| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * pSeries NUMA support | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | 5 | * | 
|  | 6 | * This program is free software; you can redistribute it and/or | 
|  | 7 | * modify it under the terms of the GNU General Public License | 
|  | 8 | * as published by the Free Software Foundation; either version | 
|  | 9 | * 2 of the License, or (at your option) any later version. | 
|  | 10 | */ | 
|  | 11 | #define pr_fmt(fmt) "numa: " fmt | 
|  | 12 |  | 
|  | 13 | #include <linux/threads.h> | 
|  | 14 | #include <linux/bootmem.h> | 
|  | 15 | #include <linux/init.h> | 
|  | 16 | #include <linux/mm.h> | 
|  | 17 | #include <linux/mmzone.h> | 
|  | 18 | #include <linux/export.h> | 
|  | 19 | #include <linux/nodemask.h> | 
|  | 20 | #include <linux/cpu.h> | 
|  | 21 | #include <linux/notifier.h> | 
|  | 22 | #include <linux/memblock.h> | 
|  | 23 | #include <linux/of.h> | 
|  | 24 | #include <linux/pfn.h> | 
|  | 25 | #include <linux/cpuset.h> | 
|  | 26 | #include <linux/node.h> | 
|  | 27 | #include <linux/stop_machine.h> | 
|  | 28 | #include <linux/proc_fs.h> | 
|  | 29 | #include <linux/seq_file.h> | 
|  | 30 | #include <linux/uaccess.h> | 
|  | 31 | #include <linux/slab.h> | 
|  | 32 | #include <asm/cputhreads.h> | 
|  | 33 | #include <asm/sparsemem.h> | 
|  | 34 | #include <asm/prom.h> | 
|  | 35 | #include <asm/smp.h> | 
|  | 36 | #include <asm/cputhreads.h> | 
|  | 37 | #include <asm/topology.h> | 
|  | 38 | #include <asm/firmware.h> | 
|  | 39 | #include <asm/paca.h> | 
|  | 40 | #include <asm/hvcall.h> | 
|  | 41 | #include <asm/setup.h> | 
|  | 42 | #include <asm/vdso.h> | 
|  | 43 | #include <asm/drmem.h> | 
|  | 44 |  | 
|  | 45 | static int numa_enabled = 1; | 
|  | 46 |  | 
|  | 47 | static char *cmdline __initdata; | 
|  | 48 |  | 
|  | 49 | static int numa_debug; | 
|  | 50 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
|  | 51 |  | 
|  | 52 | int numa_cpu_lookup_table[NR_CPUS]; | 
|  | 53 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; | 
|  | 54 | struct pglist_data *node_data[MAX_NUMNODES]; | 
|  | 55 |  | 
|  | 56 | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
|  | 57 | EXPORT_SYMBOL(node_to_cpumask_map); | 
|  | 58 | EXPORT_SYMBOL(node_data); | 
|  | 59 |  | 
|  | 60 | static int min_common_depth; | 
|  | 61 | static int n_mem_addr_cells, n_mem_size_cells; | 
|  | 62 | static int form1_affinity; | 
|  | 63 |  | 
|  | 64 | #define MAX_DISTANCE_REF_POINTS 4 | 
|  | 65 | static int distance_ref_points_depth; | 
|  | 66 | static const __be32 *distance_ref_points; | 
|  | 67 | static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; | 
|  | 68 |  | 
|  | 69 | /* | 
|  | 70 | * Allocate node_to_cpumask_map based on number of available nodes | 
|  | 71 | * Requires node_possible_map to be valid. | 
|  | 72 | * | 
|  | 73 | * Note: cpumask_of_node() is not valid until after this is done. | 
|  | 74 | */ | 
|  | 75 | static void __init setup_node_to_cpumask_map(void) | 
|  | 76 | { | 
|  | 77 | unsigned int node; | 
|  | 78 |  | 
|  | 79 | /* setup nr_node_ids if not done yet */ | 
|  | 80 | if (nr_node_ids == MAX_NUMNODES) | 
|  | 81 | setup_nr_node_ids(); | 
|  | 82 |  | 
|  | 83 | /* allocate the map */ | 
|  | 84 | for_each_node(node) | 
|  | 85 | alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); | 
|  | 86 |  | 
|  | 87 | /* cpumask_of_node() will now work */ | 
|  | 88 | dbg("Node to cpumask map for %d nodes\n", nr_node_ids); | 
|  | 89 | } | 
|  | 90 |  | 
|  | 91 | static int __init fake_numa_create_new_node(unsigned long end_pfn, | 
|  | 92 | unsigned int *nid) | 
|  | 93 | { | 
|  | 94 | unsigned long long mem; | 
|  | 95 | char *p = cmdline; | 
|  | 96 | static unsigned int fake_nid; | 
|  | 97 | static unsigned long long curr_boundary; | 
|  | 98 |  | 
|  | 99 | /* | 
|  | 100 | * Modify node id, iff we started creating NUMA nodes | 
|  | 101 | * We want to continue from where we left of the last time | 
|  | 102 | */ | 
|  | 103 | if (fake_nid) | 
|  | 104 | *nid = fake_nid; | 
|  | 105 | /* | 
|  | 106 | * In case there are no more arguments to parse, the | 
|  | 107 | * node_id should be the same as the last fake node id | 
|  | 108 | * (we've handled this above). | 
|  | 109 | */ | 
|  | 110 | if (!p) | 
|  | 111 | return 0; | 
|  | 112 |  | 
|  | 113 | mem = memparse(p, &p); | 
|  | 114 | if (!mem) | 
|  | 115 | return 0; | 
|  | 116 |  | 
|  | 117 | if (mem < curr_boundary) | 
|  | 118 | return 0; | 
|  | 119 |  | 
|  | 120 | curr_boundary = mem; | 
|  | 121 |  | 
|  | 122 | if ((end_pfn << PAGE_SHIFT) > mem) { | 
|  | 123 | /* | 
|  | 124 | * Skip commas and spaces | 
|  | 125 | */ | 
|  | 126 | while (*p == ',' || *p == ' ' || *p == '\t') | 
|  | 127 | p++; | 
|  | 128 |  | 
|  | 129 | cmdline = p; | 
|  | 130 | fake_nid++; | 
|  | 131 | *nid = fake_nid; | 
|  | 132 | dbg("created new fake_node with id %d\n", fake_nid); | 
|  | 133 | return 1; | 
|  | 134 | } | 
|  | 135 | return 0; | 
|  | 136 | } | 
|  | 137 |  | 
|  | 138 | static void reset_numa_cpu_lookup_table(void) | 
|  | 139 | { | 
|  | 140 | unsigned int cpu; | 
|  | 141 |  | 
|  | 142 | for_each_possible_cpu(cpu) | 
|  | 143 | numa_cpu_lookup_table[cpu] = -1; | 
|  | 144 | } | 
|  | 145 |  | 
|  | 146 | static void map_cpu_to_node(int cpu, int node) | 
|  | 147 | { | 
|  | 148 | update_numa_cpu_lookup_table(cpu, node); | 
|  | 149 |  | 
|  | 150 | dbg("adding cpu %d to node %d\n", cpu, node); | 
|  | 151 |  | 
|  | 152 | if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) | 
|  | 153 | cpumask_set_cpu(cpu, node_to_cpumask_map[node]); | 
|  | 154 | } | 
|  | 155 |  | 
|  | 156 | #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) | 
|  | 157 | static void unmap_cpu_from_node(unsigned long cpu) | 
|  | 158 | { | 
|  | 159 | int node = numa_cpu_lookup_table[cpu]; | 
|  | 160 |  | 
|  | 161 | dbg("removing cpu %lu from node %d\n", cpu, node); | 
|  | 162 |  | 
|  | 163 | if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { | 
|  | 164 | cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); | 
|  | 165 | } else { | 
|  | 166 | printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
|  | 167 | cpu, node); | 
|  | 168 | } | 
|  | 169 | } | 
|  | 170 | #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ | 
|  | 171 |  | 
|  | 172 | /* must hold reference to node during call */ | 
|  | 173 | static const __be32 *of_get_associativity(struct device_node *dev) | 
|  | 174 | { | 
|  | 175 | return of_get_property(dev, "ibm,associativity", NULL); | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | int __node_distance(int a, int b) | 
|  | 179 | { | 
|  | 180 | int i; | 
|  | 181 | int distance = LOCAL_DISTANCE; | 
|  | 182 |  | 
|  | 183 | if (!form1_affinity) | 
|  | 184 | return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); | 
|  | 185 |  | 
|  | 186 | for (i = 0; i < distance_ref_points_depth; i++) { | 
|  | 187 | if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) | 
|  | 188 | break; | 
|  | 189 |  | 
|  | 190 | /* Double the distance for each NUMA level */ | 
|  | 191 | distance *= 2; | 
|  | 192 | } | 
|  | 193 |  | 
|  | 194 | return distance; | 
|  | 195 | } | 
|  | 196 | EXPORT_SYMBOL(__node_distance); | 
|  | 197 |  | 
|  | 198 | static void initialize_distance_lookup_table(int nid, | 
|  | 199 | const __be32 *associativity) | 
|  | 200 | { | 
|  | 201 | int i; | 
|  | 202 |  | 
|  | 203 | if (!form1_affinity) | 
