| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Driver for Pondicherry2 memory controller. | 
|  | 3 | * | 
|  | 4 | * Copyright (c) 2016, Intel Corporation. | 
|  | 5 | * | 
|  | 6 | * This program is free software; you can redistribute it and/or modify it | 
|  | 7 | * under the terms and conditions of the GNU General Public License, | 
|  | 8 | * version 2, as published by the Free Software Foundation. | 
|  | 9 | * | 
|  | 10 | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 12 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 13 | * more details. | 
|  | 14 | * | 
|  | 15 | * [Derived from sb_edac.c] | 
|  | 16 | * | 
|  | 17 | * Translation of system physical addresses to DIMM addresses | 
|  | 18 | * is a two stage process: | 
|  | 19 | * | 
|  | 20 | * First the Pondicherry 2 memory controller handles slice and channel interleaving | 
|  | 21 | * in "sys2pmi()". This is (almost) completley common between platforms. | 
|  | 22 | * | 
|  | 23 | * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, | 
|  | 24 | * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. | 
|  | 25 | */ | 
|  | 26 |  | 
|  | 27 | #include <linux/module.h> | 
|  | 28 | #include <linux/init.h> | 
|  | 29 | #include <linux/pci.h> | 
|  | 30 | #include <linux/pci_ids.h> | 
|  | 31 | #include <linux/slab.h> | 
|  | 32 | #include <linux/delay.h> | 
|  | 33 | #include <linux/edac.h> | 
|  | 34 | #include <linux/mmzone.h> | 
|  | 35 | #include <linux/smp.h> | 
|  | 36 | #include <linux/bitmap.h> | 
|  | 37 | #include <linux/math64.h> | 
|  | 38 | #include <linux/mod_devicetable.h> | 
|  | 39 | #include <asm/cpu_device_id.h> | 
|  | 40 | #include <asm/intel-family.h> | 
|  | 41 | #include <asm/processor.h> | 
|  | 42 | #include <asm/mce.h> | 
|  | 43 |  | 
|  | 44 | #include "edac_mc.h" | 
|  | 45 | #include "edac_module.h" | 
|  | 46 | #include "pnd2_edac.h" | 
|  | 47 |  | 
|  | 48 | #define EDAC_MOD_STR		"pnd2_edac" | 
|  | 49 |  | 
|  | 50 | #define APL_NUM_CHANNELS	4 | 
|  | 51 | #define DNV_NUM_CHANNELS	2 | 
|  | 52 | #define DNV_MAX_DIMMS		2 /* Max DIMMs per channel */ | 
|  | 53 |  | 
|  | 54 | enum type { | 
|  | 55 | APL, | 
|  | 56 | DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ | 
|  | 57 | }; | 
|  | 58 |  | 
|  | 59 | struct dram_addr { | 
|  | 60 | int chan; | 
|  | 61 | int dimm; | 
|  | 62 | int rank; | 
|  | 63 | int bank; | 
|  | 64 | int row; | 
|  | 65 | int col; | 
|  | 66 | }; | 
|  | 67 |  | 
|  | 68 | struct pnd2_pvt { | 
|  | 69 | int dimm_geom[APL_NUM_CHANNELS]; | 
|  | 70 | u64 tolm, tohm; | 
|  | 71 | }; | 
|  | 72 |  | 
|  | 73 | /* | 
|  | 74 | * System address space is divided into multiple regions with | 
|  | 75 | * different interleave rules in each. The as0/as1 regions | 
|  | 76 | * have no interleaving at all. The as2 region is interleaved | 
|  | 77 | * between two channels. The mot region is magic and may overlap | 
|  | 78 | * other regions, with its interleave rules taking precedence. | 
|  | 79 | * Addresses not in any of these regions are interleaved across | 
|  | 80 | * all four channels. | 
|  | 81 | */ | 
|  | 82 | static struct region { | 
|  | 83 | u64	base; | 
|  | 84 | u64	limit; | 
|  | 85 | u8	enabled; | 
|  | 86 | } mot, as0, as1, as2; | 
|  | 87 |  | 
|  | 88 | static struct dunit_ops { | 
|  | 89 | char *name; | 
|  | 90 | enum type type; | 
|  | 91 | int pmiaddr_shift; | 
|  | 92 | int pmiidx_shift; | 
|  | 93 | int channels; | 
|  | 94 | int dimms_per_channel; | 
|  | 95 | int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); | 
|  | 96 | int (*get_registers)(void); | 
|  | 97 | int (*check_ecc)(void); | 
|  | 98 | void (*mk_region)(char *name, struct region *rp, void *asym); | 
|  | 99 | void (*get_dimm_config)(struct mem_ctl_info *mci); | 
|  | 100 | int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, | 
|  | 101 | struct dram_addr *daddr, char *msg); | 
|  | 102 | } *ops; | 
|  | 103 |  | 
|  | 104 | static struct mem_ctl_info *pnd2_mci; | 
|  | 105 |  | 
|  | 106 | #define PND2_MSG_SIZE	256 | 
|  | 107 |  | 
|  | 108 | /* Debug macros */ | 
|  | 109 | #define pnd2_printk(level, fmt, arg...)			\ | 
|  | 110 | edac_printk(level, "pnd2", fmt, ##arg) | 
|  | 111 |  | 
|  | 112 | #define pnd2_mc_printk(mci, level, fmt, arg...)	\ | 
|  | 113 | edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) | 
|  | 114 |  | 
|  | 115 | #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 | 
|  | 116 | #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 | 
|  | 117 | #define SELECTOR_DISABLED (-1) | 
|  | 118 | #define _4GB (1ul << 32) | 
|  | 119 |  | 
|  | 120 | #define PMI_ADDRESS_WIDTH	31 | 
|  | 121 | #define PND_MAX_PHYS_BIT	39 | 
|  | 122 |  | 
|  | 123 | #define APL_ASYMSHIFT		28 | 
|  | 124 | #define DNV_ASYMSHIFT		31 | 
|  | 125 | #define CH_HASH_MASK_LSB	6 | 
|  | 126 | #define SLICE_HASH_MASK_LSB	6 | 
|  | 127 | #define MOT_SLC_INTLV_BIT	12 | 
|  | 128 | #define LOG2_PMI_ADDR_GRANULARITY	5 | 
|  | 129 | #define MOT_SHIFT	24 | 
|  | 130 |  | 
|  | 131 | #define GET_BITFIELD(v, lo, hi)	(((v) & GENMASK_ULL(hi, lo)) >> (lo)) | 
|  | 132 | #define U64_LSHIFT(val, s)	((u64)(val) << (s)) | 
|  | 133 |  | 
|  | 134 | /* | 
|  | 135 | * On Apollo Lake we access memory controller registers via a | 
|  | 136 | * side-band mailbox style interface in a hidden PCI device | 
|  | 137 | * configuration space. | 
|  | 138 | */ | 
|  | 139 | static struct pci_bus	*p2sb_bus; | 
|  | 140 | #define P2SB_DEVFN	PCI_DEVFN(0xd, 0) | 
|  | 141 | #define P2SB_ADDR_OFF	0xd0 | 
|  | 142 | #define P2SB_DATA_OFF	0xd4 | 
|  | 143 | #define P2SB_STAT_OFF	0xd8 | 
|  | 144 | #define P2SB_ROUT_OFF	0xda | 
|  | 145 | #define P2SB_EADD_OFF	0xdc | 
|  | 146 | #define P2SB_HIDE_OFF	0xe1 | 
|  | 147 |  | 
|  | 148 | #define P2SB_BUSY	1 | 
|  | 149 |  | 
|  | 150 | #define P2SB_READ(size, off, ptr) \ | 
|  | 151 | pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) | 
|  | 152 | #define P2SB_WRITE(size, off, val) \ | 
|  | 153 | pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) | 
|  | 154 |  | 
|  | 155 | static bool p2sb_is_busy(u16 *status) | 
|  | 156 | { | 
|  | 157 | P2SB_READ(word, P2SB_STAT_OFF, status); | 
|  | 158 |  | 
|  | 159 | return !!(*status & P2SB_BUSY); | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | static int _apl_rd_reg(int port, int off, int op, u32 *data) | 
|  | 163 | { | 
|  | 164 | int retries = 0xff, ret; | 
|  | 165 | u16 status; | 
|  | 166 | u8 hidden; | 
|  | 167 |  | 
|  | 168 | /* Unhide the P2SB device, if it's hidden */ | 
|  | 169 | P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); | 
|  | 170 | if (hidden) | 
|  | 171 | P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); | 
|  | 172 |  | 
|  | 173 | if (p2sb_is_busy(&status)) { | 
|  | 174 | ret = -EAGAIN; | 
|  | 175 | goto out; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); | 
|  | 179 | P2SB_WRITE(dword, P2SB_DATA_OFF, 0); | 
|  | 180 | P2SB_WRITE(dword, P2SB_EADD_OFF, 0); | 
|  | 181 | P2SB_WRITE(word, P2SB_ROUT_OFF, 0); | 
|  | 182 | P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); | 
|  | 183 |  | 
|  | 184 | while (p2sb_is_busy(&status)) { | 
|  | 185 | if (retries-- == 0) { | 
|  | 186 | ret = -EBUSY; | 
|  | 187 | goto out; | 
|  | 188 | } | 
|  | 189 | } | 
|  | 190 |  | 
|  | 191 | P2SB_READ(dword, P2SB_DATA_OFF, data); | 
|  | 192 | ret = (status >> 1) & 0x3; | 
|  | 193 | out: | 
|  | 194 | /* Hide the P2SB device, if it was hidden before */ | 
|  | 195 | if (hidden) | 
|  | 196 | P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); | 
|  | 197 |  | 
|  | 198 | return ret; | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) | 
|  | 202 | { | 
|  | 203 | int ret = 0; | 
|  | 204 |  | 
|  | 205 | edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); | 
|  | 206 | switch (sz) { | 
|  | 207 | case 8: | 
|  | 208 | ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); | 
|  | 209 | /* fall through */ | 
