blob: 9ad521195376d123ea26f0de3c1f1f26cf4895e6 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/sched/clock.h>
12#include <linux/blkdev.h>
13#include <linux/elevator.h>
14#include <linux/ktime.h>
15#include <linux/rbtree.h>
16#include <linux/ioprio.h>
17#include <linux/blktrace_api.h>
18#include <linux/blk-cgroup.h>
19#include "blk.h"
20#include "blk-wbt.h"
21
22/*
23 * tunables
24 */
25/* max queue in one round of service */
26static const int cfq_quantum = 8;
27static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
28/* maximum backwards seek, in KiB */
29static const int cfq_back_max = 16 * 1024;
30/* penalty of a backwards seek */
31static const int cfq_back_penalty = 2;
32static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
33static u64 cfq_slice_async = NSEC_PER_SEC / 25;
34static const int cfq_slice_async_rq = 2;
35static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
36static u64 cfq_group_idle = NSEC_PER_SEC / 125;
37static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
38static const int cfq_hist_divisor = 4;
39
40/*
41 * offset from end of queue service tree for idle class
42 */
43#define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44/* offset from end of group service tree under time slice mode */
45#define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46/* offset from end of group service under IOPS mode */
47#define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48
49/*
50 * below this threshold, we consider thinktime immediate
51 */
52#define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
53
54#define CFQ_SLICE_SCALE (5)
55#define CFQ_HW_QUEUE_MIN (5)
56#define CFQ_SERVICE_SHIFT 12
57
58#define CFQQ_SEEK_THR (sector_t)(8 * 100)
59#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
62
63#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
66
67static struct kmem_cache *cfq_pool;
68
69#define CFQ_PRIO_LISTS IOPRIO_BE_NR
70#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
73#define sample_valid(samples) ((samples) > 80)
74#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
75
76/* blkio-related constants */
77#define CFQ_WEIGHT_LEGACY_MIN 10
78#define CFQ_WEIGHT_LEGACY_DFL 500
79#define CFQ_WEIGHT_LEGACY_MAX 1000
80
81struct cfq_ttime {
82 u64 last_end_request;
83
84 u64 ttime_total;
85 u64 ttime_mean;
86 unsigned long ttime_samples;
87};
88
89/*
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
94 */
95struct cfq_rb_root {
96 struct rb_root_cached rb;
97 struct rb_node *rb_rightmost;
98 unsigned count;
99 u64 min_vdisktime;
100 struct cfq_ttime ttime;
101};
102#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
103 .rb_rightmost = NULL, \
104 .ttime = {.last_end_request = ktime_get_ns(),},}
105
106/*
107 * Per process-grouping structure
108 */
109struct cfq_queue {
110 /* reference count */
111 int ref;
112 /* various state flags, see below */
113 unsigned int flags;
114 /* parent cfq_data */
115 struct cfq_data *cfqd;
116 /* service_tree member */
117 struct rb_node rb_node;
118 /* service_tree key */
119 u64 rb_key;
120 /* prio tree member */
121 struct rb_node p_node;
122 /* prio tree root we belong to, if any */
123 struct rb_root *p_root;
124 /* sorted list of pending requests */
125 struct rb_root sort_list;
126 /* if fifo isn't expired, next request to serve */
127 struct request *next_rq;
128 /* requests queued in sort_list */
129 int queued[2];
130 /* currently allocated requests */
131 int allocated[2];
132 /* fifo list of requests in sort_list */
133 struct list_head fifo;
134
135 /* time when queue got scheduled in to dispatch first request. */
136 u64 dispatch_start;
137 u64 allocated_slice;
138 u64 slice_dispatch;
139 /* time when first request from queue completed and slice started. */
140 u64 slice_start;
141 u64 slice_end;
142 s64 slice_resid;
143
144 /* pending priority requests */
145 int prio_pending;
146 /* number of requests that are on the dispatch list or inside driver */
147 int dispatched;
148
149 /* io prio of this group */
150 unsigned short ioprio, org_ioprio;
151 unsigned short ioprio_class, org_ioprio_class;
152
153 pid_t pid;
154
155 u32 seek_history;
156 sector_t last_request_pos;
157
158 struct cfq_rb_root *service_tree;
159 struct cfq_queue *new_cfqq;
160 struct cfq_group *cfqg;
161 /* Number of sectors dispatched from queue in single dispatch round */
162 unsigned long nr_sectors;
163};
164
165/*
166 * First index in the service_trees.
167 * IDLE is handled separately, so it has negative index
168 */
169enum wl_class_t {
170 BE_WORKLOAD = 0,
171 RT_WORKLOAD = 1,
172 IDLE_WORKLOAD = 2,
173 CFQ_PRIO_NR,
174};
175
176/*
177 * Second index in the service_trees.
178 */
179enum wl_type_t {
180 ASYNC_WORKLOAD = 0,
181 SYNC_NOIDLE_WORKLOAD = 1,
182 SYNC_WORKLOAD = 2
183};
184
185struct cfqg_stats {
186#ifdef CONFIG_CFQ_GROUP_IOSCHED
187 /* number of ios merged */
188 struct blkg_rwstat merged;
189 /* total time spent on device in ns, may not be accurate w/ queueing */
190 struct blkg_rwstat service_time;
191 /* total time spent waiting in scheduler queue in ns */
192 struct blkg_rwstat wait_time;
193 /* number of IOs queued up */
194 struct blkg_rwstat queued;
195 /* total disk time and nr sectors dispatched by this group */
196 struct blkg_stat time;
197#ifdef CONFIG_DEBUG_BLK_CGROUP
198 /* time not charged to this cgroup */
199 struct blkg_stat unaccounted_time;
200 /* sum of number of ios queued across all samples */
201 struct blkg_stat avg_queue_size_sum;
202 /* count of samples taken for average */
203 struct blkg_stat avg_queue_size_samples;
204 /* how many times this group has been removed from service tree */
205 struct blkg_stat dequeue;
206 /* total time spent waiting for it to be assigned a timeslice. */
207 struct blkg_stat group_wait_time;
208 /* time spent idling for this blkcg_gq */
209 struct blkg_stat idle_time;
210 /* total time with empty current active q with other requests queued */
211 struct blkg_stat empty_time;
212 /* fields after this shouldn't be cleared on stat reset */
213 u64 start_group_wait_time;
214 u64 start_idle_time;
215 u64 start_empty_time;
216 uint16_t flags;
217#endif /* CONFIG_DEBUG_BLK_CGROUP */
218#endif /* CONFIG_CFQ_GROUP_IOSCHED */
219};
220
221/* Per-cgroup data */
222struct cfq_group_data {
223 /* must be the first member */
224 struct blkcg_policy_data cpd;
225
226 unsigned int weight;
227 unsigned int leaf_weight;
228 u64 group_idle;
229};
230
231/* This is per cgroup per device grouping structure */
232struct cfq_group {
233 /* must be the first member */
234 struct blkg_policy_data pd;
235
236 /* group service_tree member */
237 struct rb_node rb_node;
238
239 /* group service_tree key */
240 u64 vdisktime;
241
242 /*
243 * The number of active cfqgs and sum of their weights under this
244 * cfqg. This covers this cfqg's leaf_weight and all children's
245 * weights, but does not cover weights of further descendants.
246 *
247 * If a cfqg is on the service tree, it's active. An active cfqg
248 * also activates its parent and contributes to the children_weight
249 * of the parent.
250 */
251 int nr_active;
252 unsigned int children_weight;
253
254 /*
255 * vfraction is the fraction of vdisktime that the tasks in this
256 * cfqg are entitled to. This is determined by compounding the
257 * ratios walking up from this cfqg to the root.
258 *
259 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
260 * vfractions on a service tree is approximately 1. The sum may
261 * deviate a bit due to rounding errors and fluctuations caused by
262 * cfqgs entering and leaving the service tree.
263 */
264 unsigned int vfraction;
265
266 /*
267 * There are two weights - (internal) weight is the weight of this
268 * cfqg against the sibling cfqgs. leaf_weight is the wight of
269 * this cfqg against the child cfqgs. For the root cfqg, both
270 * weights are kept in sync for backward compatibility.
271 */
272 unsigned int weight;
273 unsigned int new_weight;
274 unsigned int dev_weight;
275
276 unsigned int leaf_weight;
277 unsigned int new_leaf_weight;
278 unsigned int dev_leaf_weight;
279
280 /* number of cfqq currently on this group */
281 int nr_cfqq;
282
283 /*
284 * Per group busy queues average. Useful for workload slice calc. We
285 * create the array for each prio class but at run time it is used
286 * only for RT and BE class and slot for IDLE class remains unused.
287 * This is primarily done to avoid confusion and a gcc warning.
288 */
289 unsigned int busy_queues_avg[CFQ_PRIO_NR];
290 /*
291 * rr lists of queues with requests. We maintain service trees for
292 * RT and BE classes. These trees are subdivided in subclasses
293 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
294 * class there is no subclassification and all the cfq queues go on
295 * a single tree service_tree_idle.
296 * Counts are embedded in the cfq_rb_root
297 */
298 struct cfq_rb_root service_trees[2][3];
299 struct cfq_rb_root service_tree_idle;
300
301 u64 saved_wl_slice;
302 enum wl_type_t saved_wl_type;
303 enum wl_class_t saved_wl_class;
304
305 /* number of requests that are on the dispatch list or inside driver */
306 int dispatched;
307 struct cfq_ttime ttime;
308 struct cfqg_stats stats; /* stats for this cfqg */
309
310 /* async queue for each priority case */
311 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
312 struct cfq_queue *async_idle_cfqq;
313
314 u64 group_idle;
315};
316
317struct cfq_io_cq {
318 struct io_cq icq; /* must be the first member */
319 struct cfq_queue *cfqq[2];
320 struct cfq_ttime ttime;
321 int ioprio; /* the current ioprio */
322#ifdef CONFIG_CFQ_GROUP_IOSCHED
323 uint64_t blkcg_serial_nr; /* the current blkcg serial */
324#endif
325};
326
327/*
328 * Per block device queue structure
329 */
330struct cfq_data {
331 struct request_queue *queue;
332 /* Root service tree for cfq_groups */
333 struct cfq_rb_root grp_service_tree;
334 struct cfq_group *root_group;
335
336 /*
337 * The priority currently being served
338 */
339 enum wl_class_t serving_wl_class;
340 enum wl_type_t serving_wl_type;
341 u64 workload_expires;
342 struct cfq_group *serving_group;
343
344 /*
345 * Each priority tree is sorted by next_request position. These
346 * trees are used when determining if two or more queues are
347 * interleaving requests (see cfq_close_cooperator).
348 */
349 struct rb_root prio_trees[CFQ_PRIO_LISTS];
350
351 unsigned int busy_queues;
352 unsigned int busy_sync_queues;
353
354 int rq_in_driver;
355 int rq_in_flight[2];
356
357 /*
358 * queue-depth detection
359 */
360 int rq_queued;
361 int hw_tag;
362 /*
363 * hw_tag can be
364 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
365 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
366 * 0 => no NCQ
367 */
368 int hw_tag_est_depth;
369 unsigned int hw_tag_samples;
370
371 /*
372 * idle window management
373 */
374 struct hrtimer idle_slice_timer;
375 struct work_struct unplug_work;
376
377 struct cfq_queue *active_queue;
378 struct cfq_io_cq *active_cic;
379
380 sector_t last_position;
381
382 /*
383 * tunables, see top of file
384 */
385 unsigned int cfq_quantum;
386 unsigned int cfq_back_penalty;
387 unsigned int cfq_back_max;
388 unsigned int cfq_slice_async_rq;
389 unsigned int cfq_latency;
390 u64 cfq_fifo_expire[2];
391 u64 cfq_slice[2];
392 u64 cfq_slice_idle;
393 u64 cfq_group_idle;
394 u64 cfq_target_latency;
395
396 /*
397 * Fallback dummy cfqq for extreme OOM conditions
398 */
399 struct cfq_queue oom_cfqq;
400
401 u64 last_delayed_sync;
402};
403
404static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
405static void cfq_put_queue(struct cfq_queue *cfqq);
406
407static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
408 enum wl_class_t class,
409 enum wl_type_t type)
410{
411 if (!cfqg)
412 return NULL;
413
414 if (class == IDLE_WORKLOAD)
415 return &cfqg->service_tree_idle;
416
417 return &cfqg->service_trees[class][type];
418}
419
420enum cfqq_state_flags {
421 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
422 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
423 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
424 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
425 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
426 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
427 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
428 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
429 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
430 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
431 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
432 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
433 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
434};
435
436#define CFQ_CFQQ_FNS(name) \
437static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
438{ \
439 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
440} \
441static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
442{ \
443 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
444} \
445static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
446{ \
447 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
448}
449
450CFQ_CFQQ_FNS(on_rr);
451CFQ_CFQQ_FNS(wait_request);
452CFQ_CFQQ_FNS(must_dispatch);
453CFQ_CFQQ_FNS(must_alloc_slice);
454CFQ_CFQQ_FNS(fifo_expire);
455CFQ_CFQQ_FNS(idle_window);
456CFQ_CFQQ_FNS(prio_changed);
457CFQ_CFQQ_FNS(slice_new);
458CFQ_CFQQ_FNS(sync);
459CFQ_CFQQ_FNS(coop);
460CFQ_CFQQ_FNS(split_coop);
461CFQ_CFQQ_FNS(deep);
462CFQ_CFQQ_FNS(wait_busy);
463#undef CFQ_CFQQ_FNS
464
465#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
466
467/* cfqg stats flags */
468enum cfqg_stats_flags {
469 CFQG_stats_waiting = 0,
470 CFQG_stats_idling,
471 CFQG_stats_empty,
472};
473
474#define CFQG_FLAG_FNS(name) \
475static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
476{ \
477 stats->flags |= (1 << CFQG_stats_##name); \
478} \
479static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
480{ \
481 stats->flags &= ~(1 << CFQG_stats_##name); \
482} \
483static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
484{ \
485 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
486} \
487
488CFQG_FLAG_FNS(waiting)
489CFQG_FLAG_FNS(idling)
490CFQG_FLAG_FNS(empty)
491#undef CFQG_FLAG_FNS
492
493/* This should be called with the queue_lock held. */
494static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
495{
496 u64 now;
497
498 if (!cfqg_stats_waiting(stats))
499 return;
500
501 now = ktime_get_ns();
502 if (now > stats->start_group_wait_time)
503 blkg_stat_add(&stats->group_wait_time,
504 now - stats->start_group_wait_time);
505 cfqg_stats_clear_waiting(stats);
506}
507
508/* This should be called with the queue_lock held. */
509static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
510 struct cfq_group *curr_cfqg)
511{
512 struct cfqg_stats *stats = &cfqg->stats;
513
514 if (cfqg_stats_waiting(stats))
515 return;
516 if (cfqg == curr_cfqg)
517 return;
518 stats->start_group_wait_time = ktime_get_ns();
519 cfqg_stats_mark_waiting(stats);
520}
521
522/* This should be called with the queue_lock held. */
523static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
524{
525 u64 now;
526
527 if (!cfqg_stats_empty(stats))
528 return;
529
530 now = ktime_get_ns();
531 if (now > stats->start_empty_time)
532 blkg_stat_add(&stats->empty_time,
533 now - stats->start_empty_time);
534 cfqg_stats_clear_empty(stats);
535}
536
537static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
538{
539 blkg_stat_add(&cfqg->stats.dequeue, 1);
540}
541
542static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
543{
544 struct cfqg_stats *stats = &cfqg->stats;
545
546 if (blkg_rwstat_total(&stats->queued))
547 return;
548
549 /*
550 * group is already marked empty. This can happen if cfqq got new
551 * request in parent group and moved to this group while being added
552 * to service tree. Just ignore the event and move on.