|  | 204 | return; | 
|  | 205 |  | 
|  | 206 | for (i = 0; i < distance_ref_points_depth; i++) { | 
|  | 207 | const __be32 *entry; | 
|  | 208 |  | 
|  | 209 | entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; | 
|  | 210 | distance_lookup_table[nid][i] = of_read_number(entry, 1); | 
|  | 211 | } | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa | 
|  | 215 | * info is found. | 
|  | 216 | */ | 
|  | 217 | static int associativity_to_nid(const __be32 *associativity) | 
|  | 218 | { | 
|  | 219 | int nid = -1; | 
|  | 220 |  | 
|  | 221 | if (min_common_depth == -1) | 
|  | 222 | goto out; | 
|  | 223 |  | 
|  | 224 | if (of_read_number(associativity, 1) >= min_common_depth) | 
|  | 225 | nid = of_read_number(&associativity[min_common_depth], 1); | 
|  | 226 |  | 
|  | 227 | /* POWER4 LPAR uses 0xffff as invalid node */ | 
|  | 228 | if (nid == 0xffff || nid >= MAX_NUMNODES) | 
|  | 229 | nid = -1; | 
|  | 230 |  | 
|  | 231 | if (nid > 0 && | 
|  | 232 | of_read_number(associativity, 1) >= distance_ref_points_depth) { | 
|  | 233 | /* | 
|  | 234 | * Skip the length field and send start of associativity array | 
|  | 235 | */ | 
|  | 236 | initialize_distance_lookup_table(nid, associativity + 1); | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | out: | 
|  | 240 | return nid; | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | /* Returns the nid associated with the given device tree node, | 
|  | 244 | * or -1 if not found. | 
|  | 245 | */ | 
|  | 246 | static int of_node_to_nid_single(struct device_node *device) | 
|  | 247 | { | 
|  | 248 | int nid = -1; | 
|  | 249 | const __be32 *tmp; | 
|  | 250 |  | 
|  | 251 | tmp = of_get_associativity(device); | 
|  | 252 | if (tmp) | 
|  | 253 | nid = associativity_to_nid(tmp); | 
|  | 254 | return nid; | 
|  | 255 | } | 
|  | 256 |  | 
|  | 257 | /* Walk the device tree upwards, looking for an associativity id */ | 
|  | 258 | int of_node_to_nid(struct device_node *device) | 
|  | 259 | { | 
|  | 260 | int nid = -1; | 
|  | 261 |  | 
|  | 262 | of_node_get(device); | 
|  | 263 | while (device) { | 
|  | 264 | nid = of_node_to_nid_single(device); | 
|  | 265 | if (nid != -1) | 
|  | 266 | break; | 
|  | 267 |  | 
|  | 268 | device = of_get_next_parent(device); | 
|  | 269 | } | 
|  | 270 | of_node_put(device); | 
|  | 271 |  | 
|  | 272 | return nid; | 
|  | 273 | } | 
|  | 274 | EXPORT_SYMBOL(of_node_to_nid); | 
|  | 275 |  | 
|  | 276 | static int __init find_min_common_depth(void) | 
|  | 277 | { | 
|  | 278 | int depth; | 
|  | 279 | struct device_node *root; | 
|  | 280 |  | 
|  | 281 | if (firmware_has_feature(FW_FEATURE_OPAL)) | 
|  | 282 | root = of_find_node_by_path("/ibm,opal"); | 
|  | 283 | else | 
|  | 284 | root = of_find_node_by_path("/rtas"); | 
|  | 285 | if (!root) | 
|  | 286 | root = of_find_node_by_path("/"); | 
|  | 287 |  | 
|  | 288 | /* | 
|  | 289 | * This property is a set of 32-bit integers, each representing | 
|  | 290 | * an index into the ibm,associativity nodes. | 
|  | 291 | * | 
|  | 292 | * With form 0 affinity the first integer is for an SMP configuration | 
|  | 293 | * (should be all 0's) and the second is for a normal NUMA | 
|  | 294 | * configuration. We have only one level of NUMA. | 
|  | 295 | * | 
|  | 296 | * With form 1 affinity the first integer is the most significant | 
|  | 297 | * NUMA boundary and the following are progressively less significant | 
|  | 298 | * boundaries. There can be more than one level of NUMA. | 
|  | 299 | */ | 
|  | 300 | distance_ref_points = of_get_property(root, | 
|  | 301 | "ibm,associativity-reference-points", | 
|  | 302 | &distance_ref_points_depth); | 
|  | 303 |  | 
|  | 304 | if (!distance_ref_points) { | 
|  | 305 | dbg("NUMA: ibm,associativity-reference-points not found.\n"); | 
|  | 306 | goto err; | 
|  | 307 | } | 
|  | 308 |  | 
|  | 309 | distance_ref_points_depth /= sizeof(int); | 
|  | 310 |  | 
|  | 311 | if (firmware_has_feature(FW_FEATURE_OPAL) || | 
|  | 312 | firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { | 
|  | 313 | dbg("Using form 1 affinity\n"); | 
|  | 314 | form1_affinity = 1; | 
|  | 315 | } | 
|  | 316 |  | 
|  | 317 | if (form1_affinity) { | 
|  | 318 | depth = of_read_number(distance_ref_points, 1); | 
|  | 319 | } else { | 
|  | 320 | if (distance_ref_points_depth < 2) { | 
|  | 321 | printk(KERN_WARNING "NUMA: " | 
|  | 322 | "short ibm,associativity-reference-points\n"); | 
|  | 323 | goto err; | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | depth = of_read_number(&distance_ref_points[1], 1); | 
|  | 327 | } | 
|  | 328 |  | 
|  | 329 | /* | 
|  | 330 | * Warn and cap if the hardware supports more than | 
|  | 331 | * MAX_DISTANCE_REF_POINTS domains. | 
|  | 332 | */ | 
|  | 333 | if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { | 
|  | 334 | printk(KERN_WARNING "NUMA: distance array capped at " | 
|  | 335 | "%d entries\n", MAX_DISTANCE_REF_POINTS); | 
|  | 336 | distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; | 
|  | 337 | } | 
|  | 338 |  | 
|  | 339 | of_node_put(root); | 
|  | 340 | return depth; | 
|  | 341 |  | 
|  | 342 | err: | 
|  | 343 | of_node_put(root); | 
|  | 344 | return -1; | 
|  | 345 | } | 
|  | 346 |  | 
|  | 347 | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
|  | 348 | { | 
|  | 349 | struct device_node *memory = NULL; | 
|  | 350 |  | 
|  | 351 | memory = of_find_node_by_type(memory, "memory"); | 
|  | 352 | if (!memory) | 
|  | 353 | panic("numa.c: No memory nodes found!"); | 
|  | 354 |  | 
|  | 355 | *n_addr_cells = of_n_addr_cells(memory); | 
|  | 356 | *n_size_cells = of_n_size_cells(memory); | 
|  | 357 | of_node_put(memory); | 
|  | 358 | } | 
|  | 359 |  | 
|  | 360 | static unsigned long read_n_cells(int n, const __be32 **buf) | 
|  | 361 | { | 
|  | 362 | unsigned long result = 0; | 
|  | 363 |  | 
|  | 364 | while (n--) { | 
|  | 365 | result = (result << 32) | of_read_number(*buf, 1); | 
|  | 366 | (*buf)++; | 
|  | 367 | } | 
|  | 368 | return result; | 
|  | 369 | } | 
|  | 370 |  | 
|  | 371 | struct assoc_arrays { | 
|  | 372 | u32	n_arrays; | 
|  | 373 | u32	array_sz; | 
|  | 374 | const __be32 *arrays; | 
|  | 375 | }; | 
|  | 376 |  | 
|  | 377 | /* | 
|  | 378 | * Retrieve and validate the list of associativity arrays for drconf | 
|  | 379 | * memory from the ibm,associativity-lookup-arrays property of the | 
|  | 380 | * device tree.. | 
|  | 381 | * | 
|  | 382 | * The layout of the ibm,associativity-lookup-arrays property is a number N | 
|  | 383 | * indicating the number of associativity arrays, followed by a number M | 
|  | 384 | * indicating the size of each associativity array, followed by a list | 
|  | 385 | * of N associativity arrays. | 
|  | 386 | */ | 
|  | 387 | static int of_get_assoc_arrays(struct assoc_arrays *aa) | 
|  | 388 | { | 
|  | 389 | struct device_node *memory; | 
|  | 390 | const __be32 *prop; | 
|  | 391 | u32 len; | 
|  | 392 |  | 
|  | 393 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | 394 | if (!memory) | 
|  | 395 | return -1; | 
|  | 396 |  | 
|  | 397 | prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); | 
|  | 398 | if (!prop || len < 2 * sizeof(unsigned int)) { | 
|  | 399 | of_node_put(memory); | 
|  | 400 | return -1; | 
|  | 401 | } | 
|  | 402 |  | 
|  | 403 | aa->n_arrays = of_read_number(prop++, 1); | 
|  | 404 | aa->array_sz = of_read_number(prop++, 1); | 
|  | 405 |  | 