|  | 210 | case 4: | 
|  | 211 | ret |= _apl_rd_reg(port, off, op, (u32 *)data); | 
|  | 212 | pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, | 
|  | 213 | sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); | 
|  | 214 | break; | 
|  | 215 | } | 
|  | 216 |  | 
|  | 217 | return ret; | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | static u64 get_mem_ctrl_hub_base_addr(void) | 
|  | 221 | { | 
|  | 222 | struct b_cr_mchbar_lo_pci lo; | 
|  | 223 | struct b_cr_mchbar_hi_pci hi; | 
|  | 224 | struct pci_dev *pdev; | 
|  | 225 |  | 
|  | 226 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); | 
|  | 227 | if (pdev) { | 
|  | 228 | pci_read_config_dword(pdev, 0x48, (u32 *)&lo); | 
|  | 229 | pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); | 
|  | 230 | pci_dev_put(pdev); | 
|  | 231 | } else { | 
|  | 232 | return 0; | 
|  | 233 | } | 
|  | 234 |  | 
|  | 235 | if (!lo.enable) { | 
|  | 236 | edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); | 
|  | 237 | return 0; | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | static u64 get_sideband_reg_base_addr(void) | 
|  | 244 | { | 
|  | 245 | struct pci_dev *pdev; | 
|  | 246 | u32 hi, lo; | 
|  | 247 | u8 hidden; | 
|  | 248 |  | 
|  | 249 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL); | 
|  | 250 | if (pdev) { | 
|  | 251 | /* Unhide the P2SB device, if it's hidden */ | 
|  | 252 | pci_read_config_byte(pdev, 0xe1, &hidden); | 
|  | 253 | if (hidden) | 
|  | 254 | pci_write_config_byte(pdev, 0xe1, 0); | 
|  | 255 |  | 
|  | 256 | pci_read_config_dword(pdev, 0x10, &lo); | 
|  | 257 | pci_read_config_dword(pdev, 0x14, &hi); | 
|  | 258 | lo &= 0xfffffff0; | 
|  | 259 |  | 
|  | 260 | /* Hide the P2SB device, if it was hidden before */ | 
|  | 261 | if (hidden) | 
|  | 262 | pci_write_config_byte(pdev, 0xe1, hidden); | 
|  | 263 |  | 
|  | 264 | pci_dev_put(pdev); | 
|  | 265 | return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0)); | 
|  | 266 | } else { | 
|  | 267 | return 0xfd000000; | 
|  | 268 | } | 
|  | 269 | } | 
|  | 270 |  | 
|  | 271 | #define DNV_MCHBAR_SIZE  0x8000 | 
|  | 272 | #define DNV_SB_PORT_SIZE 0x10000 | 
|  | 273 | static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) | 
|  | 274 | { | 
|  | 275 | struct pci_dev *pdev; | 
|  | 276 | char *base; | 
|  | 277 | u64 addr; | 
|  | 278 | unsigned long size; | 
|  | 279 |  | 
|  | 280 | if (op == 4) { | 
|  | 281 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); | 
|  | 282 | if (!pdev) | 
|  | 283 | return -ENODEV; | 
|  | 284 |  | 
|  | 285 | pci_read_config_dword(pdev, off, data); | 
|  | 286 | pci_dev_put(pdev); | 
|  | 287 | } else { | 
|  | 288 | /* MMIO via memory controller hub base address */ | 
|  | 289 | if (op == 0 && port == 0x4c) { | 
|  | 290 | addr = get_mem_ctrl_hub_base_addr(); | 
|  | 291 | if (!addr) | 
|  | 292 | return -ENODEV; | 
|  | 293 | size = DNV_MCHBAR_SIZE; | 
|  | 294 | } else { | 
|  | 295 | /* MMIO via sideband register base address */ | 
|  | 296 | addr = get_sideband_reg_base_addr(); | 
|  | 297 | if (!addr) | 
|  | 298 | return -ENODEV; | 
|  | 299 | addr += (port << 16); | 
|  | 300 | size = DNV_SB_PORT_SIZE; | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | base = ioremap((resource_size_t)addr, size); | 
|  | 304 | if (!base) | 
|  | 305 | return -ENODEV; | 
|  | 306 |  | 
|  | 307 | if (sz == 8) | 
|  | 308 | *(u32 *)(data + 4) = *(u32 *)(base + off + 4); | 
|  | 309 | *(u32 *)data = *(u32 *)(base + off); | 
|  | 310 |  | 
|  | 311 | iounmap(base); | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | edac_dbg(2, "Read %s=%.8x_%.8x\n", name, | 
|  | 315 | (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); | 
|  | 316 |  | 
|  | 317 | return 0; | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | #define RD_REGP(regp, regname, port)	\ | 
|  | 321 | ops->rd_reg(port,					\ | 
|  | 322 | regname##_offset,				\ | 
|  | 323 | regname##_r_opcode,				\ | 
|  | 324 | regp, sizeof(struct regname),	\ | 
|  | 325 | #regname) | 
|  | 326 |  | 
|  | 327 | #define RD_REG(regp, regname)			\ | 
|  | 328 | ops->rd_reg(regname ## _port,		\ | 
|  | 329 | regname##_offset,				\ | 
|  | 330 | regname##_r_opcode,				\ | 
|  | 331 | regp, sizeof(struct regname),	\ | 
|  | 332 | #regname) | 
|  | 333 |  | 
|  | 334 | static u64 top_lm, top_hm; | 
|  | 335 | static bool two_slices; | 
|  | 336 | static bool two_channels; /* Both PMI channels in one slice enabled */ | 
|  | 337 |  | 
|  | 338 | static u8 sym_chan_mask; | 
|  | 339 | static u8 asym_chan_mask; | 
|  | 340 | static u8 chan_mask; | 
|  | 341 |  | 
|  | 342 | static int slice_selector = -1; | 
|  | 343 | static int chan_selector = -1; | 
|  | 344 | static u64 slice_hash_mask; | 
|  | 345 | static u64 chan_hash_mask; | 
|  | 346 |  | 
|  | 347 | static void mk_region(char *name, struct region *rp, u64 base, u64 limit) | 
|  | 348 | { | 
|  | 349 | rp->enabled = 1; | 
|  | 350 | rp->base = base; | 
|  | 351 | rp->limit = limit; | 
|  | 352 | edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) | 
|  | 356 | { | 
|  | 357 | if (mask == 0) { | 
|  | 358 | pr_info(FW_BUG "MOT mask cannot be zero\n"); | 
|  | 359 | return; | 
|  | 360 | } | 
|  | 361 | if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { | 
|  | 362 | pr_info(FW_BUG "MOT mask not power of two\n"); | 
|  | 363 | return; | 
|  | 364 | } | 
|  | 365 | if (base & ~mask) { | 
|  | 366 | pr_info(FW_BUG "MOT region base/mask alignment error\n"); | 
|  | 367 | return; | 
|  | 368 | } | 
|  | 369 | rp->base = base; | 
|  | 370 | rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); | 
|  | 371 | rp->enabled = 1; | 
|  | 372 | edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); | 
|  | 373 | } | 
|  | 374 |  | 
|  | 375 | static bool in_region(struct region *rp, u64 addr) | 
|  | 376 | { | 
|  | 377 | if (!rp->enabled) | 
|  | 378 | return false; | 
|  | 379 |  | 
|  | 380 | return rp->base <= addr && addr <= rp->limit; | 
|  | 381 | } | 
|  | 382 |  | 
|  | 383 | static int gen_sym_mask(struct b_cr_slice_channel_hash *p) | 
|  | 384 | { | 
|  | 385 | int mask = 0; | 
|  | 386 |  | 
|  | 387 | if (!p->slice_0_mem_disabled) | 
|  | 388 | mask |= p->sym_slice0_channel_enabled; | 
|  | 389 |  | 
|  | 390 | if (!p->slice_1_disabled) | 
|  | 391 | mask |= p->sym_slice1_channel_enabled << 2; | 
|  | 392 |  | 
|  | 393 | if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) | 
|  | 394 | mask &= 0x5; | 
|  | 395 |  | 
|  | 396 | return mask; | 
|  | 397 | } | 
|  | 398 |  | 
|  | 399 | static int gen_asym_mask(struct b_cr_slice_channel_hash *p, | 
|  | 400 | struct b_cr_asym_mem_region0_mchbar *as0, | 
|  | 401 | struct b_cr_asym_mem_region1_mchbar *as1, | 
|  | 402 | struct b_cr_asym_2way_mem_region_mchbar *as2way) | 
|  | 403 | { | 
|  | 404 | const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; | 
|  | 405 | int mask = 0; | 
|  | 406 |  | 
|  | 407 | if (as2way->asym_2way_interleave_enable) | 
|  | 408 | mask = intlv[as2way->asym_2way_intlv_mode]; | 
|  | 409 | if (as0->slice0_asym_enable) | 
|  | 410 | mask |= (1 << as0->slice0_asym_channel_select); | 
|  | 411 | if (as1->slice1_asym_enable) | 
|  | 412 | mask |= (4 << as1->slice1_asym_channel_select); | 
|  | 413 | if (p->slice_0_mem_disabled) | 
|  | 414 | mask &= 0xc; | 
|  | 415 | if (p->slice_1_disabled) | 
|  | 416 | mask &= 0x3; | 
|  | 417 | if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) | 
|  | 418 | mask &= 0x5; | 
|  | 419 |  | 
|  | 420 | return mask; | 
|  | 421 | } | 
|  | 422 |  | 
|  | 423 | static struct b_cr_tolud_pci tolud; | 
|  | 424 | static struct b_cr_touud_lo_pci touud_lo; | 
|  | 425 | static struct b_cr_touud_hi_pci touud_hi; | 
|  | 426 | static struct b_cr_asym_mem_region0_mchbar asym0; | 
|  | 427 | static struct b_cr_asym_mem_region1_mchbar asym1; | 
|  | 428 | static struct b_cr_asym_2way_mem_region_mchbar asym_2way; | 
|  | 429 | static struct b_cr_mot_out_base_mchbar mot_base; | 