553 */
554 if (cfqg_stats_empty(stats))
555 return;
556
557 stats->start_empty_time = ktime_get_ns();
558 cfqg_stats_mark_empty(stats);
559}
560
561static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
562{
563 struct cfqg_stats *stats = &cfqg->stats;
564
565 if (cfqg_stats_idling(stats)) {
566 u64 now = ktime_get_ns();
567
568 if (now > stats->start_idle_time)
569 blkg_stat_add(&stats->idle_time,
570 now - stats->start_idle_time);
571 cfqg_stats_clear_idling(stats);
572 }
573}
574
575static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
576{
577 struct cfqg_stats *stats = &cfqg->stats;
578
579 BUG_ON(cfqg_stats_idling(stats));
580
581 stats->start_idle_time = ktime_get_ns();
582 cfqg_stats_mark_idling(stats);
583}
584
585static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
586{
587 struct cfqg_stats *stats = &cfqg->stats;
588
589 blkg_stat_add(&stats->avg_queue_size_sum,
590 blkg_rwstat_total(&stats->queued));
591 blkg_stat_add(&stats->avg_queue_size_samples, 1);
592 cfqg_stats_update_group_wait_time(stats);
593}
594
595#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
596
597static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
598static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
599static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
600static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
601static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
602static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
603static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
604
605#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
606
607#ifdef CONFIG_CFQ_GROUP_IOSCHED
608
609static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
610{
611 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
612}
613
614static struct cfq_group_data
615*cpd_to_cfqgd(struct blkcg_policy_data *cpd)
616{
617 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
618}
619
620static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
621{
622 return pd_to_blkg(&cfqg->pd);
623}
624
625static struct blkcg_policy blkcg_policy_cfq;
626
627static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
628{
629 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
630}
631
632static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
633{
634 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
635}
636
637static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
638{
639 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
640
641 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
642}
643
644static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
645 struct cfq_group *ancestor)
646{
647 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
648 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
649}
650
651static inline void cfqg_get(struct cfq_group *cfqg)
652{
653 return blkg_get(cfqg_to_blkg(cfqg));
654}
655
656static inline void cfqg_put(struct cfq_group *cfqg)
657{
658 return blkg_put(cfqg_to_blkg(cfqg));
659}
660
661#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
662 blk_add_cgroup_trace_msg((cfqd)->queue, \
663 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \
664 "cfq%d%c%c " fmt, (cfqq)->pid, \
665 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
666 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
667 ##args); \
668} while (0)
669
670#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
671 blk_add_cgroup_trace_msg((cfqd)->queue, \
672 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \
673} while (0)
674
675static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
676 struct cfq_group *curr_cfqg,
677 unsigned int op)
678{
679 blkg_rwstat_add(&cfqg->stats.queued, op, 1);
680 cfqg_stats_end_empty_time(&cfqg->stats);
681 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
682}
683
684static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
685 uint64_t time, unsigned long unaccounted_time)
686{
687 blkg_stat_add(&cfqg->stats.time, time);
688#ifdef CONFIG_DEBUG_BLK_CGROUP
689 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
690#endif
691}
692
693static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
694 unsigned int op)
695{
696 blkg_rwstat_add(&cfqg->stats.queued, op, -1);
697}
698
699static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
700 unsigned int op)
701{
702 blkg_rwstat_add(&cfqg->stats.merged, op, 1);
703}
704
705static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
706 u64 start_time_ns,
707 u64 io_start_time_ns,
708 unsigned int op)
709{
710 struct cfqg_stats *stats = &cfqg->stats;
711 u64 now = ktime_get_ns();
712
713 if (now > io_start_time_ns)
714 blkg_rwstat_add(&stats->service_time, op,
715 now - io_start_time_ns);
716 if (io_start_time_ns > start_time_ns)
717 blkg_rwstat_add(&stats->wait_time, op,
718 io_start_time_ns - start_time_ns);
719}
720
721/* @stats = 0 */
722static void cfqg_stats_reset(struct cfqg_stats *stats)
723{
724 /* queued stats shouldn't be cleared */
725 blkg_rwstat_reset(&stats->merged);
726 blkg_rwstat_reset(&stats->service_time);
727 blkg_rwstat_reset(&stats->wait_time);
728 blkg_stat_reset(&stats->time);
729#ifdef CONFIG_DEBUG_BLK_CGROUP
730 blkg_stat_reset(&stats->unaccounted_time);
731 blkg_stat_reset(&stats->avg_queue_size_sum);
732 blkg_stat_reset(&stats->avg_queue_size_samples);
733 blkg_stat_reset(&stats->dequeue);
734 blkg_stat_reset(&stats->group_wait_time);
735 blkg_stat_reset(&stats->idle_time);
736 blkg_stat_reset(&stats->empty_time);
737#endif
738}
739
740/* @to += @from */
741static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
742{
743 /* queued stats shouldn't be cleared */
744 blkg_rwstat_add_aux(&to->merged, &from->merged);
745 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
746 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
747 blkg_stat_add_aux(&from->time, &from->time);
748#ifdef CONFIG_DEBUG_BLK_CGROUP
749 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
750 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
751 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
752 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
753 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
754 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
755 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
756#endif
757}
758
759/*
760 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
761 * recursive stats can still account for the amount used by this cfqg after
762 * it's gone.
763 */
764static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
765{
766 struct cfq_group *parent = cfqg_parent(cfqg);
767
768 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
769
770 if (unlikely(!parent))
771 return;
772
773 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
774 cfqg_stats_reset(&cfqg->stats);
775}
776
777#else /* CONFIG_CFQ_GROUP_IOSCHED */
778
779static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
780static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
781 struct cfq_group *ancestor)
782{
783 return true;
784}
785static inline void cfqg_get(struct cfq_group *cfqg) { }
786static inline void cfqg_put(struct cfq_group *cfqg) { }
787
788#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
789 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
790 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
791 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
792 ##args)
793#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
794
795static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
796 struct cfq_group *curr_cfqg, unsigned int op) { }
797static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
798 uint64_t time, unsigned long unaccounted_time) { }
799static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
800 unsigned int op) { }
801static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
802 unsigned int op) { }
803static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
804 u64 start_time_ns,
805 u64 io_start_time_ns,
806 unsigned int op) { }
807
808#endif /* CONFIG_CFQ_GROUP_IOSCHED */
809
810static inline u64 get_group_idle(struct cfq_data *cfqd)
811{
812#ifdef CONFIG_CFQ_GROUP_IOSCHED
813 struct cfq_queue *cfqq = cfqd->active_queue;
814
815 if (cfqq && cfqq->cfqg)
816 return cfqq->cfqg->group_idle;
817#endif
818 return cfqd->cfq_group_idle;
819}
820
821#define cfq_log(cfqd, fmt, args...) \
822 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
823
824/* Traverses through cfq group service trees */
825#define for_each_cfqg_st(cfqg, i, j, st) \
826 for (i = 0; i <= IDLE_WORKLOAD; i++) \
827 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
828 : &cfqg->service_tree_idle; \
829 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
830 (i == IDLE_WORKLOAD && j == 0); \
831 j++, st = i < IDLE_WORKLOAD ? \
832 &cfqg->service_trees[i][j]: NULL) \
833
834static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
835 struct cfq_ttime *ttime, bool group_idle)
836{
837 u64 slice;
838 if (!sample_valid(ttime->ttime_samples))
839 return false;
840 if (group_idle)
841 slice = get_group_idle(cfqd);
842 else
843 slice = cfqd->cfq_slice_idle;
844 return ttime->ttime_mean > slice;
845}
846
847static inline bool iops_mode(struct cfq_data *cfqd)
848{
849 /*
850 * If we are not idling on queues and it is a NCQ drive, parallel
851 * execution of requests is on and measuring time is not possible
852 * in most of the cases until and unless we drive shallower queue
853 * depths and that becomes a performance bottleneck. In such cases
854 * switch to start providing fairness in terms of number of IOs.
855 */
856 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
857 return true;
858 else
859 return false;
860}
861
862static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
863{
864 if (cfq_class_idle(cfqq))
865 return IDLE_WORKLOAD;
866 if (cfq_class_rt(cfqq))
867 return RT_WORKLOAD;
868 return BE_WORKLOAD;
869}
870
871
872static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
873{
874 if (!cfq_cfqq_sync(cfqq))
875 return ASYNC_WORKLOAD;
876 if (!cfq_cfqq_idle_window(cfqq))
877 return SYNC_NOIDLE_WORKLOAD;
878 return SYNC_WORKLOAD;
879}
880
881static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
882 struct cfq_data *cfqd,
883 struct cfq_group *cfqg)
884{
885 if (wl_class == IDLE_WORKLOAD)
886 return cfqg->service_tree_idle.count;
887
888 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
889 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
890 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
891}
892
893static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
894 struct cfq_group *cfqg)
895{
896 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
897 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
898}
899
900static void cfq_dispatch_insert(struct request_queue *, struct request *);
901static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
902 struct cfq_io_cq *cic, struct bio *bio);
903
904static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
905{
906 /* cic->icq is the first member, %NULL will convert to %NULL */
907 return container_of(icq, struct cfq_io_cq, icq);
908}
909
910static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
911 struct io_context *ioc)
912{
913 if (ioc)
914 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
915 return NULL;
916}
917
918static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
919{
920 return cic->cfqq[is_sync];
921}
922
923static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
924 bool is_sync)
925{
926 cic->cfqq[is_sync] = cfqq;
927}
928
929static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
930{
931 return cic->icq.q->elevator->elevator_data;
932}
933
934/*
935 * scheduler run of queue, if there are requests pending and no one in the
936 * driver that will restart queueing
937 */
938static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
939{
940 if (cfqd->busy_queues) {
941 cfq_log(cfqd, "schedule dispatch");
942 kblockd_schedule_work(&cfqd->unplug_work);
943 }
944}
945
946/*
947 * Scale schedule slice based on io priority. Use the sync time slice only
948 * if a queue is marked sync and has sync io queued. A sync queue with async
949 * io only, should not get full sync slice length.
950 */
951static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
952 unsigned short prio)
953{
954 u64 base_slice = cfqd->cfq_slice[sync];
955 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
956
957 WARN_ON(prio >= IOPRIO_BE_NR);
958
959 return base_slice + (slice * (4 - prio));
960}
961
962static inline u64
963cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
964{
965 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
966}
967
968/**
969 * cfqg_scale_charge - scale disk time charge according to cfqg weight
970 * @charge: disk time being charged
971 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
972 *
973 * Scale @charge according to @vfraction, which is in range (0, 1]. The
974 * scaling is inversely proportional.
975 *
976 * scaled = charge / vfraction
977 *
978 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
979 */
980static inline u64 cfqg_scale_charge(u64 charge,
981 unsigned int vfraction)
982{
983 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
984
985 /* charge / vfraction */
986 c <<= CFQ_SERVICE_SHIFT;
987 return div_u64(c, vfraction);
988}
989
990static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
991{
992 s64 delta = (s64)(vdisktime - min_vdisktime);
993 if (delta > 0)
994 min_vdisktime = vdisktime;
995
996 return min_vdisktime;
997}
998
999static void update_min_vdisktime(struct cfq_rb_root *st)
1000{
1001 if (!RB_EMPTY_ROOT(&st->rb.rb_root)) {
1002 struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost);
1003
1004 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1005 cfqg->vdisktime);
1006 }
1007}
1008
1009/*
1010 * get averaged number of queues of RT/BE priority.
1011 * average is updated, with a formula that gives more weight to higher numbers,
1012 * to quickly follows sudden increases and decrease slowly
1013 */
1014
1015static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1016 struct cfq_group *cfqg, bool rt)
1017{
1018 unsigned min_q, max_q;
1019 unsigned mult = cfq_hist_divisor - 1;
1020 unsigned round = cfq_hist_divisor / 2;
1021 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1022
1023 min_q = min(cfqg->busy_queues_avg[rt], busy);
1024 max_q = max(cfqg->busy_queues_avg[rt], busy);
1025 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1026 cfq_hist_divisor;
1027 return cfqg->busy_queues_avg[rt];
1028}
1029
1030static inline u64
1031cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1032{
1033 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1034}
1035
1036static inline u64
1037cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1038{
1039 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1040 if (cfqd->cfq_latency) {
1041 /*
1042 * interested queues (we consider only the ones with the same
1043 * priority class in the cfq group)
1044 */
1045 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1046 cfq_class_rt(cfqq));
1047 u64 sync_slice = cfqd->cfq_slice[1];
1048 u64 expect_latency = sync_slice * iq;
1049 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1050
1051 if (expect_latency > group_slice) {
1052 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1053 u64 low_slice;
1054
1055 /* scale low_slice according to IO priority
1056 * and sync vs async */
1057 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1058 low_slice = min(slice, low_slice);
1059 /* the adapted slice value is scaled to fit all iqs
1060 * into the target latency */
1061 slice = div64_u64(slice*group_slice, expect_latency);
1062 slice = max(slice, low_slice);
1063 }
1064 }
1065 return slice;
1066}
1067
1068static inline void
1069cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1070{
1071 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1072 u64 now = ktime_get_ns();
1073
1074 cfqq->slice_start = now;
1075 cfqq->slice_end = now + slice;
1076 cfqq->allocated_slice = slice;
1077 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1078}
1079
1080/*
1081 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1082 * isn't valid until the first request from the dispatch is activated
1083 * and the slice time set.
1084 */
1085static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1086{
1087 if (cfq_cfqq_slice_new(cfqq))
1088 return false;
1089 if (ktime_get_ns() < cfqq->slice_end)
1090 return false;
1091
1092 return true;
1093}
1094
1095/*
1096 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1097 * We choose the request that is closest to the head right now. Distance
1098 * behind the head is penalized and only allowed to a certain extent.
1099 */
1100static struct request *
1101cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1102{
1103 sector_t s1, s2, d1 = 0, d2 = 0;
1104 unsigned long back_max;
1105#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1106#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1107 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1108
1109 if (rq1 == NULL || rq1 == rq2)
1110 return rq2;
1111 if (rq2 == NULL)
1112 return rq1;
1113
1114 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1115 return rq_is_sync(rq1) ? rq1 : rq2;
1116
1117 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1118 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1119
1120 s1 = blk_rq_pos(rq1);
1121 s2 = blk_rq_pos(rq2);
1122
1123 /*
1124 * by definition, 1KiB is 2 sectors
1125 */
1126 back_max = cfqd->cfq_back_max * 2;
1127
1128 /*
1129 * Strict one way elevator _except_ in the case where we allow
1130 * short backward seeks which are biased as twice the cost of a
1131 * similar forward seek.
1132 */
1133 if (s1 >= last)
1134 d1 = s1 - last;
1135 else if (s1 + back_max >= last)
1136 d1 = (last - s1) * cfqd->cfq_back_penalty;
1137 else
1138 wrap |= CFQ_RQ1_WRAP;
1139
1140 if (s2 >= last)
1141 d2 = s2 - last;
1142 else if (s2 + back_max >= last)
1143 d2 = (last - s2) * cfqd->cfq_back_penalty;
1144 else
1145 wrap |= CFQ_RQ2_WRAP;
1146
1147 /* Found required data */
1148
1149 /*
1150 * By doing switch() on the bit mask "wrap" we avoid having to
1151 * check two variables for all permutations: --> faster!
1152 */
1153 switch (wrap) {
1154 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1155 if (d1 < d2)
1156 return rq1;
1157 else if (d2 < d1)
1158 return rq2;
1159 else {
1160 if (s1 >= s2)
1161 return rq1;
1162 else
1163 return rq2;
1164 }
1165
1166 case CFQ_RQ2_WRAP:
1167 return rq1;
1168 case CFQ_RQ1_WRAP:
1169 return rq2;
1170 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1171 default:
1172 /*
1173 * Since both rqs are wrapped,
1174 * start with the one that's further behind head
1175 * (--> only *one* back seek required),
1176 * since back seek takes more time than forward.
1177 */
1178 if (s1 <= s2)
1179 return rq1;
1180 else
1181 return rq2;
1182 }
1183}
1184
1185static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1186{
1187 /* Service tree is empty */
1188 if (!root->count)
1189 return NULL;
1190
1191 return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node);
1192}
1193
1194static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1195{
1196 return rb_entry_cfqg(rb_first_cached(&root->rb));
1197}
1198
1199static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1200{
1201 if (root->rb_rightmost == n)
1202 root->rb_rightmost = rb_prev(n);
1203
1204 rb_erase_cached(n, &root->rb);
1205 RB_CLEAR_NODE(n);
1206
1207 --root->count;
1208}
1209
1210/*
1211 * would be nice to take fifo expire time into account as well
1212 */
1213static struct request *
1214cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1215 struct request *last)
1216{
1217 struct rb_node *rbnext = rb_next(&last->rb_node);
1218 struct rb_node *rbprev = rb_prev(&last->rb_node);
1219 struct request *next = NULL, *prev = NULL;
1220
1221 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1222
1223 if (rbprev)
1224 prev = rb_entry_rq(rbprev);
1225
1226 if (rbnext)
1227 next = rb_entry_rq(rbnext);
1228 else {
1229 rbnext = rb_first(&cfqq->sort_list);
1230 if (rbnext && rbnext != &last->rb_node)
1231 next = rb_entry_rq(rbnext);
1232 }
1233
1234 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1235}
1236
1237static u64 cfq_slice_offset(struct cfq_data *cfqd,
1238 struct cfq_queue *cfqq)
1239{
1240 /*
1241 * just an approximation, should be ok.
1242 */
1243 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1244 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1245}
1246
1247static inline s64
1248cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249{
1250 return cfqg->vdisktime - st->min_vdisktime;
1251}
1252
1253static void
1254__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1255{
1256 struct rb_node **node = &st->rb.rb_root.rb_node;
1257 struct rb_node *parent = NULL;
1258 struct cfq_group *__cfqg;
1259 s64 key = cfqg_key(st, cfqg);
1260 bool leftmost = true, rightmost = true;
1261
1262 while (*node != NULL) {
1263 parent = *node;
1264 __cfqg = rb_entry_cfqg(parent);
1265
1266 if (key < cfqg_key(st, __cfqg)) {
1267 node = &parent->rb_left;
1268 rightmost = false;
1269 } else {
1270 node = &parent->rb_right;
1271 leftmost = false;
1272 }
1273 }
1274
1275 if (rightmost)
1276 st->rb_rightmost = &cfqg->rb_node;
1277
1278 rb_link_node(&cfqg->rb_node, parent, node);
1279 rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost);
1280}
1281
1282/*
1283 * This has to be called only on activation of cfqg
1284 */
1285static void
1286cfq_update_group_weight(struct cfq_group *cfqg)
1287{
1288 if (cfqg->new_weight) {
1289 cfqg->weight = cfqg->new_weight;
1290 cfqg->new_weight = 0;
1291 }
1292}
1293
1294static void
1295cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1296{
1297 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1298
1299 if (cfqg->new_leaf_weight) {
1300 cfqg->leaf_weight = cfqg->new_leaf_weight;
1301 cfqg->new_leaf_weight = 0;
1302 }
1303}
1304
1305static void
1306cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1307{
1308 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1309 struct cfq_group *pos = cfqg;
1310 struct cfq_group *parent;
1311 bool propagate;
1312
1313 /* add to the service tree */
1314 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1315
1316 /*
1317 * Update leaf_weight. We cannot update weight at this point
1318 * because cfqg might already have been activated and is
1319 * contributing its current weight to the parent's child_weight.