|  | 406 | of_node_put(memory); | 
|  | 407 |  | 
|  | 408 | /* Now that we know the number of arrays and size of each array, | 
|  | 409 | * revalidate the size of the property read in. | 
|  | 410 | */ | 
|  | 411 | if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | 
|  | 412 | return -1; | 
|  | 413 |  | 
|  | 414 | aa->arrays = prop; | 
|  | 415 | return 0; | 
|  | 416 | } | 
|  | 417 |  | 
|  | 418 | /* | 
|  | 419 | * This is like of_node_to_nid_single() for memory represented in the | 
|  | 420 | * ibm,dynamic-reconfiguration-memory node. | 
|  | 421 | */ | 
|  | 422 | static int of_drconf_to_nid_single(struct drmem_lmb *lmb) | 
|  | 423 | { | 
|  | 424 | struct assoc_arrays aa = { .arrays = NULL }; | 
|  | 425 | int default_nid = 0; | 
|  | 426 | int nid = default_nid; | 
|  | 427 | int rc, index; | 
|  | 428 |  | 
|  | 429 | rc = of_get_assoc_arrays(&aa); | 
|  | 430 | if (rc) | 
|  | 431 | return default_nid; | 
|  | 432 |  | 
|  | 433 | if (min_common_depth > 0 && min_common_depth <= aa.array_sz && | 
|  | 434 | !(lmb->flags & DRCONF_MEM_AI_INVALID) && | 
|  | 435 | lmb->aa_index < aa.n_arrays) { | 
|  | 436 | index = lmb->aa_index * aa.array_sz + min_common_depth - 1; | 
|  | 437 | nid = of_read_number(&aa.arrays[index], 1); | 
|  | 438 |  | 
|  | 439 | if (nid == 0xffff || nid >= MAX_NUMNODES) | 
|  | 440 | nid = default_nid; | 
|  | 441 |  | 
|  | 442 | if (nid > 0) { | 
|  | 443 | index = lmb->aa_index * aa.array_sz; | 
|  | 444 | initialize_distance_lookup_table(nid, | 
|  | 445 | &aa.arrays[index]); | 
|  | 446 | } | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 | return nid; | 
|  | 450 | } | 
|  | 451 |  | 
|  | 452 | /* | 
|  | 453 | * Figure out to which domain a cpu belongs and stick it there. | 
|  | 454 | * Return the id of the domain used. | 
|  | 455 | */ | 
|  | 456 | static int numa_setup_cpu(unsigned long lcpu) | 
|  | 457 | { | 
|  | 458 | int nid = -1; | 
|  | 459 | struct device_node *cpu; | 
|  | 460 |  | 
|  | 461 | /* | 
|  | 462 | * If a valid cpu-to-node mapping is already available, use it | 
|  | 463 | * directly instead of querying the firmware, since it represents | 
|  | 464 | * the most recent mapping notified to us by the platform (eg: VPHN). | 
|  | 465 | */ | 
|  | 466 | if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { | 
|  | 467 | map_cpu_to_node(lcpu, nid); | 
|  | 468 | return nid; | 
|  | 469 | } | 
|  | 470 |  | 
|  | 471 | cpu = of_get_cpu_node(lcpu, NULL); | 
|  | 472 |  | 
|  | 473 | if (!cpu) { | 
|  | 474 | WARN_ON(1); | 
|  | 475 | if (cpu_present(lcpu)) | 
|  | 476 | goto out_present; | 
|  | 477 | else | 
|  | 478 | goto out; | 
|  | 479 | } | 
|  | 480 |  | 
|  | 481 | nid = of_node_to_nid_single(cpu); | 
|  | 482 |  | 
|  | 483 | out_present: | 
|  | 484 | if (nid < 0 || !node_possible(nid)) | 
|  | 485 | nid = first_online_node; | 
|  | 486 |  | 
|  | 487 | map_cpu_to_node(lcpu, nid); | 
|  | 488 | of_node_put(cpu); | 
|  | 489 | out: | 
|  | 490 | return nid; | 
|  | 491 | } | 
|  | 492 |  | 
|  | 493 | static void verify_cpu_node_mapping(int cpu, int node) | 
|  | 494 | { | 
|  | 495 | int base, sibling, i; | 
|  | 496 |  | 
|  | 497 | /* Verify that all the threads in the core belong to the same node */ | 
|  | 498 | base = cpu_first_thread_sibling(cpu); | 
|  | 499 |  | 
|  | 500 | for (i = 0; i < threads_per_core; i++) { | 
|  | 501 | sibling = base + i; | 
|  | 502 |  | 
|  | 503 | if (sibling == cpu || cpu_is_offline(sibling)) | 
|  | 504 | continue; | 
|  | 505 |  | 
|  | 506 | if (cpu_to_node(sibling) != node) { | 
|  | 507 | WARN(1, "CPU thread siblings %d and %d don't belong" | 
|  | 508 | " to the same node!\n", cpu, sibling); | 
|  | 509 | break; | 
|  | 510 | } | 
|  | 511 | } | 
|  | 512 | } | 
|  | 513 |  | 
|  | 514 | /* Must run before sched domains notifier. */ | 
|  | 515 | static int ppc_numa_cpu_prepare(unsigned int cpu) | 
|  | 516 | { | 
|  | 517 | int nid; | 
|  | 518 |  | 
|  | 519 | nid = numa_setup_cpu(cpu); | 
|  | 520 | verify_cpu_node_mapping(cpu, nid); | 
|  | 521 | return 0; | 
|  | 522 | } | 
|  | 523 |  | 
|  | 524 | static int ppc_numa_cpu_dead(unsigned int cpu) | 
|  | 525 | { | 
|  | 526 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 527 | unmap_cpu_from_node(cpu); | 
|  | 528 | #endif | 
|  | 529 | return 0; | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 | /* | 
|  | 533 | * Check and possibly modify a memory region to enforce the memory limit. | 
|  | 534 | * | 
|  | 535 | * Returns the size the region should have to enforce the memory limit. | 
|  | 536 | * This will either be the original value of size, a truncated value, | 
|  | 537 | * or zero. If the returned value of size is 0 the region should be | 
|  | 538 | * discarded as it lies wholly above the memory limit. | 
|  | 539 | */ | 
|  | 540 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
|  | 541 | unsigned long size) | 
|  | 542 | { | 
|  | 543 | /* | 
|  | 544 | * We use memblock_end_of_DRAM() in here instead of memory_limit because | 
|  | 545 | * we've already adjusted it for the limit and it takes care of | 
|  | 546 | * having memory holes below the limit.  Also, in the case of | 
|  | 547 | * iommu_is_off, memory_limit is not set but is implicitly enforced. | 
|  | 548 | */ | 
|  | 549 |  | 
|  | 550 | if (start + size <= memblock_end_of_DRAM()) | 
|  | 551 | return size; | 
|  | 552 |  | 
|  | 553 | if (start >= memblock_end_of_DRAM()) | 
|  | 554 | return 0; | 
|  | 555 |  | 
|  | 556 | return memblock_end_of_DRAM() - start; | 
|  | 557 | } | 
|  | 558 |  | 
|  | 559 | /* | 
|  | 560 | * Reads the counter for a given entry in | 
|  | 561 | * linux,drconf-usable-memory property | 
|  | 562 | */ | 
|  | 563 | static inline int __init read_usm_ranges(const __be32 **usm) | 
|  | 564 | { | 
|  | 565 | /* | 
|  | 566 | * For each lmb in ibm,dynamic-memory a corresponding | 
|  | 567 | * entry in linux,drconf-usable-memory property contains | 
|  | 568 | * a counter followed by that many (base, size) duple. | 
|  | 569 | * read the counter from linux,drconf-usable-memory | 
|  | 570 | */ | 
|  | 571 | return read_n_cells(n_mem_size_cells, usm); | 
|  | 572 | } | 
|  | 573 |  | 
|  | 574 | /* | 
|  | 575 | * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | 
|  | 576 | * node.  This assumes n_mem_{addr,size}_cells have been set. | 
|  | 577 | */ | 
|  | 578 | static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, | 
|  | 579 | const __be32 **usm) | 
|  | 580 | { | 
|  | 581 | unsigned int ranges, is_kexec_kdump = 0; | 
|  | 582 | unsigned long base, size, sz; | 
|  | 583 | int nid; | 
|  | 584 |  | 
|  | 585 | /* | 
|  | 586 | * Skip this block if the reserved bit is set in flags (0x80) | 
|  | 587 | * or if the block is not assigned to this partition (0x8) | 
|  | 588 | */ | 
|  | 589 | if ((lmb->flags & DRCONF_MEM_RESERVED) | 
|  | 590 | || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | 
|  | 591 | return; | 
|  | 592 |  | 
|  | 593 | if (*usm) | 
|  | 594 | is_kexec_kdump = 1; | 
|  | 595 |  | 
|  | 596 | base = lmb->base_addr; | 
|  | 597 | size = drmem_lmb_size(); | 
|  | 598 | ranges = 1; | 
|  | 599 |  | 
|  | 600 | if (is_kexec_kdump) { | 
|  | 601 | ranges = read_usm_ranges(usm); | 
|  | 602 | if (!ranges) /* there are no (base, size) duple */ | 
|  | 603 | return; | 
|  | 604 | } | 
|  | 605 |  | 
|  | 606 | do { | 
|  | 607 | if (is_kexec_kdump) { | 
|  | 608 | base = read_n_cells(n_mem_addr_cells, usm); | 
