| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Copyright (C) 2011 STRATO.  All rights reserved. | 
|  | 4 | */ | 
|  | 5 |  | 
|  | 6 | #include <linux/mm.h> | 
|  | 7 | #include <linux/rbtree.h> | 
|  | 8 | #include <trace/events/btrfs.h> | 
|  | 9 | #include "ctree.h" | 
|  | 10 | #include "disk-io.h" | 
|  | 11 | #include "backref.h" | 
|  | 12 | #include "ulist.h" | 
|  | 13 | #include "transaction.h" | 
|  | 14 | #include "delayed-ref.h" | 
|  | 15 | #include "locking.h" | 
|  | 16 |  | 
|  | 17 | /* Just an arbitrary number so we can be sure this happened */ | 
|  | 18 | #define BACKREF_FOUND_SHARED 6 | 
|  | 19 |  | 
|  | 20 | struct extent_inode_elem { | 
|  | 21 | u64 inum; | 
|  | 22 | u64 offset; | 
|  | 23 | struct extent_inode_elem *next; | 
|  | 24 | }; | 
|  | 25 |  | 
|  | 26 | static int check_extent_in_eb(const struct btrfs_key *key, | 
|  | 27 | const struct extent_buffer *eb, | 
|  | 28 | const struct btrfs_file_extent_item *fi, | 
|  | 29 | u64 extent_item_pos, | 
|  | 30 | struct extent_inode_elem **eie, | 
|  | 31 | bool ignore_offset) | 
|  | 32 | { | 
|  | 33 | u64 offset = 0; | 
|  | 34 | struct extent_inode_elem *e; | 
|  | 35 |  | 
|  | 36 | if (!ignore_offset && | 
|  | 37 | !btrfs_file_extent_compression(eb, fi) && | 
|  | 38 | !btrfs_file_extent_encryption(eb, fi) && | 
|  | 39 | !btrfs_file_extent_other_encoding(eb, fi)) { | 
|  | 40 | u64 data_offset; | 
|  | 41 | u64 data_len; | 
|  | 42 |  | 
|  | 43 | data_offset = btrfs_file_extent_offset(eb, fi); | 
|  | 44 | data_len = btrfs_file_extent_num_bytes(eb, fi); | 
|  | 45 |  | 
|  | 46 | if (extent_item_pos < data_offset || | 
|  | 47 | extent_item_pos >= data_offset + data_len) | 
|  | 48 | return 1; | 
|  | 49 | offset = extent_item_pos - data_offset; | 
|  | 50 | } | 
|  | 51 |  | 
|  | 52 | e = kmalloc(sizeof(*e), GFP_NOFS); | 
|  | 53 | if (!e) | 
|  | 54 | return -ENOMEM; | 
|  | 55 |  | 
|  | 56 | e->next = *eie; | 
|  | 57 | e->inum = key->objectid; | 
|  | 58 | e->offset = key->offset + offset; | 
|  | 59 | *eie = e; | 
|  | 60 |  | 
|  | 61 | return 0; | 
|  | 62 | } | 
|  | 63 |  | 
|  | 64 | static void free_inode_elem_list(struct extent_inode_elem *eie) | 
|  | 65 | { | 
|  | 66 | struct extent_inode_elem *eie_next; | 
|  | 67 |  | 
|  | 68 | for (; eie; eie = eie_next) { | 
|  | 69 | eie_next = eie->next; | 
|  | 70 | kfree(eie); | 
|  | 71 | } | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | static int find_extent_in_eb(const struct extent_buffer *eb, | 
|  | 75 | u64 wanted_disk_byte, u64 extent_item_pos, | 
|  | 76 | struct extent_inode_elem **eie, | 
|  | 77 | bool ignore_offset) | 
|  | 78 | { | 
|  | 79 | u64 disk_byte; | 
|  | 80 | struct btrfs_key key; | 
|  | 81 | struct btrfs_file_extent_item *fi; | 
|  | 82 | int slot; | 
|  | 83 | int nritems; | 
|  | 84 | int extent_type; | 
|  | 85 | int ret; | 
|  | 86 |  | 
|  | 87 | /* | 
|  | 88 | * from the shared data ref, we only have the leaf but we need | 
|  | 89 | * the key. thus, we must look into all items and see that we | 
|  | 90 | * find one (some) with a reference to our extent item. | 
|  | 91 | */ | 
|  | 92 | nritems = btrfs_header_nritems(eb); | 
|  | 93 | for (slot = 0; slot < nritems; ++slot) { | 
|  | 94 | btrfs_item_key_to_cpu(eb, &key, slot); | 
|  | 95 | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | 96 | continue; | 
|  | 97 | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | 98 | extent_type = btrfs_file_extent_type(eb, fi); | 
|  | 99 | if (extent_type == BTRFS_FILE_EXTENT_INLINE) | 
|  | 100 | continue; | 
|  | 101 | /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ | 
|  | 102 | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
|  | 103 | if (disk_byte != wanted_disk_byte) | 