|  | 430 | static struct b_cr_mot_out_mask_mchbar mot_mask; | 
|  | 431 | static struct b_cr_slice_channel_hash chash; | 
|  | 432 |  | 
|  | 433 | /* Apollo Lake dunit */ | 
|  | 434 | /* | 
|  | 435 | * Validated on board with just two DIMMs in the [0] and [2] positions | 
|  | 436 | * in this array. Other port number matches documentation, but caution | 
|  | 437 | * advised. | 
|  | 438 | */ | 
|  | 439 | static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; | 
|  | 440 | static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; | 
|  | 441 |  | 
|  | 442 | /* Denverton dunit */ | 
|  | 443 | static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; | 
|  | 444 | static struct d_cr_dsch dsch; | 
|  | 445 | static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; | 
|  | 446 | static struct d_cr_drp drp[DNV_NUM_CHANNELS]; | 
|  | 447 | static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; | 
|  | 448 | static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; | 
|  | 449 | static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; | 
|  | 450 | static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; | 
|  | 451 | static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; | 
|  | 452 | static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; | 
|  | 453 |  | 
|  | 454 | static void apl_mk_region(char *name, struct region *rp, void *asym) | 
|  | 455 | { | 
|  | 456 | struct b_cr_asym_mem_region0_mchbar *a = asym; | 
|  | 457 |  | 
|  | 458 | mk_region(name, rp, | 
|  | 459 | U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), | 
|  | 460 | U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + | 
|  | 461 | GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | static void dnv_mk_region(char *name, struct region *rp, void *asym) | 
|  | 465 | { | 
|  | 466 | struct b_cr_asym_mem_region_denverton *a = asym; | 
|  | 467 |  | 
|  | 468 | mk_region(name, rp, | 
|  | 469 | U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), | 
|  | 470 | U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + | 
|  | 471 | GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | static int apl_get_registers(void) | 
|  | 475 | { | 
|  | 476 | int ret = -ENODEV; | 
|  | 477 | int i; | 
|  | 478 |  | 
|  | 479 | if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) | 
|  | 480 | return -ENODEV; | 
|  | 481 |  | 
|  | 482 | /* | 
|  | 483 | * RD_REGP() will fail for unpopulated or non-existent | 
|  | 484 | * DIMM slots. Return success if we find at least one DIMM. | 
|  | 485 | */ | 
|  | 486 | for (i = 0; i < APL_NUM_CHANNELS; i++) | 
|  | 487 | if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) | 
|  | 488 | ret = 0; | 
|  | 489 |  | 
|  | 490 | return ret; | 
|  | 491 | } | 
|  | 492 |  | 
|  | 493 | static int dnv_get_registers(void) | 
|  | 494 | { | 
|  | 495 | int i; | 
|  | 496 |  | 
|  | 497 | if (RD_REG(&dsch, d_cr_dsch)) | 
|  | 498 | return -ENODEV; | 
|  | 499 |  | 
|  | 500 | for (i = 0; i < DNV_NUM_CHANNELS; i++) | 
|  | 501 | if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || | 
|  | 502 | RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || | 
|  | 503 | RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || | 
|  | 504 | RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || | 
|  | 505 | RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || | 
|  | 506 | RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || | 
|  | 507 | RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || | 
|  | 508 | RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) | 
|  | 509 | return -ENODEV; | 
|  | 510 |  | 
|  | 511 | return 0; | 
|  | 512 | } | 
|  | 513 |  | 
|  | 514 | /* | 
|  | 515 | * Read all the h/w config registers once here (they don't | 
|  | 516 | * change at run time. Figure out which address ranges have | 
|  | 517 | * which interleave characteristics. | 
|  | 518 | */ | 
|  | 519 | static int get_registers(void) | 
|  | 520 | { | 
|  | 521 | const int intlv[] = { 10, 11, 12, 12 }; | 
|  | 522 |  | 
|  | 523 | if (RD_REG(&tolud, b_cr_tolud_pci) || | 
|  | 524 | RD_REG(&touud_lo, b_cr_touud_lo_pci) || | 
|  | 525 | RD_REG(&touud_hi, b_cr_touud_hi_pci) || | 
|  | 526 | RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || | 
|  | 527 | RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || | 
|  | 528 | RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || | 
|  | 529 | RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || | 
|  | 530 | RD_REG(&chash, b_cr_slice_channel_hash)) | 
|  | 531 | return -ENODEV; | 
|  | 532 |  | 
|  | 533 | if (ops->get_registers()) | 
|  | 534 | return -ENODEV; | 
|  | 535 |  | 
|  | 536 | if (ops->type == DNV) { | 
|  | 537 | /* PMI channel idx (always 0) for asymmetric region */ | 
|  | 538 | asym0.slice0_asym_channel_select = 0; | 
|  | 539 | asym1.slice1_asym_channel_select = 0; | 
|  | 540 | /* PMI channel bitmap (always 1) for symmetric region */ | 
|  | 541 | chash.sym_slice0_channel_enabled = 0x1; | 
|  | 542 | chash.sym_slice1_channel_enabled = 0x1; | 
|  | 543 | } | 
|  | 544 |  | 
|  | 545 | if (asym0.slice0_asym_enable) | 
|  | 546 | ops->mk_region("as0", &as0, &asym0); | 
|  | 547 |  | 
|  | 548 | if (asym1.slice1_asym_enable) | 
|  | 549 | ops->mk_region("as1", &as1, &asym1); | 
|  | 550 |  | 
|  | 551 | if (asym_2way.asym_2way_interleave_enable) { | 
|  | 552 | mk_region("as2way", &as2, | 
|  | 553 | U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), | 
|  | 554 | U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + | 
|  | 555 | GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | if (mot_base.imr_en) { | 
|  | 559 | mk_region_mask("mot", &mot, | 
|  | 560 | U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), | 
|  | 561 | U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); | 
|  | 562 | } | 
|  | 563 |  | 
|  | 564 | top_lm = U64_LSHIFT(tolud.tolud, 20); | 
|  | 565 | top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); | 
|  | 566 |  | 
|  | 567 | two_slices = !chash.slice_1_disabled && | 
|  | 568 | !chash.slice_0_mem_disabled && | 
|  | 569 | (chash.sym_slice0_channel_enabled != 0) && | 
|  | 570 | (chash.sym_slice1_channel_enabled != 0); | 
|  | 571 | two_channels = !chash.ch_1_disabled && | 
|  | 572 | !chash.enable_pmi_dual_data_mode && | 
|  | 573 | ((chash.sym_slice0_channel_enabled == 3) || | 
|  | 574 | (chash.sym_slice1_channel_enabled == 3)); | 
|  | 575 |  | 
|  | 576 | sym_chan_mask = gen_sym_mask(&chash); | 
|  | 577 | asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); | 
|  | 578 | chan_mask = sym_chan_mask | asym_chan_mask; | 
|  | 579 |  | 
|  | 580 | if (two_slices && !two_channels) { | 
|  | 581 | if (chash.hvm_mode) | 
|  | 582 | slice_selector = 29; | 
|  | 583 | else | 
|  | 584 | slice_selector = intlv[chash.interleave_mode]; | 
|  | 585 | } else if (!two_slices && two_channels) { | 
|  | 586 | if (chash.hvm_mode) | 
|  | 587 | chan_selector = 29; | 
|  | 588 | else | 
|  | 589 | chan_selector = intlv[chash.interleave_mode]; | 
|  | 590 | } else if (two_slices && two_channels) { | 
|  | 591 | if (chash.hvm_mode) { | 
|  | 592 | slice_selector = 29; | 
|  | 593 | chan_selector = 30; | 
|  | 594 | } else { | 
|  | 595 | slice_selector = intlv[chash.interleave_mode]; | 
|  | 596 | chan_selector = intlv[chash.interleave_mode] + 1; | 
|  | 597 | } | 
|  | 598 | } | 
|  | 599 |  | 
|  | 600 | if (two_slices) { | 
|  | 601 | if (!chash.hvm_mode) | 
|  | 602 | slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; | 
|  | 603 | if (!two_channels) | 
|  | 604 | slice_hash_mask |= BIT_ULL(slice_selector); | 
|  | 605 | } | 
|  | 606 |  | 
|  | 607 | if (two_channels) { | 
|  | 608 | if (!chash.hvm_mode) | 
|  | 609 | chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; | 
|  | 610 | if (!two_slices) | 
|  | 611 | chan_hash_mask |= BIT_ULL(chan_selector); | 
|  | 612 | } | 
|  | 613 |  | 
|  | 614 | return 0; | 