1320 */
1321 cfq_update_group_leaf_weight(cfqg);
1322 __cfq_group_service_tree_add(st, cfqg);
1323
1324 /*
1325 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1326 * entitled to. vfraction is calculated by walking the tree
1327 * towards the root calculating the fraction it has at each level.
1328 * The compounded ratio is how much vfraction @cfqg owns.
1329 *
1330 * Start with the proportion tasks in this cfqg has against active
1331 * children cfqgs - its leaf_weight against children_weight.
1332 */
1333 propagate = !pos->nr_active++;
1334 pos->children_weight += pos->leaf_weight;
1335 vfr = vfr * pos->leaf_weight / pos->children_weight;
1336
1337 /*
1338 * Compound ->weight walking up the tree. Both activation and
1339 * vfraction calculation are done in the same loop. Propagation
1340 * stops once an already activated node is met. vfraction
1341 * calculation should always continue to the root.
1342 */
1343 while ((parent = cfqg_parent(pos))) {
1344 if (propagate) {
1345 cfq_update_group_weight(pos);
1346 propagate = !parent->nr_active++;
1347 parent->children_weight += pos->weight;
1348 }
1349 vfr = vfr * pos->weight / parent->children_weight;
1350 pos = parent;
1351 }
1352
1353 cfqg->vfraction = max_t(unsigned, vfr, 1);
1354}
1355
1356static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1357{
1358 if (!iops_mode(cfqd))
1359 return CFQ_SLICE_MODE_GROUP_DELAY;
1360 else
1361 return CFQ_IOPS_MODE_GROUP_DELAY;
1362}
1363
1364static void
1365cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1366{
1367 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1368 struct cfq_group *__cfqg;
1369 struct rb_node *n;
1370
1371 cfqg->nr_cfqq++;
1372 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1373 return;
1374
1375 /*
1376 * Currently put the group at the end. Later implement something
1377 * so that groups get lesser vtime based on their weights, so that
1378 * if group does not loose all if it was not continuously backlogged.
1379 */
1380 n = st->rb_rightmost;
1381 if (n) {
1382 __cfqg = rb_entry_cfqg(n);
1383 cfqg->vdisktime = __cfqg->vdisktime +
1384 cfq_get_cfqg_vdisktime_delay(cfqd);
1385 } else
1386 cfqg->vdisktime = st->min_vdisktime;
1387 cfq_group_service_tree_add(st, cfqg);
1388}
1389
1390static void
1391cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1392{
1393 struct cfq_group *pos = cfqg;
1394 bool propagate;
1395
1396 /*
1397 * Undo activation from cfq_group_service_tree_add(). Deactivate
1398 * @cfqg and propagate deactivation upwards.
1399 */
1400 propagate = !--pos->nr_active;
1401 pos->children_weight -= pos->leaf_weight;
1402
1403 while (propagate) {
1404 struct cfq_group *parent = cfqg_parent(pos);
1405
1406 /* @pos has 0 nr_active at this point */
1407 WARN_ON_ONCE(pos->children_weight);
1408 pos->vfraction = 0;
1409
1410 if (!parent)
1411 break;
1412
1413 propagate = !--parent->nr_active;
1414 parent->children_weight -= pos->weight;
1415 pos = parent;
1416 }
1417
1418 /* remove from the service tree */
1419 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1420 cfq_rb_erase(&cfqg->rb_node, st);
1421}
1422
1423static void
1424cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1425{
1426 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1427
1428 BUG_ON(cfqg->nr_cfqq < 1);
1429 cfqg->nr_cfqq--;
1430
1431 /* If there are other cfq queues under this group, don't delete it */
1432 if (cfqg->nr_cfqq)
1433 return;
1434
1435 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1436 cfq_group_service_tree_del(st, cfqg);
1437 cfqg->saved_wl_slice = 0;
1438 cfqg_stats_update_dequeue(cfqg);
1439}
1440
1441static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1442 u64 *unaccounted_time)
1443{
1444 u64 slice_used;
1445 u64 now = ktime_get_ns();
1446
1447 /*
1448 * Queue got expired before even a single request completed or
1449 * got expired immediately after first request completion.
1450 */
1451 if (!cfqq->slice_start || cfqq->slice_start == now) {
1452 /*
1453 * Also charge the seek time incurred to the group, otherwise
1454 * if there are mutiple queues in the group, each can dispatch
1455 * a single request on seeky media and cause lots of seek time
1456 * and group will never know it.
1457 */
1458 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1459 jiffies_to_nsecs(1));
1460 } else {
1461 slice_used = now - cfqq->slice_start;
1462 if (slice_used > cfqq->allocated_slice) {
1463 *unaccounted_time = slice_used - cfqq->allocated_slice;
1464 slice_used = cfqq->allocated_slice;
1465 }
1466 if (cfqq->slice_start > cfqq->dispatch_start)
1467 *unaccounted_time += cfqq->slice_start -
1468 cfqq->dispatch_start;
1469 }
1470
1471 return slice_used;
1472}
1473
1474static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1475 struct cfq_queue *cfqq)
1476{
1477 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1478 u64 used_sl, charge, unaccounted_sl = 0;
1479 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1480 - cfqg->service_tree_idle.count;
1481 unsigned int vfr;
1482 u64 now = ktime_get_ns();
1483
1484 BUG_ON(nr_sync < 0);
1485 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1486
1487 if (iops_mode(cfqd))
1488 charge = cfqq->slice_dispatch;
1489 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1490 charge = cfqq->allocated_slice;
1491
1492 /*
1493 * Can't update vdisktime while on service tree and cfqg->vfraction
1494 * is valid only while on it. Cache vfr, leave the service tree,
1495 * update vdisktime and go back on. The re-addition to the tree
1496 * will also update the weights as necessary.
1497 */
1498 vfr = cfqg->vfraction;
1499 cfq_group_service_tree_del(st, cfqg);
1500 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1501 cfq_group_service_tree_add(st, cfqg);
1502
1503 /* This group is being expired. Save the context */
1504 if (cfqd->workload_expires > now) {
1505 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1506 cfqg->saved_wl_type = cfqd->serving_wl_type;
1507 cfqg->saved_wl_class = cfqd->serving_wl_class;
1508 } else
1509 cfqg->saved_wl_slice = 0;
1510
1511 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1512 st->min_vdisktime);
1513 cfq_log_cfqq(cfqq->cfqd, cfqq,
1514 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1515 used_sl, cfqq->slice_dispatch, charge,
1516 iops_mode(cfqd), cfqq->nr_sectors);
1517 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1518 cfqg_stats_set_start_empty_time(cfqg);
1519}
1520
1521/**
1522 * cfq_init_cfqg_base - initialize base part of a cfq_group
1523 * @cfqg: cfq_group to initialize
1524 *
1525 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1526 * is enabled or not.
1527 */
1528static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1529{
1530 struct cfq_rb_root *st;
1531 int i, j;
1532
1533 for_each_cfqg_st(cfqg, i, j, st)
1534 *st = CFQ_RB_ROOT;
1535 RB_CLEAR_NODE(&cfqg->rb_node);
1536
1537 cfqg->ttime.last_end_request = ktime_get_ns();
1538}
1539
1540#ifdef CONFIG_CFQ_GROUP_IOSCHED
1541static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1542 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1543
1544static void cfqg_stats_exit(struct cfqg_stats *stats)
1545{
1546 blkg_rwstat_exit(&stats->merged);
1547 blkg_rwstat_exit(&stats->service_time);
1548 blkg_rwstat_exit(&stats->wait_time);
1549 blkg_rwstat_exit(&stats->queued);
1550 blkg_stat_exit(&stats->time);
1551#ifdef CONFIG_DEBUG_BLK_CGROUP
1552 blkg_stat_exit(&stats->unaccounted_time);
1553 blkg_stat_exit(&stats->avg_queue_size_sum);
1554 blkg_stat_exit(&stats->avg_queue_size_samples);
1555 blkg_stat_exit(&stats->dequeue);
1556 blkg_stat_exit(&stats->group_wait_time);
1557 blkg_stat_exit(&stats->idle_time);
1558 blkg_stat_exit(&stats->empty_time);
1559#endif
1560}
1561
1562static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1563{
1564 if (blkg_rwstat_init(&stats->merged, gfp) ||
1565 blkg_rwstat_init(&stats->service_time, gfp) ||
1566 blkg_rwstat_init(&stats->wait_time, gfp) ||
1567 blkg_rwstat_init(&stats->queued, gfp) ||
1568 blkg_stat_init(&stats->time, gfp))
1569 goto err;
1570
1571#ifdef CONFIG_DEBUG_BLK_CGROUP
1572 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1573 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1574 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1575 blkg_stat_init(&stats->dequeue, gfp) ||
1576 blkg_stat_init(&stats->group_wait_time, gfp) ||
1577 blkg_stat_init(&stats->idle_time, gfp) ||
1578 blkg_stat_init(&stats->empty_time, gfp))
1579 goto err;
1580#endif
1581 return 0;
1582err:
1583 cfqg_stats_exit(stats);
1584 return -ENOMEM;
1585}
1586
1587static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1588{
1589 struct cfq_group_data *cgd;
1590
1591 cgd = kzalloc(sizeof(*cgd), gfp);
1592 if (!cgd)
1593 return NULL;
1594 return &cgd->cpd;
1595}
1596
1597static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1598{
1599 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1600 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1601 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1602
1603 if (cpd_to_blkcg(cpd) == &blkcg_root)
1604 weight *= 2;
1605
1606 cgd->weight = weight;
1607 cgd->leaf_weight = weight;
1608 cgd->group_idle = cfq_group_idle;
1609}
1610
1611static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1612{
1613 kfree(cpd_to_cfqgd(cpd));
1614}
1615
1616static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1617{
1618 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1619 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1620 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1621
1622 if (blkcg == &blkcg_root)
1623 weight *= 2;
1624
1625 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1626 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1627}
1628
1629static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1630{
1631 struct cfq_group *cfqg;
1632
1633 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1634 if (!cfqg)
1635 return NULL;
1636
1637 cfq_init_cfqg_base(cfqg);
1638 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1639 kfree(cfqg);
1640 return NULL;
1641 }
1642
1643 return &cfqg->pd;
1644}
1645
1646static void cfq_pd_init(struct blkg_policy_data *pd)
1647{
1648 struct cfq_group *cfqg = pd_to_cfqg(pd);
1649 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1650
1651 cfqg->weight = cgd->weight;
1652 cfqg->leaf_weight = cgd->leaf_weight;
1653 cfqg->group_idle = cgd->group_idle;
1654}
1655
1656static void cfq_pd_offline(struct blkg_policy_data *pd)
1657{
1658 struct cfq_group *cfqg = pd_to_cfqg(pd);
1659 int i;
1660
1661 for (i = 0; i < IOPRIO_BE_NR; i++) {
1662 if (cfqg->async_cfqq[0][i])
1663 cfq_put_queue(cfqg->async_cfqq[0][i]);
1664 if (cfqg->async_cfqq[1][i])
1665 cfq_put_queue(cfqg->async_cfqq[1][i]);
1666 }
1667
1668 if (cfqg->async_idle_cfqq)
1669 cfq_put_queue(cfqg->async_idle_cfqq);
1670
1671 /*
1672 * @blkg is going offline and will be ignored by
1673 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1674 * that they don't get lost. If IOs complete after this point, the
1675 * stats for them will be lost. Oh well...
1676 */
1677 cfqg_stats_xfer_dead(cfqg);
1678}
1679
1680static void cfq_pd_free(struct blkg_policy_data *pd)
1681{
1682 struct cfq_group *cfqg = pd_to_cfqg(pd);
1683
1684 cfqg_stats_exit(&cfqg->stats);
1685 return kfree(cfqg);
1686}
1687
1688static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1689{
1690 struct cfq_group *cfqg = pd_to_cfqg(pd);
1691
1692 cfqg_stats_reset(&cfqg->stats);
1693}
1694
1695static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1696 struct blkcg *blkcg)
1697{
1698 struct blkcg_gq *blkg;
1699
1700 blkg = blkg_lookup(blkcg, cfqd->queue);
1701 if (likely(blkg))
1702 return blkg_to_cfqg(blkg);
1703 return NULL;
1704}
1705
1706static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1707{
1708 cfqq->cfqg = cfqg;
1709 /* cfqq reference on cfqg */
1710 cfqg_get(cfqg);
1711}
1712
1713static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1714 struct blkg_policy_data *pd, int off)
1715{
1716 struct cfq_group *cfqg = pd_to_cfqg(pd);
1717
1718 if (!cfqg->dev_weight)
1719 return 0;
1720 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1721}
1722
1723static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1724{
1725 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1726 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1727 0, false);
1728 return 0;
1729}
1730
1731static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1732 struct blkg_policy_data *pd, int off)
1733{
1734 struct cfq_group *cfqg = pd_to_cfqg(pd);
1735
1736 if (!cfqg->dev_leaf_weight)
1737 return 0;
1738 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1739}
1740
1741static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1742{
1743 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1744 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1745 0, false);
1746 return 0;
1747}
1748
1749static int cfq_print_weight(struct seq_file *sf, void *v)
1750{
1751 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1752 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1753 unsigned int val = 0;
1754
1755 if (cgd)
1756 val = cgd->weight;
1757
1758 seq_printf(sf, "%u\n", val);
1759 return 0;
1760}
1761
1762static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1763{
1764 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1765 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1766 unsigned int val = 0;
1767
1768 if (cgd)
1769 val = cgd->leaf_weight;
1770
1771 seq_printf(sf, "%u\n", val);
1772 return 0;
1773}
1774
1775static int cfq_print_group_idle(struct seq_file *sf, void *v)
1776{
1777 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1778 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1779 u64 val = 0;
1780
1781 if (cgd)
1782 val = cgd->group_idle;
1783
1784 seq_printf(sf, "%llu\n", div_u64(val, NSEC_PER_USEC));
1785 return 0;
1786}
1787
1788static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1789 char *buf, size_t nbytes, loff_t off,
1790 bool on_dfl, bool is_leaf_weight)
1791{
1792 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1793 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1794 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1795 struct blkg_conf_ctx ctx;
1796 struct cfq_group *cfqg;
1797 struct cfq_group_data *cfqgd;
1798 int ret;
1799 u64 v;
1800
1801 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1802 if (ret)
1803 return ret;
1804
1805 if (sscanf(ctx.body, "%llu", &v) == 1) {
1806 /* require "default" on dfl */
1807 ret = -ERANGE;
1808 if (!v && on_dfl)
1809 goto out_finish;
1810 } else if (!strcmp(strim(ctx.body), "default")) {
1811 v = 0;
1812 } else {
1813 ret = -EINVAL;
1814 goto out_finish;
1815 }
1816
1817 cfqg = blkg_to_cfqg(ctx.blkg);
1818 cfqgd = blkcg_to_cfqgd(blkcg);
1819
1820 ret = -ERANGE;
1821 if (!v || (v >= min && v <= max)) {
1822 if (!is_leaf_weight) {
1823 cfqg->dev_weight = v;
1824 cfqg->new_weight = v ?: cfqgd->weight;
1825 } else {
1826 cfqg->dev_leaf_weight = v;
1827 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1828 }
1829 ret = 0;
1830 }
1831out_finish:
1832 blkg_conf_finish(&ctx);
1833 return ret ?: nbytes;
1834}
1835
1836static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1837 char *buf, size_t nbytes, loff_t off)
1838{
1839 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1840}
1841
1842static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1843 char *buf, size_t nbytes, loff_t off)
1844{
1845 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1846}
1847
1848static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1849 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1850{
1851 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1852 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1853 struct blkcg *blkcg = css_to_blkcg(css);
1854 struct blkcg_gq *blkg;
1855 struct cfq_group_data *cfqgd;
1856 int ret = 0;
1857
1858 if (val < min || val > max)
1859 return -ERANGE;
1860
1861 spin_lock_irq(&blkcg->lock);
1862 cfqgd = blkcg_to_cfqgd(blkcg);
1863 if (!cfqgd) {
1864 ret = -EINVAL;
1865 goto out;
1866 }
1867
1868 if (!is_leaf_weight)
1869 cfqgd->weight = val;
1870 else
1871 cfqgd->leaf_weight = val;
1872
1873 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1874 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1875
1876 if (!cfqg)
1877 continue;
1878
1879 if (!is_leaf_weight) {
1880 if (reset_dev)
1881 cfqg->dev_weight = 0;