|  | 104 | continue; | 
|  | 105 |  | 
|  | 106 | ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); | 
|  | 107 | if (ret < 0) | 
|  | 108 | return ret; | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | return 0; | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | struct preftree { | 
|  | 115 | struct rb_root root; | 
|  | 116 | unsigned int count; | 
|  | 117 | }; | 
|  | 118 |  | 
|  | 119 | #define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 } | 
|  | 120 |  | 
|  | 121 | struct preftrees { | 
|  | 122 | struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ | 
|  | 123 | struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ | 
|  | 124 | struct preftree indirect_missing_keys; | 
|  | 125 | }; | 
|  | 126 |  | 
|  | 127 | /* | 
|  | 128 | * Checks for a shared extent during backref search. | 
|  | 129 | * | 
|  | 130 | * The share_count tracks prelim_refs (direct and indirect) having a | 
|  | 131 | * ref->count >0: | 
|  | 132 | *  - incremented when a ref->count transitions to >0 | 
|  | 133 | *  - decremented when a ref->count transitions to <1 | 
|  | 134 | */ | 
|  | 135 | struct share_check { | 
|  | 136 | u64 root_objectid; | 
|  | 137 | u64 inum; | 
|  | 138 | int share_count; | 
|  | 139 | }; | 
|  | 140 |  | 
|  | 141 | static inline int extent_is_shared(struct share_check *sc) | 
|  | 142 | { | 
|  | 143 | return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; | 
|  | 144 | } | 
|  | 145 |  | 
|  | 146 | static struct kmem_cache *btrfs_prelim_ref_cache; | 
|  | 147 |  | 
|  | 148 | int __init btrfs_prelim_ref_init(void) | 
|  | 149 | { | 
|  | 150 | btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", | 
|  | 151 | sizeof(struct prelim_ref), | 
|  | 152 | 0, | 
|  | 153 | SLAB_MEM_SPREAD, | 
|  | 154 | NULL); | 
|  | 155 | if (!btrfs_prelim_ref_cache) | 
|  | 156 | return -ENOMEM; | 
|  | 157 | return 0; | 
|  | 158 | } | 
|  | 159 |  | 
|  | 160 | void __cold btrfs_prelim_ref_exit(void) | 
|  | 161 | { | 
|  | 162 | kmem_cache_destroy(btrfs_prelim_ref_cache); | 
|  | 163 | } | 
|  | 164 |  | 
|  | 165 | static void free_pref(struct prelim_ref *ref) | 
|  | 166 | { | 
|  | 167 | kmem_cache_free(btrfs_prelim_ref_cache, ref); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | /* | 
|  | 171 | * Return 0 when both refs are for the same block (and can be merged). | 
|  | 172 | * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 | 
|  | 173 | * indicates a 'higher' block. | 
|  | 174 | */ | 
|  | 175 | static int prelim_ref_compare(struct prelim_ref *ref1, | 
|  | 176 | struct prelim_ref *ref2) | 
|  | 177 | { | 
|  | 178 | if (ref1->level < ref2->level) | 
|  | 179 | return -1; | 
|  | 180 | if (ref1->level > ref2->level) | 
|  | 181 | return 1; | 
|  | 182 | if (ref1->root_id < ref2->root_id) | 
|  | 183 | return -1; | 
|  | 184 | if (ref1->root_id > ref2->root_id) | 
|  | 185 | return 1; | 
|  | 186 | if (ref1->key_for_search.type < ref2->key_for_search.type) | 
|  | 187 | return -1; | 
|  | 188 | if (ref1->key_for_search.type > ref2->key_for_search.type) | 
|  | 189 | return 1; | 
|  | 190 | if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) | 
|  | 191 | return -1; | 
|  | 192 | if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) | 
|  | 193 | return 1; | 
|  | 194 | if (ref1->key_for_search.offset < ref2->key_for_search.offset) | 
|  | 195 | return -1; | 
|  | 196 | if (ref1->key_for_search.offset > ref2->key_for_search.offset) | 
|  | 197 | return 1; | 
|  | 198 | if (ref1->parent < ref2->parent) | 
|  | 199 | return -1; | 
|  | 200 | if (ref1->parent > ref2->parent) | 
|  | 201 | return 1; | 
|  | 202 |  | 
|  | 203 | return 0; | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 | static void update_share_count(struct share_check *sc, int oldcount, | 