|  | 615 | } | 
|  | 616 |  | 
|  | 617 | /* Get a contiguous memory address (remove the MMIO gap) */ | 
|  | 618 | static u64 remove_mmio_gap(u64 sys) | 
|  | 619 | { | 
|  | 620 | return (sys < _4GB) ? sys : sys - (_4GB - top_lm); | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | /* Squeeze out one address bit, shift upper part down to fill gap */ | 
|  | 624 | static void remove_addr_bit(u64 *addr, int bitidx) | 
|  | 625 | { | 
|  | 626 | u64	mask; | 
|  | 627 |  | 
|  | 628 | if (bitidx == -1) | 
|  | 629 | return; | 
|  | 630 |  | 
|  | 631 | mask = (1ull << bitidx) - 1; | 
|  | 632 | *addr = ((*addr >> 1) & ~mask) | (*addr & mask); | 
|  | 633 | } | 
|  | 634 |  | 
|  | 635 | /* XOR all the bits from addr specified in mask */ | 
|  | 636 | static int hash_by_mask(u64 addr, u64 mask) | 
|  | 637 | { | 
|  | 638 | u64 result = addr & mask; | 
|  | 639 |  | 
|  | 640 | result = (result >> 32) ^ result; | 
|  | 641 | result = (result >> 16) ^ result; | 
|  | 642 | result = (result >> 8) ^ result; | 
|  | 643 | result = (result >> 4) ^ result; | 
|  | 644 | result = (result >> 2) ^ result; | 
|  | 645 | result = (result >> 1) ^ result; | 
|  | 646 |  | 
|  | 647 | return (int)result & 1; | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | /* | 
|  | 651 | * First stage decode. Take the system address and figure out which | 
|  | 652 | * second stage will deal with it based on interleave modes. | 
|  | 653 | */ | 
|  | 654 | static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) | 
|  | 655 | { | 
|  | 656 | u64 contig_addr, contig_base, contig_offset, contig_base_adj; | 
|  | 657 | int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : | 
|  | 658 | MOT_CHAN_INTLV_BIT_1SLC_2CH; | 
|  | 659 | int slice_intlv_bit_rm = SELECTOR_DISABLED; | 
|  | 660 | int chan_intlv_bit_rm = SELECTOR_DISABLED; | 
|  | 661 | /* Determine if address is in the MOT region. */ | 
|  | 662 | bool mot_hit = in_region(&mot, addr); | 
|  | 663 | /* Calculate the number of symmetric regions enabled. */ | 
|  | 664 | int sym_channels = hweight8(sym_chan_mask); | 
|  | 665 |  | 
|  | 666 | /* | 
|  | 667 | * The amount we need to shift the asym base can be determined by the | 
|  | 668 | * number of enabled symmetric channels. | 
|  | 669 | * NOTE: This can only work because symmetric memory is not supposed | 
|  | 670 | * to do a 3-way interleave. | 
|  | 671 | */ | 
|  | 672 | int sym_chan_shift = sym_channels >> 1; | 
|  | 673 |  | 
|  | 674 | /* Give up if address is out of range, or in MMIO gap */ | 
|  | 675 | if (addr >= (1ul << PND_MAX_PHYS_BIT) || | 
|  | 676 | (addr >= top_lm && addr < _4GB) || addr >= top_hm) { | 
|  | 677 | snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); | 
|  | 678 | return -EINVAL; | 
|  | 679 | } | 
|  | 680 |  | 
|  | 681 | /* Get a contiguous memory address (remove the MMIO gap) */ | 
|  | 682 | contig_addr = remove_mmio_gap(addr); | 
|  | 683 |  | 
|  | 684 | if (in_region(&as0, addr)) { | 
|  | 685 | *pmiidx = asym0.slice0_asym_channel_select; | 
|  | 686 |  | 
|  | 687 | contig_base = remove_mmio_gap(as0.base); | 
|  | 688 | contig_offset = contig_addr - contig_base; | 
|  | 689 | contig_base_adj = (contig_base >> sym_chan_shift) * | 
|  | 690 | ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); | 
|  | 691 | contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); | 
|  | 692 | } else if (in_region(&as1, addr)) { | 
|  | 693 | *pmiidx = 2u + asym1.slice1_asym_channel_select; | 
|  | 694 |  | 
|  | 695 | contig_base = remove_mmio_gap(as1.base); | 
|  | 696 | contig_offset = contig_addr - contig_base; | 
|  | 697 | contig_base_adj = (contig_base >> sym_chan_shift) * | 
|  | 698 | ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); | 
|  | 699 | contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); | 
|  | 700 | } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { | 
|  | 701 | bool channel1; | 
|  | 702 |  | 
|  | 703 | mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; | 
|  | 704 | *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; | 
|  | 705 | channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : | 
|  | 706 | hash_by_mask(contig_addr, chan_hash_mask); | 
|  | 707 | *pmiidx |= (u32)channel1; | 
|  | 708 |  | 
|  | 709 | contig_base = remove_mmio_gap(as2.base); | 
|  | 710 | chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; | 
|  | 711 | contig_offset = contig_addr - contig_base; | 
|  | 712 | remove_addr_bit(&contig_offset, chan_intlv_bit_rm); | 
|  | 713 | contig_addr = (contig_base >> sym_chan_shift) + contig_offset; | 
|  | 714 | } else { | 
|  | 715 | /* Otherwise we're in normal, boring symmetric mode. */ | 
|  | 716 | *pmiidx = 0u; | 
|  | 717 |  | 
|  | 718 | if (two_slices) { | 
|  | 719 | bool slice1; | 
|  | 720 |  | 
|  | 721 | if (mot_hit) { | 
|  | 722 | slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; | 
|  | 723 | slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; | 
|  | 724 | } else { | 
|  | 725 | slice_intlv_bit_rm = slice_selector; | 
|  | 726 | slice1 = hash_by_mask(addr, slice_hash_mask); | 
|  | 727 | } | 
|  | 728 |  | 
|  | 729 | *pmiidx = (u32)slice1 << 1; | 
|  | 730 | } | 
|  | 731 |  | 
|  | 732 | if (two_channels) { | 
|  | 733 | bool channel1; | 
|  | 734 |  | 
|  | 735 | mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : | 
|  | 736 | MOT_CHAN_INTLV_BIT_1SLC_2CH; | 
|  | 737 |  | 
|  | 738 | if (mot_hit) { | 
|  | 739 | chan_intlv_bit_rm = mot_intlv_bit; | 
|  | 740 | channel1 = (addr >> mot_intlv_bit) & 1; | 
|  | 741 | } else { | 
|  | 742 | chan_intlv_bit_rm = chan_selector; | 
|  | 743 | channel1 = hash_by_mask(contig_addr, chan_hash_mask); | 
|  | 744 | } | 
|  | 745 |  | 
|  | 746 | *pmiidx |= (u32)channel1; | 
|  | 747 | } | 
|  | 748 | } | 
|  | 749 |  | 
|  | 750 | /* Remove the chan_selector bit first */ | 
|  | 751 | remove_addr_bit(&contig_addr, chan_intlv_bit_rm); | 
|  | 752 | /* Remove the slice bit (we remove it second because it must be lower */ | 
|  | 753 | remove_addr_bit(&contig_addr, slice_intlv_bit_rm); | 
|  | 754 | *pmiaddr = contig_addr; | 
|  | 755 |  | 
|  | 756 | return 0; | 
|  | 757 | } | 
|  | 758 |  | 
|  | 759 | /* Translate PMI address to memory (rank, row, bank, column) */ | 
|  | 760 | #define C(n) (0x10 | (n))	/* column */ | 
|  | 761 | #define B(n) (0x20 | (n))	/* bank */ | 
|  | 762 | #define R(n) (0x40 | (n))	/* row */ | 
|  | 763 | #define RS   (0x80)			/* rank */ | 
|  | 764 |  | 
|  | 765 | /* addrdec values */ | 
|  | 766 | #define AMAP_1KB	0 | 
|  | 767 | #define AMAP_2KB	1 | 
|  | 768 | #define AMAP_4KB	2 | 
|  | 769 | #define AMAP_RSVD	3 | 
|  | 770 |  | 
|  | 771 | /* dden values */ | 
|  | 772 | #define DEN_4Gb		0 | 
|  | 773 | #define DEN_8Gb		2 | 
|  | 774 |  | 
|  | 775 | /* dwid values */ | 
|  | 776 | #define X8		0 | 
|  | 777 | #define X16		1 | 
|  | 778 |  | 
|  | 779 | static struct dimm_geometry { | 
|  | 780 | u8	addrdec; | 
|  | 781 | u8	dden; | 
|  | 782 | u8	dwid; | 
|  | 783 | u8	rowbits, colbits; | 
|  | 784 | u16	bits[PMI_ADDRESS_WIDTH]; | 
|  | 785 | } dimms[] = { | 
|  | 786 | { | 
|  | 787 | .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, | 
|  | 788 | .rowbits = 15, .colbits = 10, | 
|  | 789 | .bits = { | 
|  | 790 | C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
|  | 791 | R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
|  | 792 | R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 793 | 0,     0,     0,     0 | 
|  | 794 | } | 
|  | 795 | }, | 
|  | 796 | { | 
|  | 797 | .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, | 
|  | 798 | .rowbits = 16, .colbits = 10, | 
|  | 799 | .bits = { | 
|  | 800 | C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
|  | 801 | R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
|  | 802 | R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 803 | R(15), 0,     0,     0 | 
|  | 804 | } | 
|  | 805 | }, | 
|  | 806 | { | 
