL; | 
|  | 7069 | } | 
|  | 7070 | return 0; | 
|  | 7071 | } | 
|  | 7072 |  | 
|  | 7073 | /* | 
|  | 7074 | * kernelcore=size sets the amount of memory for use for allocations that | 
|  | 7075 | * cannot be reclaimed or migrated. | 
|  | 7076 | */ | 
|  | 7077 | static int __init cmdline_parse_kernelcore(char *p) | 
|  | 7078 | { | 
|  | 7079 | /* parse kernelcore=mirror */ | 
|  | 7080 | if (parse_option_str(p, "mirror")) { | 
|  | 7081 | mirrored_kernelcore = true; | 
|  | 7082 | return 0; | 
|  | 7083 | } | 
|  | 7084 |  | 
|  | 7085 | return cmdline_parse_core(p, &required_kernelcore, | 
|  | 7086 | &required_kernelcore_percent); | 
|  | 7087 | } | 
|  | 7088 |  | 
|  | 7089 | /* | 
|  | 7090 | * movablecore=size sets the amount of memory for use for allocations that | 
|  | 7091 | * can be reclaimed or migrated. | 
|  | 7092 | */ | 
|  | 7093 | static int __init cmdline_parse_movablecore(char *p) | 
|  | 7094 | { | 
|  | 7095 | return cmdline_parse_core(p, &required_movablecore, | 
|  | 7096 | &required_movablecore_percent); | 
|  | 7097 | } | 
|  | 7098 |  | 
|  | 7099 | early_param("kernelcore", cmdline_parse_kernelcore); | 
|  | 7100 | early_param("movablecore", cmdline_parse_movablecore); | 
|  | 7101 |  | 
|  | 7102 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | 7103 |  | 
|  | 7104 | void adjust_managed_page_count(struct page *page, long count) | 
|  | 7105 | { | 
|  | 7106 | spin_lock(&managed_page_count_lock); | 
|  | 7107 | page_zone(page)->managed_pages += count; | 
|  | 7108 | totalram_pages += count; | 
|  | 7109 | #ifdef CONFIG_HIGHMEM | 
|  | 7110 | if (PageHighMem(page)) | 
|  | 7111 | totalhigh_pages += count; | 
|  | 7112 | #endif | 
|  | 7113 | spin_unlock(&managed_page_count_lock); | 
|  | 7114 | } | 
|  | 7115 | EXPORT_SYMBOL(adjust_managed_page_count); | 
|  | 7116 |  | 
|  | 7117 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) | 
|  | 7118 | { | 
|  | 7119 | void *pos; | 
|  | 7120 | unsigned long pages = 0; | 
|  | 7121 |  | 
|  | 7122 | start = (void *)PAGE_ALIGN((unsigned long)start); | 
|  | 7123 | end = (void *)((unsigned long)end & PAGE_MASK); | 
|  | 7124 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | 
|  | 7125 | struct page *page = virt_to_page(pos); | 
|  | 7126 | void *direct_map_addr; | 
|  | 7127 |  | 
|  | 7128 | /* | 
|  | 7129 | * 'direct_map_addr' might be different from 'pos' | 
|  | 7130 | * because some architectures' virt_to_page() | 
|  | 7131 | * work with aliases.  Getting the direct map | 
|  | 7132 | * address ensures that we get a _writeable_ | 
|  | 7133 | * alias for the memset(). | 
|  | 7134 | */ | 
|  | 7135 | direct_map_addr = page_address(page); | 
|  | 7136 | if ((unsigned int)poison <= 0xFF) | 
|  | 7137 | memset(direct_map_addr, poison, PAGE_SIZE); | 
|  | 7138 |  | 
|  | 7139 | free_reserved_page(page); | 
|  | 7140 | } | 
|  | 7141 |  | 
|  | 7142 | if (pages && s) | 
|  | 7143 | pr_info("Freeing %s memory: %ldK\n", | 
|  | 7144 | s, pages << (PAGE_SHIFT - 10)); | 
|  | 7145 |  | 
|  | 7146 | return pages; | 
|  | 7147 | } | 
|  | 7148 | EXPORT_SYMBOL(free_reserved_area); | 
|  | 7149 |  | 
|  | 7150 | #ifdef	CONFIG_HIGHMEM | 
|  | 7151 | void free_highmem_page(struct page *page) | 
|  | 7152 | { | 
|  | 7153 | __free_reserved_page(page); | 
|  | 7154 | totalram_pages++; | 
|  | 7155 | page_zone(page)->managed_pages++; | 
|  | 7156 | totalhigh_pages++; | 
|  | 7157 | } | 
|  | 7158 | #endif | 
|  | 7159 |  | 
|  | 7160 |  | 
|  | 7161 | void __init mem_init_print_info(const char *str) | 
|  | 7162 | { | 
|  | 7163 | unsigned long physpages, codesize, datasize, rosize, bss_size; | 
|  | 7164 | unsigned long init_code_size, init_data_size; | 
|  | 7165 |  | 
|  | 7166 | physpages = get_num_physpages(); | 
|  | 7167 | codesize = _etext - _stext; | 
|  | 7168 | datasize = _edata - _sdata; | 
|  | 7169 | rosize = __end_rodata - __start_rodata; | 
|  | 7170 | bss_size = __bss_stop - __bss_start; | 
|  | 7171 | init_data_size = __init_end - __init_begin; | 
|  | 7172 | init_code_size = _einittext - _sinittext; | 
|  | 7173 |  | 
|  | 7174 | /* | 
|  | 7175 | * Detect special cases and adjust section sizes accordingly: | 
|  | 7176 | * 1) .init.* may be embedded into .data sections | 
|  | 7177 | * 2) .init.text.* may be out of [__init_begin, __init_end], | 
|  | 7178 | *    please refer to arch/tile/kernel/vmlinux.lds.S. | 
|  | 7179 | * 3) .rodata.* may be embedded into .text or .data sections. | 
|  | 7180 | */ | 
|  | 7181 | #define adj_init_size(start, end, size, pos, adj) \ | 
|  | 7182 | do { \ | 
|  | 7183 | if (start <= pos && pos < end && size > adj) \ | 
|  | 7184 | size -= adj; \ | 
|  | 7185 | } while (0) | 
|  | 7186 |  | 
|  | 7187 | adj_init_size(__init_begin, __init_end, init_data_size, | 
|  | 7188 | _sinittext, init_code_size); | 
|  | 7189 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | 
|  | 7190 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | 
|  | 7191 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | 
|  | 7192 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | 
|  | 7193 |  | 
|  | 7194 | #undef	adj_init_size | 
|  | 7195 |  | 
|  | 7196 | pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" | 
|  | 7197 | #ifdef	CONFIG_HIGHMEM | 
|  | 7198 | ", %luK highmem" | 
|  | 7199 | #endif | 
|  | 7200 | "%s%s)\n", | 
|  | 7201 | nr_free_pages() << (PAGE_SHIFT - 10), | 
|  | 7202 | physpages << (PAGE_SHIFT - 10), | 
|  | 7203 | codesize >> 10, datasize >> 10, rosize >> 10, | 
|  | 7204 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | 
|  | 7205 | (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), | 
|  | 7206 | totalcma_pages << (PAGE_SHIFT - 10), | 
|  | 7207 | #ifdef	CONFIG_HIGHMEM | 
|  | 7208 | totalhigh_pages << (PAGE_SHIFT - 10), | 
|  | 7209 | #endif | 
|  | 7210 | str ? ", " : "", str ? str : ""); | 
|  | 7211 | } | 
|  | 7212 |  | 
|  | 7213 | /** | 
|  | 7214 | * set_dma_reserve - set the specified number of pages reserved in the first zone | 