|  | 207 | int newcount) | 
|  | 208 | { | 
|  | 209 | if ((!sc) || (oldcount == 0 && newcount < 1)) | 
|  | 210 | return; | 
|  | 211 |  | 
|  | 212 | if (oldcount > 0 && newcount < 1) | 
|  | 213 | sc->share_count--; | 
|  | 214 | else if (oldcount < 1 && newcount > 0) | 
|  | 215 | sc->share_count++; | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | /* | 
|  | 219 | * Add @newref to the @root rbtree, merging identical refs. | 
|  | 220 | * | 
|  | 221 | * Callers should assume that newref has been freed after calling. | 
|  | 222 | */ | 
|  | 223 | static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, | 
|  | 224 | struct preftree *preftree, | 
|  | 225 | struct prelim_ref *newref, | 
|  | 226 | struct share_check *sc) | 
|  | 227 | { | 
|  | 228 | struct rb_root *root; | 
|  | 229 | struct rb_node **p; | 
|  | 230 | struct rb_node *parent = NULL; | 
|  | 231 | struct prelim_ref *ref; | 
|  | 232 | int result; | 
|  | 233 |  | 
|  | 234 | root = &preftree->root; | 
|  | 235 | p = &root->rb_node; | 
|  | 236 |  | 
|  | 237 | while (*p) { | 
|  | 238 | parent = *p; | 
|  | 239 | ref = rb_entry(parent, struct prelim_ref, rbnode); | 
|  | 240 | result = prelim_ref_compare(ref, newref); | 
|  | 241 | if (result < 0) { | 
|  | 242 | p = &(*p)->rb_left; | 
|  | 243 | } else if (result > 0) { | 
|  | 244 | p = &(*p)->rb_right; | 
|  | 245 | } else { | 
|  | 246 | /* Identical refs, merge them and free @newref */ | 
|  | 247 | struct extent_inode_elem *eie = ref->inode_list; | 
|  | 248 |  | 
|  | 249 | while (eie && eie->next) | 
|  | 250 | eie = eie->next; | 
|  | 251 |  | 
|  | 252 | if (!eie) | 
|  | 253 | ref->inode_list = newref->inode_list; | 
|  | 254 | else | 
|  | 255 | eie->next = newref->inode_list; | 
|  | 256 | trace_btrfs_prelim_ref_merge(fs_info, ref, newref, | 
|  | 257 | preftree->count); | 
|  | 258 | /* | 
|  | 259 | * A delayed ref can have newref->count < 0. | 
|  | 260 | * The ref->count is updated to follow any | 
|  | 261 | * BTRFS_[ADD|DROP]_DELAYED_REF actions. | 
|  | 262 | */ | 
|  | 263 | update_share_count(sc, ref->count, | 
|  | 264 | ref->count + newref->count); | 
|  | 265 | ref->count += newref->count; | 
|  | 266 | free_pref(newref); | 
|  | 267 | return; | 
|  | 268 | } | 
|  | 269 | } | 
|  | 270 |  | 
|  | 271 | update_share_count(sc, 0, newref->count); | 
|  | 272 | preftree->count++; | 
|  | 273 | trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); | 
|  | 274 | rb_link_node(&newref->rbnode, parent, p); | 
|  | 275 | rb_insert_color(&newref->rbnode, root); | 
|  | 276 | } | 
|  | 277 |  | 
|  | 278 | /* | 
|  | 279 | * Release the entire tree.  We don't care about internal consistency so | 
|  | 280 | * just free everything and then reset the tree root. | 
|  | 281 | */ | 
|  | 282 | static void prelim_release(struct preftree *preftree) | 
|  | 283 | { | 
|  | 284 | struct prelim_ref *ref, *next_ref; | 
|  | 285 |  | 
|  | 286 | rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root, | 
|  | 287 | rbnode) | 
|  | 288 | free_pref(ref); | 
|  | 289 |  | 
|  | 290 | preftree->root = RB_ROOT; | 
|  | 291 | preftree->count = 0; | 
|  | 292 | } | 
|  | 293 |  | 
|  | 294 | /* | 
|  | 295 | * the rules for all callers of this function are: | 
|  | 296 | * - obtaining the parent is the goal | 
|  | 297 | * - if you add a key, you must know that it is a correct key | 
|  | 298 | * - if you cannot add the parent or a correct key, then we will look into the | 
|  | 299 | *   block later to set a correct key | 
|  | 300 | * | 
|  | 301 | * delayed refs | 
|  | 302 | * ============ | 
|  | 303 | *        backref type | shared | indirect | shared | indirect | 