|  | 807 | .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, | 
|  | 808 | .rowbits = 16, .colbits = 10, | 
|  | 809 | .bits = { | 
|  | 810 | C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
|  | 811 | R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
|  | 812 | R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 813 | R(15), 0,     0,     0 | 
|  | 814 | } | 
|  | 815 | }, | 
|  | 816 | { | 
|  | 817 | .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, | 
|  | 818 | .rowbits = 16, .colbits = 11, | 
|  | 819 | .bits = { | 
|  | 820 | C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
|  | 821 | R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
|  | 822 | R(10), C(7),  C(8),  C(9),  R(11), RS,    C(11), R(12), R(13), | 
|  | 823 | R(14), R(15), 0,     0 | 
|  | 824 | } | 
|  | 825 | }, | 
|  | 826 | { | 
|  | 827 | .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, | 
|  | 828 | .rowbits = 15, .colbits = 10, | 
|  | 829 | .bits = { | 
|  | 830 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
|  | 831 | R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
|  | 832 | R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 833 | 0,     0,     0,     0 | 
|  | 834 | } | 
|  | 835 | }, | 
|  | 836 | { | 
|  | 837 | .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, | 
|  | 838 | .rowbits = 16, .colbits = 10, | 
|  | 839 | .bits = { | 
|  | 840 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
|  | 841 | R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
|  | 842 | R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 843 | R(15), 0,     0,     0 | 
|  | 844 | } | 
|  | 845 | }, | 
|  | 846 | { | 
|  | 847 | .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, | 
|  | 848 | .rowbits = 16, .colbits = 10, | 
|  | 849 | .bits = { | 
|  | 850 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
|  | 851 | R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
|  | 852 | R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 853 | R(15), 0,     0,     0 | 
|  | 854 | } | 
|  | 855 | }, | 
|  | 856 | { | 
|  | 857 | .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, | 
|  | 858 | .rowbits = 16, .colbits = 11, | 
|  | 859 | .bits = { | 
|  | 860 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
|  | 861 | R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
|  | 862 | R(9),  R(10), C(8),  C(9),  R(11), RS,    C(11), R(12), R(13), | 
|  | 863 | R(14), R(15), 0,     0 | 
|  | 864 | } | 
|  | 865 | }, | 
|  | 866 | { | 
|  | 867 | .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, | 
|  | 868 | .rowbits = 15, .colbits = 10, | 
|  | 869 | .bits = { | 
|  | 870 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
|  | 871 | B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
|  | 872 | R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 873 | 0,     0,     0,     0 | 
|  | 874 | } | 
|  | 875 | }, | 
|  | 876 | { | 
|  | 877 | .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, | 
|  | 878 | .rowbits = 16, .colbits = 10, | 
|  | 879 | .bits = { | 
|  | 880 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
|  | 881 | B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
|  | 882 | R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 883 | R(15), 0,     0,     0 | 
|  | 884 | } | 
|  | 885 | }, | 
|  | 886 | { | 
|  | 887 | .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, | 
|  | 888 | .rowbits = 16, .colbits = 10, | 
|  | 889 | .bits = { | 
|  | 890 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
|  | 891 | B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
|  | 892 | R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14), | 
|  | 893 | R(15), 0,     0,     0 | 
|  | 894 | } | 
|  | 895 | }, | 
|  | 896 | { | 
|  | 897 | .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, | 
|  | 898 | .rowbits = 16, .colbits = 11, | 
|  | 899 | .bits = { | 
|  | 900 | C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
|  | 901 | B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
|  | 902 | R(8),  R(9),  R(10), C(9),  R(11), RS,    C(11), R(12), R(13), | 
|  | 903 | R(14), R(15), 0,     0 | 
|  | 904 | } | 
|  | 905 | } | 
|  | 906 | }; | 
|  | 907 |  | 
|  | 908 | static int bank_hash(u64 pmiaddr, int idx, int shft) | 
|  | 909 | { | 
|  | 910 | int bhash = 0; | 
|  | 911 |  | 
|  | 912 | switch (idx) { | 
|  | 913 | case 0: | 
|  | 914 | bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; | 
|  | 915 | break; | 
|  | 916 | case 1: | 
|  | 917 | bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; | 
|  | 918 | bhash ^= ((pmiaddr >> 22) & 1) << 1; | 
|  | 919 | break; | 
|  | 920 | case 2: | 
|  | 921 | bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; | 
|  | 922 | break; | 
|  | 923 | } | 
|  | 924 |  | 
|  | 925 | return bhash; | 
|  | 926 | } | 
|  | 927 |  | 
|  | 928 | static int rank_hash(u64 pmiaddr) | 
|  | 929 | { | 
|  | 930 | return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; | 
|  | 931 | } | 
|  | 932 |  | 
|  | 933 | /* Second stage decode. Compute rank, bank, row & column. */ | 
|  | 934 | static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, | 
|  | 935 | struct dram_addr *daddr, char *msg) | 
|  | 936 | { | 
|  | 937 | struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; | 
|  | 938 | struct pnd2_pvt *pvt = mci->pvt_info; | 
|  | 939 | int g = pvt->dimm_geom[pmiidx]; | 
|  | 940 | struct dimm_geometry *d = &dimms[g]; | 
|  | 941 | int column = 0, bank = 0, row = 0, rank = 0; | 
|  | 942 | int i, idx, type, skiprs = 0; | 
|  | 943 |  | 
|  | 944 | for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { | 
|  | 945 | int	bit = (pmiaddr >> i) & 1; | 
|  | 946 |  | 
|  | 947 | if (i + skiprs >= PMI_ADDRESS_WIDTH) { | 
|  | 948 | snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); | 
|  | 949 | return -EINVAL; | 
|  | 950 | } | 
|  | 951 |  | 
|  | 952 | type = d->bits[i + skiprs] & ~0xf; | 
|  | 953 | idx = d->bits[i + skiprs] & 0xf; | 
|  | 954 |  | 
|  | 955 | /* | 
|  | 956 | * On single rank DIMMs ignore the rank select bit | 
|  | 957 | * and shift remainder of "bits[]" down one place. | 
|  | 958 | */ | 
|  | 959 | if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { | 
|  | 960 | skiprs = 1; | 
|  | 961 | type = d->bits[i + skiprs] & ~0xf; | 
|  | 962 | idx = d->bits[i + skiprs] & 0xf; | 
|  | 963 | } | 
|  | 964 |  | 
|  | 965 | switch (type) { | 
|  | 966 | case C(0): | 
|  | 967 | column |= (bit << idx); | 
|  | 968 | break; | 
|  | 969 | case B(0): | 
|  | 970 | bank |= (bit << idx); | 
|  | 971 | if (cr_drp0->bahen) | 
|  | 972 | bank ^= bank_hash(pmiaddr, idx, d->addrdec); | 
|  | 973 | break; | 
|  | 974 | case R(0): | 
|  | 975 | row |= (bit << idx); | 
|  | 976 | break; | 
|  | 977 | case RS: | 
|  | 978 | rank = bit; | 
|  | 979 | if (cr_drp0->rsien) | 
|  | 980 | rank ^= rank_hash(pmiaddr); | 
|  | 981 | break; | 
|  | 982 | default: | 
|  | 983 | if (bit) { | 
|  | 984 | snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); | 
|  | 985 | return -EINVAL; | 
|  | 986 | } | 
|  | 987 | goto done; | 
|  | 988 | } | 
|  | 989 | } | 
|  | 990 |  | 
|  | 991 | done: | 
|  | 992 | daddr->col = column; | 
|  | 993 | daddr->bank = bank; | 
|  | 994 | daddr->row = row; | 
|  | 995 | daddr->rank = rank; | 
|  | 996 | daddr->dimm = 0; | 
|  | 997 |  | 
|  | 998 | return 0; | 
|  | 999 | } | 
|  | 1000 |  | 
|  | 1001 | /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ | 
|  | 1002 | #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) | 
|  | 1003 |  | 
|  | 1004 | static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, | 
|  | 1005 | struct dram_addr *daddr, char *msg) | 
|  | 1006 | { | 
|  | 1007 | /* Rank 0 or 1 */ | 
|  | 1008 | daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); | 
|  | 1009 | /* Rank 2 or 3 */ | 
|  | 1010 | daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); | 
|  | 1011 |  | 
|  | 1012 | /* | 