|  | 609 | size = read_n_cells(n_mem_size_cells, usm); | 
|  | 610 | } | 
|  | 611 |  | 
|  | 612 | nid = of_drconf_to_nid_single(lmb); | 
|  | 613 | fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), | 
|  | 614 | &nid); | 
|  | 615 | node_set_online(nid); | 
|  | 616 | sz = numa_enforce_memory_limit(base, size); | 
|  | 617 | if (sz) | 
|  | 618 | memblock_set_node(base, sz, &memblock.memory, nid); | 
|  | 619 | } while (--ranges); | 
|  | 620 | } | 
|  | 621 |  | 
|  | 622 | static int __init parse_numa_properties(void) | 
|  | 623 | { | 
|  | 624 | struct device_node *memory; | 
|  | 625 | int default_nid = 0; | 
|  | 626 | unsigned long i; | 
|  | 627 |  | 
|  | 628 | if (numa_enabled == 0) { | 
|  | 629 | printk(KERN_WARNING "NUMA disabled by user\n"); | 
|  | 630 | return -1; | 
|  | 631 | } | 
|  | 632 |  | 
|  | 633 | min_common_depth = find_min_common_depth(); | 
|  | 634 |  | 
|  | 635 | if (min_common_depth < 0) | 
|  | 636 | return min_common_depth; | 
|  | 637 |  | 
|  | 638 | dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
|  | 639 |  | 
|  | 640 | /* | 
|  | 641 | * Even though we connect cpus to numa domains later in SMP | 
|  | 642 | * init, we need to know the node ids now. This is because | 
|  | 643 | * each node to be onlined must have NODE_DATA etc backing it. | 
|  | 644 | */ | 
|  | 645 | for_each_present_cpu(i) { | 
|  | 646 | struct device_node *cpu; | 
|  | 647 | int nid; | 
|  | 648 |  | 
|  | 649 | cpu = of_get_cpu_node(i, NULL); | 
|  | 650 | BUG_ON(!cpu); | 
|  | 651 | nid = of_node_to_nid_single(cpu); | 
|  | 652 | of_node_put(cpu); | 
|  | 653 |  | 
|  | 654 | /* | 
|  | 655 | * Don't fall back to default_nid yet -- we will plug | 
|  | 656 | * cpus into nodes once the memory scan has discovered | 
|  | 657 | * the topology. | 
|  | 658 | */ | 
|  | 659 | if (nid < 0) | 
|  | 660 | continue; | 
|  | 661 | node_set_online(nid); | 
|  | 662 | } | 
|  | 663 |  | 
|  | 664 | get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
|  | 665 |  | 
|  | 666 | for_each_node_by_type(memory, "memory") { | 
|  | 667 | unsigned long start; | 
|  | 668 | unsigned long size; | 
|  | 669 | int nid; | 
|  | 670 | int ranges; | 
|  | 671 | const __be32 *memcell_buf; | 
|  | 672 | unsigned int len; | 
|  | 673 |  | 
|  | 674 | memcell_buf = of_get_property(memory, | 
|  | 675 | "linux,usable-memory", &len); | 
|  | 676 | if (!memcell_buf || len <= 0) | 
|  | 677 | memcell_buf = of_get_property(memory, "reg", &len); | 
|  | 678 | if (!memcell_buf || len <= 0) | 
|  | 679 | continue; | 
|  | 680 |  | 
|  | 681 | /* ranges in cell */ | 
|  | 682 | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  | 683 | new_range: | 
|  | 684 | /* these are order-sensitive, and modify the buffer pointer */ | 
|  | 685 | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | 686 | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  | 687 |  | 
|  | 688 | /* | 
|  | 689 | * Assumption: either all memory nodes or none will | 
|  | 690 | * have associativity properties.  If none, then | 
|  | 691 | * everything goes to default_nid. | 
|  | 692 | */ | 
|  | 693 | nid = of_node_to_nid_single(memory); | 
|  | 694 | if (nid < 0) | 
|  | 695 | nid = default_nid; | 
|  | 696 |  | 
|  | 697 | fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | 
|  | 698 | node_set_online(nid); | 
|  | 699 |  | 
|  | 700 | size = numa_enforce_memory_limit(start, size); | 
|  | 701 | if (size) | 
|  | 702 | memblock_set_node(start, size, &memblock.memory, nid); | 
|  | 703 |  | 
|  | 704 | if (--ranges) | 
|  | 705 | goto new_range; | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | /* | 
|  | 709 | * Now do the same thing for each MEMBLOCK listed in the | 
|  | 710 | * ibm,dynamic-memory property in the | 
|  | 711 | * ibm,dynamic-reconfiguration-memory node. | 
|  | 712 | */ | 
|  | 713 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | 714 | if (memory) { | 
|  | 715 | walk_drmem_lmbs(memory, numa_setup_drmem_lmb); | 
|  | 716 | of_node_put(memory); | 
|  | 717 | } | 
|  | 718 |  | 
|  | 719 | return 0; | 
|  | 720 | } | 
|  | 721 |  | 
|  | 722 | static void __init setup_nonnuma(void) | 
|  | 723 | { | 
|  | 724 | unsigned long top_of_ram = memblock_end_of_DRAM(); | 
|  | 725 | unsigned long total_ram = memblock_phys_mem_size(); | 
|  | 726 | unsigned long start_pfn, end_pfn; | 
|  | 727 | unsigned int nid = 0; | 
|  | 728 | struct memblock_region *reg; | 
|  | 729 |  | 
|  | 730 | printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
|  | 731 | top_of_ram, total_ram); | 
|  | 732 | printk(KERN_DEBUG "Memory hole size: %ldMB\n", | 
|  | 733 | (top_of_ram - total_ram) >> 20); | 
|  | 734 |  | 
|  | 735 | for_each_memblock(memory, reg) { | 
|  | 736 | start_pfn = memblock_region_memory_base_pfn(reg); | 
|  | 737 | end_pfn = memblock_region_memory_end_pfn(reg); | 
|  | 738 |  | 
|  | 739 | fake_numa_create_new_node(end_pfn, &nid); | 
|  | 740 | memblock_set_node(PFN_PHYS(start_pfn), | 
|  | 741 | PFN_PHYS(end_pfn - start_pfn), | 
|  | 742 | &memblock.memory, nid); | 
|  | 743 | node_set_online(nid); | 
|  | 744 | } | 
|  | 745 | } | 
|  | 746 |  | 
|  | 747 | void __init dump_numa_cpu_topology(void) | 
|  | 748 | { | 
|  | 749 | unsigned int node; | 
|  | 750 | unsigned int cpu, count; | 
|  | 751 |  | 
|  | 752 | if (min_common_depth == -1 || !numa_enabled) | 
|  | 753 | return; | 
|  | 754 |  | 
|  | 755 | for_each_online_node(node) { | 
|  | 756 | pr_info("Node %d CPUs:", node); | 
|  | 757 |  | 
|  | 758 | count = 0; | 
|  | 759 | /* | 
|  | 760 | * If we used a CPU iterator here we would miss printing | 
|  | 761 | * the holes in the cpumap. | 
|  | 762 | */ | 
|  | 763 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) { | 
|  | 764 | if (cpumask_test_cpu(cpu, | 
|  | 765 | node_to_cpumask_map[node])) { | 
|  | 766 | if (count == 0) | 
|  | 767 | pr_cont(" %u", cpu); | 
|  | 768 | ++count; | 
|  | 769 | } else { | 
|  | 770 | if (count > 1) | 
|  | 771 | pr_cont("-%u", cpu - 1); | 
|  | 772 | count = 0; | 
|  | 773 | } | 
|  | 774 | } | 
|  | 775 |  | 
|  | 776 | if (count > 1) | 
|  | 777 | pr_cont("-%u", nr_cpu_ids - 1); | 
|  | 778 | pr_cont("\n"); | 
|  | 779 | } | 
|  | 780 | } | 
|  | 781 |  | 
|  | 782 | /* Initialize NODE_DATA for a node on the local memory */ | 
|  | 783 | static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) | 
|  | 784 | { | 
|  | 785 | u64 spanned_pages = end_pfn - start_pfn; | 
|  | 786 | const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); | 
|  | 787 | u64 nd_pa; | 
|  | 788 | void *nd; | 
|  | 789 | int tnid; | 
|  | 790 |  | 
|  | 791 | nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); | 
|  | 792 | nd = __va(nd_pa); | 
|  | 793 |  | 
|  | 794 | /* report and initialize */ | 
|  | 795 | pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n", | 
|  | 796 | nd_pa, nd_pa + nd_size - 1); | 
|  | 797 | tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); | 
|  | 798 | if (tnid != nid) | 
|  | 799 | pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid); | 
|  | 800 |  | 
|  | 801 | node_data[nid] = nd; | 
|  | 802 | memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); | 
|  | 803 | NODE_DATA(nid)->node_id = nid; | 
|  | 804 | NODE_DATA(nid)->node_start_pfn = start_pfn; | 
|  | 805 | NODE_DATA(nid)->node_spanned_pages = spanned_pages; | 
|  | 806 | } | 
|  | 807 |  | 
|  | 808 | static void __init find_possible_nodes(void) | 
|  | 809 | { | 