|  | 304 | * information         |   tree |     tree |   data |     data | 
|  | 305 | * --------------------+--------+----------+--------+---------- | 
|  | 306 | *      parent logical |    y   |     -    |    -   |     - | 
|  | 307 | *      key to resolve |    -   |     y    |    y   |     y | 
|  | 308 | *  tree block logical |    -   |     -    |    -   |     - | 
|  | 309 | *  root for resolving |    y   |     y    |    y   |     y | 
|  | 310 | * | 
|  | 311 | * - column 1:       we've the parent -> done | 
|  | 312 | * - column 2, 3, 4: we use the key to find the parent | 
|  | 313 | * | 
|  | 314 | * on disk refs (inline or keyed) | 
|  | 315 | * ============================== | 
|  | 316 | *        backref type | shared | indirect | shared | indirect | 
|  | 317 | * information         |   tree |     tree |   data |     data | 
|  | 318 | * --------------------+--------+----------+--------+---------- | 
|  | 319 | *      parent logical |    y   |     -    |    y   |     - | 
|  | 320 | *      key to resolve |    -   |     -    |    -   |     y | 
|  | 321 | *  tree block logical |    y   |     y    |    y   |     y | 
|  | 322 | *  root for resolving |    -   |     y    |    y   |     y | 
|  | 323 | * | 
|  | 324 | * - column 1, 3: we've the parent -> done | 
|  | 325 | * - column 2:    we take the first key from the block to find the parent | 
|  | 326 | *                (see add_missing_keys) | 
|  | 327 | * - column 4:    we use the key to find the parent | 
|  | 328 | * | 
|  | 329 | * additional information that's available but not required to find the parent | 
|  | 330 | * block might help in merging entries to gain some speed. | 
|  | 331 | */ | 
|  | 332 | static int add_prelim_ref(const struct btrfs_fs_info *fs_info, | 
|  | 333 | struct preftree *preftree, u64 root_id, | 
|  | 334 | const struct btrfs_key *key, int level, u64 parent, | 
|  | 335 | u64 wanted_disk_byte, int count, | 
|  | 336 | struct share_check *sc, gfp_t gfp_mask) | 
|  | 337 | { | 
|  | 338 | struct prelim_ref *ref; | 
|  | 339 |  | 
|  | 340 | if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
|  | 341 | return 0; | 
|  | 342 |  | 
|  | 343 | ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); | 
|  | 344 | if (!ref) | 
|  | 345 | return -ENOMEM; | 
|  | 346 |  | 
|  | 347 | ref->root_id = root_id; | 
|  | 348 | if (key) { | 
|  | 349 | ref->key_for_search = *key; | 
|  | 350 | /* | 
|  | 351 | * We can often find data backrefs with an offset that is too | 
|  | 352 | * large (>= LLONG_MAX, maximum allowed file offset) due to | 
|  | 353 | * underflows when subtracting a file's offset with the data | 
|  | 354 | * offset of its corresponding extent data item. This can | 
|  | 355 | * happen for example in the clone ioctl. | 
|  | 356 | * So if we detect such case we set the search key's offset to | 
|  | 357 | * zero to make sure we will find the matching file extent item | 
|  | 358 | * at add_all_parents(), otherwise we will miss it because the | 
|  | 359 | * offset taken form the backref is much larger then the offset | 
|  | 360 | * of the file extent item. This can make us scan a very large | 
|  | 361 | * number of file extent items, but at least it will not make | 
|  | 362 | * us miss any. | 
|  | 363 | * This is an ugly workaround for a behaviour that should have | 
|  | 364 | * never existed, but it does and a fix for the clone ioctl | 
|  | 365 | * would touch a lot of places, cause backwards incompatibility | 
|  | 366 | * and would not fix the problem for extents cloned with older | 
|  | 367 | * kernels. | 
|  | 368 | */ | 
|  | 369 | if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && | 
|  | 370 | ref->key_for_search.offset >= LLONG_MAX) | 
|  | 371 | ref->key_for_search.offset = 0; | 