|  | 7215 | * @new_dma_reserve: The number of pages to mark reserved | 
|  | 7216 | * | 
|  | 7217 | * The per-cpu batchsize and zone watermarks are determined by managed_pages. | 
|  | 7218 | * In the DMA zone, a significant percentage may be consumed by kernel image | 
|  | 7219 | * and other unfreeable allocations which can skew the watermarks badly. This | 
|  | 7220 | * function may optionally be used to account for unfreeable pages in the | 
|  | 7221 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | 
|  | 7222 | * smaller per-cpu batchsize. | 
|  | 7223 | */ | 
|  | 7224 | void __init set_dma_reserve(unsigned long new_dma_reserve) | 
|  | 7225 | { | 
|  | 7226 | dma_reserve = new_dma_reserve; | 
|  | 7227 | } | 
|  | 7228 |  | 
|  | 7229 | void __init free_area_init(unsigned long *zones_size) | 
|  | 7230 | { | 
|  | 7231 | zero_resv_unavail(); | 
|  | 7232 | free_area_init_node(0, zones_size, | 
|  | 7233 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 
|  | 7234 | } | 
|  | 7235 |  | 
|  | 7236 | static int page_alloc_cpu_dead(unsigned int cpu) | 
|  | 7237 | { | 
|  | 7238 |  | 
|  | 7239 | lru_add_drain_cpu(cpu); | 
|  | 7240 | drain_pages(cpu); | 
|  | 7241 |  | 
|  | 7242 | /* | 
|  | 7243 | * Spill the event counters of the dead processor | 
|  | 7244 | * into the current processors event counters. | 
|  | 7245 | * This artificially elevates the count of the current | 
|  | 7246 | * processor. | 
|  | 7247 | */ | 
|  | 7248 | vm_events_fold_cpu(cpu); | 
|  | 7249 |  | 
|  | 7250 | /* | 
|  | 7251 | * Zero the differential counters of the dead processor | 
|  | 7252 | * so that the vm statistics are consistent. | 
|  | 7253 | * | 
|  | 7254 | * This is only okay since the processor is dead and cannot | 
|  | 7255 | * race with what we are doing. | 
|  | 7256 | */ | 
|  | 7257 | cpu_vm_stats_fold(cpu); | 
|  | 7258 | return 0; | 
|  | 7259 | } | 
|  | 7260 |  | 
|  | 7261 | void __init page_alloc_init(void) | 
|  | 7262 | { | 
|  | 7263 | int ret; | 
|  | 7264 |  | 
|  | 7265 | ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, | 
|  | 7266 | "mm/page_alloc:dead", NULL, | 
|  | 7267 | page_alloc_cpu_dead); | 
|  | 7268 | WARN_ON(ret < 0); | 
|  | 7269 | } | 
|  | 7270 |  | 
|  | 7271 | /* | 
|  | 7272 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio | 
|  | 7273 | *	or min_free_kbytes changes. | 
|  | 7274 | */ | 
|  | 7275 | static void calculate_totalreserve_pages(void) | 
|  | 7276 | { | 
|  | 7277 | struct pglist_data *pgdat; | 
|  | 7278 | unsigned long reserve_pages = 0; | 
|  | 7279 | enum zone_type i, j; | 
|  | 7280 |  | 
|  | 7281 | for_each_online_pgdat(pgdat) { | 
|  | 7282 |  | 
|  | 7283 | pgdat->totalreserve_pages = 0; | 
|  | 7284 |  | 
|  | 7285 | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | 7286 | struct zone *zone = pgdat->node_zones + i; | 
|  | 7287 | long max = 0; | 
|  | 7288 |  | 
|  | 7289 | /* Find valid and maximum lowmem_reserve in the zone */ | 
|  | 7290 | for (j = i; j < MAX_NR_ZONES; j++) { | 
|  | 7291 | if (zone->lowmem_reserve[j] > max) | 
|  | 7292 | max = zone->lowmem_reserve[j]; | 
|  | 7293 | } | 
|  | 7294 |  | 
|  | 7295 | /* we treat the high watermark as reserved pages. */ | 
|  | 7296 | max += high_wmark_pages(zone); | 
|  | 7297 |  | 
|  | 7298 | if (max > zone->managed_pages) | 
|  | 7299 | max = zone->managed_pages; | 
|  | 7300 |  | 
|  | 7301 | pgdat->totalreserve_pages += max; | 
|  | 7302 |  | 
|  | 7303 | reserve_pages += max; | 
|  | 7304 | } | 
|  | 7305 | } | 
|  | 7306 | totalreserve_pages = reserve_pages; | 
|  | 7307 | } | 
|  | 7308 |  | 
|  | 7309 | /* | 
|  | 7310 | * setup_per_zone_lowmem_reserve - called whenever | 
|  | 7311 | *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone | 
|  | 7312 | *	has a correct pages reserved value, so an adequate number of | 
|  | 7313 | *	pages are left in the zone after a successful __alloc_pages(). | 
|  | 7314 | */ | 
|  | 7315 | static void setup_per_zone_lowmem_reserve(void) | 
|  | 7316 | { | 
|  | 7317 | struct pglist_data *pgdat; | 
|  | 7318 | enum zone_type j, idx; | 
|  | 7319 |  | 
|  | 7320 | for_each_online_pgdat(pgdat) { | 
|  | 7321 | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | 7322 | struct zone *zone = pgdat->node_zones + j; | 
|  | 7323 | unsigned long managed_pages = zone->managed_pages; | 
|  | 7324 |  | 
|  | 7325 | zone->lowmem_reserve[j] = 0; | 
|  | 7326 |  | 
|  | 7327 | idx = j; | 
|  | 7328 | while (idx) { | 
|  | 7329 | struct zone *lower_zone; | 
|  | 7330 |  | 
|  | 7331 | idx--; | 
|  | 7332 | lower_zone = pgdat->node_zones + idx; | 
|  | 7333 |  | 
|  | 7334 | if (sysctl_lowmem_reserve_ratio[idx] < 1) { | 
|  | 7335 | sysctl_lowmem_reserve_ratio[idx] = 0; | 
|  | 7336 | lower_zone->lowmem_reserve[j] = 0; | 
|  | 7337 | } else { | 
|  | 7338 | lower_zone->lowmem_reserve[j] = | 
|  | 7339 | managed_pages / sysctl_lowmem_reserve_ratio[idx]; | 
|  | 7340 | } | 
|  | 7341 | managed_pages += lower_zone->managed_pages; | 
|  | 7342 | } | 
|  | 7343 | } | 
|  | 7344 | } | 
|  | 7345 |  | 
|  | 7346 | /* update totalreserve_pages */ | 
|  | 7347 | calculate_totalreserve_pages(); | 
|  | 7348 | } | 
|  | 7349 |  | 
|  | 7350 | static void __setup_per_zone_wmarks(void) | 
|  | 7351 | { | 
|  | 7352 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
|  | 7353 | unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10); | 
|  | 7354 | unsigned long lowmem_pages = 0; | 
|  | 7355 | struct zone *zone; | 
|  | 7356 | unsigned long flags; | 
|  | 7357 |  | 
|  | 7358 | /* Calculate total number of !ZONE_HIGHMEM pages */ | 
|  | 7359 | for_each_zone(zone) { | 
|  | 7360 | if (!is_highmem(zone)) | 
|  | 7361 | lowmem_pages += zone->managed_pages; | 
|  | 7362 | } | 
|  | 7363 |  | 
|  | 7364 | for_each_zone(zone) { | 
|  | 7365 | u64 min, low; | 
|  | 7366 |  | 
|  | 7367 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 7368 | min = (u64)pages_min * zone->managed_pages; | 
|  | 7369 | do_div(min, lowmem_pages); | 