|  | 1013 | * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we | 
|  | 1014 | * flip them if DIMM1 is larger than DIMM0. | 
|  | 1015 | */ | 
|  | 1016 | daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; | 
|  | 1017 |  | 
|  | 1018 | daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); | 
|  | 1019 | daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); | 
|  | 1020 | daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); | 
|  | 1021 | if (dsch.ddr4en) | 
|  | 1022 | daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); | 
|  | 1023 | if (dmap1[pmiidx].bxor) { | 
|  | 1024 | if (dsch.ddr4en) { | 
|  | 1025 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); | 
|  | 1026 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); | 
|  | 1027 | if (dsch.chan_width == 0) | 
|  | 1028 | /* 64/72 bit dram channel width */ | 
|  | 1029 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); | 
|  | 1030 | else | 
|  | 1031 | /* 32/40 bit dram channel width */ | 
|  | 1032 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); | 
|  | 1033 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); | 
|  | 1034 | } else { | 
|  | 1035 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); | 
|  | 1036 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); | 
|  | 1037 | if (dsch.chan_width == 0) | 
|  | 1038 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); | 
|  | 1039 | else | 
|  | 1040 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); | 
|  | 1041 | } | 
|  | 1042 | } | 
|  | 1043 |  | 
|  | 1044 | daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); | 
|  | 1045 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); | 
|  | 1046 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); | 
|  | 1047 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); | 
|  | 1048 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); | 
|  | 1049 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); | 
|  | 1050 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); | 
|  | 1051 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); | 
|  | 1052 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); | 
|  | 1053 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); | 
|  | 1054 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); | 
|  | 1055 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); | 
|  | 1056 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); | 
|  | 1057 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); | 
|  | 1058 | if (dmap4[pmiidx].row14 != 31) | 
|  | 1059 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); | 
|  | 1060 | if (dmap4[pmiidx].row15 != 31) | 
|  | 1061 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); | 
|  | 1062 | if (dmap4[pmiidx].row16 != 31) | 
|  | 1063 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); | 
|  | 1064 | if (dmap4[pmiidx].row17 != 31) | 
|  | 1065 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); | 
|  | 1066 |  | 
|  | 1067 | daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); | 
|  | 1068 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); | 
|  | 1069 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); | 
|  | 1070 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); | 
|  | 1071 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); | 
|  | 1072 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); | 
|  | 1073 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); | 
|  | 1074 | if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) | 
|  | 1075 | daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); | 
|  | 1076 |  | 
|  | 1077 | return 0; | 
|  | 1078 | } | 
|  | 1079 |  | 
|  | 1080 | static int check_channel(int ch) | 
|  | 1081 | { | 
|  | 1082 | if (drp0[ch].dramtype != 0) { | 
|  | 1083 | pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); | 
|  | 1084 | return 1; | 
|  | 1085 | } else if (drp0[ch].eccen == 0) { | 
|  | 1086 | pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); | 
|  | 1087 | return 1; | 
|  | 1088 | } | 
|  | 1089 | return 0; | 
|  | 1090 | } | 
|  | 1091 |  | 
|  | 1092 | static int apl_check_ecc_active(void) | 
|  | 1093 | { | 
|  | 1094 | int	i, ret = 0; | 
|  | 1095 |  | 
|  | 1096 | /* Check dramtype and ECC mode for each present DIMM */ | 
|  | 1097 | for (i = 0; i < APL_NUM_CHANNELS; i++) | 
|  | 1098 | if (chan_mask & BIT(i)) | 
|  | 1099 | ret += check_channel(i); | 
|  | 1100 | return ret ? -EINVAL : 0; | 
|  | 1101 | } | 
|  | 1102 |  | 
|  | 1103 | #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) | 
|  | 1104 |  | 
|  | 1105 | static int check_unit(int ch) | 
|  | 1106 | { | 
|  | 1107 | struct d_cr_drp *d = &drp[ch]; | 
|  | 1108 |  | 
|  | 1109 | if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { | 
|  | 1110 | pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); | 
|  | 1111 | return 1; | 
|  | 1112 | } | 
|  | 1113 | return 0; | 
|  | 1114 | } | 
|  | 1115 |  | 
|  | 1116 | static int dnv_check_ecc_active(void) | 
|  | 1117 | { | 
|  | 1118 | int	i, ret = 0; | 
|  | 1119 |  | 
|  | 1120 | for (i = 0; i < DNV_NUM_CHANNELS; i++) | 
|  | 1121 | ret += check_unit(i); | 
|  | 1122 | return ret ? -EINVAL : 0; | 
|  | 1123 | } | 
|  | 1124 |  | 
|  | 1125 | static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, | 
|  | 1126 | struct dram_addr *daddr, char *msg) | 
|  | 1127 | { | 
|  | 1128 | u64	pmiaddr; | 
|  | 1129 | u32	pmiidx; | 
|  | 1130 | int	ret; | 
|  | 1131 |  | 
|  | 1132 | ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); | 
|  | 1133 | if (ret) | 
|  | 1134 | return ret; | 
|  | 1135 |  | 
|  | 1136 | pmiaddr >>= ops->pmiaddr_shift; | 
|  | 1137 | /* pmi channel idx to dimm channel idx */ | 
|  | 1138 | pmiidx >>= ops->pmiidx_shift; | 
|  | 1139 | daddr->chan = pmiidx; | 
|  | 1140 |  | 
|  | 1141 | ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); | 
|  | 1142 | if (ret) | 
|  | 1143 | return ret; | 
|  | 1144 |  | 
|  | 1145 | edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", | 
|  | 1146 | addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); | 
|  | 1147 |  | 
|  | 1148 | return 0; | 
|  | 1149 | } | 
|  | 1150 |  | 
|  | 1151 | static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, | 
|  | 1152 | struct dram_addr *daddr) | 
|  | 1153 | { | 
|  | 1154 | enum hw_event_mc_err_type tp_event; | 
|  | 1155 | char *optype, msg[PND2_MSG_SIZE]; | 
|  | 1156 | bool ripv = m->mcgstatus & MCG_STATUS_RIPV; | 
|  | 1157 | bool overflow = m->status & MCI_STATUS_OVER; | 
|  | 1158 | bool uc_err = m->status & MCI_STATUS_UC; | 
|  | 1159 | bool recov = m->status & MCI_STATUS_S; | 
|  | 1160 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | 
|  | 1161 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | 
|  | 1162 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | 
|  | 1163 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | 
|  | 1164 | int rc; | 
|  | 1165 |  | 
|  | 1166 | tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) : | 
|  | 1167 | HW_EVENT_ERR_CORRECTED; | 
|  | 1168 |  | 
|  | 1169 | /* | 
|  | 1170 | * According with Table 15-9 of the Intel Architecture spec vol 3A, | 
|  | 1171 | * memory errors should fit in this mask: | 
|  | 1172 | *	000f 0000 1mmm cccc (binary) | 
|  | 1173 | * where: | 
|  | 1174 | *	f = Correction Report Filtering Bit. If 1, subsequent errors | 
|  | 1175 | *	    won't be shown | 
|  | 1176 | *	mmm = error type | 
|  | 1177 | *	cccc = channel | 
|  | 1178 | * If the mask doesn't match, report an error to the parsing logic | 
|  | 1179 | */ | 
|  | 1180 | if (!((errcode & 0xef80) == 0x80)) { | 
|  | 1181 | optype = "Can't parse: it is not a mem"; | 
|  | 1182 | } else { | 
|  | 1183 | switch (optypenum) { | 
|  | 1184 | case 0: | 
|  | 1185 | optype = "generic undef request error"; | 
|  | 1186 | break; | 
|  | 1187 | case 1: | 
|  | 1188 | optype = "memory read error"; | 