1882 if (!cfqg->dev_weight)
1883 cfqg->new_weight = cfqgd->weight;
1884 } else {
1885 if (reset_dev)
1886 cfqg->dev_leaf_weight = 0;
1887 if (!cfqg->dev_leaf_weight)
1888 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1889 }
1890 }
1891
1892out:
1893 spin_unlock_irq(&blkcg->lock);
1894 return ret;
1895}
1896
1897static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1898 u64 val)
1899{
1900 return __cfq_set_weight(css, val, false, false, false);
1901}
1902
1903static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1904 struct cftype *cft, u64 val)
1905{
1906 return __cfq_set_weight(css, val, false, false, true);
1907}
1908
1909static int cfq_set_group_idle(struct cgroup_subsys_state *css,
1910 struct cftype *cft, u64 val)
1911{
1912 struct blkcg *blkcg = css_to_blkcg(css);
1913 struct cfq_group_data *cfqgd;
1914 struct blkcg_gq *blkg;
1915 int ret = 0;
1916
1917 spin_lock_irq(&blkcg->lock);
1918 cfqgd = blkcg_to_cfqgd(blkcg);
1919 if (!cfqgd) {
1920 ret = -EINVAL;
1921 goto out;
1922 }
1923
1924 cfqgd->group_idle = val * NSEC_PER_USEC;
1925
1926 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1927 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1928
1929 if (!cfqg)
1930 continue;
1931
1932 cfqg->group_idle = cfqgd->group_idle;
1933 }
1934
1935out:
1936 spin_unlock_irq(&blkcg->lock);
1937 return ret;
1938}
1939
1940static int cfqg_print_stat(struct seq_file *sf, void *v)
1941{
1942 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1943 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1944 return 0;
1945}
1946
1947static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1948{
1949 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1950 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1951 return 0;
1952}
1953
1954static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1955 struct blkg_policy_data *pd, int off)
1956{
1957 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1958 &blkcg_policy_cfq, off);
1959 return __blkg_prfill_u64(sf, pd, sum);
1960}
1961
1962static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1963 struct blkg_policy_data *pd, int off)
1964{
1965 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1966 &blkcg_policy_cfq, off);
1967 return __blkg_prfill_rwstat(sf, pd, &sum);
1968}
1969
1970static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1971{
1972 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1973 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1974 seq_cft(sf)->private, false);
1975 return 0;
1976}
1977
1978static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1979{
1980 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1981 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1982 seq_cft(sf)->private, true);
1983 return 0;
1984}
1985
1986static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1987 int off)
1988{
1989 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1990
1991 return __blkg_prfill_u64(sf, pd, sum >> 9);
1992}
1993
1994static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1995{
1996 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1997 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1998 return 0;
1999}
2000
2001static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
2002 struct blkg_policy_data *pd, int off)
2003{
2004 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
2005 offsetof(struct blkcg_gq, stat_bytes));
2006 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
2007 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
2008
2009 return __blkg_prfill_u64(sf, pd, sum >> 9);
2010}
2011
2012static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
2013{
2014 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2015 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
2016 false);
2017 return 0;
2018}
2019
2020#ifdef CONFIG_DEBUG_BLK_CGROUP
2021static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
2022 struct blkg_policy_data *pd, int off)
2023{
2024 struct cfq_group *cfqg = pd_to_cfqg(pd);
2025 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
2026 u64 v = 0;
2027
2028 if (samples) {
2029 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
2030 v = div64_u64(v, samples);
2031 }
2032 __blkg_prfill_u64(sf, pd, v);
2033 return 0;
2034}
2035
2036/* print avg_queue_size */
2037static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
2038{
2039 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2040 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
2041 0, false);
2042 return 0;
2043}
2044#endif /* CONFIG_DEBUG_BLK_CGROUP */
2045
2046static struct cftype cfq_blkcg_legacy_files[] = {
2047 /* on root, weight is mapped to leaf_weight */
2048 {
2049 .name = "weight_device",
2050 .flags = CFTYPE_ONLY_ON_ROOT,
2051 .seq_show = cfqg_print_leaf_weight_device,
2052 .write = cfqg_set_leaf_weight_device,
2053 },
2054 {
2055 .name = "weight",
2056 .flags = CFTYPE_ONLY_ON_ROOT,
2057 .seq_show = cfq_print_leaf_weight,
2058 .write_u64 = cfq_set_leaf_weight,
2059 },
2060
2061 /* no such mapping necessary for !roots */
2062 {
2063 .name = "weight_device",
2064 .flags = CFTYPE_NOT_ON_ROOT,
2065 .seq_show = cfqg_print_weight_device,
2066 .write = cfqg_set_weight_device,
2067 },
2068 {
2069 .name = "weight",
2070 .flags = CFTYPE_NOT_ON_ROOT,
2071 .seq_show = cfq_print_weight,
2072 .write_u64 = cfq_set_weight,
2073 },
2074
2075 {
2076 .name = "leaf_weight_device",
2077 .seq_show = cfqg_print_leaf_weight_device,
2078 .write = cfqg_set_leaf_weight_device,
2079 },
2080 {
2081 .name = "leaf_weight",
2082 .seq_show = cfq_print_leaf_weight,
2083 .write_u64 = cfq_set_leaf_weight,
2084 },
2085 {
2086 .name = "group_idle",
2087 .seq_show = cfq_print_group_idle,
2088 .write_u64 = cfq_set_group_idle,
2089 },
2090
2091 /* statistics, covers only the tasks in the cfqg */
2092 {
2093 .name = "time",
2094 .private = offsetof(struct cfq_group, stats.time),
2095 .seq_show = cfqg_print_stat,
2096 },
2097 {
2098 .name = "sectors",
2099 .seq_show = cfqg_print_stat_sectors,
2100 },
2101 {
2102 .name = "io_service_bytes",
2103 .private = (unsigned long)&blkcg_policy_cfq,
2104 .seq_show = blkg_print_stat_bytes,
2105 },
2106 {
2107 .name = "io_serviced",
2108 .private = (unsigned long)&blkcg_policy_cfq,
2109 .seq_show = blkg_print_stat_ios,
2110 },
2111 {
2112 .name = "io_service_time",
2113 .private = offsetof(struct cfq_group, stats.service_time),
2114 .seq_show = cfqg_print_rwstat,
2115 },
2116 {
2117 .name = "io_wait_time",
2118 .private = offsetof(struct cfq_group, stats.wait_time),
2119 .seq_show = cfqg_print_rwstat,
2120 },
2121 {
2122 .name = "io_merged",
2123 .private = offsetof(struct cfq_group, stats.merged),
2124 .seq_show = cfqg_print_rwstat,
2125 },
2126 {
2127 .name = "io_queued",
2128 .private = offsetof(struct cfq_group, stats.queued),
2129 .seq_show = cfqg_print_rwstat,
2130 },
2131
2132 /* the same statictics which cover the cfqg and its descendants */
2133 {
2134 .name = "time_recursive",
2135 .private = offsetof(struct cfq_group, stats.time),
2136 .seq_show = cfqg_print_stat_recursive,
2137 },
2138 {
2139 .name = "sectors_recursive",
2140 .seq_show = cfqg_print_stat_sectors_recursive,
2141 },
2142 {
2143 .name = "io_service_bytes_recursive",
2144 .private = (unsigned long)&blkcg_policy_cfq,
2145 .seq_show = blkg_print_stat_bytes_recursive,
2146 },
2147 {
2148 .name = "io_serviced_recursive",
2149 .private = (unsigned long)&blkcg_policy_cfq,
2150 .seq_show = blkg_print_stat_ios_recursive,
2151 },
2152 {
2153 .name = "io_service_time_recursive",
2154 .private = offsetof(struct cfq_group, stats.service_time),
2155 .seq_show = cfqg_print_rwstat_recursive,
2156 },
2157 {
2158 .name = "io_wait_time_recursive",
2159 .private = offsetof(struct cfq_group, stats.wait_time),
2160 .seq_show = cfqg_print_rwstat_recursive,
2161 },
2162 {
2163 .name = "io_merged_recursive",
2164 .private = offsetof(struct cfq_group, stats.merged),
2165 .seq_show = cfqg_print_rwstat_recursive,
2166 },
2167 {
2168 .name = "io_queued_recursive",
2169 .private = offsetof(struct cfq_group, stats.queued),
2170 .seq_show = cfqg_print_rwstat_recursive,
2171 },
2172#ifdef CONFIG_DEBUG_BLK_CGROUP
2173 {
2174 .name = "avg_queue_size",
2175 .seq_show = cfqg_print_avg_queue_size,
2176 },
2177 {
2178 .name = "group_wait_time",
2179 .private = offsetof(struct cfq_group, stats.group_wait_time),
2180 .seq_show = cfqg_print_stat,
2181 },
2182 {
2183 .name = "idle_time",
2184 .private = offsetof(struct cfq_group, stats.idle_time),
2185 .seq_show = cfqg_print_stat,
2186 },
2187 {
2188 .name = "empty_time",
2189 .private = offsetof(struct cfq_group, stats.empty_time),
2190 .seq_show = cfqg_print_stat,
2191 },
2192 {
2193 .name = "dequeue",
2194 .private = offsetof(struct cfq_group, stats.dequeue),
2195 .seq_show = cfqg_print_stat,
2196 },
2197 {
2198 .name = "unaccounted_time",
2199 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2200 .seq_show = cfqg_print_stat,
2201 },
2202#endif /* CONFIG_DEBUG_BLK_CGROUP */
2203 { } /* terminate */
2204};
2205
2206static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2207{
2208 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2209 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2210
2211 seq_printf(sf, "default %u\n", cgd->weight);
2212 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2213 &blkcg_policy_cfq, 0, false);
2214 return 0;
2215}
2216
2217static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2218 char *buf, size_t nbytes, loff_t off)
2219{
2220 char *endp;
2221 int ret;
2222 u64 v;
2223
2224 buf = strim(buf);
2225
2226 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2227 v = simple_strtoull(buf, &endp, 0);
2228 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2229 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2230 return ret ?: nbytes;
2231 }
2232
2233 /* "MAJ:MIN WEIGHT" */
2234 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2235}
2236
2237static struct cftype cfq_blkcg_files[] = {
2238 {
2239 .name = "weight",
2240 .flags = CFTYPE_NOT_ON_ROOT,
2241 .seq_show = cfq_print_weight_on_dfl,
2242 .write = cfq_set_weight_on_dfl,
2243 },
2244 { } /* terminate */
2245};
2246
2247#else /* GROUP_IOSCHED */
2248static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2249 struct blkcg *blkcg)
2250{
2251 return cfqd->root_group;
2252}
2253
2254static inline void
2255cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2256 cfqq->cfqg = cfqg;
2257}
2258
2259#endif /* GROUP_IOSCHED */
2260
2261/*
2262 * The cfqd->service_trees holds all pending cfq_queue's that have
2263 * requests waiting to be processed. It is sorted in the order that
2264 * we will service the queues.
2265 */
2266static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2267 bool add_front)
2268{
2269 struct rb_node **p, *parent;
2270 struct cfq_queue *__cfqq;
2271 u64 rb_key;
2272 struct cfq_rb_root *st;
2273 bool leftmost = true;
2274 int new_cfqq = 1;
2275 u64 now = ktime_get_ns();
2276
2277 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2278 if (cfq_class_idle(cfqq)) {
2279 rb_key = CFQ_IDLE_DELAY;
2280 parent = st->rb_rightmost;
2281 if (parent && parent != &cfqq->rb_node) {
2282 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2283 rb_key += __cfqq->rb_key;
2284 } else
2285 rb_key += now;
2286 } else if (!add_front) {
2287 /*
2288 * Get our rb key offset. Subtract any residual slice
2289 * value carried from last service. A negative resid
2290 * count indicates slice overrun, and this should position
2291 * the next service time further away in the tree.
2292 */
2293 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2294 rb_key -= cfqq->slice_resid;
2295 cfqq->slice_resid = 0;
2296 } else {
2297 rb_key = -NSEC_PER_SEC;
2298 __cfqq = cfq_rb_first(st);
2299 rb_key += __cfqq ? __cfqq->rb_key : now;
2300 }
2301
2302 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2303 new_cfqq = 0;
2304 /*
2305 * same position, nothing more to do
2306 */
2307 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2308 return;
2309
2310 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2311 cfqq->service_tree = NULL;
2312 }
2313
2314 parent = NULL;
2315 cfqq->service_tree = st;
2316 p = &st->rb.rb_root.rb_node;
2317 while (*p) {
2318 parent = *p;
2319 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2320
2321 /*
2322 * sort by key, that represents service time.
2323 */
2324 if (rb_key < __cfqq->rb_key)
2325 p = &parent->rb_left;
2326 else {
2327 p = &parent->rb_right;
2328 leftmost = false;
2329 }
2330 }
2331
2332 cfqq->rb_key = rb_key;
2333 rb_link_node(&cfqq->rb_node, parent, p);
2334 rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost);
2335 st->count++;
2336 if (add_front || !new_cfqq)
2337 return;
2338 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2339}
2340
2341static struct cfq_queue *
2342cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2343 sector_t sector, struct rb_node **ret_parent,
2344 struct rb_node ***rb_link)
2345{
2346 struct rb_node **p, *parent;
2347 struct cfq_queue *cfqq = NULL;
2348
2349 parent = NULL;
2350 p = &root->rb_node;
2351 while (*p) {
2352 struct rb_node **n;
2353
2354 parent = *p;
2355 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2356
2357 /*
2358 * Sort strictly based on sector. Smallest to the left,
2359 * largest to the right.
2360 */
2361 if (sector > blk_rq_pos(cfqq->next_rq))
2362 n = &(*p)->rb_right;
2363 else if (sector < blk_rq_pos(cfqq->next_rq))
2364 n = &(*p)->rb_left;
2365 else
2366 break;
2367 p = n;
2368 cfqq = NULL;
2369 }
2370
2371 *ret_parent = parent;
2372 if (rb_link)
2373 *rb_link = p;
2374 return cfqq;
2375}
2376
2377static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2378{
2379 struct rb_node **p, *parent;
2380 struct cfq_queue *__cfqq;
2381
2382 if (cfqq->p_root) {
2383 rb_erase(&cfqq->p_node, cfqq->p_root);
2384 cfqq->p_root = NULL;
2385 }
2386
2387 if (cfq_class_idle(cfqq))
2388 return;
2389 if (!cfqq->next_rq)
2390 return;
2391
2392 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2393 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2394 blk_rq_pos(cfqq->next_rq), &parent, &p);
2395 if (!__cfqq) {
2396 rb_link_node(&cfqq->p_node, parent, p);
2397 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2398 } else
2399 cfqq->p_root = NULL;
2400}
2401
2402/*
2403 * Update cfqq's position in the service tree.
2404 */
2405static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2406{
2407 /*
2408 * Resorting requires the cfqq to be on the RR list already.
2409 */
2410 if (cfq_cfqq_on_rr(cfqq)) {
2411 cfq_service_tree_add(cfqd, cfqq, 0);
2412 cfq_prio_tree_add(cfqd, cfqq);
2413 }
2414}
2415
2416/*
2417 * add to busy list of queues for service, trying to be fair in ordering
2418 * the pending list according to last request service
2419 */
2420static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2421{
2422 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2423 BUG_ON(cfq_cfqq_on_rr(cfqq));
2424 cfq_mark_cfqq_on_rr(cfqq);
2425 cfqd->busy_queues++;
2426 if (cfq_cfqq_sync(cfqq))
2427 cfqd->busy_sync_queues++;
2428
2429 cfq_resort_rr_list(cfqd, cfqq);
2430}
2431
2432/*
2433 * Called when the cfqq no longer has requests pending, remove it from
2434 * the service tree.
2435 */
2436static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2437{
2438 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2439 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2440 cfq_clear_cfqq_on_rr(cfqq);
2441
2442 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2443 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2444 cfqq->service_tree = NULL;
2445 }
2446 if (cfqq->p_root) {
2447 rb_erase(&cfqq->p_node, cfqq->p_root);
2448 cfqq->p_root = NULL;
2449 }
2450
2451 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2452 BUG_ON(!cfqd->busy_queues);
2453 cfqd->busy_queues--;
2454 if (cfq_cfqq_sync(cfqq))
2455 cfqd->busy_sync_queues--;
2456}
2457
2458/*
2459 * rb tree support functions
2460 */
2461static void cfq_del_rq_rb(struct request *rq)
2462{
2463 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2464 const int sync = rq_is_sync(rq);
2465
2466 BUG_ON(!cfqq->queued[sync]);
2467 cfqq->queued[sync]--;
2468
2469 elv_rb_del(&cfqq->sort_list, rq);
2470
2471 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2472 /*
2473 * Queue will be deleted from service tree when we actually
2474 * expire it later. Right now just remove it from prio tree
2475 * as it is empty.