|  | 7370 | low = (u64)pages_low * zone->managed_pages; | 
|  | 7371 | do_div(low, vm_total_pages); | 
|  | 7372 |  | 
|  | 7373 | if (is_highmem(zone)) { | 
|  | 7374 | /* | 
|  | 7375 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 
|  | 7376 | * need highmem pages, so cap pages_min to a small | 
|  | 7377 | * value here. | 
|  | 7378 | * | 
|  | 7379 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) | 
|  | 7380 | * deltas control asynch page reclaim, and so should | 
|  | 7381 | * not be capped for highmem. | 
|  | 7382 | */ | 
|  | 7383 | unsigned long min_pages; | 
|  | 7384 |  | 
|  | 7385 | min_pages = zone->managed_pages / 1024; | 
|  | 7386 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); | 
|  | 7387 | zone->watermark[WMARK_MIN] = min_pages; | 
|  | 7388 | } else { | 
|  | 7389 | /* | 
|  | 7390 | * If it's a lowmem zone, reserve a number of pages | 
|  | 7391 | * proportionate to the zone's size. | 
|  | 7392 | */ | 
|  | 7393 | zone->watermark[WMARK_MIN] = min; | 
|  | 7394 | } | 
|  | 7395 |  | 
|  | 7396 | /* | 
|  | 7397 | * Set the kswapd watermarks distance according to the | 
|  | 7398 | * scale factor in proportion to available memory, but | 
|  | 7399 | * ensure a minimum size on small systems. | 
|  | 7400 | */ | 
|  | 7401 | min = max_t(u64, min >> 2, | 
|  | 7402 | mult_frac(zone->managed_pages, | 
|  | 7403 | watermark_scale_factor, 10000)); | 
|  | 7404 |  | 
|  | 7405 | zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + | 
|  | 7406 | low + min; | 
|  | 7407 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + | 
|  | 7408 | low + min * 2; | 
|  | 7409 |  | 
|  | 7410 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 7411 | } | 
|  | 7412 |  | 
|  | 7413 | /* update totalreserve_pages */ | 
|  | 7414 | calculate_totalreserve_pages(); | 
|  | 7415 | } | 
|  | 7416 |  | 
|  | 7417 | /** | 
|  | 7418 | * setup_per_zone_wmarks - called when min_free_kbytes changes | 
|  | 7419 | * or when memory is hot-{added|removed} | 
|  | 7420 | * | 
|  | 7421 | * Ensures that the watermark[min,low,high] values for each zone are set | 
|  | 7422 | * correctly with respect to min_free_kbytes. | 
|  | 7423 | */ | 
|  | 7424 | void setup_per_zone_wmarks(void) | 
|  | 7425 | { | 
|  | 7426 | static DEFINE_SPINLOCK(lock); | 
|  | 7427 |  | 
|  | 7428 | spin_lock(&lock); | 
|  | 7429 | __setup_per_zone_wmarks(); | 
|  | 7430 | spin_unlock(&lock); | 
|  | 7431 | } | 
|  | 7432 |  | 
|  | 7433 | /* | 
|  | 7434 | * Initialise min_free_kbytes. | 
|  | 7435 | * | 
|  | 7436 | * For small machines we want it small (128k min).  For large machines | 
|  | 7437 | * we want it large (64MB max).  But it is not linear, because network | 
|  | 7438 | * bandwidth does not increase linearly with machine size.  We use | 
|  | 7439 | * | 
|  | 7440 | *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
|  | 7441 | *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
|  | 7442 | * | 
|  | 7443 | * which yields | 
|  | 7444 | * | 
|  | 7445 | * 16MB:	512k | 
|  | 7446 | * 32MB:	724k | 
|  | 7447 | * 64MB:	1024k | 
|  | 7448 | * 128MB:	1448k | 
|  | 7449 | * 256MB:	2048k | 
|  | 7450 | * 512MB:	2896k | 
|  | 7451 | * 1024MB:	4096k | 
|  | 7452 | * 2048MB:	5792k | 
|  | 7453 | * 4096MB:	8192k | 
|  | 7454 | * 8192MB:	11584k | 
|  | 7455 | * 16384MB:	16384k | 
|  | 7456 | */ | 
|  | 7457 | int __meminit init_per_zone_wmark_min(void) | 
|  | 7458 | { | 
|  | 7459 | unsigned long lowmem_kbytes; | 
|  | 7460 | int new_min_free_kbytes; | 
|  | 7461 |  | 
|  | 7462 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
|  | 7463 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
|  | 7464 |  | 
|  | 7465 | if (new_min_free_kbytes > user_min_free_kbytes) { | 
|  | 7466 | min_free_kbytes = new_min_free_kbytes; | 
|  | 7467 | if (min_free_kbytes < 128) | 
|  | 7468 | min_free_kbytes = 128; | 
|  | 7469 | if (min_free_kbytes > 65536) | 
|  | 7470 | min_free_kbytes = 65536; | 
|  | 7471 | } else { | 
|  | 7472 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | 
|  | 7473 | new_min_free_kbytes, user_min_free_kbytes); | 
|  | 7474 | } | 
|  | 7475 | setup_per_zone_wmarks(); | 
|  | 7476 | refresh_zone_stat_thresholds(); | 
|  | 7477 | setup_per_zone_lowmem_reserve(); | 
|  | 7478 |  | 
|  | 7479 | #ifdef CONFIG_NUMA | 
|  | 7480 | setup_min_unmapped_ratio(); | 
|  | 7481 | setup_min_slab_ratio(); | 
|  | 7482 | #endif | 
|  | 7483 |  | 
|  | 7484 | return 0; | 
|  | 7485 | } | 
|  | 7486 | core_initcall(init_per_zone_wmark_min) | 
|  | 7487 |  | 
|  | 7488 | /* | 
|  | 7489 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | 
|  | 7490 | *	that we can call two helper functions whenever min_free_kbytes | 
|  | 7491 | *	or extra_free_kbytes changes. | 
|  | 7492 | */ | 
|  | 7493 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, | 
|  | 7494 | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | 7495 | { | 
|  | 7496 | int rc; | 
|  | 7497 |  | 
|  | 7498 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | 7499 | if (rc) | 
|  | 7500 | return rc; | 
|  | 7501 |  | 
|  | 7502 | if (write) { | 
|  | 7503 | user_min_free_kbytes = min_free_kbytes; | 
|  | 7504 | setup_per_zone_wmarks(); | 
|  | 7505 | } | 
|  | 7506 | return 0; | 
|  | 7507 | } | 
|  | 7508 |  | 
|  | 7509 | int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, | 
|  | 7510 | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | 7511 | { | 
|  | 7512 | int rc; | 
|  | 7513 |  | 
|  | 7514 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | 7515 | if (rc) | 
|  | 7516 | return rc; | 
|  | 7517 |  | 
|  | 7518 | if (write) | 
|  | 7519 | setup_per_zone_wmarks(); | 
|  | 7520 |  | 
|  | 7521 | return 0; | 
|  | 7522 | } | 
|  | 7523 |  | 
|  | 7524 | #ifdef CONFIG_NUMA | 
|  | 7525 | static void setup_min_unmapped_ratio(void) | 
|  | 7526 | { | 
|  | 7527 | pg_data_t *pgdat; | 
|  | 7528 | struct zone *zone; | 
|  | 7529 |  | 
|  | 7530 | for_each_online_pgdat(pgdat) | 