|  | 372 | } else { | 
|  | 373 | memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | ref->inode_list = NULL; | 
|  | 377 | ref->level = level; | 
|  | 378 | ref->count = count; | 
|  | 379 | ref->parent = parent; | 
|  | 380 | ref->wanted_disk_byte = wanted_disk_byte; | 
|  | 381 | prelim_ref_insert(fs_info, preftree, ref, sc); | 
|  | 382 | return extent_is_shared(sc); | 
|  | 383 | } | 
|  | 384 |  | 
|  | 385 | /* direct refs use root == 0, key == NULL */ | 
|  | 386 | static int add_direct_ref(const struct btrfs_fs_info *fs_info, | 
|  | 387 | struct preftrees *preftrees, int level, u64 parent, | 
|  | 388 | u64 wanted_disk_byte, int count, | 
|  | 389 | struct share_check *sc, gfp_t gfp_mask) | 
|  | 390 | { | 
|  | 391 | return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, | 
|  | 392 | parent, wanted_disk_byte, count, sc, gfp_mask); | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | /* indirect refs use parent == 0 */ | 
|  | 396 | static int add_indirect_ref(const struct btrfs_fs_info *fs_info, | 
|  | 397 | struct preftrees *preftrees, u64 root_id, | 
|  | 398 | const struct btrfs_key *key, int level, | 
|  | 399 | u64 wanted_disk_byte, int count, | 
|  | 400 | struct share_check *sc, gfp_t gfp_mask) | 
|  | 401 | { | 
|  | 402 | struct preftree *tree = &preftrees->indirect; | 
|  | 403 |  | 
|  | 404 | if (!key) | 
|  | 405 | tree = &preftrees->indirect_missing_keys; | 
|  | 406 | return add_prelim_ref(fs_info, tree, root_id, key, level, 0, | 
|  | 407 | wanted_disk_byte, count, sc, gfp_mask); | 
|  | 408 | } | 
|  | 409 |  | 
|  | 410 | static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, | 
|  | 411 | struct ulist *parents, struct prelim_ref *ref, | 
|  | 412 | int level, u64 time_seq, const u64 *extent_item_pos, | 
|  | 413 | u64 total_refs, bool ignore_offset) | 
|  | 414 | { | 
|  | 415 | int ret = 0; | 
|  | 416 | int slot; | 
|  | 417 | struct extent_buffer *eb; | 
|  | 418 | struct btrfs_key key; | 
|  | 419 | struct btrfs_key *key_for_search = &ref->key_for_search; | 
|  | 420 | struct btrfs_file_extent_item *fi; | 
|  | 421 | struct extent_inode_elem *eie = NULL, *old = NULL; | 
|  | 422 | u64 disk_byte; | 
|  | 423 | u64 wanted_disk_byte = ref->wanted_disk_byte; | 
|  | 424 | u64 count = 0; | 
|  | 425 |  | 
|  | 426 | if (level != 0) { | 
|  | 427 | eb = path->nodes[level]; | 
|  | 428 | ret = ulist_add(parents, eb->start, 0, GFP_NOFS); | 
|  | 429 | if (ret < 0) | 
|  | 430 | return ret; | 
|  | 431 | return 0; | 
|  | 432 | } | 
|  | 433 |  | 
|  | 434 | /* | 
|  | 435 | * We normally enter this function with the path already pointing to | 
|  | 436 | * the first item to check. But sometimes, we may enter it with | 
|  | 437 | * slot==nritems. In that case, go to the next leaf before we continue. | 
|  | 438 | */ | 
|  | 439 | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | 440 | if (time_seq == SEQ_LAST) | 
|  | 441 | ret = btrfs_next_leaf(root, path); | 
|  | 442 | else | 
|  | 443 | ret = btrfs_next_old_leaf(root, path, time_seq); | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | while (!ret && count < total_refs) { | 
|  | 447 | eb = path->nodes[0]; | 
|  | 448 | slot = path->slots[0]; | 
|  | 449 |  | 
|  | 450 | btrfs_item_key_to_cpu(eb, &key, slot); | 
|  | 451 |  | 
|  | 452 | if (key.objectid != key_for_search->objectid || | 
|  | 453 | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | 454 | break; | 
|  | 455 |  | 
|  | 456 | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | 457 | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
|  | 458 |  | 
|  | 459 | if (disk_byte == wanted_disk_byte) { | 
|  | 460 | eie = NULL; | 
|  | 461 | old = NULL; | 
|  | 462 | count++; | 