2476 */
2477 if (cfqq->p_root) {
2478 rb_erase(&cfqq->p_node, cfqq->p_root);
2479 cfqq->p_root = NULL;
2480 }
2481 }
2482}
2483
2484static void cfq_add_rq_rb(struct request *rq)
2485{
2486 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2487 struct cfq_data *cfqd = cfqq->cfqd;
2488 struct request *prev;
2489
2490 cfqq->queued[rq_is_sync(rq)]++;
2491
2492 elv_rb_add(&cfqq->sort_list, rq);
2493
2494 if (!cfq_cfqq_on_rr(cfqq))
2495 cfq_add_cfqq_rr(cfqd, cfqq);
2496
2497 /*
2498 * check if this request is a better next-serve candidate
2499 */
2500 prev = cfqq->next_rq;
2501 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2502
2503 /*
2504 * adjust priority tree position, if ->next_rq changes
2505 */
2506 if (prev != cfqq->next_rq)
2507 cfq_prio_tree_add(cfqd, cfqq);
2508
2509 BUG_ON(!cfqq->next_rq);
2510}
2511
2512static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2513{
2514 elv_rb_del(&cfqq->sort_list, rq);
2515 cfqq->queued[rq_is_sync(rq)]--;
2516 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2517 cfq_add_rq_rb(rq);
2518 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2519 rq->cmd_flags);
2520}
2521
2522static struct request *
2523cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2524{
2525 struct task_struct *tsk = current;
2526 struct cfq_io_cq *cic;
2527 struct cfq_queue *cfqq;
2528
2529 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2530 if (!cic)
2531 return NULL;
2532
2533 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2534 if (cfqq)
2535 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2536
2537 return NULL;
2538}
2539
2540static void cfq_activate_request(struct request_queue *q, struct request *rq)
2541{
2542 struct cfq_data *cfqd = q->elevator->elevator_data;
2543
2544 cfqd->rq_in_driver++;
2545 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2546 cfqd->rq_in_driver);
2547
2548 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2549}
2550
2551static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2552{
2553 struct cfq_data *cfqd = q->elevator->elevator_data;
2554
2555 WARN_ON(!cfqd->rq_in_driver);
2556 cfqd->rq_in_driver--;
2557 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2558 cfqd->rq_in_driver);
2559}
2560
2561static void cfq_remove_request(struct request *rq)
2562{
2563 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2564
2565 if (cfqq->next_rq == rq)
2566 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2567
2568 list_del_init(&rq->queuelist);
2569 cfq_del_rq_rb(rq);
2570
2571 cfqq->cfqd->rq_queued--;
2572 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2573 if (rq->cmd_flags & REQ_PRIO) {
2574 WARN_ON(!cfqq->prio_pending);
2575 cfqq->prio_pending--;
2576 }
2577}
2578
2579static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2580 struct bio *bio)
2581{
2582 struct cfq_data *cfqd = q->elevator->elevator_data;
2583 struct request *__rq;
2584
2585 __rq = cfq_find_rq_fmerge(cfqd, bio);
2586 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2587 *req = __rq;
2588 return ELEVATOR_FRONT_MERGE;
2589 }
2590
2591 return ELEVATOR_NO_MERGE;
2592}
2593
2594static void cfq_merged_request(struct request_queue *q, struct request *req,
2595 enum elv_merge type)
2596{
2597 if (type == ELEVATOR_FRONT_MERGE) {
2598 struct cfq_queue *cfqq = RQ_CFQQ(req);
2599
2600 cfq_reposition_rq_rb(cfqq, req);
2601 }
2602}
2603
2604static void cfq_bio_merged(struct request_queue *q, struct request *req,
2605 struct bio *bio)
2606{
2607 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2608}
2609
2610static void
2611cfq_merged_requests(struct request_queue *q, struct request *rq,
2612 struct request *next)
2613{
2614 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2615 struct cfq_data *cfqd = q->elevator->elevator_data;
2616
2617 /*
2618 * reposition in fifo if next is older than rq
2619 */
2620 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2621 next->fifo_time < rq->fifo_time &&
2622 cfqq == RQ_CFQQ(next)) {
2623 list_move(&rq->queuelist, &next->queuelist);
2624 rq->fifo_time = next->fifo_time;
2625 }
2626
2627 if (cfqq->next_rq == next)
2628 cfqq->next_rq = rq;
2629 cfq_remove_request(next);
2630 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2631
2632 cfqq = RQ_CFQQ(next);
2633 /*
2634 * all requests of this queue are merged to other queues, delete it
2635 * from the service tree. If it's the active_queue,
2636 * cfq_dispatch_requests() will choose to expire it or do idle
2637 */
2638 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2639 cfqq != cfqd->active_queue)
2640 cfq_del_cfqq_rr(cfqd, cfqq);
2641}
2642
2643static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2644 struct bio *bio)
2645{
2646 struct cfq_data *cfqd = q->elevator->elevator_data;
2647 bool is_sync = op_is_sync(bio->bi_opf);
2648 struct cfq_io_cq *cic;
2649 struct cfq_queue *cfqq;
2650
2651 /*
2652 * Disallow merge of a sync bio into an async request.
2653 */
2654 if (is_sync && !rq_is_sync(rq))
2655 return false;
2656
2657 /*
2658 * Lookup the cfqq that this bio will be queued with and allow
2659 * merge only if rq is queued there.
2660 */
2661 cic = cfq_cic_lookup(cfqd, current->io_context);
2662 if (!cic)
2663 return false;
2664
2665 cfqq = cic_to_cfqq(cic, is_sync);
2666 return cfqq == RQ_CFQQ(rq);
2667}
2668
2669static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2670 struct request *next)
2671{
2672 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2673}
2674
2675static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2676{
2677 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2678 cfqg_stats_update_idle_time(cfqq->cfqg);
2679}
2680
2681static void __cfq_set_active_queue(struct cfq_data *cfqd,
2682 struct cfq_queue *cfqq)
2683{
2684 if (cfqq) {
2685 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2686 cfqd->serving_wl_class, cfqd->serving_wl_type);
2687 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2688 cfqq->slice_start = 0;
2689 cfqq->dispatch_start = ktime_get_ns();
2690 cfqq->allocated_slice = 0;
2691 cfqq->slice_end = 0;
2692 cfqq->slice_dispatch = 0;
2693 cfqq->nr_sectors = 0;
2694
2695 cfq_clear_cfqq_wait_request(cfqq);
2696 cfq_clear_cfqq_must_dispatch(cfqq);
2697 cfq_clear_cfqq_must_alloc_slice(cfqq);
2698 cfq_clear_cfqq_fifo_expire(cfqq);
2699 cfq_mark_cfqq_slice_new(cfqq);
2700
2701 cfq_del_timer(cfqd, cfqq);
2702 }
2703
2704 cfqd->active_queue = cfqq;
2705}
2706
2707/*
2708 * current cfqq expired its slice (or was too idle), select new one
2709 */
2710static void
2711__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2712 bool timed_out)
2713{
2714 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2715
2716 if (cfq_cfqq_wait_request(cfqq))
2717 cfq_del_timer(cfqd, cfqq);
2718
2719 cfq_clear_cfqq_wait_request(cfqq);
2720 cfq_clear_cfqq_wait_busy(cfqq);
2721
2722 /*
2723 * If this cfqq is shared between multiple processes, check to
2724 * make sure that those processes are still issuing I/Os within
2725 * the mean seek distance. If not, it may be time to break the
2726 * queues apart again.
2727 */
2728 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2729 cfq_mark_cfqq_split_coop(cfqq);
2730
2731 /*
2732 * store what was left of this slice, if the queue idled/timed out
2733 */
2734 if (timed_out) {
2735 if (cfq_cfqq_slice_new(cfqq))
2736 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2737 else
2738 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2739 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2740 }
2741
2742 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2743
2744 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2745 cfq_del_cfqq_rr(cfqd, cfqq);
2746
2747 cfq_resort_rr_list(cfqd, cfqq);
2748
2749 if (cfqq == cfqd->active_queue)
2750 cfqd->active_queue = NULL;
2751
2752 if (cfqd->active_cic) {
2753 put_io_context(cfqd->active_cic->icq.ioc);
2754 cfqd->active_cic = NULL;
2755 }
2756}
2757
2758static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2759{
2760 struct cfq_queue *cfqq = cfqd->active_queue;
2761
2762 if (cfqq)
2763 __cfq_slice_expired(cfqd, cfqq, timed_out);
2764}
2765
2766/*
2767 * Get next queue for service. Unless we have a queue preemption,
2768 * we'll simply select the first cfqq in the service tree.
2769 */
2770static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2771{
2772 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2773 cfqd->serving_wl_class, cfqd->serving_wl_type);
2774
2775 if (!cfqd->rq_queued)
2776 return NULL;
2777
2778 /* There is nothing to dispatch */
2779 if (!st)
2780 return NULL;
2781 if (RB_EMPTY_ROOT(&st->rb.rb_root))
2782 return NULL;
2783 return cfq_rb_first(st);
2784}
2785
2786static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2787{
2788 struct cfq_group *cfqg;
2789 struct cfq_queue *cfqq;
2790 int i, j;
2791 struct cfq_rb_root *st;
2792
2793 if (!cfqd->rq_queued)
2794 return NULL;
2795
2796 cfqg = cfq_get_next_cfqg(cfqd);
2797 if (!cfqg)
2798 return NULL;
2799
2800 for_each_cfqg_st(cfqg, i, j, st) {
2801 cfqq = cfq_rb_first(st);
2802 if (cfqq)
2803 return cfqq;
2804 }
2805 return NULL;
2806}
2807
2808/*
2809 * Get and set a new active queue for service.
2810 */
2811static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2812 struct cfq_queue *cfqq)
2813{
2814 if (!cfqq)
2815 cfqq = cfq_get_next_queue(cfqd);
2816
2817 __cfq_set_active_queue(cfqd, cfqq);
2818 return cfqq;
2819}
2820
2821static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2822 struct request *rq)
2823{
2824 if (blk_rq_pos(rq) >= cfqd->last_position)
2825 return blk_rq_pos(rq) - cfqd->last_position;
2826 else
2827 return cfqd->last_position - blk_rq_pos(rq);
2828}
2829
2830static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2831 struct request *rq)
2832{
2833 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2834}
2835
2836static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2837 struct cfq_queue *cur_cfqq)
2838{
2839 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2840 struct rb_node *parent, *node;
2841 struct cfq_queue *__cfqq;
2842 sector_t sector = cfqd->last_position;
2843
2844 if (RB_EMPTY_ROOT(root))
2845 return NULL;
2846
2847 /*
2848 * First, if we find a request starting at the end of the last
2849 * request, choose it.
2850 */
2851 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2852 if (__cfqq)
2853 return __cfqq;
2854
2855 /*
2856 * If the exact sector wasn't found, the parent of the NULL leaf
2857 * will contain the closest sector.
2858 */
2859 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2860 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2861 return __cfqq;
2862
2863 if (blk_rq_pos(__cfqq->next_rq) < sector)
2864 node = rb_next(&__cfqq->p_node);
2865 else
2866 node = rb_prev(&__cfqq->p_node);
2867 if (!node)
2868 return NULL;
2869
2870 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2871 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2872 return __cfqq;
2873
2874 return NULL;
2875}
2876
2877/*
2878 * cfqd - obvious
2879 * cur_cfqq - passed in so that we don't decide that the current queue is
2880 * closely cooperating with itself.
2881 *
2882 * So, basically we're assuming that that cur_cfqq has dispatched at least
2883 * one request, and that cfqd->last_position reflects a position on the disk
2884 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2885 * assumption.
2886 */
2887static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2888 struct cfq_queue *cur_cfqq)
2889{
2890 struct cfq_queue *cfqq;
2891
2892 if (cfq_class_idle(cur_cfqq))
2893 return NULL;
2894 if (!cfq_cfqq_sync(cur_cfqq))
2895 return NULL;
2896 if (CFQQ_SEEKY(cur_cfqq))
2897 return NULL;
2898
2899 /*
2900 * Don't search priority tree if it's the only queue in the group.
2901 */
2902 if (cur_cfqq->cfqg->nr_cfqq == 1)
2903 return NULL;
2904
2905 /*
2906 * We should notice if some of the queues are cooperating, eg
2907 * working closely on the same area of the disk. In that case,
2908 * we can group them together and don't waste time idling.
2909 */
2910 cfqq = cfqq_close(cfqd, cur_cfqq);
2911 if (!cfqq)
2912 return NULL;
2913
2914 /* If new queue belongs to different cfq_group, don't choose it */
2915 if (cur_cfqq->cfqg != cfqq->cfqg)
2916 return NULL;
2917
2918 /*
2919 * It only makes sense to merge sync queues.
2920 */
2921 if (!cfq_cfqq_sync(cfqq))
2922 return NULL;
2923 if (CFQQ_SEEKY(cfqq))
2924 return NULL;
2925
2926 /*
2927 * Do not merge queues of different priority classes
2928 */
2929 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2930 return NULL;
2931
2932 return cfqq;
2933}
2934
2935/*
2936 * Determine whether we should enforce idle window for this queue.
2937 */
2938
2939static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2940{
2941 enum wl_class_t wl_class = cfqq_class(cfqq);
2942 struct cfq_rb_root *st = cfqq->service_tree;
2943
2944 BUG_ON(!st);
2945 BUG_ON(!st->count);
2946
2947 if (!cfqd->cfq_slice_idle)
2948 return false;
2949
2950 /* We never do for idle class queues. */
2951 if (wl_class == IDLE_WORKLOAD)
2952 return false;
2953
2954 /* We do for queues that were marked with idle window flag. */
2955 if (cfq_cfqq_idle_window(cfqq) &&
2956 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2957 return true;
2958
2959 /*
2960 * Otherwise, we do only if they are the last ones
2961 * in their service tree.
2962 */
2963 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2964 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2965 return true;
2966 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2967 return false;
2968}
2969
2970static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2971{
2972 struct cfq_queue *cfqq = cfqd->active_queue;
2973 struct cfq_rb_root *st = cfqq->service_tree;
2974 struct cfq_io_cq *cic;
2975 u64 sl, group_idle = 0;
2976 u64 now = ktime_get_ns();
2977
2978 /*
2979 * SSD device without seek penalty, disable idling. But only do so
2980 * for devices that support queuing, otherwise we still have a problem
2981 * with sync vs async workloads.
2982 */
2983 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2984 !get_group_idle(cfqd))
2985 return;
2986
2987 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2988 WARN_ON(cfq_cfqq_slice_new(cfqq));
2989
2990 /*
2991 * idle is disabled, either manually or by past process history
2992 */
2993 if (!cfq_should_idle(cfqd, cfqq)) {
2994 /* no queue idling. Check for group idling */
2995 group_idle = get_group_idle(cfqd);
2996 if (!group_idle)
2997 return;
2998 }
2999
3000 /*
3001 * still active requests from this queue, don't idle
3002 */
3003 if (cfqq->dispatched)
3004 return;
3005
3006 /*
3007 * task has exited, don't wait
3008 */
3009 cic = cfqd->active_cic;
3010 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
3011 return;
3012
3013 /*
3014 * If our average think time is larger than the remaining time
3015 * slice, then don't idle. This avoids overrunning the allotted
3016 * time slice.
3017 */
3018 if (sample_valid(cic->ttime.ttime_samples) &&
3019 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
3020 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
3021 cic->ttime.ttime_mean);
3022 return;
3023 }
3024
3025 /*
3026 * There are other queues in the group or this is the only group and
3027 * it has too big thinktime, don't do group idle.
3028 */
3029 if (group_idle &&
3030 (cfqq->cfqg->nr_cfqq > 1 ||
3031 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
3032 return;
3033
3034 cfq_mark_cfqq_wait_request(cfqq);
3035
3036 if (group_idle)
3037 sl = group_idle;
3038 else
3039 sl = cfqd->cfq_slice_idle;
3040
3041 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
3042 HRTIMER_MODE_REL);
3043 cfqg_stats_set_start_idle_time(cfqq->cfqg);
3044 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
3045 group_idle ? 1 : 0);
3046}
3047
3048/*
3049 * Move request from internal lists to the request queue dispatch list.
3050 */
3051static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3052{
3053 struct cfq_data *cfqd = q->elevator->elevator_data;
3054 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3055
3056 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3057
3058 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3059 cfq_remove_request(rq);
3060 cfqq->dispatched++;
3061 (RQ_CFQG(rq))->dispatched++;
3062 elv_dispatch_sort(q, rq);
3063
3064 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3065 cfqq->nr_sectors += blk_rq_sectors(rq);
3066}
3067
3068/*
3069 * return expired entry, or NULL to just start from scratch in rbtree
3070 */
3071static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3072{
3073 struct request *rq = NULL;
3074
3075 if (cfq_cfqq_fifo_expire(cfqq))
3076 return NULL;
3077
3078 cfq_mark_cfqq_fifo_expire(cfqq);
3079
3080 if (list_empty(&cfqq->fifo))
3081 return NULL;
3082
3083 rq = rq_entry_fifo(cfqq->fifo.next);
3084 if (ktime_get_ns() < rq->fifo_time)
3085 rq = NULL;
3086
3087 return rq;
3088}
3089
3090static inline int
3091cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3092{
3093 const int base_rq = cfqd->cfq_slice_async_rq;
3094
3095 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3096
3097 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3098}
3099
3100/*
3101 * Must be called with the queue_lock held.
3102 */
3103static int cfqq_process_refs(struct cfq_queue *cfqq)
3104{
3105 int process_refs, io_refs;
3106
3107 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3108 process_refs = cfqq->ref - io_refs;
3109 BUG_ON(process_refs < 0);
3110 return process_refs;
3111}
3112
3113static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3114{
3115 int process_refs, new_process_refs;
3116 struct cfq_queue *__cfqq;
3117
3118 /*
3119 * If there are no process references on the new_cfqq, then it is
3120 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3121 * chain may have dropped their last reference (not just their
3122 * last process reference).
3123 */
3124 if (!cfqq_process_refs(new_cfqq))
3125 return;
3126
3127 /* Avoid a circular list and skip interim queue merges */
3128 while ((__cfqq = new_cfqq->new_cfqq)) {
3129 if (__cfqq == cfqq)
3130 return;
3131 new_cfqq = __cfqq;
3132 }
3133
3134 process_refs = cfqq_process_refs(cfqq);
3135 new_process_refs = cfqq_process_refs(new_cfqq);
3136 /*
3137 * If the process for the cfqq has gone away, there is no
3138 * sense in merging the queues.
3139 */
3140 if (process_refs == 0 || new_process_refs == 0)
3141 return;
3142
3143 /*
3144 * Merge in the direction of the lesser amount of work.