|  | 7531 | pgdat->min_unmapped_pages = 0; | 
|  | 7532 |  | 
|  | 7533 | for_each_zone(zone) | 
|  | 7534 | zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * | 
|  | 7535 | sysctl_min_unmapped_ratio) / 100; | 
|  | 7536 | } | 
|  | 7537 |  | 
|  | 7538 |  | 
|  | 7539 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, | 
|  | 7540 | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | 7541 | { | 
|  | 7542 | int rc; | 
|  | 7543 |  | 
|  | 7544 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | 7545 | if (rc) | 
|  | 7546 | return rc; | 
|  | 7547 |  | 
|  | 7548 | setup_min_unmapped_ratio(); | 
|  | 7549 |  | 
|  | 7550 | return 0; | 
|  | 7551 | } | 
|  | 7552 |  | 
|  | 7553 | static void setup_min_slab_ratio(void) | 
|  | 7554 | { | 
|  | 7555 | pg_data_t *pgdat; | 
|  | 7556 | struct zone *zone; | 
|  | 7557 |  | 
|  | 7558 | for_each_online_pgdat(pgdat) | 
|  | 7559 | pgdat->min_slab_pages = 0; | 
|  | 7560 |  | 
|  | 7561 | for_each_zone(zone) | 
|  | 7562 | zone->zone_pgdat->min_slab_pages += (zone->managed_pages * | 
|  | 7563 | sysctl_min_slab_ratio) / 100; | 
|  | 7564 | } | 
|  | 7565 |  | 
|  | 7566 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, | 
|  | 7567 | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | 7568 | { | 
|  | 7569 | int rc; | 
|  | 7570 |  | 
|  | 7571 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | 7572 | if (rc) | 
|  | 7573 | return rc; | 
|  | 7574 |  | 
|  | 7575 | setup_min_slab_ratio(); | 
|  | 7576 |  | 
|  | 7577 | return 0; | 
|  | 7578 | } | 
|  | 7579 | #endif | 
|  | 7580 |  | 
|  | 7581 | /* | 
|  | 7582 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
|  | 7583 | *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
|  | 7584 | *	whenever sysctl_lowmem_reserve_ratio changes. | 
|  | 7585 | * | 
|  | 7586 | * The reserve ratio obviously has absolutely no relation with the | 
|  | 7587 | * minimum watermarks. The lowmem reserve ratio can only make sense | 
|  | 7588 | * if in function of the boot time zone sizes. | 
|  | 7589 | */ | 
|  | 7590 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, | 
|  | 7591 | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | 7592 | { | 
|  | 7593 | proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | 7594 | setup_per_zone_lowmem_reserve(); | 
|  | 7595 | return 0; | 
|  | 7596 | } | 
|  | 7597 |  | 
|  | 7598 | /* | 
|  | 7599 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | 
|  | 7600 | * cpu.  It is the fraction of total pages in each zone that a hot per cpu | 
|  | 7601 | * pagelist can have before it gets flushed back to buddy allocator. | 
|  | 7602 | */ | 
|  | 7603 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, | 
|  | 7604 | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | 7605 | { | 
|  | 7606 | struct zone *zone; | 
|  | 7607 | int old_percpu_pagelist_fraction; | 
|  | 7608 | int ret; | 
|  | 7609 |  | 
|  | 7610 | mutex_lock(&pcp_batch_high_lock); | 
|  | 7611 | old_percpu_pagelist_fraction = percpu_pagelist_fraction; | 
|  | 7612 |  | 
|  | 7613 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | 7614 | if (!write || ret < 0) | 
|  | 7615 | goto out; | 
|  | 7616 |  | 
|  | 7617 | /* Sanity checking to avoid pcp imbalance */ | 
|  | 7618 | if (percpu_pagelist_fraction && | 
|  | 7619 | percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | 
|  | 7620 | percpu_pagelist_fraction = old_percpu_pagelist_fraction; | 
|  | 7621 | ret = -EINVAL; | 
|  | 7622 | goto out; | 
|  | 7623 | } | 
|  | 7624 |  | 
|  | 7625 | /* No change? */ | 
|  | 7626 | if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | 
|  | 7627 | goto out; | 
|  | 7628 |  | 
|  | 7629 | for_each_populated_zone(zone) { | 
|  | 7630 | unsigned int cpu; | 
|  | 7631 |  | 
|  | 7632 | for_each_possible_cpu(cpu) | 
|  | 7633 | pageset_set_high_and_batch(zone, | 
|  | 7634 | per_cpu_ptr(zone->pageset, cpu)); | 
|  | 7635 | } | 
|  | 7636 | out: | 
|  | 7637 | mutex_unlock(&pcp_batch_high_lock); | 
|  | 7638 | return ret; | 
|  | 7639 | } | 
|  | 7640 |  | 
|  | 7641 | #ifdef CONFIG_NUMA | 
|  | 7642 | int hashdist = HASHDIST_DEFAULT; | 
|  | 7643 |  | 
|  | 7644 | static int __init set_hashdist(char *str) | 
|  | 7645 | { | 
|  | 7646 | if (!str) | 
|  | 7647 | return 0; | 
|  | 7648 | hashdist = simple_strtoul(str, &str, 0); | 
|  | 7649 | return 1; | 
|  | 7650 | } | 
|  | 7651 | __setup("hashdist=", set_hashdist); | 
|  | 7652 | #endif | 
|  | 7653 |  | 
|  | 7654 | #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES | 
|  | 7655 | /* | 
|  | 7656 | * Returns the number of pages that arch has reserved but | 
|  | 7657 | * is not known to alloc_large_system_hash(). | 
|  | 7658 | */ | 
|  | 7659 | static unsigned long __init arch_reserved_kernel_pages(void) | 
|  | 7660 | { | 
|  | 7661 | return 0; | 
|  | 7662 | } | 
|  | 7663 | #endif | 
|  | 7664 |  | 
|  | 7665 | /* | 
|  | 7666 | * Adaptive scale is meant to reduce sizes of hash tables on large memory | 
|  | 7667 | * machines. As memory size is increased the scale is also increased but at | 
|  | 7668 | * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory | 
|  | 7669 | * quadruples the scale is increased by one, which means the size of hash table | 
|  | 7670 | * only doubles, instead of quadrupling as well. | 
|  | 7671 | * Because 32-bit systems cannot have large physical memory, where this scaling | 
|  | 7672 | * makes sense, it is disabled on such platforms. | 
|  | 7673 | */ | 
|  | 7674 | #if __BITS_PER_LONG > 32 | 
|  | 7675 | #define ADAPT_SCALE_BASE	(64ul << 30) | 
|  | 7676 | #define ADAPT_SCALE_SHIFT	2 | 
|  | 7677 | #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT) | 
|  | 7678 | #endif | 
|  | 7679 |  | 
|  | 7680 | /* | 
|  | 7681 | * allocate a large system hash table from bootmem | 
|  | 7682 | * - it is assumed that the hash table must contain an exact power-of-2 | 
|  | 7683 | *   quantity of entries | 
|  | 7684 | * - limit is the number of hash buckets, not the total allocation size | 