|  | 463 | if (extent_item_pos) { | 
|  | 464 | ret = check_extent_in_eb(&key, eb, fi, | 
|  | 465 | *extent_item_pos, | 
|  | 466 | &eie, ignore_offset); | 
|  | 467 | if (ret < 0) | 
|  | 468 | break; | 
|  | 469 | } | 
|  | 470 | if (ret > 0) | 
|  | 471 | goto next; | 
|  | 472 | ret = ulist_add_merge_ptr(parents, eb->start, | 
|  | 473 | eie, (void **)&old, GFP_NOFS); | 
|  | 474 | if (ret < 0) | 
|  | 475 | break; | 
|  | 476 | if (!ret && extent_item_pos) { | 
|  | 477 | while (old->next) | 
|  | 478 | old = old->next; | 
|  | 479 | old->next = eie; | 
|  | 480 | } | 
|  | 481 | eie = NULL; | 
|  | 482 | } | 
|  | 483 | next: | 
|  | 484 | if (time_seq == SEQ_LAST) | 
|  | 485 | ret = btrfs_next_item(root, path); | 
|  | 486 | else | 
|  | 487 | ret = btrfs_next_old_item(root, path, time_seq); | 
|  | 488 | } | 
|  | 489 |  | 
|  | 490 | if (ret > 0) | 
|  | 491 | ret = 0; | 
|  | 492 | else if (ret < 0) | 
|  | 493 | free_inode_elem_list(eie); | 
|  | 494 | return ret; | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | /* | 
|  | 498 | * resolve an indirect backref in the form (root_id, key, level) | 
|  | 499 | * to a logical address | 
|  | 500 | */ | 
|  | 501 | static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, | 
|  | 502 | struct btrfs_path *path, u64 time_seq, | 
|  | 503 | struct prelim_ref *ref, struct ulist *parents, | 
|  | 504 | const u64 *extent_item_pos, u64 total_refs, | 
|  | 505 | bool ignore_offset) | 
|  | 506 | { | 
|  | 507 | struct btrfs_root *root; | 
|  | 508 | struct btrfs_key root_key; | 
|  | 509 | struct extent_buffer *eb; | 
|  | 510 | int ret = 0; | 
|  | 511 | int root_level; | 
|  | 512 | int level = ref->level; | 
|  | 513 | int index; | 
|  | 514 |  | 
|  | 515 | root_key.objectid = ref->root_id; | 
|  | 516 | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | 517 | root_key.offset = (u64)-1; | 
|  | 518 |  | 
|  | 519 | index = srcu_read_lock(&fs_info->subvol_srcu); | 
|  | 520 |  | 
|  | 521 | root = btrfs_get_fs_root(fs_info, &root_key, false); | 
|  | 522 | if (IS_ERR(root)) { | 
|  | 523 | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | 524 | ret = PTR_ERR(root); | 
|  | 525 | goto out; | 
|  | 526 | } | 
|  | 527 |  | 
|  | 528 | if (btrfs_is_testing(fs_info)) { | 
|  | 529 | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | 530 | ret = -ENOENT; | 
|  | 531 | goto out; | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | if (path->search_commit_root) | 
|  | 535 | root_level = btrfs_header_level(root->commit_root); | 
|  | 536 | else if (time_seq == SEQ_LAST) | 
|  | 537 | root_level = btrfs_header_level(root->node); | 
|  | 538 | else | 
|  | 539 | root_level = btrfs_old_root_level(root, time_seq); | 
|  | 540 |  | 
|  | 541 | if (root_level + 1 == level) { | 
|  | 542 | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | 543 | goto out; | 
|  | 544 | } | 
|  | 545 |  | 
|  | 546 | path->lowest_level = level; | 
|  | 547 | if (time_seq == SEQ_LAST) | 
|  | 548 | ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, | 
|  | 549 | 0, 0); | 
|  | 550 | else | 
|  | 551 | ret = btrfs_search_old_slot(root, &ref->key_for_search, path, | 
|  | 552 | time_seq); | 
|  | 553 |  | 
|  | 554 | /* root node has been locked, we can release @subvol_srcu safely here */ | 
|  | 555 | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | 556 |  | 
|  | 557 | btrfs_debug(fs_info, | 
|  | 558 | "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", | 
|  | 559 | ref->root_id, level, ref->count, ret, | 
|  | 560 | ref->key_for_search.objectid, ref->key_for_search.type, | 
|  | 561 | ref->key_for_search.offset); | 
|  | 562 | if (ret < 0) | 
|  | 563 | goto out; | 
|  | 564 |  | 
|  | 565 | eb = path->nodes[level]; | 