3145 */
3146 if (new_process_refs >= process_refs) {
3147 cfqq->new_cfqq = new_cfqq;
3148 new_cfqq->ref += process_refs;
3149 } else {
3150 new_cfqq->new_cfqq = cfqq;
3151 cfqq->ref += new_process_refs;
3152 }
3153}
3154
3155static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3156 struct cfq_group *cfqg, enum wl_class_t wl_class)
3157{
3158 struct cfq_queue *queue;
3159 int i;
3160 bool key_valid = false;
3161 u64 lowest_key = 0;
3162 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3163
3164 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3165 /* select the one with lowest rb_key */
3166 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3167 if (queue &&
3168 (!key_valid || queue->rb_key < lowest_key)) {
3169 lowest_key = queue->rb_key;
3170 cur_best = i;
3171 key_valid = true;
3172 }
3173 }
3174
3175 return cur_best;
3176}
3177
3178static void
3179choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3180{
3181 u64 slice;
3182 unsigned count;
3183 struct cfq_rb_root *st;
3184 u64 group_slice;
3185 enum wl_class_t original_class = cfqd->serving_wl_class;
3186 u64 now = ktime_get_ns();
3187
3188 /* Choose next priority. RT > BE > IDLE */
3189 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3190 cfqd->serving_wl_class = RT_WORKLOAD;
3191 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3192 cfqd->serving_wl_class = BE_WORKLOAD;
3193 else {
3194 cfqd->serving_wl_class = IDLE_WORKLOAD;
3195 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3196 return;
3197 }
3198
3199 if (original_class != cfqd->serving_wl_class)
3200 goto new_workload;
3201
3202 /*
3203 * For RT and BE, we have to choose also the type
3204 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3205 * expiration time
3206 */
3207 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3208 count = st->count;
3209
3210 /*
3211 * check workload expiration, and that we still have other queues ready
3212 */
3213 if (count && !(now > cfqd->workload_expires))
3214 return;
3215
3216new_workload:
3217 /* otherwise select new workload type */
3218 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3219 cfqd->serving_wl_class);
3220 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3221 count = st->count;
3222
3223 /*
3224 * the workload slice is computed as a fraction of target latency
3225 * proportional to the number of queues in that workload, over
3226 * all the queues in the same priority class
3227 */
3228 group_slice = cfq_group_slice(cfqd, cfqg);
3229
3230 slice = div_u64(group_slice * count,
3231 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3232 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3233 cfqg)));
3234
3235 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3236 u64 tmp;
3237
3238 /*
3239 * Async queues are currently system wide. Just taking
3240 * proportion of queues with-in same group will lead to higher
3241 * async ratio system wide as generally root group is going
3242 * to have higher weight. A more accurate thing would be to
3243 * calculate system wide asnc/sync ratio.
3244 */
3245 tmp = cfqd->cfq_target_latency *
3246 cfqg_busy_async_queues(cfqd, cfqg);
3247 tmp = div_u64(tmp, cfqd->busy_queues);
3248 slice = min_t(u64, slice, tmp);
3249
3250 /* async workload slice is scaled down according to
3251 * the sync/async slice ratio. */
3252 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3253 } else
3254 /* sync workload slice is at least 2 * cfq_slice_idle */
3255 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3256
3257 slice = max_t(u64, slice, CFQ_MIN_TT);
3258 cfq_log(cfqd, "workload slice:%llu", slice);
3259 cfqd->workload_expires = now + slice;
3260}
3261
3262static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3263{
3264 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3265 struct cfq_group *cfqg;
3266
3267 if (RB_EMPTY_ROOT(&st->rb.rb_root))
3268 return NULL;
3269 cfqg = cfq_rb_first_group(st);
3270 update_min_vdisktime(st);
3271 return cfqg;
3272}
3273
3274static void cfq_choose_cfqg(struct cfq_data *cfqd)
3275{
3276 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3277 u64 now = ktime_get_ns();
3278
3279 cfqd->serving_group = cfqg;
3280
3281 /* Restore the workload type data */
3282 if (cfqg->saved_wl_slice) {
3283 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3284 cfqd->serving_wl_type = cfqg->saved_wl_type;
3285 cfqd->serving_wl_class = cfqg->saved_wl_class;
3286 } else
3287 cfqd->workload_expires = now - 1;
3288
3289 choose_wl_class_and_type(cfqd, cfqg);
3290}
3291
3292/*
3293 * Select a queue for service. If we have a current active queue,
3294 * check whether to continue servicing it, or retrieve and set a new one.
3295 */
3296static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3297{
3298 struct cfq_queue *cfqq, *new_cfqq = NULL;
3299 u64 now = ktime_get_ns();
3300
3301 cfqq = cfqd->active_queue;
3302 if (!cfqq)
3303 goto new_queue;
3304
3305 if (!cfqd->rq_queued)
3306 return NULL;
3307
3308 /*
3309 * We were waiting for group to get backlogged. Expire the queue
3310 */
3311 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3312 goto expire;
3313
3314 /*
3315 * The active queue has run out of time, expire it and select new.
3316 */
3317 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3318 /*
3319 * If slice had not expired at the completion of last request
3320 * we might not have turned on wait_busy flag. Don't expire
3321 * the queue yet. Allow the group to get backlogged.
3322 *
3323 * The very fact that we have used the slice, that means we
3324 * have been idling all along on this queue and it should be
3325 * ok to wait for this request to complete.
3326 */
3327 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3328 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3329 cfqq = NULL;
3330 goto keep_queue;
3331 } else
3332 goto check_group_idle;
3333 }
3334
3335 /*
3336 * The active queue has requests and isn't expired, allow it to
3337 * dispatch.
3338 */
3339 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3340 goto keep_queue;
3341
3342 /*
3343 * If another queue has a request waiting within our mean seek
3344 * distance, let it run. The expire code will check for close
3345 * cooperators and put the close queue at the front of the service
3346 * tree. If possible, merge the expiring queue with the new cfqq.
3347 */
3348 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3349 if (new_cfqq) {
3350 if (!cfqq->new_cfqq)
3351 cfq_setup_merge(cfqq, new_cfqq);
3352 goto expire;
3353 }
3354
3355 /*
3356 * No requests pending. If the active queue still has requests in
3357 * flight or is idling for a new request, allow either of these
3358 * conditions to happen (or time out) before selecting a new queue.
3359 */
3360 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3361 cfqq = NULL;
3362 goto keep_queue;
3363 }
3364
3365 /*
3366 * This is a deep seek queue, but the device is much faster than
3367 * the queue can deliver, don't idle
3368 **/
3369 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3370 (cfq_cfqq_slice_new(cfqq) ||
3371 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3372 cfq_clear_cfqq_deep(cfqq);
3373 cfq_clear_cfqq_idle_window(cfqq);
3374 }
3375
3376 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3377 cfqq = NULL;
3378 goto keep_queue;
3379 }
3380
3381 /*
3382 * If group idle is enabled and there are requests dispatched from
3383 * this group, wait for requests to complete.
3384 */
3385check_group_idle:
3386 if (get_group_idle(cfqd) && cfqq->cfqg->nr_cfqq == 1 &&
3387 cfqq->cfqg->dispatched &&
3388 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3389 cfqq = NULL;
3390 goto keep_queue;
3391 }
3392
3393expire:
3394 cfq_slice_expired(cfqd, 0);
3395new_queue:
3396 /*
3397 * Current queue expired. Check if we have to switch to a new
3398 * service tree
3399 */
3400 if (!new_cfqq)
3401 cfq_choose_cfqg(cfqd);
3402
3403 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3404keep_queue:
3405 return cfqq;
3406}
3407
3408static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3409{
3410 int dispatched = 0;
3411
3412 while (cfqq->next_rq) {
3413 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3414 dispatched++;
3415 }
3416
3417 BUG_ON(!list_empty(&cfqq->fifo));
3418
3419 /* By default cfqq is not expired if it is empty. Do it explicitly */
3420 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3421 return dispatched;
3422}
3423
3424/*
3425 * Drain our current requests. Used for barriers and when switching
3426 * io schedulers on-the-fly.
3427 */
3428static int cfq_forced_dispatch(struct cfq_data *cfqd)
3429{
3430 struct cfq_queue *cfqq;
3431 int dispatched = 0;
3432
3433 /* Expire the timeslice of the current active queue first */
3434 cfq_slice_expired(cfqd, 0);
3435 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3436 __cfq_set_active_queue(cfqd, cfqq);
3437 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3438 }
3439
3440 BUG_ON(cfqd->busy_queues);
3441
3442 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3443 return dispatched;
3444}
3445
3446static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3447 struct cfq_queue *cfqq)
3448{
3449 u64 now = ktime_get_ns();
3450
3451 /* the queue hasn't finished any request, can't estimate */
3452 if (cfq_cfqq_slice_new(cfqq))
3453 return true;
3454 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3455 return true;
3456
3457 return false;
3458}
3459
3460static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3461{
3462 unsigned int max_dispatch;
3463
3464 if (cfq_cfqq_must_dispatch(cfqq))
3465 return true;
3466
3467 /*
3468 * Drain async requests before we start sync IO
3469 */
3470 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3471 return false;
3472
3473 /*
3474 * If this is an async queue and we have sync IO in flight, let it wait
3475 */
3476 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3477 return false;
3478
3479 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3480 if (cfq_class_idle(cfqq))
3481 max_dispatch = 1;
3482
3483 /*
3484 * Does this cfqq already have too much IO in flight?
3485 */
3486 if (cfqq->dispatched >= max_dispatch) {
3487 bool promote_sync = false;
3488 /*
3489 * idle queue must always only have a single IO in flight
3490 */
3491 if (cfq_class_idle(cfqq))
3492 return false;
3493
3494 /*
3495 * If there is only one sync queue
3496 * we can ignore async queue here and give the sync
3497 * queue no dispatch limit. The reason is a sync queue can
3498 * preempt async queue, limiting the sync queue doesn't make
3499 * sense. This is useful for aiostress test.
3500 */
3501 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3502 promote_sync = true;
3503
3504 /*
3505 * We have other queues, don't allow more IO from this one
3506 */
3507 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3508 !promote_sync)
3509 return false;
3510
3511 /*
3512 * Sole queue user, no limit
3513 */
3514 if (cfqd->busy_queues == 1 || promote_sync)
3515 max_dispatch = -1;
3516 else
3517 /*
3518 * Normally we start throttling cfqq when cfq_quantum/2
3519 * requests have been dispatched. But we can drive
3520 * deeper queue depths at the beginning of slice
3521 * subjected to upper limit of cfq_quantum.
3522 * */
3523 max_dispatch = cfqd->cfq_quantum;
3524 }
3525
3526 /*
3527 * Async queues must wait a bit before being allowed dispatch.
3528 * We also ramp up the dispatch depth gradually for async IO,
3529 * based on the last sync IO we serviced
3530 */
3531 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3532 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3533 unsigned int depth;
3534
3535 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3536 if (!depth && !cfqq->dispatched)
3537 depth = 1;
3538 if (depth < max_dispatch)
3539 max_dispatch = depth;
3540 }
3541
3542 /*
3543 * If we're below the current max, allow a dispatch
3544 */
3545 return cfqq->dispatched < max_dispatch;
3546}
3547
3548/*
3549 * Dispatch a request from cfqq, moving them to the request queue
3550 * dispatch list.
3551 */
3552static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3553{
3554 struct request *rq;
3555
3556 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3557
3558 rq = cfq_check_fifo(cfqq);
3559 if (rq)
3560 cfq_mark_cfqq_must_dispatch(cfqq);
3561
3562 if (!cfq_may_dispatch(cfqd, cfqq))
3563 return false;
3564
3565 /*
3566 * follow expired path, else get first next available
3567 */
3568 if (!rq)
3569 rq = cfqq->next_rq;
3570 else
3571 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3572
3573 /*
3574 * insert request into driver dispatch list
3575 */
3576 cfq_dispatch_insert(cfqd->queue, rq);
3577
3578 if (!cfqd->active_cic) {
3579 struct cfq_io_cq *cic = RQ_CIC(rq);
3580
3581 atomic_long_inc(&cic->icq.ioc->refcount);
3582 cfqd->active_cic = cic;
3583 }
3584
3585 return true;
3586}
3587
3588/*
3589 * Find the cfqq that we need to service and move a request from that to the
3590 * dispatch list
3591 */
3592static int cfq_dispatch_requests(struct request_queue *q, int force)
3593{
3594 struct cfq_data *cfqd = q->elevator->elevator_data;
3595 struct cfq_queue *cfqq;
3596
3597 if (!cfqd->busy_queues)
3598 return 0;
3599
3600 if (unlikely(force))
3601 return cfq_forced_dispatch(cfqd);
3602
3603 cfqq = cfq_select_queue(cfqd);
3604 if (!cfqq)
3605 return 0;
3606
3607 /*
3608 * Dispatch a request from this cfqq, if it is allowed
3609 */
3610 if (!cfq_dispatch_request(cfqd, cfqq))
3611 return 0;
3612
3613 cfqq->slice_dispatch++;
3614 cfq_clear_cfqq_must_dispatch(cfqq);
3615
3616 /*
3617 * expire an async queue immediately if it has used up its slice. idle
3618 * queue always expire after 1 dispatch round.
3619 */
3620 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3621 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3622 cfq_class_idle(cfqq))) {
3623 cfqq->slice_end = ktime_get_ns() + 1;
3624 cfq_slice_expired(cfqd, 0);
3625 }
3626
3627 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3628 return 1;
3629}
3630
3631/*
3632 * task holds one reference to the queue, dropped when task exits. each rq
3633 * in-flight on this queue also holds a reference, dropped when rq is freed.
3634 *
3635 * Each cfq queue took a reference on the parent group. Drop it now.
3636 * queue lock must be held here.
3637 */
3638static void cfq_put_queue(struct cfq_queue *cfqq)
3639{
3640 struct cfq_data *cfqd = cfqq->cfqd;
3641 struct cfq_group *cfqg;
3642
3643 BUG_ON(cfqq->ref <= 0);
3644
3645 cfqq->ref--;
3646 if (cfqq->ref)
3647 return;
3648
3649 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3650 BUG_ON(rb_first(&cfqq->sort_list));
3651 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3652 cfqg = cfqq->cfqg;
3653
3654 if (unlikely(cfqd->active_queue == cfqq)) {
3655 __cfq_slice_expired(cfqd, cfqq, 0);
3656 cfq_schedule_dispatch(cfqd);
3657 }
3658
3659 BUG_ON(cfq_cfqq_on_rr(cfqq));
3660 kmem_cache_free(cfq_pool, cfqq);
3661 cfqg_put(cfqg);
3662}
3663
3664static void cfq_put_cooperator(struct cfq_queue *cfqq)
3665{
3666 struct cfq_queue *__cfqq, *next;
3667
3668 /*
3669 * If this queue was scheduled to merge with another queue, be
3670 * sure to drop the reference taken on that queue (and others in
3671 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3672 */
3673 __cfqq = cfqq->new_cfqq;
3674 while (__cfqq) {
3675 if (__cfqq == cfqq) {
3676 WARN(1, "cfqq->new_cfqq loop detected\n");
3677 break;
3678 }
3679 next = __cfqq->new_cfqq;
3680 cfq_put_queue(__cfqq);
3681 __cfqq = next;
3682 }
3683}
3684
3685static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3686{
3687 if (unlikely(cfqq == cfqd->active_queue)) {
3688 __cfq_slice_expired(cfqd, cfqq, 0);
3689 cfq_schedule_dispatch(cfqd);
3690 }
3691
3692 cfq_put_cooperator(cfqq);
3693
3694 cfq_put_queue(cfqq);
3695}
3696
3697static void cfq_init_icq(struct io_cq *icq)
3698{
3699 struct cfq_io_cq *cic = icq_to_cic(icq);
3700
3701 cic->ttime.last_end_request = ktime_get_ns();
3702}
3703
3704static void cfq_exit_icq(struct io_cq *icq)
3705{
3706 struct cfq_io_cq *cic = icq_to_cic(icq);
3707 struct cfq_data *cfqd = cic_to_cfqd(cic);
3708
3709 if (cic_to_cfqq(cic, false)) {
3710 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3711 cic_set_cfqq(cic, NULL, false);
3712 }
3713
3714 if (cic_to_cfqq(cic, true)) {
3715 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3716 cic_set_cfqq(cic, NULL, true);
3717 }
3718}
3719
3720static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3721{
3722 struct task_struct *tsk = current;
3723 int ioprio_class;
3724
3725 if (!cfq_cfqq_prio_changed(cfqq))
3726 return;
3727
3728 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3729 switch (ioprio_class) {
3730 default:
3731 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3732 /* fall through */
3733 case IOPRIO_CLASS_NONE:
3734 /*
3735 * no prio set, inherit CPU scheduling settings
3736 */
3737 cfqq->ioprio = task_nice_ioprio(tsk);
3738 cfqq->ioprio_class = task_nice_ioclass(tsk);
3739 break;
3740 case IOPRIO_CLASS_RT:
3741 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3742 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3743 break;
3744 case IOPRIO_CLASS_BE:
3745 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3746 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3747 break;
3748 case IOPRIO_CLASS_IDLE:
3749 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3750 cfqq->ioprio = 7;
3751 cfq_clear_cfqq_idle_window(cfqq);
3752 break;
3753 }
3754
3755 /*
3756 * keep track of original prio settings in case we have to temporarily
3757 * elevate the priority of this queue
3758 */
3759 cfqq->org_ioprio = cfqq->ioprio;
3760 cfqq->org_ioprio_class = cfqq->ioprio_class;
3761 cfq_clear_cfqq_prio_changed(cfqq);
3762}
3763
3764static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3765{
3766 int ioprio = cic->icq.ioc->ioprio;
3767 struct cfq_data *cfqd = cic_to_cfqd(cic);
3768 struct cfq_queue *cfqq;
3769
3770 /*
3771 * Check whether ioprio has changed. The condition may trigger
3772 * spuriously on a newly created cic but there's no harm.