|  | 7685 | */ | 
|  | 7686 | void *__init alloc_large_system_hash(const char *tablename, | 
|  | 7687 | unsigned long bucketsize, | 
|  | 7688 | unsigned long numentries, | 
|  | 7689 | int scale, | 
|  | 7690 | int flags, | 
|  | 7691 | unsigned int *_hash_shift, | 
|  | 7692 | unsigned int *_hash_mask, | 
|  | 7693 | unsigned long low_limit, | 
|  | 7694 | unsigned long high_limit) | 
|  | 7695 | { | 
|  | 7696 | unsigned long long max = high_limit; | 
|  | 7697 | unsigned long log2qty, size; | 
|  | 7698 | void *table = NULL; | 
|  | 7699 | gfp_t gfp_flags; | 
|  | 7700 |  | 
|  | 7701 | /* allow the kernel cmdline to have a say */ | 
|  | 7702 | if (!numentries) { | 
|  | 7703 | /* round applicable memory size up to nearest megabyte */ | 
|  | 7704 | numentries = nr_kernel_pages; | 
|  | 7705 | numentries -= arch_reserved_kernel_pages(); | 
|  | 7706 |  | 
|  | 7707 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | 
|  | 7708 | if (PAGE_SHIFT < 20) | 
|  | 7709 | numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | 
|  | 7710 |  | 
|  | 7711 | #if __BITS_PER_LONG > 32 | 
|  | 7712 | if (!high_limit) { | 
|  | 7713 | unsigned long adapt; | 
|  | 7714 |  | 
|  | 7715 | for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | 
|  | 7716 | adapt <<= ADAPT_SCALE_SHIFT) | 
|  | 7717 | scale++; | 
|  | 7718 | } | 
|  | 7719 | #endif | 
|  | 7720 |  | 
|  | 7721 | /* limit to 1 bucket per 2^scale bytes of low memory */ | 
|  | 7722 | if (scale > PAGE_SHIFT) | 
|  | 7723 | numentries >>= (scale - PAGE_SHIFT); | 
|  | 7724 | else | 
|  | 7725 | numentries <<= (PAGE_SHIFT - scale); | 
|  | 7726 |  | 
|  | 7727 | /* Make sure we've got at least a 0-order allocation.. */ | 
|  | 7728 | if (unlikely(flags & HASH_SMALL)) { | 
|  | 7729 | /* Makes no sense without HASH_EARLY */ | 
|  | 7730 | WARN_ON(!(flags & HASH_EARLY)); | 
|  | 7731 | if (!(numentries >> *_hash_shift)) { | 
|  | 7732 | numentries = 1UL << *_hash_shift; | 
|  | 7733 | BUG_ON(!numentries); | 
|  | 7734 | } | 
|  | 7735 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | 
|  | 7736 | numentries = PAGE_SIZE / bucketsize; | 
|  | 7737 | } | 
|  | 7738 | numentries = roundup_pow_of_two(numentries); | 
|  | 7739 |  | 
|  | 7740 | /* limit allocation size to 1/16 total memory by default */ | 
|  | 7741 | if (max == 0) { | 
|  | 7742 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
|  | 7743 | do_div(max, bucketsize); | 
|  | 7744 | } | 
|  | 7745 | max = min(max, 0x80000000ULL); | 
|  | 7746 |  | 
|  | 7747 | if (numentries < low_limit) | 
|  | 7748 | numentries = low_limit; | 
|  | 7749 | if (numentries > max) | 
|  | 7750 | numentries = max; | 
|  | 7751 |  | 
|  | 7752 | log2qty = ilog2(numentries); | 
|  | 7753 |  | 
|  | 7754 | gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; | 
|  | 7755 | do { | 
|  | 7756 | size = bucketsize << log2qty; | 
|  | 7757 | if (flags & HASH_EARLY) { | 
|  | 7758 | if (flags & HASH_ZERO) | 
|  | 7759 | table = memblock_virt_alloc_nopanic(size, 0); | 
|  | 7760 | else | 
|  | 7761 | table = memblock_virt_alloc_raw(size, 0); | 
|  | 7762 | } else if (hashdist) { | 
|  | 7763 | table = __vmalloc(size, gfp_flags, PAGE_KERNEL); | 
|  | 7764 | } else { | 
|  | 7765 | /* | 
|  | 7766 | * If bucketsize is not a power-of-two, we may free | 
|  | 7767 | * some pages at the end of hash table which | 
|  | 7768 | * alloc_pages_exact() automatically does | 
|  | 7769 | */ | 
|  | 7770 | if (get_order(size) < MAX_ORDER) { | 
|  | 7771 | table = alloc_pages_exact(size, gfp_flags); | 
|  | 7772 | kmemleak_alloc(table, size, 1, gfp_flags); | 
|  | 7773 | } | 
|  | 7774 | } | 
|  | 7775 | } while (!table && size > PAGE_SIZE && --log2qty); | 
|  | 7776 |  | 
|  | 7777 | if (!table) | 
|  | 7778 | panic("Failed to allocate %s hash table\n", tablename); | 
|  | 7779 |  | 
|  | 7780 | pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", | 
|  | 7781 | tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); | 
|  | 7782 |  | 
|  | 7783 | if (_hash_shift) | 
|  | 7784 | *_hash_shift = log2qty; | 
|  | 7785 | if (_hash_mask) | 
|  | 7786 | *_hash_mask = (1 << log2qty) - 1; | 
|  | 7787 |  | 
|  | 7788 | return table; | 
|  | 7789 | } | 
|  | 7790 |  | 
|  | 7791 | /* | 
|  | 7792 | * This function checks whether pageblock includes unmovable pages or not. | 
|  | 7793 | * If @count is not zero, it is okay to include less @count unmovable pages | 
|  | 7794 | * | 
|  | 7795 | * PageLRU check without isolation or lru_lock could race so that | 
|  | 7796 | * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable | 
|  | 7797 | * check without lock_page also may miss some movable non-lru pages at | 
|  | 7798 | * race condition. So you can't expect this function should be exact. | 
|  | 7799 | */ | 
|  | 7800 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, | 
|  | 7801 | int migratetype, | 
|  | 7802 | bool skip_hwpoisoned_pages) | 
|  | 7803 | { | 
|  | 7804 | unsigned long pfn, iter, found; | 
|  | 7805 |  | 
|  | 7806 | /* | 
|  | 7807 | * TODO we could make this much more efficient by not checking every | 
|  | 7808 | * page in the range if we know all of them are in MOVABLE_ZONE and | 
|  | 7809 | * that the movable zone guarantees that pages are migratable but | 
|  | 7810 | * the later is not the case right now unfortunatelly. E.g. movablecore | 
|  | 7811 | * can still lead to having bootmem allocations in zone_movable. | 
|  | 7812 | */ | 
|  | 7813 |  | 
|  | 7814 | /* | 
|  | 7815 | * CMA allocations (alloc_contig_range) really need to mark isolate | 
|  | 7816 | * CMA pageblocks even when they are not movable in fact so consider | 
|  | 7817 | * them movable here. | 
|  | 7818 | */ | 
|  | 7819 | if (is_migrate_cma(migratetype) && | 
|  | 7820 | is_migrate_cma(get_pageblock_migratetype(page))) | 
|  | 7821 | return false; | 
|  | 7822 |  | 
|  | 7823 | pfn = page_to_pfn(page); | 
|  | 7824 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | 