|  | 1189 | break; | 
|  | 1190 | case 2: | 
|  | 1191 | optype = "memory write error"; | 
|  | 1192 | break; | 
|  | 1193 | case 3: | 
|  | 1194 | optype = "addr/cmd error"; | 
|  | 1195 | break; | 
|  | 1196 | case 4: | 
|  | 1197 | optype = "memory scrubbing error"; | 
|  | 1198 | break; | 
|  | 1199 | default: | 
|  | 1200 | optype = "reserved"; | 
|  | 1201 | break; | 
|  | 1202 | } | 
|  | 1203 | } | 
|  | 1204 |  | 
|  | 1205 | /* Only decode errors with an valid address (ADDRV) */ | 
|  | 1206 | if (!(m->status & MCI_STATUS_ADDRV)) | 
|  | 1207 | return; | 
|  | 1208 |  | 
|  | 1209 | rc = get_memory_error_data(mci, m->addr, daddr, msg); | 
|  | 1210 | if (rc) | 
|  | 1211 | goto address_error; | 
|  | 1212 |  | 
|  | 1213 | snprintf(msg, sizeof(msg), | 
|  | 1214 | "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", | 
|  | 1215 | overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, | 
|  | 1216 | errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); | 
|  | 1217 |  | 
|  | 1218 | edac_dbg(0, "%s\n", msg); | 
|  | 1219 |  | 
|  | 1220 | /* Call the helper to output message */ | 
|  | 1221 | edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, | 
|  | 1222 | m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); | 
|  | 1223 |  | 
|  | 1224 | return; | 
|  | 1225 |  | 
|  | 1226 | address_error: | 
|  | 1227 | edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); | 
|  | 1228 | } | 
|  | 1229 |  | 
|  | 1230 | static void apl_get_dimm_config(struct mem_ctl_info *mci) | 
|  | 1231 | { | 
|  | 1232 | struct pnd2_pvt	*pvt = mci->pvt_info; | 
|  | 1233 | struct dimm_info *dimm; | 
|  | 1234 | struct d_cr_drp0 *d; | 
|  | 1235 | u64	capacity; | 
|  | 1236 | int	i, g; | 
|  | 1237 |  | 
|  | 1238 | for (i = 0; i < APL_NUM_CHANNELS; i++) { | 
|  | 1239 | if (!(chan_mask & BIT(i))) | 
|  | 1240 | continue; | 
|  | 1241 |  | 
|  | 1242 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0); | 
|  | 1243 | if (!dimm) { | 
|  | 1244 | edac_dbg(0, "No allocated DIMM for channel %d\n", i); | 
|  | 1245 | continue; | 
|  | 1246 | } | 
|  | 1247 |  | 
|  | 1248 | d = &drp0[i]; | 
|  | 1249 | for (g = 0; g < ARRAY_SIZE(dimms); g++) | 
|  | 1250 | if (dimms[g].addrdec == d->addrdec && | 
|  | 1251 | dimms[g].dden == d->dden && | 
|  | 1252 | dimms[g].dwid == d->dwid) | 
|  | 1253 | break; | 
|  | 1254 |  | 
|  | 1255 | if (g == ARRAY_SIZE(dimms)) { | 
|  | 1256 | edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); | 
|  | 1257 | continue; | 
|  | 1258 | } | 
|  | 1259 |  | 
|  | 1260 | pvt->dimm_geom[i] = g; | 
|  | 1261 | capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * | 
|  | 1262 | (1ul << dimms[g].colbits); | 
|  | 1263 | edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); | 
|  | 1264 | dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); | 
|  | 1265 | dimm->grain = 32; | 
|  | 1266 | dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; | 
|  | 1267 | dimm->mtype = MEM_DDR3; | 
|  | 1268 | dimm->edac_mode = EDAC_SECDED; | 
|  | 1269 | snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); | 
|  | 1270 | } | 
|  | 1271 | } | 
|  | 1272 |  | 
|  | 1273 | static const int dnv_dtypes[] = { | 
|  | 1274 | DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN | 
|  | 1275 | }; | 
|  | 1276 |  | 
|  | 1277 | static void dnv_get_dimm_config(struct mem_ctl_info *mci) | 
|  | 1278 | { | 
|  | 1279 | int	i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; | 
|  | 1280 | struct dimm_info *dimm; | 
|  | 1281 | struct d_cr_drp *d; | 
|  | 1282 | u64	capacity; | 
|  | 1283 |  | 
|  | 1284 | if (dsch.ddr4en) { | 
|  | 1285 | memtype = MEM_DDR4; | 
|  | 1286 | banks = 16; | 
|  | 1287 | colbits = 10; | 
|  | 1288 | } else { | 
|  | 1289 | memtype = MEM_DDR3; | 
|  | 1290 | banks = 8; | 
|  | 1291 | } | 
|  | 1292 |  | 
|  | 1293 | for (i = 0; i < DNV_NUM_CHANNELS; i++) { | 
|  | 1294 | if (dmap4[i].row14 == 31) | 
|  | 1295 | rowbits = 14; | 
|  | 1296 | else if (dmap4[i].row15 == 31) | 
|  | 1297 | rowbits = 15; | 
|  | 1298 | else if (dmap4[i].row16 == 31) | 
|  | 1299 | rowbits = 16; | 
|  | 1300 | else if (dmap4[i].row17 == 31) | 
|  | 1301 | rowbits = 17; | 
|  | 1302 | else | 
|  | 1303 | rowbits = 18; | 
|  | 1304 |  | 
|  | 1305 | if (memtype == MEM_DDR3) { | 
|  | 1306 | if (dmap1[i].ca11 != 0x3f) | 
|  | 1307 | colbits = 12; | 
|  | 1308 | else | 
|  | 1309 | colbits = 10; | 
|  | 1310 | } | 
|  | 1311 |  | 
|  | 1312 | d = &drp[i]; | 
|  | 1313 | /* DIMM0 is present if rank0 and/or rank1 is enabled */ | 
|  | 1314 | ranks_of_dimm[0] = d->rken0 + d->rken1; | 
|  | 1315 | /* DIMM1 is present if rank2 and/or rank3 is enabled */ | 
|  | 1316 | ranks_of_dimm[1] = d->rken2 + d->rken3; | 
|  | 1317 |  | 
|  | 1318 | for (j = 0; j < DNV_MAX_DIMMS; j++) { | 
|  | 1319 | if (!ranks_of_dimm[j]) | 
|  | 1320 | continue; | 
|  | 1321 |  | 
|  | 1322 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); | 
|  | 1323 | if (!dimm) { | 
|  | 1324 | edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); | 
|  | 1325 | continue; | 
|  | 1326 | } | 
|  | 1327 |  | 
|  | 1328 | capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); | 
|  | 1329 | edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); | 
|  | 1330 | dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); | 
|  | 1331 | dimm->grain = 32; | 
|  | 1332 | dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; | 
|  | 1333 | dimm->mtype = memtype; | 
|  | 1334 | dimm->edac_mode = EDAC_SECDED; | 
|  | 1335 | snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); | 
|  | 1336 | } | 
|  | 1337 | } | 
|  | 1338 | } | 
|  | 1339 |  | 
|  | 1340 | static int pnd2_register_mci(struct mem_ctl_info **ppmci) | 
|  | 1341 | { | 
|  | 1342 | struct edac_mc_layer layers[2]; | 
|  | 1343 | struct mem_ctl_info *mci; | 
|  | 1344 | struct pnd2_pvt *pvt; | 
|  | 1345 | int rc; | 
|  | 1346 |  | 
|  | 1347 | rc = ops->check_ecc(); | 
|  | 1348 | if (rc < 0) | 
|  | 1349 | return rc; | 
|  | 1350 |  | 
|  | 1351 | /* Allocate a new MC control structure */ | 
|  | 1352 | layers[0].type = EDAC_MC_LAYER_CHANNEL; | 
|  | 1353 | layers[0].size = ops->channels; | 
|  | 1354 | layers[0].is_virt_csrow = false; | 
|  | 1355 | layers[1].type = EDAC_MC_LAYER_SLOT; | 
|  | 1356 | layers[1].size = ops->dimms_per_channel; | 
|  | 1357 | layers[1].is_virt_csrow = true; | 
|  | 1358 | mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); | 
|  | 1359 | if (!mci) | 
|  | 1360 | return -ENOMEM; | 
|  | 1361 |  | 
|  | 1362 | pvt = mci->pvt_info; | 
|  | 1363 | memset(pvt, 0, sizeof(*pvt)); | 
|  | 1364 |  | 
|  | 1365 | mci->mod_name = EDAC_MOD_STR; | 
|  | 1366 | mci->dev_name = ops->name; | 
|  | 1367 | mci->ctl_name = "Pondicherry2"; | 
|  | 1368 |  | 
|  | 1369 | /* Get dimm basic config and the memory layout */ | 
|  | 1370 | ops->get_dimm_config(mci); | 
|  | 1371 |  | 
|  | 1372 | if (edac_mc_add_mc(mci)) { | 
|  | 1373 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
|  | 1374 | edac_mc_free(mci); | 
|  | 1375 | return -EINVAL; | 
|  | 1376 | } | 
|  | 1377 |  | 
|  | 1378 | *ppmci = mci; | 
|  | 1379 |  | 
|  | 1380 | return 0; | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | static void pnd2_unregister_mci(struct mem_ctl_info *mci) | 
|  | 1384 | { | 
|  | 1385 | if (unlikely(!mci || !mci->pvt_info)) { | 
|  | 1386 | pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); | 
|  | 1387 | return; | 
|  | 1388 | } | 
|  | 1389 |  | 
|  | 1390 | /* Remove MC sysfs nodes */ | 
|  | 1391 | edac_mc_del_mc(NULL); | 
|  | 1392 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | 
|  | 1393 | edac_mc_free(mci); | 
|  | 1394 | } | 
|  | 1395 |  | 
|  | 1396 | /* | 
|  | 1397 | * Callback function registered with core kernel mce code. | 
|  | 1398 | * Called once for each logged error. | 
|  | 1399 | */ | 
|  | 1400 | static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) | 
|  | 1401 | { | 