|  | 810 | struct device_node *rtas; | 
|  | 811 | u32 numnodes, i; | 
|  | 812 |  | 
|  | 813 | if (min_common_depth <= 0) | 
|  | 814 | return; | 
|  | 815 |  | 
|  | 816 | rtas = of_find_node_by_path("/rtas"); | 
|  | 817 | if (!rtas) | 
|  | 818 | return; | 
|  | 819 |  | 
|  | 820 | if (of_property_read_u32_index(rtas, | 
|  | 821 | "ibm,max-associativity-domains", | 
|  | 822 | min_common_depth, &numnodes)) | 
|  | 823 | goto out; | 
|  | 824 |  | 
|  | 825 | for (i = 0; i < numnodes; i++) { | 
|  | 826 | if (!node_possible(i)) | 
|  | 827 | node_set(i, node_possible_map); | 
|  | 828 | } | 
|  | 829 |  | 
|  | 830 | out: | 
|  | 831 | of_node_put(rtas); | 
|  | 832 | } | 
|  | 833 |  | 
|  | 834 | void __init mem_topology_setup(void) | 
|  | 835 | { | 
|  | 836 | int cpu; | 
|  | 837 |  | 
|  | 838 | if (parse_numa_properties()) | 
|  | 839 | setup_nonnuma(); | 
|  | 840 |  | 
|  | 841 | /* | 
|  | 842 | * Modify the set of possible NUMA nodes to reflect information | 
|  | 843 | * available about the set of online nodes, and the set of nodes | 
|  | 844 | * that we expect to make use of for this platform's affinity | 
|  | 845 | * calculations. | 
|  | 846 | */ | 
|  | 847 | nodes_and(node_possible_map, node_possible_map, node_online_map); | 
|  | 848 |  | 
|  | 849 | find_possible_nodes(); | 
|  | 850 |  | 
|  | 851 | setup_node_to_cpumask_map(); | 
|  | 852 |  | 
|  | 853 | reset_numa_cpu_lookup_table(); | 
|  | 854 |  | 
|  | 855 | for_each_present_cpu(cpu) | 
|  | 856 | numa_setup_cpu(cpu); | 
|  | 857 | } | 
|  | 858 |  | 
|  | 859 | void __init initmem_init(void) | 
|  | 860 | { | 
|  | 861 | int nid; | 
|  | 862 |  | 
|  | 863 | max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
|  | 864 | max_pfn = max_low_pfn; | 
|  | 865 |  | 
|  | 866 | memblock_dump_all(); | 
|  | 867 |  | 
|  | 868 | for_each_online_node(nid) { | 
|  | 869 | unsigned long start_pfn, end_pfn; | 
|  | 870 |  | 
|  | 871 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
|  | 872 | setup_node_data(nid, start_pfn, end_pfn); | 
|  | 873 | sparse_memory_present_with_active_regions(nid); | 
|  | 874 | } | 
|  | 875 |  | 
|  | 876 | sparse_init(); | 
|  | 877 |  | 
|  | 878 | /* | 
|  | 879 | * We need the numa_cpu_lookup_table to be accurate for all CPUs, | 
|  | 880 | * even before we online them, so that we can use cpu_to_{node,mem} | 
|  | 881 | * early in boot, cf. smp_prepare_cpus(). | 
|  | 882 | * _nocalls() + manual invocation is used because cpuhp is not yet | 
|  | 883 | * initialized for the boot CPU. | 
|  | 884 | */ | 
|  | 885 | cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", | 
|  | 886 | ppc_numa_cpu_prepare, ppc_numa_cpu_dead); | 
|  | 887 | } | 
|  | 888 |  | 
|  | 889 | static int __init early_numa(char *p) | 
|  | 890 | { | 
|  | 891 | if (!p) | 
|  | 892 | return 0; | 
|  | 893 |  | 
|  | 894 | if (strstr(p, "off")) | 
|  | 895 | numa_enabled = 0; | 
|  | 896 |  | 
|  | 897 | if (strstr(p, "debug")) | 
|  | 898 | numa_debug = 1; | 
|  | 899 |  | 
|  | 900 | p = strstr(p, "fake="); | 
|  | 901 | if (p) | 
|  | 902 | cmdline = p + strlen("fake="); | 
|  | 903 |  | 
|  | 904 | return 0; | 
|  | 905 | } | 
|  | 906 | early_param("numa", early_numa); | 
|  | 907 |  | 
|  | 908 | static bool topology_updates_enabled = true; | 
|  | 909 |  | 
|  | 910 | static int __init early_topology_updates(char *p) | 
|  | 911 | { | 
|  | 912 | if (!p) | 
|  | 913 | return 0; | 
|  | 914 |  | 
|  | 915 | if (!strcmp(p, "off")) { | 
|  | 916 | pr_info("Disabling topology updates\n"); | 
|  | 917 | topology_updates_enabled = false; | 
|  | 918 | } | 
|  | 919 |  | 
|  | 920 | return 0; | 
|  | 921 | } | 
|  | 922 | early_param("topology_updates", early_topology_updates); | 
|  | 923 |  | 
|  | 924 | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | 925 | /* | 
|  | 926 | * Find the node associated with a hot added memory section for | 
|  | 927 | * memory represented in the device tree by the property | 
|  | 928 | * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. | 
|  | 929 | */ | 
|  | 930 | static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) | 
|  | 931 | { | 
|  | 932 | struct drmem_lmb *lmb; | 
|  | 933 | unsigned long lmb_size; | 
|  | 934 | int nid = -1; | 
|  | 935 |  | 
|  | 936 | lmb_size = drmem_lmb_size(); | 
|  | 937 |  | 
|  | 938 | for_each_drmem_lmb(lmb) { | 
|  | 939 | /* skip this block if it is reserved or not assigned to | 
|  | 940 | * this partition */ | 
|  | 941 | if ((lmb->flags & DRCONF_MEM_RESERVED) | 
|  | 942 | || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | 
|  | 943 | continue; | 
|  | 944 |  | 
|  | 945 | if ((scn_addr < lmb->base_addr) | 
|  | 946 | || (scn_addr >= (lmb->base_addr + lmb_size))) | 
|  | 947 | continue; | 
|  | 948 |  | 
|  | 949 | nid = of_drconf_to_nid_single(lmb); | 
|  | 950 | break; | 
|  | 951 | } | 
|  | 952 |  | 
|  | 953 | return nid; | 
|  | 954 | } | 
|  | 955 |  | 
|  | 956 | /* | 
|  | 957 | * Find the node associated with a hot added memory section for memory | 
|  | 958 | * represented in the device tree as a node (i.e. memory@XXXX) for | 
|  | 959 | * each memblock. | 
|  | 960 | */ | 
|  | 961 | static int hot_add_node_scn_to_nid(unsigned long scn_addr) | 
|  | 962 | { | 
|  | 963 | struct device_node *memory; | 
|  | 964 | int nid = -1; | 
|  | 965 |  | 
|  | 966 | for_each_node_by_type(memory, "memory") { | 
|  | 967 | unsigned long start, size; | 
|  | 968 | int ranges; | 
|  | 969 | const __be32 *memcell_buf; | 
|  | 970 | unsigned int len; | 
|  | 971 |  | 
|  | 972 | memcell_buf = of_get_property(memory, "reg", &len); | 
|  | 973 | if (!memcell_buf || len <= 0) | 
|  | 974 | continue; | 
|  | 975 |  | 
|  | 976 | /* ranges in cell */ | 
|  | 977 | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  | 978 |  | 
|  | 979 | while (ranges--) { | 
|  | 980 | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | 981 | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  | 982 |  | 
|  | 983 | if ((scn_addr < start) || (scn_addr >= (start + size))) | 
|  | 984 | continue; | 
|  | 985 |  | 
|  | 986 | nid = of_node_to_nid_single(memory); | 
|  | 987 | break; | 
|  | 988 | } | 
|  | 989 |  | 
|  | 990 | if (nid >= 0) | 
|  | 991 | break; | 
|  | 992 | } | 
|  | 993 |  | 
|  | 994 | of_node_put(memory); | 
|  | 995 |  | 
|  | 996 | return nid; | 
|  | 997 | } | 
|  | 998 |  | 
|  | 999 | /* | 
|  | 1000 | * Find the node associated with a hot added memory section.  Section | 
|  | 1001 | * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that | 
|  | 1002 | * sections are fully contained within a single MEMBLOCK. | 
|  | 1003 | */ | 
|  | 1004 | int hot_add_scn_to_nid(unsigned long scn_addr) | 
|  | 1005 | { | 
|  | 1006 | struct device_node *memory = NULL; | 
|  | 1007 | int nid; | 
|  | 1008 |  | 
|  | 1009 | if (!numa_enabled || (min_common_depth < 0)) | 
|  | 1010 | return first_online_node; | 
|  | 1011 |  | 
|  | 1012 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | 1013 | if (memory) { | 
|  | 1014 | nid = hot_add_drconf_scn_to_nid(scn_addr); | 
|  | 1015 | of_node_put(memory); | 
|  | 1016 | } else { | 
|  | 1017 | nid = hot_add_node_scn_to_nid(scn_addr); | 
|  | 1018 | } | 
|  | 1019 |  | 
|  | 1020 | if (nid < 0 || !node_possible(nid)) | 
|  | 1021 | nid = first_online_node; | 
|  | 1022 |  | 
|  | 1023 | return nid; | 
|  | 1024 | } | 
|  | 1025 |  | 
|  | 1026 | static u64 hot_add_drconf_memory_max(void) | 
|  | 1027 | { | 