|  | 566 | while (!eb) { | 
|  | 567 | if (WARN_ON(!level)) { | 
|  | 568 | ret = 1; | 
|  | 569 | goto out; | 
|  | 570 | } | 
|  | 571 | level--; | 
|  | 572 | eb = path->nodes[level]; | 
|  | 573 | } | 
|  | 574 |  | 
|  | 575 | ret = add_all_parents(root, path, parents, ref, level, time_seq, | 
|  | 576 | extent_item_pos, total_refs, ignore_offset); | 
|  | 577 | out: | 
|  | 578 | path->lowest_level = 0; | 
|  | 579 | btrfs_release_path(path); | 
|  | 580 | return ret; | 
|  | 581 | } | 
|  | 582 |  | 
|  | 583 | static struct extent_inode_elem * | 
|  | 584 | unode_aux_to_inode_list(struct ulist_node *node) | 
|  | 585 | { | 
|  | 586 | if (!node) | 
|  | 587 | return NULL; | 
|  | 588 | return (struct extent_inode_elem *)(uintptr_t)node->aux; | 
|  | 589 | } | 
|  | 590 |  | 
|  | 591 | /* | 
|  | 592 | * We maintain three seperate rbtrees: one for direct refs, one for | 
|  | 593 | * indirect refs which have a key, and one for indirect refs which do not | 
|  | 594 | * have a key. Each tree does merge on insertion. | 
|  | 595 | * | 
|  | 596 | * Once all of the references are located, we iterate over the tree of | 
|  | 597 | * indirect refs with missing keys. An appropriate key is located and | 
|  | 598 | * the ref is moved onto the tree for indirect refs. After all missing | 
|  | 599 | * keys are thus located, we iterate over the indirect ref tree, resolve | 
|  | 600 | * each reference, and then insert the resolved reference onto the | 
|  | 601 | * direct tree (merging there too). | 
|  | 602 | * | 
|  | 603 | * New backrefs (i.e., for parent nodes) are added to the appropriate | 
|  | 604 | * rbtree as they are encountered. The new backrefs are subsequently | 
|  | 605 | * resolved as above. | 
|  | 606 | */ | 
|  | 607 | static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, | 
|  | 608 | struct btrfs_path *path, u64 time_seq, | 
|  | 609 | struct preftrees *preftrees, | 
|  | 610 | const u64 *extent_item_pos, u64 total_refs, | 
|  | 611 | struct share_check *sc, bool ignore_offset) | 
|  | 612 | { | 
|  | 613 | int err; | 
|  | 614 | int ret = 0; | 
|  | 615 | struct ulist *parents; | 
|  | 616 | struct ulist_node *node; | 
|  | 617 | struct ulist_iterator uiter; | 
|  | 618 | struct rb_node *rnode; | 
|  | 619 |  | 
|  | 620 | parents = ulist_alloc(GFP_NOFS); | 
|  | 621 | if (!parents) | 
|  | 622 | return -ENOMEM; | 
|  | 623 |  | 
|  | 624 | /* | 
|  | 625 | * We could trade memory usage for performance here by iterating | 
|  | 626 | * the tree, allocating new refs for each insertion, and then | 
|  | 627 | * freeing the entire indirect tree when we're done.  In some test | 
|  | 628 | * cases, the tree can grow quite large (~200k objects). | 
|  | 629 | */ | 
|  | 630 | while ((rnode = rb_first(&preftrees->indirect.root))) { | 
|  | 631 | struct prelim_ref *ref; | 
|  | 632 |  | 
|  | 633 | ref = rb_entry(rnode, struct prelim_ref, rbnode); | 
|  | 634 | if (WARN(ref->parent, | 
|  | 635 | "BUG: direct ref found in indirect tree")) { | 
|  | 636 | ret = -EINVAL; | 
|  | 637 | goto out; | 
|  | 638 | } | 
|  | 639 |  | 
|  | 640 | rb_erase(&ref->rbnode, &preftrees->indirect.root); | 
|  | 641 | preftrees->indirect.count--; | 
|  | 642 |  | 
|  | 643 | if (ref->count == 0) { | 
|  | 644 | free_pref(ref); | 
|  | 645 | continue; | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | if (sc && sc->root_objectid && | 
|  | 649 | ref->root_id != sc->root_objectid) { | 
|  | 650 | free_pref(ref); | 
|  | 651 | ret = BACKREF_FOUND_SHARED; | 
|  | 652 | goto out; | 
|  | 653 | } | 
|  | 654 | err = resolve_indirect_ref(fs_info, path, time_seq, ref, | 
|  | 655 | parents, extent_item_pos, | 
|  | 656 | total_refs, ignore_offset); | 
|  | 657 | /* | 