|  | 1402 | struct mce *mce = (struct mce *)data; | 
|  | 1403 | struct mem_ctl_info *mci; | 
|  | 1404 | struct dram_addr daddr; | 
|  | 1405 | char *type; | 
|  | 1406 |  | 
|  | 1407 | if (edac_get_report_status() == EDAC_REPORTING_DISABLED) | 
|  | 1408 | return NOTIFY_DONE; | 
|  | 1409 |  | 
|  | 1410 | mci = pnd2_mci; | 
|  | 1411 | if (!mci) | 
|  | 1412 | return NOTIFY_DONE; | 
|  | 1413 |  | 
|  | 1414 | /* | 
|  | 1415 | * Just let mcelog handle it if the error is | 
|  | 1416 | * outside the memory controller. A memory error | 
|  | 1417 | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | 
|  | 1418 | * bit 12 has an special meaning. | 
|  | 1419 | */ | 
|  | 1420 | if ((mce->status & 0xefff) >> 7 != 1) | 
|  | 1421 | return NOTIFY_DONE; | 
|  | 1422 |  | 
|  | 1423 | if (mce->mcgstatus & MCG_STATUS_MCIP) | 
|  | 1424 | type = "Exception"; | 
|  | 1425 | else | 
|  | 1426 | type = "Event"; | 
|  | 1427 |  | 
|  | 1428 | pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); | 
|  | 1429 | pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", | 
|  | 1430 | mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); | 
|  | 1431 | pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); | 
|  | 1432 | pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); | 
|  | 1433 | pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); | 
|  | 1434 | pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", | 
|  | 1435 | mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); | 
|  | 1436 |  | 
|  | 1437 | pnd2_mce_output_error(mci, mce, &daddr); | 
|  | 1438 |  | 
|  | 1439 | /* Advice mcelog that the error were handled */ | 
|  | 1440 | return NOTIFY_STOP; | 
|  | 1441 | } | 
|  | 1442 |  | 
|  | 1443 | static struct notifier_block pnd2_mce_dec = { | 
|  | 1444 | .notifier_call	= pnd2_mce_check_error, | 
|  | 1445 | }; | 
|  | 1446 |  | 
|  | 1447 | #ifdef CONFIG_EDAC_DEBUG | 
|  | 1448 | /* | 
|  | 1449 | * Write an address to this file to exercise the address decode | 
|  | 1450 | * logic in this driver. | 
|  | 1451 | */ | 
|  | 1452 | static u64 pnd2_fake_addr; | 
|  | 1453 | #define PND2_BLOB_SIZE 1024 | 
|  | 1454 | static char pnd2_result[PND2_BLOB_SIZE]; | 
|  | 1455 | static struct dentry *pnd2_test; | 
|  | 1456 | static struct debugfs_blob_wrapper pnd2_blob = { | 
|  | 1457 | .data = pnd2_result, | 
|  | 1458 | .size = 0 | 
|  | 1459 | }; | 
|  | 1460 |  | 
|  | 1461 | static int debugfs_u64_set(void *data, u64 val) | 
|  | 1462 | { | 
|  | 1463 | struct dram_addr daddr; | 
|  | 1464 | struct mce m; | 
|  | 1465 |  | 
|  | 1466 | *(u64 *)data = val; | 
|  | 1467 | m.mcgstatus = 0; | 
|  | 1468 | /* ADDRV + MemRd + Unknown channel */ | 
|  | 1469 | m.status = MCI_STATUS_ADDRV + 0x9f; | 
|  | 1470 | m.addr = val; | 
|  | 1471 | pnd2_mce_output_error(pnd2_mci, &m, &daddr); | 
|  | 1472 | snprintf(pnd2_blob.data, PND2_BLOB_SIZE, | 
|  | 1473 | "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", | 
|  | 1474 | m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); | 
|  | 1475 | pnd2_blob.size = strlen(pnd2_blob.data); | 
|  | 1476 |  | 
|  | 1477 | return 0; | 
|  | 1478 | } | 
|  | 1479 | DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); | 
|  | 1480 |  | 
|  | 1481 | static void setup_pnd2_debug(void) | 
|  | 1482 | { | 
|  | 1483 | pnd2_test = edac_debugfs_create_dir("pnd2_test"); | 
|  | 1484 | edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, | 
|  | 1485 | &pnd2_fake_addr, &fops_u64_wo); | 
|  | 1486 | debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); | 
|  | 1487 | } | 
|  | 1488 |  | 
|  | 1489 | static void teardown_pnd2_debug(void) | 
|  | 1490 | { | 
|  | 1491 | debugfs_remove_recursive(pnd2_test); | 
|  | 1492 | } | 
|  | 1493 | #else | 
|  | 1494 | static void setup_pnd2_debug(void)	{} | 
|  | 1495 | static void teardown_pnd2_debug(void)	{} | 
|  | 1496 | #endif /* CONFIG_EDAC_DEBUG */ | 
|  | 1497 |  | 
|  | 1498 |  | 
|  | 1499 | static int pnd2_probe(void) | 
|  | 1500 | { | 
|  | 1501 | int rc; | 
|  | 1502 |  | 
|  | 1503 | edac_dbg(2, "\n"); | 
|  | 1504 | rc = get_registers(); | 
|  | 1505 | if (rc) | 
|  | 1506 | return rc; | 
|  | 1507 |  | 
|  | 1508 | return pnd2_register_mci(&pnd2_mci); | 
|  | 1509 | } | 
|  | 1510 |  | 
|  | 1511 | static void pnd2_remove(void) | 
|  | 1512 | { | 
|  | 1513 | edac_dbg(0, "\n"); | 
|  | 1514 | pnd2_unregister_mci(pnd2_mci); | 
|  | 1515 | } | 
|  | 1516 |  | 
|  | 1517 | static struct dunit_ops apl_ops = { | 
|  | 1518 | .name			= "pnd2/apl", | 
|  | 1519 | .type			= APL, | 
|  | 1520 | .pmiaddr_shift		= LOG2_PMI_ADDR_GRANULARITY, | 
|  | 1521 | .pmiidx_shift		= 0, | 
|  | 1522 | .channels		= APL_NUM_CHANNELS, | 
|  | 1523 | .dimms_per_channel	= 1, | 
|  | 1524 | .rd_reg			= apl_rd_reg, | 
|  | 1525 | .get_registers		= apl_get_registers, | 
|  | 1526 | .check_ecc		= apl_check_ecc_active, | 
|  | 1527 | .mk_region		= apl_mk_region, | 
|  | 1528 | .get_dimm_config	= apl_get_dimm_config, | 
|  | 1529 | .pmi2mem		= apl_pmi2mem, | 
|  | 1530 | }; | 
|  | 1531 |  | 
|  | 1532 | static struct dunit_ops dnv_ops = { | 
|  | 1533 | .name			= "pnd2/dnv", | 
|  | 1534 | .type			= DNV, | 
|  | 1535 | .pmiaddr_shift		= 0, | 
|  | 1536 | .pmiidx_shift		= 1, | 
|  | 1537 | .channels		= DNV_NUM_CHANNELS, | 
|  | 1538 | .dimms_per_channel	= 2, | 
|  | 1539 | .rd_reg			= dnv_rd_reg, | 
|  | 1540 | .get_registers		= dnv_get_registers, | 
|  | 1541 | .check_ecc		= dnv_check_ecc_active, | 
|  | 1542 | .mk_region		= dnv_mk_region, | 
|  | 1543 | .get_dimm_config	= dnv_get_dimm_config, | 
|  | 1544 | .pmi2mem		= dnv_pmi2mem, | 
|  | 1545 | }; | 
|  | 1546 |  | 
|  | 1547 | static const struct x86_cpu_id pnd2_cpuids[] = { | 
|  | 1548 | { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops }, | 
|  | 1549 | { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_X, 0, (kernel_ulong_t)&dnv_ops }, | 
|  | 1550 | { } | 
|  | 1551 | }; | 
|  | 1552 | MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); | 
|  | 1553 |  | 
|  | 1554 | static int __init pnd2_init(void) | 
|  | 1555 | { | 
|  | 1556 | const struct x86_cpu_id *id; | 
|  | 1557 | const char *owner; | 
|  | 1558 | int rc; | 
|  | 1559 |  | 
|  | 1560 | edac_dbg(2, "\n"); | 
|  | 1561 |  | 
|  | 1562 | owner = edac_get_owner(); | 
|  | 1563 | if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | 
|  | 1564 | return -EBUSY; | 
|  | 1565 |  | 
|  | 1566 | id = x86_match_cpu(pnd2_cpuids); | 
|  | 1567 | if (!id) | 
|  | 1568 | return -ENODEV; | 
|  | 1569 |  | 
|  | 1570 | ops = (struct dunit_ops *)id->driver_data; | 
|  | 1571 |  | 
|  | 1572 | if (ops->type == APL) { | 
|  | 1573 | p2sb_bus = pci_find_bus(0, 0); | 
|  | 1574 | if (!p2sb_bus) | 
|  | 1575 | return -ENODEV; | 
|  | 1576 | } | 
|  | 1577 |  | 
|  | 1578 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
|  | 1579 | opstate_init(); | 
|  | 1580 |  | 
|  | 1581 | rc = pnd2_probe(); | 
|  | 1582 | if (rc < 0) { | 
|  | 1583 | pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); | 
|  | 1584 | return rc; | 
|  | 1585 | } | 
|  | 1586 |  | 
|  | 1587 | if (!pnd2_mci) | 
|  | 1588 | return -ENODEV; | 
|  | 1589 |  | 
|  | 1590 | mce_register_decode_chain(&pnd2_mce_dec); | 
|  | 1591 | setup_pnd2_debug(); | 
|  | 1592 |  | 
|  | 1593 | return 0; | 
|  | 1594 | } | 
|  | 1595 |  | 
|  | 1596 | static void __exit pnd2_exit(void) | 
|  | 1597 | { | 
|  | 1598 | edac_dbg(2, "\n"); | 
|  | 1599 | teardown_pnd2_debug(); | 
|  | 1600 | mce_unregister_decode_chain(&pnd2_mce_dec); | 
|  | 1601 | pnd2_remove(); | 
|  | 1602 | } | 
|  | 1603 |  | 
|  | 1604 | module_init(pnd2_init); | 
|  | 1605 | module_exit(pnd2_exit); | 
|  | 1606 |  | 
|  | 1607 | module_param(edac_op_state, int, 0444); | 
|  | 1608 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
|  | 1609 |  | 
|  | 1610 | MODULE_LICENSE("GPL v2"); | 
|  | 1611 | MODULE_AUTHOR("Tony Luck"); | 
|  | 1612 | MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); |