|  | 1028 | struct device_node *memory = NULL; | 
|  | 1029 | struct device_node *dn = NULL; | 
|  | 1030 | const __be64 *lrdr = NULL; | 
|  | 1031 |  | 
|  | 1032 | dn = of_find_node_by_path("/rtas"); | 
|  | 1033 | if (dn) { | 
|  | 1034 | lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); | 
|  | 1035 | of_node_put(dn); | 
|  | 1036 | if (lrdr) | 
|  | 1037 | return be64_to_cpup(lrdr); | 
|  | 1038 | } | 
|  | 1039 |  | 
|  | 1040 | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | 1041 | if (memory) { | 
|  | 1042 | of_node_put(memory); | 
|  | 1043 | return drmem_lmb_memory_max(); | 
|  | 1044 | } | 
|  | 1045 | return 0; | 
|  | 1046 | } | 
|  | 1047 |  | 
|  | 1048 | /* | 
|  | 1049 | * memory_hotplug_max - return max address of memory that may be added | 
|  | 1050 | * | 
|  | 1051 | * This is currently only used on systems that support drconfig memory | 
|  | 1052 | * hotplug. | 
|  | 1053 | */ | 
|  | 1054 | u64 memory_hotplug_max(void) | 
|  | 1055 | { | 
|  | 1056 | return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); | 
|  | 1057 | } | 
|  | 1058 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  | 1059 |  | 
|  | 1060 | /* Virtual Processor Home Node (VPHN) support */ | 
|  | 1061 | #ifdef CONFIG_PPC_SPLPAR | 
|  | 1062 |  | 
|  | 1063 | #include "vphn.h" | 
|  | 1064 |  | 
|  | 1065 | struct topology_update_data { | 
|  | 1066 | struct topology_update_data *next; | 
|  | 1067 | unsigned int cpu; | 
|  | 1068 | int old_nid; | 
|  | 1069 | int new_nid; | 
|  | 1070 | }; | 
|  | 1071 |  | 
|  | 1072 | #define TOPOLOGY_DEF_TIMER_SECS	60 | 
|  | 1073 |  | 
|  | 1074 | static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; | 
|  | 1075 | static cpumask_t cpu_associativity_changes_mask; | 
|  | 1076 | static int vphn_enabled; | 
|  | 1077 | static int prrn_enabled; | 
|  | 1078 | static void reset_topology_timer(void); | 
|  | 1079 | static int topology_timer_secs = 1; | 
|  | 1080 | static int topology_inited; | 
|  | 1081 |  | 
|  | 1082 | /* | 
|  | 1083 | * Change polling interval for associativity changes. | 
|  | 1084 | */ | 
|  | 1085 | int timed_topology_update(int nsecs) | 
|  | 1086 | { | 
|  | 1087 | if (vphn_enabled) { | 
|  | 1088 | if (nsecs > 0) | 
|  | 1089 | topology_timer_secs = nsecs; | 
|  | 1090 | else | 
|  | 1091 | topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS; | 
|  | 1092 |  | 
|  | 1093 | reset_topology_timer(); | 
|  | 1094 | } | 
|  | 1095 |  | 
|  | 1096 | return 0; | 
|  | 1097 | } | 
|  | 1098 |  | 
|  | 1099 | /* | 
|  | 1100 | * Store the current values of the associativity change counters in the | 
|  | 1101 | * hypervisor. | 
|  | 1102 | */ | 
|  | 1103 | static void setup_cpu_associativity_change_counters(void) | 
|  | 1104 | { | 
|  | 1105 | int cpu; | 
|  | 1106 |  | 
|  | 1107 | /* The VPHN feature supports a maximum of 8 reference points */ | 
|  | 1108 | BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); | 
|  | 1109 |  | 
|  | 1110 | for_each_possible_cpu(cpu) { | 
|  | 1111 | int i; | 
|  | 1112 | u8 *counts = vphn_cpu_change_counts[cpu]; | 
|  | 1113 | volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; | 
|  | 1114 |  | 
|  | 1115 | for (i = 0; i < distance_ref_points_depth; i++) | 
|  | 1116 | counts[i] = hypervisor_counts[i]; | 
|  | 1117 | } | 
|  | 1118 | } | 
|  | 1119 |  | 
|  | 1120 | /* | 
|  | 1121 | * The hypervisor maintains a set of 8 associativity change counters in | 
|  | 1122 | * the VPA of each cpu that correspond to the associativity levels in the | 
|  | 1123 | * ibm,associativity-reference-points property. When an associativity | 
|  | 1124 | * level changes, the corresponding counter is incremented. | 
|  | 1125 | * | 
|  | 1126 | * Set a bit in cpu_associativity_changes_mask for each cpu whose home | 
|  | 1127 | * node associativity levels have changed. | 
|  | 1128 | * | 
|  | 1129 | * Returns the number of cpus with unhandled associativity changes. | 
|  | 1130 | */ | 
|  | 1131 | static int update_cpu_associativity_changes_mask(void) | 
|  | 1132 | { | 
|  | 1133 | int cpu; | 
|  | 1134 | cpumask_t *changes = &cpu_associativity_changes_mask; | 
|  | 1135 |  | 
|  | 1136 | for_each_possible_cpu(cpu) { | 
|  | 1137 | int i, changed = 0; | 
|  | 1138 | u8 *counts = vphn_cpu_change_counts[cpu]; | 
|  | 1139 | volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; | 
|  | 1140 |  | 
|  | 1141 | for (i = 0; i < distance_ref_points_depth; i++) { | 
|  | 1142 | if (hypervisor_counts[i] != counts[i]) { | 
|  | 1143 | counts[i] = hypervisor_counts[i]; | 
|  | 1144 | changed = 1; | 
|  | 1145 | } | 
|  | 1146 | } | 
|  | 1147 | if (changed) { | 
|  | 1148 | cpumask_or(changes, changes, cpu_sibling_mask(cpu)); | 
|  | 1149 | cpu = cpu_last_thread_sibling(cpu); | 
|  | 1150 | } | 
|  | 1151 | } | 
|  | 1152 |  | 
|  | 1153 | return cpumask_weight(changes); | 
|  | 1154 | } | 
|  | 1155 |  | 
|  | 1156 | /* | 
|  | 1157 | * Retrieve the new associativity information for a virtual processor's | 
|  | 1158 | * home node. | 
|  | 1159 | */ | 
|  | 1160 | static long hcall_vphn(unsigned long cpu, __be32 *associativity) | 
|  | 1161 | { | 
|  | 1162 | long rc; | 
|  | 1163 | long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; | 
|  | 1164 | u64 flags = 1; | 
|  | 1165 | int hwcpu = get_hard_smp_processor_id(cpu); | 
|  | 1166 |  | 
|  | 1167 | rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); | 
|  | 1168 | vphn_unpack_associativity(retbuf, associativity); | 
|  | 1169 |  | 
|  | 1170 | return rc; | 
|  | 1171 | } | 
|  | 1172 |  | 
|  | 1173 | static long vphn_get_associativity(unsigned long cpu, | 
|  | 1174 | __be32 *associativity) | 
|  | 1175 | { | 
|  | 1176 | long rc; | 
|  | 1177 |  | 
|  | 1178 | rc = hcall_vphn(cpu, associativity); | 
|  | 1179 |  | 
|  | 1180 | switch (rc) { | 
|  | 1181 | case H_FUNCTION: | 
|  | 1182 | printk_once(KERN_INFO | 
|  | 1183 | "VPHN is not supported. Disabling polling...\n"); | 
|  | 1184 | stop_topology_update(); | 
|  | 1185 | break; | 
|  | 1186 | case H_HARDWARE: | 
|  | 1187 | printk(KERN_ERR | 
|  | 1188 | "hcall_vphn() experienced a hardware fault " | 
|  | 1189 | "preventing VPHN. Disabling polling...\n"); | 
|  | 1190 | stop_topology_update(); | 
|  | 1191 | break; | 
|  | 1192 | case H_SUCCESS: | 
|  | 1193 | dbg("VPHN hcall succeeded. Reset polling...\n"); | 
|  | 1194 | timed_topology_update(0); | 
|  | 1195 | break; | 
|  | 1196 | } | 
|  | 1197 |  | 
|  | 1198 | return rc; | 
|  | 1199 | } | 
|  | 1200 |  | 
|  | 1201 | int find_and_online_cpu_nid(int cpu) | 
|  | 1202 | { | 
|  | 1203 | __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | 
|  | 1204 | int new_nid; | 
|  | 1205 |  | 
|  | 1206 | /* Use associativity from first thread for all siblings */ | 
|  | 1207 | if (vphn_get_associativity(cpu, associativity)) | 
|  | 1208 | return cpu_to_node(cpu); | 
|  | 1209 |  | 
|  | 1210 | new_nid = associativity_to_nid(associativity); | 
|  | 1211 | if (new_nid < 0 || !node_possible(new_nid)) | 
|  | 1212 | new_nid = first_online_node; | 
|  | 1213 |  | 
|  | 1214 | if (NODE_DATA(new_nid) == NULL) { | 
|  | 1215 | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | 1216 | /* | 
|  | 1217 | * Need to ensure that NODE_DATA is initialized for a node from | 
|  | 1218 | * available memory (see memblock_alloc_try_nid). If unable to | 
|  | 1219 | * init the node, then default to nearest node that has memory | 