|  | 7825 | unsigned long check = pfn + iter; | 
|  | 7826 |  | 
|  | 7827 | if (!pfn_valid_within(check)) | 
|  | 7828 | continue; | 
|  | 7829 |  | 
|  | 7830 | page = pfn_to_page(check); | 
|  | 7831 |  | 
|  | 7832 | if (PageReserved(page)) | 
|  | 7833 | goto unmovable; | 
|  | 7834 |  | 
|  | 7835 | /* | 
|  | 7836 | * If the zone is movable and we have ruled out all reserved | 
|  | 7837 | * pages then it should be reasonably safe to assume the rest | 
|  | 7838 | * is movable. | 
|  | 7839 | */ | 
|  | 7840 | if (zone_idx(zone) == ZONE_MOVABLE) | 
|  | 7841 | continue; | 
|  | 7842 |  | 
|  | 7843 | /* | 
|  | 7844 | * Hugepages are not in LRU lists, but they're movable. | 
|  | 7845 | * We need not scan over tail pages bacause we don't | 
|  | 7846 | * handle each tail page individually in migration. | 
|  | 7847 | */ | 
|  | 7848 | if (PageHuge(page)) { | 
|  | 7849 | struct page *head = compound_head(page); | 
|  | 7850 | unsigned int skip_pages; | 
|  | 7851 |  | 
|  | 7852 | if (!hugepage_migration_supported(page_hstate(head))) | 
|  | 7853 | goto unmovable; | 
|  | 7854 |  | 
|  | 7855 | skip_pages = (1 << compound_order(head)) - (page - head); | 
|  | 7856 | iter += skip_pages - 1; | 
|  | 7857 | continue; | 
|  | 7858 | } | 
|  | 7859 |  | 
|  | 7860 | /* | 
|  | 7861 | * We can't use page_count without pin a page | 
|  | 7862 | * because another CPU can free compound page. | 
|  | 7863 | * This check already skips compound tails of THP | 
|  | 7864 | * because their page->_refcount is zero at all time. | 
|  | 7865 | */ | 
|  | 7866 | if (!page_ref_count(page)) { | 
|  | 7867 | if (PageBuddy(page)) | 
|  | 7868 | iter += (1 << page_order(page)) - 1; | 
|  | 7869 | continue; | 
|  | 7870 | } | 
|  | 7871 |  | 
|  | 7872 | /* | 
|  | 7873 | * The HWPoisoned page may be not in buddy system, and | 
|  | 7874 | * page_count() is not 0. | 
|  | 7875 | */ | 
|  | 7876 | if (skip_hwpoisoned_pages && PageHWPoison(page)) | 
|  | 7877 | continue; | 
|  | 7878 |  | 
|  | 7879 | if (__PageMovable(page)) | 
|  | 7880 | continue; | 
|  | 7881 |  | 
|  | 7882 | if (!PageLRU(page)) | 
|  | 7883 | found++; | 
|  | 7884 | /* | 
|  | 7885 | * If there are RECLAIMABLE pages, we need to check | 
|  | 7886 | * it.  But now, memory offline itself doesn't call | 
|  | 7887 | * shrink_node_slabs() and it still to be fixed. | 
|  | 7888 | */ | 
|  | 7889 | /* | 
|  | 7890 | * If the page is not RAM, page_count()should be 0. | 
|  | 7891 | * we don't need more check. This is an _used_ not-movable page. | 
|  | 7892 | * | 
|  | 7893 | * The problematic thing here is PG_reserved pages. PG_reserved | 
|  | 7894 | * is set to both of a memory hole page and a _used_ kernel | 
|  | 7895 | * page at boot. | 
|  | 7896 | */ | 
|  | 7897 | if (found > count) | 
|  | 7898 | goto unmovable; | 
|  | 7899 | } | 
|  | 7900 | return false; | 
|  | 7901 | unmovable: | 
|  | 7902 | WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); | 
|  | 7903 | return true; | 
|  | 7904 | } | 
|  | 7905 |  | 
|  | 7906 | #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) | 
|  | 7907 |  | 
|  | 7908 | static unsigned long pfn_max_align_down(unsigned long pfn) | 
|  | 7909 | { | 
|  | 7910 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
|  | 7911 | pageblock_nr_pages) - 1); | 
|  | 7912 | } | 
|  | 7913 |  | 
|  | 7914 | static unsigned long pfn_max_align_up(unsigned long pfn) | 
|  | 7915 | { | 
|  | 7916 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
|  | 7917 | pageblock_nr_pages)); | 
|  | 7918 | } | 
|  | 7919 |  | 
|  | 7920 | /* [start, end) must belong to a single zone. */ | 
|  | 7921 | static int __alloc_contig_migrate_range(struct compact_control *cc, | 
|  | 7922 | unsigned long start, unsigned long end) | 
|  | 7923 | { | 
|  | 7924 | /* This function is based on compact_zone() from compaction.c. */ | 
|  | 7925 | unsigned long nr_reclaimed; | 
|  | 7926 | unsigned long pfn = start; | 
|  | 7927 | unsigned int tries = 0; | 
|  | 7928 | int ret = 0; | 
|  | 7929 |  | 
|  | 7930 | migrate_prep(); | 
|  | 7931 |  | 
|  | 7932 | while (pfn < end || !list_empty(&cc->migratepages)) { | 
|  | 7933 | if (fatal_signal_pending(current)) { | 
|  | 7934 | ret = -EINTR; | 
|  | 7935 | break; | 
|  | 7936 | } | 
|  | 7937 |  | 
|  | 7938 | if (list_empty(&cc->migratepages)) { | 
|  | 7939 | cc->nr_migratepages = 0; | 
|  | 7940 | pfn = isolate_migratepages_range(cc, pfn, end); | 
|  | 7941 | if (!pfn) { | 
|  | 7942 | ret = -EINTR; | 
|  | 7943 | break; | 
|  | 7944 | } | 
|  | 7945 | tries = 0; | 
|  | 7946 | } else if (++tries == 5) { | 
|  | 7947 | ret = ret < 0 ? ret : -EBUSY; | 
|  | 7948 | break; | 
|  | 7949 | } | 
|  | 7950 |  | 
|  | 7951 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, | 
|  | 7952 | &cc->migratepages); | 
|  | 7953 | cc->nr_migratepages -= nr_reclaimed; | 
|  | 7954 |  | 
|  | 7955 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, | 
|  | 7956 | NULL, 0, cc->mode, MR_CONTIG_RANGE); | 
|  | 7957 | } | 
|  | 7958 | if (ret < 0) { | 
|  | 7959 | putback_movable_pages(&cc->migratepages); | 
|  | 7960 | return ret; | 
|  | 7961 | } | 
|  | 7962 | return 0; | 
|  | 7963 | } | 
|  | 7964 |  | 
|  | 7965 | /** | 
|  | 7966 | * alloc_contig_range() -- tries to allocate given range of pages | 
|  | 7967 | * @start:	start PFN to allocate | 
|  | 7968 | * @end:	one-past-the-last PFN to allocate | 
|  | 7969 | * @migratetype:	migratetype of the underlaying pageblocks (either | 
|  | 7970 | *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks | 
|  | 7971 | *			in range must have the same migratetype and it must | 
|  | 7972 | *			be either of the two. | 
|  | 7973 | * @gfp_mask:	GFP mask to use during compaction | 
|  | 7974 | * | 
|  | 7975 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | 
|  | 7976 | * aligned.  The PFN range must belong to a single zone. | 
|  | 7977 | * | 
|  | 7978 | * The first thing this routine does is attempt to MIGRATE_ISOLATE all | 