3773 */
3774 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3775 return;
3776
3777 cfqq = cic_to_cfqq(cic, false);
3778 if (cfqq) {
3779 cfq_put_queue(cfqq);
3780 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3781 cic_set_cfqq(cic, cfqq, false);
3782 }
3783
3784 cfqq = cic_to_cfqq(cic, true);
3785 if (cfqq)
3786 cfq_mark_cfqq_prio_changed(cfqq);
3787
3788 cic->ioprio = ioprio;
3789}
3790
3791static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3792 pid_t pid, bool is_sync)
3793{
3794 RB_CLEAR_NODE(&cfqq->rb_node);
3795 RB_CLEAR_NODE(&cfqq->p_node);
3796 INIT_LIST_HEAD(&cfqq->fifo);
3797
3798 cfqq->ref = 0;
3799 cfqq->cfqd = cfqd;
3800
3801 cfq_mark_cfqq_prio_changed(cfqq);
3802
3803 if (is_sync) {
3804 if (!cfq_class_idle(cfqq))
3805 cfq_mark_cfqq_idle_window(cfqq);
3806 cfq_mark_cfqq_sync(cfqq);
3807 }
3808 cfqq->pid = pid;
3809}
3810
3811#ifdef CONFIG_CFQ_GROUP_IOSCHED
3812static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3813{
3814 struct cfq_data *cfqd = cic_to_cfqd(cic);
3815 struct cfq_queue *cfqq;
3816 uint64_t serial_nr;
3817
3818 rcu_read_lock();
3819 serial_nr = bio_blkcg(bio)->css.serial_nr;
3820 rcu_read_unlock();
3821
3822 /*
3823 * Check whether blkcg has changed. The condition may trigger
3824 * spuriously on a newly created cic but there's no harm.
3825 */
3826 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3827 return;
3828
3829 /*
3830 * Drop reference to queues. New queues will be assigned in new
3831 * group upon arrival of fresh requests.
3832 */
3833 cfqq = cic_to_cfqq(cic, false);
3834 if (cfqq) {
3835 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3836 cic_set_cfqq(cic, NULL, false);
3837 cfq_put_queue(cfqq);
3838 }
3839
3840 cfqq = cic_to_cfqq(cic, true);
3841 if (cfqq) {
3842 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3843 cic_set_cfqq(cic, NULL, true);
3844 cfq_put_queue(cfqq);
3845 }
3846
3847 cic->blkcg_serial_nr = serial_nr;
3848}
3849#else
3850static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3851{
3852}
3853#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3854
3855static struct cfq_queue **
3856cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3857{
3858 switch (ioprio_class) {
3859 case IOPRIO_CLASS_RT:
3860 return &cfqg->async_cfqq[0][ioprio];
3861 case IOPRIO_CLASS_NONE:
3862 ioprio = IOPRIO_NORM;
3863 /* fall through */
3864 case IOPRIO_CLASS_BE:
3865 return &cfqg->async_cfqq[1][ioprio];
3866 case IOPRIO_CLASS_IDLE:
3867 return &cfqg->async_idle_cfqq;
3868 default:
3869 BUG();
3870 }
3871}
3872
3873static struct cfq_queue *
3874cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3875 struct bio *bio)
3876{
3877 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3878 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3879 struct cfq_queue **async_cfqq = NULL;
3880 struct cfq_queue *cfqq;
3881 struct cfq_group *cfqg;
3882
3883 rcu_read_lock();
3884 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3885 if (!cfqg) {
3886 cfqq = &cfqd->oom_cfqq;
3887 goto out;
3888 }
3889
3890 if (!is_sync) {
3891 if (!ioprio_valid(cic->ioprio)) {
3892 struct task_struct *tsk = current;
3893 ioprio = task_nice_ioprio(tsk);
3894 ioprio_class = task_nice_ioclass(tsk);
3895 }
3896 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3897 cfqq = *async_cfqq;
3898 if (cfqq)
3899 goto out;
3900 }
3901
3902 cfqq = kmem_cache_alloc_node(cfq_pool,
3903 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3904 cfqd->queue->node);
3905 if (!cfqq) {
3906 cfqq = &cfqd->oom_cfqq;
3907 goto out;
3908 }
3909
3910 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3911 cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3912 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3913 cfq_init_prio_data(cfqq, cic);
3914 cfq_link_cfqq_cfqg(cfqq, cfqg);
3915 cfq_log_cfqq(cfqd, cfqq, "alloced");
3916
3917 if (async_cfqq) {
3918 /* a new async queue is created, pin and remember */
3919 cfqq->ref++;
3920 *async_cfqq = cfqq;
3921 }
3922out:
3923 cfqq->ref++;
3924 rcu_read_unlock();
3925 return cfqq;
3926}
3927
3928static void
3929__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3930{
3931 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3932 elapsed = min(elapsed, 2UL * slice_idle);
3933
3934 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3935 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3936 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3937 ttime->ttime_samples);
3938}
3939
3940static void
3941cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3942 struct cfq_io_cq *cic)
3943{
3944 if (cfq_cfqq_sync(cfqq)) {
3945 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3946 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3947 cfqd->cfq_slice_idle);
3948 }
3949#ifdef CONFIG_CFQ_GROUP_IOSCHED
3950 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, get_group_idle(cfqd));
3951#endif
3952}
3953
3954static void
3955cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3956 struct request *rq)
3957{
3958 sector_t sdist = 0;
3959 sector_t n_sec = blk_rq_sectors(rq);
3960 if (cfqq->last_request_pos) {
3961 if (cfqq->last_request_pos < blk_rq_pos(rq))
3962 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3963 else
3964 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3965 }
3966
3967 cfqq->seek_history <<= 1;
3968 if (blk_queue_nonrot(cfqd->queue))
3969 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3970 else
3971 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3972}
3973
3974static inline bool req_noidle(struct request *req)
3975{
3976 return req_op(req) == REQ_OP_WRITE &&
3977 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3978}
3979
3980/*
3981 * Disable idle window if the process thinks too long or seeks so much that
3982 * it doesn't matter
3983 */
3984static void
3985cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3986 struct cfq_io_cq *cic)
3987{
3988 int old_idle, enable_idle;
3989
3990 /*
3991 * Don't idle for async or idle io prio class
3992 */
3993 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3994 return;
3995
3996 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3997
3998 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3999 cfq_mark_cfqq_deep(cfqq);
4000
4001 if (cfqq->next_rq && req_noidle(cfqq->next_rq))
4002 enable_idle = 0;
4003 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
4004 !cfqd->cfq_slice_idle ||
4005 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
4006 enable_idle = 0;
4007 else if (sample_valid(cic->ttime.ttime_samples)) {
4008 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
4009 enable_idle = 0;
4010 else
4011 enable_idle = 1;
4012 }
4013
4014 if (old_idle != enable_idle) {
4015 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
4016 if (enable_idle)
4017 cfq_mark_cfqq_idle_window(cfqq);
4018 else
4019 cfq_clear_cfqq_idle_window(cfqq);
4020 }
4021}
4022
4023/*
4024 * Check if new_cfqq should preempt the currently active queue. Return 0 for
4025 * no or if we aren't sure, a 1 will cause a preempt.
4026 */
4027static bool
4028cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
4029 struct request *rq)
4030{
4031 struct cfq_queue *cfqq;
4032
4033 cfqq = cfqd->active_queue;
4034 if (!cfqq)
4035 return false;
4036
4037 if (cfq_class_idle(new_cfqq))
4038 return false;
4039
4040 if (cfq_class_idle(cfqq))
4041 return true;
4042
4043 /*
4044 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4045 */
4046 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
4047 return false;
4048
4049 /*
4050 * if the new request is sync, but the currently running queue is
4051 * not, let the sync request have priority.
4052 */
4053 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
4054 return true;
4055
4056 /*
4057 * Treat ancestors of current cgroup the same way as current cgroup.
4058 * For anybody else we disallow preemption to guarantee service
4059 * fairness among cgroups.
4060 */
4061 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
4062 return false;
4063
4064 if (cfq_slice_used(cfqq))
4065 return true;
4066
4067 /*
4068 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4069 */
4070 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4071 return true;
4072
4073 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4074 /* Allow preemption only if we are idling on sync-noidle tree */
4075 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4076 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4077 RB_EMPTY_ROOT(&cfqq->sort_list))
4078 return true;
4079
4080 /*
4081 * So both queues are sync. Let the new request get disk time if
4082 * it's a metadata request and the current queue is doing regular IO.
4083 */
4084 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4085 return true;
4086
4087 /* An idle queue should not be idle now for some reason */
4088 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4089 return true;
4090
4091 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4092 return false;
4093
4094 /*
4095 * if this request is as-good as one we would expect from the
4096 * current cfqq, let it preempt
4097 */
4098 if (cfq_rq_close(cfqd, cfqq, rq))
4099 return true;
4100
4101 return false;
4102}
4103
4104/*
4105 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4106 * let it have half of its nominal slice.
4107 */
4108static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4109{
4110 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4111
4112 cfq_log_cfqq(cfqd, cfqq, "preempt");
4113 cfq_slice_expired(cfqd, 1);
4114
4115 /*
4116 * workload type is changed, don't save slice, otherwise preempt
4117 * doesn't happen
4118 */
4119 if (old_type != cfqq_type(cfqq))
4120 cfqq->cfqg->saved_wl_slice = 0;
4121
4122 /*
4123 * Put the new queue at the front of the of the current list,
4124 * so we know that it will be selected next.
4125 */
4126 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4127
4128 cfq_service_tree_add(cfqd, cfqq, 1);
4129
4130 cfqq->slice_end = 0;
4131 cfq_mark_cfqq_slice_new(cfqq);
4132}
4133
4134/*
4135 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4136 * something we should do about it
4137 */
4138static void
4139cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4140 struct request *rq)
4141{
4142 struct cfq_io_cq *cic = RQ_CIC(rq);
4143
4144 cfqd->rq_queued++;
4145 if (rq->cmd_flags & REQ_PRIO)
4146 cfqq->prio_pending++;
4147
4148 cfq_update_io_thinktime(cfqd, cfqq, cic);
4149 cfq_update_io_seektime(cfqd, cfqq, rq);
4150 cfq_update_idle_window(cfqd, cfqq, cic);
4151
4152 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4153
4154 if (cfqq == cfqd->active_queue) {
4155 /*
4156 * Remember that we saw a request from this process, but
4157 * don't start queuing just yet. Otherwise we risk seeing lots
4158 * of tiny requests, because we disrupt the normal plugging
4159 * and merging. If the request is already larger than a single
4160 * page, let it rip immediately. For that case we assume that
4161 * merging is already done. Ditto for a busy system that
4162 * has other work pending, don't risk delaying until the
4163 * idle timer unplug to continue working.
4164 */
4165 if (cfq_cfqq_wait_request(cfqq)) {
4166 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4167 cfqd->busy_queues > 1) {
4168 cfq_del_timer(cfqd, cfqq);
4169 cfq_clear_cfqq_wait_request(cfqq);
4170 __blk_run_queue(cfqd->queue);
4171 } else {
4172 cfqg_stats_update_idle_time(cfqq->cfqg);
4173 cfq_mark_cfqq_must_dispatch(cfqq);
4174 }
4175 }
4176 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4177 /*
4178 * not the active queue - expire current slice if it is
4179 * idle and has expired it's mean thinktime or this new queue
4180 * has some old slice time left and is of higher priority or
4181 * this new queue is RT and the current one is BE
4182 */
4183 cfq_preempt_queue(cfqd, cfqq);
4184 __blk_run_queue(cfqd->queue);
4185 }
4186}
4187
4188static void cfq_insert_request(struct request_queue *q, struct request *rq)
4189{
4190 struct cfq_data *cfqd = q->elevator->elevator_data;
4191 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4192
4193 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4194 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4195
4196 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4197 list_add_tail(&rq->queuelist, &cfqq->fifo);
4198 cfq_add_rq_rb(rq);
4199 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4200 rq->cmd_flags);
4201 cfq_rq_enqueued(cfqd, cfqq, rq);
4202}
4203
4204/*
4205 * Update hw_tag based on peak queue depth over 50 samples under
4206 * sufficient load.
4207 */
4208static void cfq_update_hw_tag(struct cfq_data *cfqd)
4209{
4210 struct cfq_queue *cfqq = cfqd->active_queue;
4211
4212 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4213 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4214
4215 if (cfqd->hw_tag == 1)
4216 return;
4217
4218 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4219 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4220 return;
4221
4222 /*
4223 * If active queue hasn't enough requests and can idle, cfq might not
4224 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4225 * case
4226 */
4227 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4228 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4229 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4230 return;
4231
4232 if (cfqd->hw_tag_samples++ < 50)
4233 return;
4234
4235 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4236 cfqd->hw_tag = 1;
4237 else
4238 cfqd->hw_tag = 0;
4239}
4240
4241static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4242{
4243 struct cfq_io_cq *cic = cfqd->active_cic;
4244 u64 now = ktime_get_ns();
4245
4246 /* If the queue already has requests, don't wait */
4247 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4248 return false;
4249
4250 /* If there are other queues in the group, don't wait */
4251 if (cfqq->cfqg->nr_cfqq > 1)
4252 return false;
4253
4254 /* the only queue in the group, but think time is big */
4255 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4256 return false;
4257
4258 if (cfq_slice_used(cfqq))
4259 return true;
4260
4261 /* if slice left is less than think time, wait busy */
4262 if (cic && sample_valid(cic->ttime.ttime_samples)
4263 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4264 return true;
4265
4266 /*
4267 * If think times is less than a jiffy than ttime_mean=0 and above
4268 * will not be true. It might happen that slice has not expired yet
4269 * but will expire soon (4-5 ns) during select_queue(). To cover the
4270 * case where think time is less than a jiffy, mark the queue wait
4271 * busy if only 1 jiffy is left in the slice.
4272 */
4273 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4274 return true;
4275
4276 return false;
4277}
4278
4279static void cfq_completed_request(struct request_queue *q, struct request *rq)
4280{
4281 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4282 struct cfq_data *cfqd = cfqq->cfqd;
4283 const int sync = rq_is_sync(rq);
4284 u64 now = ktime_get_ns();
4285
4286 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4287
4288 cfq_update_hw_tag(cfqd);
4289
4290 WARN_ON(!cfqd->rq_in_driver);
4291 WARN_ON(!cfqq->dispatched);
4292 cfqd->rq_in_driver--;
4293 cfqq->dispatched--;
4294 (RQ_CFQG(rq))->dispatched--;
4295 cfqg_stats_update_completion(cfqq->cfqg, rq->start_time_ns,
4296 rq->io_start_time_ns, rq->cmd_flags);
4297
4298 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4299
4300 if (sync) {
4301 struct cfq_rb_root *st;
4302
4303 RQ_CIC(rq)->ttime.last_end_request = now;
4304
4305 if (cfq_cfqq_on_rr(cfqq))
4306 st = cfqq->service_tree;
4307 else
4308 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4309 cfqq_type(cfqq));
4310
4311 st->ttime.last_end_request = now;
4312 if (rq->start_time_ns + cfqd->cfq_fifo_expire[1] <= now)
4313 cfqd->last_delayed_sync = now;
4314 }
4315
4316#ifdef CONFIG_CFQ_GROUP_IOSCHED
4317 cfqq->cfqg->ttime.last_end_request = now;
4318#endif
4319
4320 /*
4321 * If this is the active queue, check if it needs to be expired,
4322 * or if we want to idle in case it has no pending requests.
4323 */
4324 if (cfqd->active_queue == cfqq) {
4325 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4326
4327 if (cfq_cfqq_slice_new(cfqq)) {
4328 cfq_set_prio_slice(cfqd, cfqq);
4329 cfq_clear_cfqq_slice_new(cfqq);
4330 }
4331
4332 /*
4333 * Should we wait for next request to come in before we expire
4334 * the queue.
4335 */
4336 if (cfq_should_wait_busy(cfqd, cfqq)) {
4337 u64 extend_sl = cfqd->cfq_slice_idle;
4338 if (!cfqd->cfq_slice_idle)
4339 extend_sl = get_group_idle(cfqd);
4340 cfqq->slice_end = now + extend_sl;
4341 cfq_mark_cfqq_wait_busy(cfqq);
4342 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4343 }
4344
4345 /*
4346 * Idling is not enabled on:
4347 * - expired queues
4348 * - idle-priority queues
4349 * - async queues
4350 * - queues with still some requests queued
4351 * - when there is a close cooperator
4352 */
4353 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4354 cfq_slice_expired(cfqd, 1);
4355 else if (sync && cfqq_empty &&
4356 !cfq_close_cooperator(cfqd, cfqq)) {
4357 cfq_arm_slice_timer(cfqd);
4358 }
4359 }
4360
4361 if (!cfqd->rq_in_driver)
4362 cfq_schedule_dispatch(cfqd);
4363}
4364
4365static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4366{
4367 /*
4368 * If REQ_PRIO is set, boost class and prio level, if it's below
4369 * BE/NORM. If prio is not set, restore the potentially boosted
4370 * class/prio level.
4371 */
4372 if (!(op & REQ_PRIO)) {
4373 cfqq->ioprio_class = cfqq->org_ioprio_class;
4374 cfqq->ioprio = cfqq->org_ioprio;
4375 } else {
4376 if (cfq_class_idle(cfqq))
4377 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4378 if (cfqq->ioprio > IOPRIO_NORM)
4379 cfqq->ioprio = IOPRIO_NORM;
4380 }
4381}
4382
4383static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4384{
4385 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4386 cfq_mark_cfqq_must_alloc_slice(cfqq);
4387 return ELV_MQUEUE_MUST;
4388 }
4389
4390 return ELV_MQUEUE_MAY;
4391}
4392
4393static int cfq_may_queue(struct request_queue *q, unsigned int op)
4394{
4395 struct cfq_data *cfqd = q->elevator->elevator_data;
4396 struct task_struct *tsk = current;
4397 struct cfq_io_cq *cic;
4398 struct cfq_queue *cfqq;
4399
4400 /*
4401 * don't force setup of a queue from here, as a call to may_queue
4402 * does not necessarily imply that a request actually will be queued.