|  | 1220 | * installed. Skip onlining a node if the subsystems are not | 
|  | 1221 | * yet initialized. | 
|  | 1222 | */ | 
|  | 1223 | if (!topology_inited || try_online_node(new_nid)) | 
|  | 1224 | new_nid = first_online_node; | 
|  | 1225 | #else | 
|  | 1226 | /* | 
|  | 1227 | * Default to using the nearest node that has memory installed. | 
|  | 1228 | * Otherwise, it would be necessary to patch the kernel MM code | 
|  | 1229 | * to deal with more memoryless-node error conditions. | 
|  | 1230 | */ | 
|  | 1231 | new_nid = first_online_node; | 
|  | 1232 | #endif | 
|  | 1233 | } | 
|  | 1234 |  | 
|  | 1235 | pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, | 
|  | 1236 | cpu, new_nid); | 
|  | 1237 | return new_nid; | 
|  | 1238 | } | 
|  | 1239 |  | 
|  | 1240 | /* | 
|  | 1241 | * Update the CPU maps and sysfs entries for a single CPU when its NUMA | 
|  | 1242 | * characteristics change. This function doesn't perform any locking and is | 
|  | 1243 | * only safe to call from stop_machine(). | 
|  | 1244 | */ | 
|  | 1245 | static int update_cpu_topology(void *data) | 
|  | 1246 | { | 
|  | 1247 | struct topology_update_data *update; | 
|  | 1248 | unsigned long cpu; | 
|  | 1249 |  | 
|  | 1250 | if (!data) | 
|  | 1251 | return -EINVAL; | 
|  | 1252 |  | 
|  | 1253 | cpu = smp_processor_id(); | 
|  | 1254 |  | 
|  | 1255 | for (update = data; update; update = update->next) { | 
|  | 1256 | int new_nid = update->new_nid; | 
|  | 1257 | if (cpu != update->cpu) | 
|  | 1258 | continue; | 
|  | 1259 |  | 
|  | 1260 | unmap_cpu_from_node(cpu); | 
|  | 1261 | map_cpu_to_node(cpu, new_nid); | 
|  | 1262 | set_cpu_numa_node(cpu, new_nid); | 
|  | 1263 | set_cpu_numa_mem(cpu, local_memory_node(new_nid)); | 
|  | 1264 | vdso_getcpu_init(); | 
|  | 1265 | } | 
|  | 1266 |  | 
|  | 1267 | return 0; | 
|  | 1268 | } | 
|  | 1269 |  | 
|  | 1270 | static int update_lookup_table(void *data) | 
|  | 1271 | { | 
|  | 1272 | struct topology_update_data *update; | 
|  | 1273 |  | 
|  | 1274 | if (!data) | 
|  | 1275 | return -EINVAL; | 
|  | 1276 |  | 
|  | 1277 | /* | 
|  | 1278 | * Upon topology update, the numa-cpu lookup table needs to be updated | 
|  | 1279 | * for all threads in the core, including offline CPUs, to ensure that | 
|  | 1280 | * future hotplug operations respect the cpu-to-node associativity | 
|  | 1281 | * properly. | 
|  | 1282 | */ | 
|  | 1283 | for (update = data; update; update = update->next) { | 
|  | 1284 | int nid, base, j; | 
|  | 1285 |  | 
|  | 1286 | nid = update->new_nid; | 
|  | 1287 | base = cpu_first_thread_sibling(update->cpu); | 
|  | 1288 |  | 
|  | 1289 | for (j = 0; j < threads_per_core; j++) { | 
|  | 1290 | update_numa_cpu_lookup_table(base + j, nid); | 
|  | 1291 | } | 
|  | 1292 | } | 
|  | 1293 |  | 
|  | 1294 | return 0; | 
|  | 1295 | } | 
|  | 1296 |  | 
|  | 1297 | /* | 
|  | 1298 | * Update the node maps and sysfs entries for each cpu whose home node | 
|  | 1299 | * has changed. Returns 1 when the topology has changed, and 0 otherwise. | 
|  | 1300 | * | 
|  | 1301 | * cpus_locked says whether we already hold cpu_hotplug_lock. | 
|  | 1302 | */ | 
|  | 1303 | int numa_update_cpu_topology(bool cpus_locked) | 
|  | 1304 | { | 
|  | 1305 | unsigned int cpu, sibling, changed = 0; | 
|  | 1306 | struct topology_update_data *updates, *ud; | 
|  | 1307 | cpumask_t updated_cpus; | 
|  | 1308 | struct device *dev; | 
|  | 1309 | int weight, new_nid, i = 0; | 
|  | 1310 |  | 
|  | 1311 | if (!prrn_enabled && !vphn_enabled && topology_inited) | 
|  | 1312 | return 0; | 
|  | 1313 |  | 
|  | 1314 | weight = cpumask_weight(&cpu_associativity_changes_mask); | 
|  | 1315 | if (!weight) | 
|  | 1316 | return 0; | 
|  | 1317 |  | 
|  | 1318 | updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL); | 
|  | 1319 | if (!updates) | 
|  | 1320 | return 0; | 
|  | 1321 |  | 
|  | 1322 | cpumask_clear(&updated_cpus); | 
|  | 1323 |  | 
|  | 1324 | for_each_cpu(cpu, &cpu_associativity_changes_mask) { | 
|  | 1325 | /* | 
|  | 1326 | * If siblings aren't flagged for changes, updates list | 
|  | 1327 | * will be too short. Skip on this update and set for next | 
|  | 1328 | * update. | 
|  | 1329 | */ | 
|  | 1330 | if (!cpumask_subset(cpu_sibling_mask(cpu), | 
|  | 1331 | &cpu_associativity_changes_mask)) { | 
|  | 1332 | pr_info("Sibling bits not set for associativity " | 
|  | 1333 | "change, cpu%d\n", cpu); | 
|  | 1334 | cpumask_or(&cpu_associativity_changes_mask, | 
|  | 1335 | &cpu_associativity_changes_mask, | 
|  | 1336 | cpu_sibling_mask(cpu)); | 
|  | 1337 | cpu = cpu_last_thread_sibling(cpu); | 
|  | 1338 | continue; | 
|  | 1339 | } | 
|  | 1340 |  | 
|  | 1341 | new_nid = find_and_online_cpu_nid(cpu); | 
|  | 1342 |  | 
|  | 1343 | if (new_nid == numa_cpu_lookup_table[cpu]) { | 
|  | 1344 | cpumask_andnot(&cpu_associativity_changes_mask, | 
|  | 1345 | &cpu_associativity_changes_mask, | 
|  | 1346 | cpu_sibling_mask(cpu)); | 
|  | 1347 | dbg("Assoc chg gives same node %d for cpu%d\n", | 
|  | 1348 | new_nid, cpu); | 
|  | 1349 | cpu = cpu_last_thread_sibling(cpu); | 
|  | 1350 | continue; | 
|  | 1351 | } | 
|  | 1352 |  | 
|  | 1353 | for_each_cpu(sibling, cpu_sibling_mask(cpu)) { | 
|  | 1354 | ud = &updates[i++]; | 
|  | 1355 | ud->next = &updates[i]; | 
|  | 1356 | ud->cpu = sibling; | 
|  | 1357 | ud->new_nid = new_nid; | 
|  | 1358 | ud->old_nid = numa_cpu_lookup_table[sibling]; | 
|  | 1359 | cpumask_set_cpu(sibling, &updated_cpus); | 
|  | 1360 | } | 
|  | 1361 | cpu = cpu_last_thread_sibling(cpu); | 
|  | 1362 | } | 
|  | 1363 |  | 
|  | 1364 | /* | 
|  | 1365 | * Prevent processing of 'updates' from overflowing array | 
|  | 1366 | * where last entry filled in a 'next' pointer. | 
|  | 1367 | */ | 
|  | 1368 | if (i) | 
|  | 1369 | updates[i-1].next = NULL; | 
|  | 1370 |  | 
|  | 1371 | pr_debug("Topology update for the following CPUs:\n"); | 
|  | 1372 | if (cpumask_weight(&updated_cpus)) { | 
|  | 1373 | for (ud = &updates[0]; ud; ud = ud->next) { | 
|  | 1374 | pr_debug("cpu %d moving from node %d " | 
|  | 1375 | "to %d\n", ud->cpu, | 
|  | 1376 | ud->old_nid, ud->new_nid); | 
|  | 1377 | } | 
|  | 1378 | } | 
|  | 1379 |  | 
|  | 1380 | /* | 
|  | 1381 | * In cases where we have nothing to update (because the updates list | 
|  | 1382 | * is too short or because the new topology is same as the old one), | 
|  | 1383 | * skip invoking update_cpu_topology() via stop-machine(). This is | 
|  | 1384 | * necessary (and not just a fast-path optimization) since stop-machine | 
|  | 1385 | * can end up electing a random CPU to run update_cpu_topology(), and | 
|  | 1386 | * thus trick us into setting up incorrect cpu-node mappings (since | 
|  | 1387 | * 'updates' is kzalloc()'ed). | 
|  | 1388 | * | 
|  | 1389 | * And for the similar reason, we will skip all the following updating. | 
|  | 1390 | */ | 
|  | 1391 | if (!cpumask_weight(&updated_cpus)) | 
|  | 1392 | goto out; | 
|  | 1393 |  | 
|  | 1394 | if (cpus_locked) | 
|  | 1395 | stop_machine_cpuslocked(update_cpu_topology, &updates[0], | 
|  | 1396 | &updated_cpus); | 
|  | 1397 | else | 
|  | 1398 | stop_machine(update_cpu_topology, &updates[0], &updated_cpus); | 
|  | 1399 |  | 
|  | 1400 | /* | 
|  | 1401 | * Update the numa-cpu lookup table with the new mappings, even for | 
|  | 1402 | * offline CPUs. It is best to perform this update from the stop- | 
|  | 1403 | * machine context. | 
|  | 1404 | */ | 
|  | 1405 | if (cpus_locked) | 