|  | 7979 | * pageblocks in the range.  Once isolated, the pageblocks should not | 
|  | 7980 | * be modified by others. | 
|  | 7981 | * | 
|  | 7982 | * Returns zero on success or negative error code.  On success all | 
|  | 7983 | * pages which PFN is in [start, end) are allocated for the caller and | 
|  | 7984 | * need to be freed with free_contig_range(). | 
|  | 7985 | */ | 
|  | 7986 | int alloc_contig_range(unsigned long start, unsigned long end, | 
|  | 7987 | unsigned migratetype, gfp_t gfp_mask) | 
|  | 7988 | { | 
|  | 7989 | unsigned long outer_start, outer_end; | 
|  | 7990 | unsigned int order; | 
|  | 7991 | int ret = 0; | 
|  | 7992 |  | 
|  | 7993 | struct compact_control cc = { | 
|  | 7994 | .nr_migratepages = 0, | 
|  | 7995 | .order = -1, | 
|  | 7996 | .zone = page_zone(pfn_to_page(start)), | 
|  | 7997 | .mode = MIGRATE_SYNC, | 
|  | 7998 | .ignore_skip_hint = true, | 
|  | 7999 | .no_set_skip_hint = true, | 
|  | 8000 | .gfp_mask = current_gfp_context(gfp_mask), | 
|  | 8001 | }; | 
|  | 8002 | INIT_LIST_HEAD(&cc.migratepages); | 
|  | 8003 |  | 
|  | 8004 | /* | 
|  | 8005 | * What we do here is we mark all pageblocks in range as | 
|  | 8006 | * MIGRATE_ISOLATE.  Because pageblock and max order pages may | 
|  | 8007 | * have different sizes, and due to the way page allocator | 
|  | 8008 | * work, we align the range to biggest of the two pages so | 
|  | 8009 | * that page allocator won't try to merge buddies from | 
|  | 8010 | * different pageblocks and change MIGRATE_ISOLATE to some | 
|  | 8011 | * other migration type. | 
|  | 8012 | * | 
|  | 8013 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | 
|  | 8014 | * migrate the pages from an unaligned range (ie. pages that | 
|  | 8015 | * we are interested in).  This will put all the pages in | 
|  | 8016 | * range back to page allocator as MIGRATE_ISOLATE. | 
|  | 8017 | * | 
|  | 8018 | * When this is done, we take the pages in range from page | 
|  | 8019 | * allocator removing them from the buddy system.  This way | 
|  | 8020 | * page allocator will never consider using them. | 
|  | 8021 | * | 
|  | 8022 | * This lets us mark the pageblocks back as | 
|  | 8023 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | 
|  | 8024 | * aligned range but not in the unaligned, original range are | 
|  | 8025 | * put back to page allocator so that buddy can use them. | 
|  | 8026 | */ | 
|  | 8027 |  | 
|  | 8028 | ret = start_isolate_page_range(pfn_max_align_down(start), | 
|  | 8029 | pfn_max_align_up(end), migratetype, | 
|  | 8030 | false); | 
|  | 8031 | if (ret) | 
|  | 8032 | return ret; | 
|  | 8033 |  | 
|  | 8034 | /* | 
|  | 8035 | * In case of -EBUSY, we'd like to know which page causes problem. | 
|  | 8036 | * So, just fall through. test_pages_isolated() has a tracepoint | 
|  | 8037 | * which will report the busy page. | 
|  | 8038 | * | 
|  | 8039 | * It is possible that busy pages could become available before | 
|  | 8040 | * the call to test_pages_isolated, and the range will actually be | 
|  | 8041 | * allocated.  So, if we fall through be sure to clear ret so that | 
|  | 8042 | * -EBUSY is not accidentally used or returned to caller. | 
|  | 8043 | */ | 
|  | 8044 | ret = __alloc_contig_migrate_range(&cc, start, end); | 
|  | 8045 | if (ret && ret != -EBUSY) | 
|  | 8046 | goto done; | 
|  | 8047 | ret =0; | 
|  | 8048 |  | 
|  | 8049 | /* | 
|  | 8050 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | 
|  | 8051 | * aligned blocks that are marked as MIGRATE_ISOLATE.  What's | 
|  | 8052 | * more, all pages in [start, end) are free in page allocator. | 
|  | 8053 | * What we are going to do is to allocate all pages from | 
|  | 8054 | * [start, end) (that is remove them from page allocator). | 
|  | 8055 | * | 
|  | 8056 | * The only problem is that pages at the beginning and at the | 
|  | 8057 | * end of interesting range may be not aligned with pages that | 
|  | 8058 | * page allocator holds, ie. they can be part of higher order | 
|  | 8059 | * pages.  Because of this, we reserve the bigger range and | 
|  | 8060 | * once this is done free the pages we are not interested in. | 
|  | 8061 | * | 
|  | 8062 | * We don't have to hold zone->lock here because the pages are | 
|  | 8063 | * isolated thus they won't get removed from buddy. | 
|  | 8064 | */ | 
|  | 8065 |  | 
|  | 8066 | lru_add_drain_all(); | 
|  | 8067 | drain_all_pages(cc.zone); | 
|  | 8068 |  | 
|  | 8069 | order = 0; | 
|  | 8070 | outer_start = start; | 
|  | 8071 | while (!PageBuddy(pfn_to_page(outer_start))) { | 
|  | 8072 | if (++order >= MAX_ORDER) { | 
|  | 8073 | outer_start = start; | 
|  | 8074 | break; | 
|  | 8075 | } | 
|  | 8076 | outer_start &= ~0UL << order; | 
|  | 8077 | } | 
|  | 8078 |  | 
|  | 8079 | if (outer_start != start) { | 
|  | 8080 | order = page_order(pfn_to_page(outer_start)); | 
|  | 8081 |  | 
|  | 8082 | /* | 
|  | 8083 | * outer_start page could be small order buddy page and | 
|  | 8084 | * it doesn't include start page. Adjust outer_start | 
|  | 8085 | * in this case to report failed page properly | 
|  | 8086 | * on tracepoint in test_pages_isolated() | 
|  | 8087 | */ | 
|  | 8088 | if (outer_start + (1UL << order) <= start) | 
|  | 8089 | outer_start = start; | 
|  | 8090 | } | 
|  | 8091 |  | 
|  | 8092 | /* Make sure the range is really isolated. */ | 
|  | 8093 | if (test_pages_isolated(outer_start, end, false)) { | 
|  | 8094 | pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", | 
|  | 8095 | __func__, outer_start, end); | 
|  | 8096 | ret = -EBUSY; | 
|  | 8097 | goto done; | 
|  | 8098 | } | 
|  | 8099 |  | 
|  | 8100 | /* Grab isolated pages from freelists. */ | 
|  | 8101 | outer_end = isolate_freepages_range(&cc, outer_start, end); | 
|  | 8102 | if (!outer_end) { | 
|  | 8103 | ret = -EBUSY; | 
|  | 8104 | goto done; | 
|  | 8105 | } | 
|  | 8106 |  | 
|  | 8107 | /* Free head and tail (if any) */ | 
|  | 8108 | if (start != outer_start) | 
|  | 8109 | free_contig_range(outer_start, start - outer_start); | 