4403 * so just lookup a possibly existing queue, or return 'may queue'
4404 * if that fails
4405 */
4406 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4407 if (!cic)
4408 return ELV_MQUEUE_MAY;
4409
4410 cfqq = cic_to_cfqq(cic, op_is_sync(op));
4411 if (cfqq) {
4412 cfq_init_prio_data(cfqq, cic);
4413 cfqq_boost_on_prio(cfqq, op);
4414
4415 return __cfq_may_queue(cfqq);
4416 }
4417
4418 return ELV_MQUEUE_MAY;
4419}
4420
4421/*
4422 * queue lock held here
4423 */
4424static void cfq_put_request(struct request *rq)
4425{
4426 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4427
4428 if (cfqq) {
4429 const int rw = rq_data_dir(rq);
4430
4431 BUG_ON(!cfqq->allocated[rw]);
4432 cfqq->allocated[rw]--;
4433
4434 /* Put down rq reference on cfqg */
4435 cfqg_put(RQ_CFQG(rq));
4436 rq->elv.priv[0] = NULL;
4437 rq->elv.priv[1] = NULL;
4438
4439 cfq_put_queue(cfqq);
4440 }
4441}
4442
4443static struct cfq_queue *
4444cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4445 struct cfq_queue *cfqq)
4446{
4447 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4448 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4449 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4450 cfq_put_queue(cfqq);
4451 return cic_to_cfqq(cic, 1);
4452}
4453
4454/*
4455 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4456 * was the last process referring to said cfqq.
4457 */
4458static struct cfq_queue *
4459split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4460{
4461 if (cfqq_process_refs(cfqq) == 1) {
4462 cfqq->pid = current->pid;
4463 cfq_clear_cfqq_coop(cfqq);
4464 cfq_clear_cfqq_split_coop(cfqq);
4465 return cfqq;
4466 }
4467
4468 cic_set_cfqq(cic, NULL, 1);
4469
4470 cfq_put_cooperator(cfqq);
4471
4472 cfq_put_queue(cfqq);
4473 return NULL;
4474}
4475/*
4476 * Allocate cfq data structures associated with this request.
4477 */
4478static int
4479cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4480 gfp_t gfp_mask)
4481{
4482 struct cfq_data *cfqd = q->elevator->elevator_data;
4483 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4484 const int rw = rq_data_dir(rq);
4485 const bool is_sync = rq_is_sync(rq);
4486 struct cfq_queue *cfqq;
4487
4488 spin_lock_irq(q->queue_lock);
4489
4490 check_ioprio_changed(cic, bio);
4491 check_blkcg_changed(cic, bio);
4492new_queue:
4493 cfqq = cic_to_cfqq(cic, is_sync);
4494 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4495 if (cfqq)
4496 cfq_put_queue(cfqq);
4497 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4498 cic_set_cfqq(cic, cfqq, is_sync);
4499 } else {
4500 /*
4501 * If the queue was seeky for too long, break it apart.
4502 */
4503 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4504 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4505 cfqq = split_cfqq(cic, cfqq);
4506 if (!cfqq)
4507 goto new_queue;
4508 }
4509
4510 /*
4511 * Check to see if this queue is scheduled to merge with
4512 * another, closely cooperating queue. The merging of
4513 * queues happens here as it must be done in process context.
4514 * The reference on new_cfqq was taken in merge_cfqqs.
4515 */
4516 if (cfqq->new_cfqq)
4517 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4518 }
4519
4520 cfqq->allocated[rw]++;
4521
4522 cfqq->ref++;
4523 cfqg_get(cfqq->cfqg);
4524 rq->elv.priv[0] = cfqq;
4525 rq->elv.priv[1] = cfqq->cfqg;
4526 spin_unlock_irq(q->queue_lock);
4527
4528 return 0;
4529}
4530
4531static void cfq_kick_queue(struct work_struct *work)
4532{
4533 struct cfq_data *cfqd =
4534 container_of(work, struct cfq_data, unplug_work);
4535 struct request_queue *q = cfqd->queue;
4536
4537 spin_lock_irq(q->queue_lock);
4538 __blk_run_queue(cfqd->queue);
4539 spin_unlock_irq(q->queue_lock);
4540}
4541
4542/*
4543 * Timer running if the active_queue is currently idling inside its time slice
4544 */
4545static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4546{
4547 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4548 idle_slice_timer);
4549 struct cfq_queue *cfqq;
4550 unsigned long flags;
4551 int timed_out = 1;
4552
4553 cfq_log(cfqd, "idle timer fired");
4554
4555 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4556
4557 cfqq = cfqd->active_queue;
4558 if (cfqq) {
4559 timed_out = 0;
4560
4561 /*
4562 * We saw a request before the queue expired, let it through
4563 */
4564 if (cfq_cfqq_must_dispatch(cfqq))
4565 goto out_kick;
4566
4567 /*
4568 * expired
4569 */
4570 if (cfq_slice_used(cfqq))
4571 goto expire;
4572
4573 /*
4574 * only expire and reinvoke request handler, if there are
4575 * other queues with pending requests
4576 */
4577 if (!cfqd->busy_queues)
4578 goto out_cont;
4579
4580 /*
4581 * not expired and it has a request pending, let it dispatch
4582 */
4583 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4584 goto out_kick;
4585
4586 /*
4587 * Queue depth flag is reset only when the idle didn't succeed
4588 */
4589 cfq_clear_cfqq_deep(cfqq);
4590 }
4591expire:
4592 cfq_slice_expired(cfqd, timed_out);
4593out_kick:
4594 cfq_schedule_dispatch(cfqd);
4595out_cont:
4596 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4597 return HRTIMER_NORESTART;
4598}
4599
4600static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4601{
4602 hrtimer_cancel(&cfqd->idle_slice_timer);
4603 cancel_work_sync(&cfqd->unplug_work);
4604}
4605
4606static void cfq_exit_queue(struct elevator_queue *e)
4607{
4608 struct cfq_data *cfqd = e->elevator_data;
4609 struct request_queue *q = cfqd->queue;
4610
4611 cfq_shutdown_timer_wq(cfqd);
4612
4613 spin_lock_irq(q->queue_lock);
4614
4615 if (cfqd->active_queue)
4616 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4617
4618 spin_unlock_irq(q->queue_lock);
4619
4620 cfq_shutdown_timer_wq(cfqd);
4621
4622#ifdef CONFIG_CFQ_GROUP_IOSCHED
4623 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4624#else
4625 kfree(cfqd->root_group);
4626#endif
4627 kfree(cfqd);
4628}
4629
4630static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4631{
4632 struct cfq_data *cfqd;
4633 struct blkcg_gq *blkg __maybe_unused;
4634 int i, ret;
4635 struct elevator_queue *eq;
4636
4637 eq = elevator_alloc(q, e);
4638 if (!eq)
4639 return -ENOMEM;
4640
4641 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4642 if (!cfqd) {
4643 kobject_put(&eq->kobj);
4644 return -ENOMEM;
4645 }
4646 eq->elevator_data = cfqd;
4647
4648 cfqd->queue = q;
4649 spin_lock_irq(q->queue_lock);
4650 q->elevator = eq;
4651 spin_unlock_irq(q->queue_lock);
4652
4653 /* Init root service tree */
4654 cfqd->grp_service_tree = CFQ_RB_ROOT;
4655
4656 /* Init root group and prefer root group over other groups by default */
4657#ifdef CONFIG_CFQ_GROUP_IOSCHED
4658 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4659 if (ret)
4660 goto out_free;
4661
4662 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4663#else
4664 ret = -ENOMEM;
4665 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4666 GFP_KERNEL, cfqd->queue->node);
4667 if (!cfqd->root_group)
4668 goto out_free;
4669
4670 cfq_init_cfqg_base(cfqd->root_group);
4671 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4672 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4673#endif
4674
4675 /*
4676 * Not strictly needed (since RB_ROOT just clears the node and we
4677 * zeroed cfqd on alloc), but better be safe in case someone decides
4678 * to add magic to the rb code
4679 */
4680 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4681 cfqd->prio_trees[i] = RB_ROOT;
4682
4683 /*
4684 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4685 * Grab a permanent reference to it, so that the normal code flow
4686 * will not attempt to free it. oom_cfqq is linked to root_group
4687 * but shouldn't hold a reference as it'll never be unlinked. Lose
4688 * the reference from linking right away.
4689 */
4690 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4691 cfqd->oom_cfqq.ref++;
4692
4693 spin_lock_irq(q->queue_lock);
4694 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4695 cfqg_put(cfqd->root_group);
4696 spin_unlock_irq(q->queue_lock);
4697
4698 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4699 HRTIMER_MODE_REL);
4700 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4701
4702 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4703
4704 cfqd->cfq_quantum = cfq_quantum;
4705 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4706 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4707 cfqd->cfq_back_max = cfq_back_max;
4708 cfqd->cfq_back_penalty = cfq_back_penalty;
4709 cfqd->cfq_slice[0] = cfq_slice_async;
4710 cfqd->cfq_slice[1] = cfq_slice_sync;
4711 cfqd->cfq_target_latency = cfq_target_latency;
4712 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4713 cfqd->cfq_slice_idle = cfq_slice_idle;
4714 cfqd->cfq_group_idle = cfq_group_idle;
4715 cfqd->cfq_latency = 1;
4716 cfqd->hw_tag = -1;
4717 /*
4718 * we optimistically start assuming sync ops weren't delayed in last
4719 * second, in order to have larger depth for async operations.
4720 */
4721 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4722 return 0;
4723
4724out_free:
4725 kfree(cfqd);
4726 kobject_put(&eq->kobj);
4727 return ret;
4728}
4729
4730static void cfq_registered_queue(struct request_queue *q)
4731{
4732 struct elevator_queue *e = q->elevator;
4733 struct cfq_data *cfqd = e->elevator_data;
4734
4735 /*
4736 * Default to IOPS mode with no idling for SSDs
4737 */
4738 if (blk_queue_nonrot(q))
4739 cfqd->cfq_slice_idle = 0;
4740 wbt_disable_default(q);
4741}
4742
4743/*
4744 * sysfs parts below -->
4745 */
4746static ssize_t
4747cfq_var_show(unsigned int var, char *page)
4748{
4749 return sprintf(page, "%u\n", var);
4750}
4751
4752static void
4753cfq_var_store(unsigned int *var, const char *page)
4754{
4755 char *p = (char *) page;
4756
4757 *var = simple_strtoul(p, &p, 10);
4758}
4759
4760#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4761static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4762{ \
4763 struct cfq_data *cfqd = e->elevator_data; \
4764 u64 __data = __VAR; \
4765 if (__CONV) \
4766 __data = div_u64(__data, NSEC_PER_MSEC); \
4767 return cfq_var_show(__data, (page)); \
4768}
4769SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4770SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4771SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4772SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4773SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4774SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4775SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4776SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4777SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4778SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4779SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4780SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4781#undef SHOW_FUNCTION
4782
4783#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4784static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4785{ \
4786 struct cfq_data *cfqd = e->elevator_data; \
4787 u64 __data = __VAR; \
4788 __data = div_u64(__data, NSEC_PER_USEC); \
4789 return cfq_var_show(__data, (page)); \
4790}
4791USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4792USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4793USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4794USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4795USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4796#undef USEC_SHOW_FUNCTION
4797
4798#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4799static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4800{ \
4801 struct cfq_data *cfqd = e->elevator_data; \
4802 unsigned int __data, __min = (MIN), __max = (MAX); \
4803 \
4804 cfq_var_store(&__data, (page)); \
4805 if (__data < __min) \
4806 __data = __min; \
4807 else if (__data > __max) \
4808 __data = __max; \
4809 if (__CONV) \
4810 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4811 else \
4812 *(__PTR) = __data; \
4813 return count; \
4814}
4815STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4816STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4817 UINT_MAX, 1);
4818STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4819 UINT_MAX, 1);
4820STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4821STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4822 UINT_MAX, 0);
4823STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4824STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4825STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4826STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4827STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4828 UINT_MAX, 0);
4829STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4830STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4831#undef STORE_FUNCTION
4832
4833#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4834static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4835{ \
4836 struct cfq_data *cfqd = e->elevator_data; \
4837 unsigned int __data, __min = (MIN), __max = (MAX); \
4838 \
4839 cfq_var_store(&__data, (page)); \
4840 if (__data < __min) \
4841 __data = __min; \
4842 else if (__data > __max) \
4843 __data = __max; \
4844 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4845 return count; \
4846}
4847USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4848USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4849USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4850USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4851USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4852#undef USEC_STORE_FUNCTION
4853
4854#define CFQ_ATTR(name) \
4855 __ATTR(name, 0644, cfq_##name##_show, cfq_##name##_store)
4856
4857static struct elv_fs_entry cfq_attrs[] = {
4858 CFQ_ATTR(quantum),
4859 CFQ_ATTR(fifo_expire_sync),
4860 CFQ_ATTR(fifo_expire_async),
4861 CFQ_ATTR(back_seek_max),
4862 CFQ_ATTR(back_seek_penalty),
4863 CFQ_ATTR(slice_sync),
4864 CFQ_ATTR(slice_sync_us),
4865 CFQ_ATTR(slice_async),
4866 CFQ_ATTR(slice_async_us),
4867 CFQ_ATTR(slice_async_rq),
4868 CFQ_ATTR(slice_idle),
4869 CFQ_ATTR(slice_idle_us),
4870 CFQ_ATTR(group_idle),
4871 CFQ_ATTR(group_idle_us),
4872 CFQ_ATTR(low_latency),
4873 CFQ_ATTR(target_latency),
4874 CFQ_ATTR(target_latency_us),
4875 __ATTR_NULL
4876};
4877
4878static struct elevator_type iosched_cfq = {
4879 .ops.sq = {
4880 .elevator_merge_fn = cfq_merge,
4881 .elevator_merged_fn = cfq_merged_request,
4882 .elevator_merge_req_fn = cfq_merged_requests,
4883 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4884 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4885 .elevator_bio_merged_fn = cfq_bio_merged,
4886 .elevator_dispatch_fn = cfq_dispatch_requests,
4887 .elevator_add_req_fn = cfq_insert_request,
4888 .elevator_activate_req_fn = cfq_activate_request,
4889 .elevator_deactivate_req_fn = cfq_deactivate_request,
4890 .elevator_completed_req_fn = cfq_completed_request,
4891 .elevator_former_req_fn = elv_rb_former_request,
4892 .elevator_latter_req_fn = elv_rb_latter_request,
4893 .elevator_init_icq_fn = cfq_init_icq,
4894 .elevator_exit_icq_fn = cfq_exit_icq,
4895 .elevator_set_req_fn = cfq_set_request,
4896 .elevator_put_req_fn = cfq_put_request,
4897 .elevator_may_queue_fn = cfq_may_queue,
4898 .elevator_init_fn = cfq_init_queue,
4899 .elevator_exit_fn = cfq_exit_queue,
4900 .elevator_registered_fn = cfq_registered_queue,
4901 },
4902 .icq_size = sizeof(struct cfq_io_cq),
4903 .icq_align = __alignof__(struct cfq_io_cq),
4904 .elevator_attrs = cfq_attrs,
4905 .elevator_name = "cfq",
4906 .elevator_owner = THIS_MODULE,
4907};
4908
4909#ifdef CONFIG_CFQ_GROUP_IOSCHED
4910static struct blkcg_policy blkcg_policy_cfq = {
4911 .dfl_cftypes = cfq_blkcg_files,
4912 .legacy_cftypes = cfq_blkcg_legacy_files,
4913
4914 .cpd_alloc_fn = cfq_cpd_alloc,
4915 .cpd_init_fn = cfq_cpd_init,
4916 .cpd_free_fn = cfq_cpd_free,
4917 .cpd_bind_fn = cfq_cpd_bind,
4918
4919 .pd_alloc_fn = cfq_pd_alloc,
4920 .pd_init_fn = cfq_pd_init,
4921 .pd_offline_fn = cfq_pd_offline,
4922 .pd_free_fn = cfq_pd_free,
4923 .pd_reset_stats_fn = cfq_pd_reset_stats,
4924};
4925#endif
4926
4927static int __init cfq_init(void)
4928{
4929 int ret;
4930
4931#ifdef CONFIG_CFQ_GROUP_IOSCHED
4932 ret = blkcg_policy_register(&blkcg_policy_cfq);
4933 if (ret)
4934 return ret;
4935#else
4936 cfq_group_idle = 0;
4937#endif
4938
4939 ret = -ENOMEM;
4940 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4941 if (!cfq_pool)
4942 goto err_pol_unreg;
4943
4944 ret = elv_register(&iosched_cfq);
4945 if (ret)
4946 goto err_free_pool;
4947
4948 return 0;
4949
4950err_free_pool:
4951 kmem_cache_destroy(cfq_pool);
4952err_pol_unreg:
4953#ifdef CONFIG_CFQ_GROUP_IOSCHED
4954 blkcg_policy_unregister(&blkcg_policy_cfq);
4955#endif
4956 return ret;
4957}
4958
4959static void __exit cfq_exit(void)
4960{
4961#ifdef CONFIG_CFQ_GROUP_IOSCHED
4962 blkcg_policy_unregister(&blkcg_policy_cfq);
4963#endif
4964 elv_unregister(&iosched_cfq);
4965 kmem_cache_destroy(cfq_pool);
4966}
4967
4968module_init(cfq_init);
4969module_exit(cfq_exit);
4970
4971MODULE_AUTHOR("Jens Axboe");
4972MODULE_LICENSE("GPL");
4973MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");