|  | 1406 | stop_machine_cpuslocked(update_lookup_table, &updates[0], | 
|  | 1407 | cpumask_of(raw_smp_processor_id())); | 
|  | 1408 | else | 
|  | 1409 | stop_machine(update_lookup_table, &updates[0], | 
|  | 1410 | cpumask_of(raw_smp_processor_id())); | 
|  | 1411 |  | 
|  | 1412 | for (ud = &updates[0]; ud; ud = ud->next) { | 
|  | 1413 | unregister_cpu_under_node(ud->cpu, ud->old_nid); | 
|  | 1414 | register_cpu_under_node(ud->cpu, ud->new_nid); | 
|  | 1415 |  | 
|  | 1416 | dev = get_cpu_device(ud->cpu); | 
|  | 1417 | if (dev) | 
|  | 1418 | kobject_uevent(&dev->kobj, KOBJ_CHANGE); | 
|  | 1419 | cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); | 
|  | 1420 | changed = 1; | 
|  | 1421 | } | 
|  | 1422 |  | 
|  | 1423 | out: | 
|  | 1424 | kfree(updates); | 
|  | 1425 | return changed; | 
|  | 1426 | } | 
|  | 1427 |  | 
|  | 1428 | int arch_update_cpu_topology(void) | 
|  | 1429 | { | 
|  | 1430 | return numa_update_cpu_topology(true); | 
|  | 1431 | } | 
|  | 1432 |  | 
|  | 1433 | static void topology_work_fn(struct work_struct *work) | 
|  | 1434 | { | 
|  | 1435 | rebuild_sched_domains(); | 
|  | 1436 | } | 
|  | 1437 | static DECLARE_WORK(topology_work, topology_work_fn); | 
|  | 1438 |  | 
|  | 1439 | static void topology_schedule_update(void) | 
|  | 1440 | { | 
|  | 1441 | schedule_work(&topology_work); | 
|  | 1442 | } | 
|  | 1443 |  | 
|  | 1444 | static void topology_timer_fn(struct timer_list *unused) | 
|  | 1445 | { | 
|  | 1446 | if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) | 
|  | 1447 | topology_schedule_update(); | 
|  | 1448 | else if (vphn_enabled) { | 
|  | 1449 | if (update_cpu_associativity_changes_mask() > 0) | 
|  | 1450 | topology_schedule_update(); | 
|  | 1451 | reset_topology_timer(); | 
|  | 1452 | } | 
|  | 1453 | } | 
|  | 1454 | static struct timer_list topology_timer; | 
|  | 1455 |  | 
|  | 1456 | static void reset_topology_timer(void) | 
|  | 1457 | { | 
|  | 1458 | if (vphn_enabled) | 
|  | 1459 | mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ); | 
|  | 1460 | } | 
|  | 1461 |  | 
|  | 1462 | #ifdef CONFIG_SMP | 
|  | 1463 |  | 
|  | 1464 | static int dt_update_callback(struct notifier_block *nb, | 
|  | 1465 | unsigned long action, void *data) | 
|  | 1466 | { | 
|  | 1467 | struct of_reconfig_data *update = data; | 
|  | 1468 | int rc = NOTIFY_DONE; | 
|  | 1469 |  | 
|  | 1470 | switch (action) { | 
|  | 1471 | case OF_RECONFIG_UPDATE_PROPERTY: | 
|  | 1472 | if (!of_prop_cmp(update->dn->type, "cpu") && | 
|  | 1473 | !of_prop_cmp(update->prop->name, "ibm,associativity")) { | 
|  | 1474 | u32 core_id; | 
|  | 1475 | of_property_read_u32(update->dn, "reg", &core_id); | 
|  | 1476 | rc = dlpar_cpu_readd(core_id); | 
|  | 1477 | rc = NOTIFY_OK; | 
|  | 1478 | } | 
|  | 1479 | break; | 
|  | 1480 | } | 
|  | 1481 |  | 
|  | 1482 | return rc; | 
|  | 1483 | } | 
|  | 1484 |  | 
|  | 1485 | static struct notifier_block dt_update_nb = { | 
|  | 1486 | .notifier_call = dt_update_callback, | 
|  | 1487 | }; | 
|  | 1488 |  | 
|  | 1489 | #endif | 
|  | 1490 |  | 
|  | 1491 | /* | 
|  | 1492 | * Start polling for associativity changes. | 
|  | 1493 | */ | 
|  | 1494 | int start_topology_update(void) | 
|  | 1495 | { | 
|  | 1496 | int rc = 0; | 
|  | 1497 |  | 
|  | 1498 | if (!topology_updates_enabled) | 
|  | 1499 | return 0; | 
|  | 1500 |  | 
|  | 1501 | if (firmware_has_feature(FW_FEATURE_PRRN)) { | 
|  | 1502 | if (!prrn_enabled) { | 
|  | 1503 | prrn_enabled = 1; | 
|  | 1504 | #ifdef CONFIG_SMP | 
|  | 1505 | rc = of_reconfig_notifier_register(&dt_update_nb); | 
|  | 1506 | #endif | 
|  | 1507 | } | 
|  | 1508 | } | 
|  | 1509 | if (firmware_has_feature(FW_FEATURE_VPHN) && | 
|  | 1510 | lppaca_shared_proc(get_lppaca())) { | 
|  | 1511 | if (!vphn_enabled) { | 
|  | 1512 | vphn_enabled = 1; | 
|  | 1513 | setup_cpu_associativity_change_counters(); | 
|  | 1514 | timer_setup(&topology_timer, topology_timer_fn, | 
|  | 1515 | TIMER_DEFERRABLE); | 
|  | 1516 | reset_topology_timer(); | 
|  | 1517 | } | 
|  | 1518 | } | 
|  | 1519 |  | 
|  | 1520 | return rc; | 
|  | 1521 | } | 
|  | 1522 |  | 
|  | 1523 | /* | 
|  | 1524 | * Disable polling for VPHN associativity changes. | 
|  | 1525 | */ | 
|  | 1526 | int stop_topology_update(void) | 
|  | 1527 | { | 
|  | 1528 | int rc = 0; | 
|  | 1529 |  | 
|  | 1530 | if (!topology_updates_enabled) | 
|  | 1531 | return 0; | 
|  | 1532 |  | 
|  | 1533 | if (prrn_enabled) { | 
|  | 1534 | prrn_enabled = 0; | 
|  | 1535 | #ifdef CONFIG_SMP | 
|  | 1536 | rc = of_reconfig_notifier_unregister(&dt_update_nb); | 
|  | 1537 | #endif | 
|  | 1538 | } | 
|  | 1539 | if (vphn_enabled) { | 
|  | 1540 | vphn_enabled = 0; | 
|  | 1541 | rc = del_timer_sync(&topology_timer); | 
|  | 1542 | } | 
|  | 1543 |  | 
|  | 1544 | return rc; | 
|  | 1545 | } | 
|  | 1546 |  | 
|  | 1547 | int prrn_is_enabled(void) | 
|  | 1548 | { | 
|  | 1549 | return prrn_enabled; | 
|  | 1550 | } | 
|  | 1551 |  | 
|  | 1552 | void __init shared_proc_topology_init(void) | 
|  | 1553 | { | 
|  | 1554 | if (lppaca_shared_proc(get_lppaca())) { | 
|  | 1555 | bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask), | 
|  | 1556 | nr_cpumask_bits); | 
|  | 1557 | numa_update_cpu_topology(false); | 
|  | 1558 | } | 
|  | 1559 | } | 
|  | 1560 |  | 
|  | 1561 | static int topology_read(struct seq_file *file, void *v) | 
|  | 1562 | { | 
|  | 1563 | if (vphn_enabled || prrn_enabled) | 
|  | 1564 | seq_puts(file, "on\n"); | 
|  | 1565 | else | 
|  | 1566 | seq_puts(file, "off\n"); | 
|  | 1567 |  | 
|  | 1568 | return 0; | 
|  | 1569 | } | 
|  | 1570 |  | 
|  | 1571 | static int topology_open(struct inode *inode, struct file *file) | 
|  | 1572 | { | 
|  | 1573 | return single_open(file, topology_read, NULL); | 
|  | 1574 | } | 
|  | 1575 |  | 
|  | 1576 | static ssize_t topology_write(struct file *file, const char __user *buf, | 
|  | 1577 | size_t count, loff_t *off) | 
|  | 1578 | { | 
|  | 1579 | char kbuf[4]; /* "on" or "off" plus null. */ | 
|  | 1580 | int read_len; | 
|  | 1581 |  | 
|  | 1582 | read_len = count < 3 ? count : 3; | 
|  | 1583 | if (copy_from_user(kbuf, buf, read_len)) | 
|  | 1584 | return -EINVAL; | 
|  | 1585 |  | 
|  | 1586 | kbuf[read_len] = '\0'; | 
|  | 1587 |  | 
|  | 1588 | if (!strncmp(kbuf, "on", 2)) { | 
|  | 1589 | topology_updates_enabled = true; | 
|  | 1590 | start_topology_update(); | 
|  | 1591 | } else if (!strncmp(kbuf, "off", 3)) { | 
|  | 1592 | stop_topology_update(); | 
|  | 1593 | topology_updates_enabled = false; | 
|  | 1594 | } else | 
|  | 1595 | return -EINVAL; | 
|  | 1596 |  | 
|  | 1597 | return count; | 
|  | 1598 | } | 
|  | 1599 |  | 
|  | 1600 | static const struct file_operations topology_ops = { | 
|  | 1601 | .read = seq_read, | 
|  | 1602 | .write = topology_write, | 
|  | 1603 | .open = topology_open, | 
|  | 1604 | .release = single_release | 
|  | 1605 | }; | 
|  | 1606 |  | 
|  | 1607 | static int topology_update_init(void) | 
|  | 1608 | { | 
|  | 1609 | start_topology_update(); | 
|  | 1610 |  | 
|  | 1611 | if (vphn_enabled) | 
|  | 1612 | topology_schedule_update(); | 
|  | 1613 |  | 
|  | 1614 | if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) | 
|  | 1615 | return -ENOMEM; | 
|  | 1616 |  | 
|  | 1617 | topology_inited = 1; | 
|  | 1618 | return 0; | 
|  | 1619 | } | 
|  | 1620 | device_initcall(topology_update_init); | 
|  | 1621 | #endif /* CONFIG_PPC_SPLPAR */ |