|  | 8110 | if (end != outer_end) | 
|  | 8111 | free_contig_range(end, outer_end - end); | 
|  | 8112 |  | 
|  | 8113 | done: | 
|  | 8114 | undo_isolate_page_range(pfn_max_align_down(start), | 
|  | 8115 | pfn_max_align_up(end), migratetype); | 
|  | 8116 | return ret; | 
|  | 8117 | } | 
|  | 8118 |  | 
|  | 8119 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | 
|  | 8120 | { | 
|  | 8121 | unsigned int count = 0; | 
|  | 8122 |  | 
|  | 8123 | for (; nr_pages--; pfn++) { | 
|  | 8124 | struct page *page = pfn_to_page(pfn); | 
|  | 8125 |  | 
|  | 8126 | count += page_count(page) != 1; | 
|  | 8127 | __free_page(page); | 
|  | 8128 | } | 
|  | 8129 | WARN(count != 0, "%d pages are still in use!\n", count); | 
|  | 8130 | } | 
|  | 8131 | #endif | 
|  | 8132 |  | 
|  | 8133 | /* | 
|  | 8134 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | 
|  | 8135 | * page high values need to be recalulated. | 
|  | 8136 | */ | 
|  | 8137 | void __meminit zone_pcp_update(struct zone *zone) | 
|  | 8138 | { | 
|  | 8139 | unsigned cpu; | 
|  | 8140 | mutex_lock(&pcp_batch_high_lock); | 
|  | 8141 | for_each_possible_cpu(cpu) | 
|  | 8142 | pageset_set_high_and_batch(zone, | 
|  | 8143 | per_cpu_ptr(zone->pageset, cpu)); | 
|  | 8144 | mutex_unlock(&pcp_batch_high_lock); | 
|  | 8145 | } | 
|  | 8146 |  | 
|  | 8147 | void zone_pcp_reset(struct zone *zone) | 
|  | 8148 | { | 
|  | 8149 | unsigned long flags; | 
|  | 8150 | int cpu; | 
|  | 8151 | struct per_cpu_pageset *pset; | 
|  | 8152 |  | 
|  | 8153 | /* avoid races with drain_pages()  */ | 
|  | 8154 | local_irq_save(flags); | 
|  | 8155 | if (zone->pageset != &boot_pageset) { | 
|  | 8156 | for_each_online_cpu(cpu) { | 
|  | 8157 | pset = per_cpu_ptr(zone->pageset, cpu); | 
|  | 8158 | drain_zonestat(zone, pset); | 
|  | 8159 | } | 
|  | 8160 | free_percpu(zone->pageset); | 
|  | 8161 | zone->pageset = &boot_pageset; | 
|  | 8162 | } | 
|  | 8163 | local_irq_restore(flags); | 
|  | 8164 | } | 
|  | 8165 |  | 
|  | 8166 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | 8167 | /* | 
|  | 8168 | * All pages in the range must be in a single zone and isolated | 
|  | 8169 | * before calling this. | 
|  | 8170 | */ | 
|  | 8171 | void | 
|  | 8172 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | 
|  | 8173 | { | 
|  | 8174 | struct page *page; | 
|  | 8175 | struct zone *zone; | 
|  | 8176 | unsigned int order, i; | 
|  | 8177 | unsigned long pfn; | 
|  | 8178 | unsigned long flags; | 
|  | 8179 | /* find the first valid pfn */ | 
|  | 8180 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | 
|  | 8181 | if (pfn_valid(pfn)) | 
|  | 8182 | break; | 
|  | 8183 | if (pfn == end_pfn) | 
|  | 8184 | return; | 
|  | 8185 | offline_mem_sections(pfn, end_pfn); | 
|  | 8186 | zone = page_zone(pfn_to_page(pfn)); | 
|  | 8187 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 8188 | pfn = start_pfn; | 
|  | 8189 | while (pfn < end_pfn) { | 
|  | 8190 | if (!pfn_valid(pfn)) { | 
|  | 8191 | pfn++; | 
|  | 8192 | continue; | 
|  | 8193 | } | 
|  | 8194 | page = pfn_to_page(pfn); | 
|  | 8195 | /* | 
|  | 8196 | * The HWPoisoned page may be not in buddy system, and | 
|  | 8197 | * page_count() is not 0. | 
|  | 8198 | */ | 
|  | 8199 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | 
|  | 8200 | pfn++; | 
|  | 8201 | SetPageReserved(page); | 
|  | 8202 | continue; | 
|  | 8203 | } | 
|  | 8204 |  | 
|  | 8205 | BUG_ON(page_count(page)); | 
|  | 8206 | BUG_ON(!PageBuddy(page)); | 
|  | 8207 | order = page_order(page); | 
|  | 8208 | #ifdef CONFIG_DEBUG_VM | 
|  | 8209 | pr_info("remove from free list %lx %d %lx\n", | 
|  | 8210 | pfn, 1 << order, end_pfn); | 
|  | 8211 | #endif | 
|  | 8212 | list_del(&page->lru); | 
|  | 8213 | rmv_page_order(page); | 
|  | 8214 | zone->free_area[order].nr_free--; | 
|  | 8215 | for (i = 0; i < (1 << order); i++) | 
|  | 8216 | SetPageReserved((page+i)); | 
|  | 8217 | pfn += (1 << order); | 
|  | 8218 | } | 
|  | 8219 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 8220 | } | 
|  | 8221 | #endif | 
|  | 8222 |  | 
|  | 8223 | bool is_free_buddy_page(struct page *page) | 
|  | 8224 | { | 
|  | 8225 | struct zone *zone = page_zone(page); | 
|  | 8226 | unsigned long pfn = page_to_pfn(page); | 
|  | 8227 | unsigned long flags; | 
|  | 8228 | unsigned int order; | 
|  | 8229 |  | 
|  | 8230 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 8231 | for (order = 0; order < MAX_ORDER; order++) { | 
|  | 8232 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
|  | 8233 |  | 
|  | 8234 | if (PageBuddy(page_head) && page_order(page_head) >= order) | 
|  | 8235 | break; | 
|  | 8236 | } | 
|  | 8237 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 8238 |  | 
|  | 8239 | return order < MAX_ORDER; | 
|  | 8240 | } | 
|  | 8241 |  | 
|  | 8242 | #ifdef CONFIG_MEMORY_FAILURE | 
|  | 8243 | /* | 
|  | 8244 | * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This | 
|  | 8245 | * test is performed under the zone lock to prevent a race against page | 
|  | 8246 | * allocation. | 
|  | 8247 | */ | 
|  | 8248 | bool set_hwpoison_free_buddy_page(struct page *page) | 
|  | 8249 | { | 
|  | 8250 | struct zone *zone = page_zone(page); | 
|  | 8251 | unsigned long pfn = page_to_pfn(page); | 
|  | 8252 | unsigned long flags; | 
|  | 8253 | unsigned int order; | 
|  | 8254 | bool hwpoisoned = false; | 
|  | 8255 |  | 
|  | 8256 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 8257 | for (order = 0; order < MAX_ORDER; order++) { | 
|  | 8258 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
|  | 8259 |  | 
|  | 8260 | if (PageBuddy(page_head) && page_order(page_head) >= order) { | 
|  | 8261 | if (!TestSetPageHWPoison(page)) | 
|  | 8262 | hwpoisoned = true; | 
|  | 8263 | break; | 
|  | 8264 | } | 
|  | 8265 | } | 
|  | 8266 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 8267 |  | 
|  | 8268 | return hwpoisoned; | 
|  | 8269 | } | 
|  | 8270 | #endif |