|  | 658 | * we can only tolerate ENOENT,otherwise,we should catch error | 
|  | 659 | * and return directly. | 
|  | 660 | */ | 
|  | 661 | if (err == -ENOENT) { | 
|  | 662 | prelim_ref_insert(fs_info, &preftrees->direct, ref, | 
|  | 663 | NULL); | 
|  | 664 | continue; | 
|  | 665 | } else if (err) { | 
|  | 666 | free_pref(ref); | 
|  | 667 | ret = err; | 
|  | 668 | goto out; | 
|  | 669 | } | 
|  | 670 |  | 
|  | 671 | /* we put the first parent into the ref at hand */ | 
|  | 672 | ULIST_ITER_INIT(&uiter); | 
|  | 673 | node = ulist_next(parents, &uiter); | 
|  | 674 | ref->parent = node ? node->val : 0; | 
|  | 675 | ref->inode_list = unode_aux_to_inode_list(node); | 
|  | 676 |  | 
|  | 677 | /* Add a prelim_ref(s) for any other parent(s). */ | 
|  | 678 | while ((node = ulist_next(parents, &uiter))) { | 
|  | 679 | struct prelim_ref *new_ref; | 
|  | 680 |  | 
|  | 681 | new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, | 
|  | 682 | GFP_NOFS); | 
|  | 683 | if (!new_ref) { | 
|  | 684 | free_pref(ref); | 
|  | 685 | ret = -ENOMEM; | 
|  | 686 | goto out; | 
|  | 687 | } | 
|  | 688 | memcpy(new_ref, ref, sizeof(*ref)); | 
|  | 689 | new_ref->parent = node->val; | 
|  | 690 | new_ref->inode_list = unode_aux_to_inode_list(node); | 
|  | 691 | prelim_ref_insert(fs_info, &preftrees->direct, | 
|  | 692 | new_ref, NULL); | 
|  | 693 | } | 
|  | 694 |  | 
|  | 695 | /* | 
|  | 696 | * Now it's a direct ref, put it in the the direct tree. We must | 
|  | 697 | * do this last because the ref could be merged/freed here. | 
|  | 698 | */ | 
|  | 699 | prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); | 
|  | 700 |  | 
|  | 701 | ulist_reinit(parents); | 
|  | 702 | cond_resched(); | 
|  | 703 | } | 
|  | 704 | out: | 
|  | 705 | ulist_free(parents); | 
|  | 706 | return ret; | 
|  | 707 | } | 
|  | 708 |  | 
|  | 709 | /* | 
|  | 710 | * read tree blocks and add keys where required. | 
|  | 711 | */ | 
|  | 712 | static int add_missing_keys(struct btrfs_fs_info *fs_info, | 
|  | 713 | struct preftrees *preftrees, bool lock) | 
|  | 714 | { | 
|  | 715 | struct prelim_ref *ref; | 
|  | 716 | struct extent_buffer *eb; | 
|  | 717 | struct preftree *tree = &preftrees->indirect_missing_keys; | 
|  | 718 | struct rb_node *node; | 
|  | 719 |  | 
|  | 720 | while ((node = rb_first(&tree->root))) { | 
|  | 721 | ref = rb_entry(node, struct prelim_ref, rbnode); | 
|  | 722 | rb_erase(node, &tree->root); | 
|  | 723 |  | 
|  | 724 | BUG_ON(ref->parent);	/* should not be a direct ref */ | 
|  | 725 | BUG_ON(ref->key_for_search.type); | 
|  | 726 | BUG_ON(!ref->wanted_disk_byte); | 
|  | 727 |  | 
|  | 728 | eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, | 
|  | 729 | ref->level - 1, NULL); | 
|  | 730 | if (IS_ERR(eb)) { | 
|  | 731 | free_pref(ref); | 
|  | 732 | return PTR_ERR(eb); | 
|  | 733 | } else if (!extent_buffer_uptodate(eb)) { | 
|  | 734 | free_pref(ref); | 
|  | 735 | free_extent_buffer(eb); | 
|  | 736 | return -EIO; | 
|  | 737 | } | 
|  | 738 | if (lock) | 
|  | 739 | btrfs_tree_read_lock(eb); | 
|  | 740 | if (btrfs_header_level(eb) == 0) | 
|  | 741 | btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); | 
|  | 742 | else | 
|  | 743 | btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); | 
|  | 744 | if (lock) | 
|  | 745 | btrfs_tree_read_unlock(eb); | 
|  | 746 | free_extent_buffer(eb); | 
|  | 747 | prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); | 
|  | 748 | cond_resched(); | 
|  | 749 | } | 
|  | 750 | return 0; | 
|  | 751 | } | 
|  | 752 |  | 
|  | 753 | /* | 
|  | 754 | * add all currently queued delayed refs from this head whose seq nr is | 
|  | 755 | * smaller or equal that seq to the list | 
|  | 756 | */ | 
|  | 757 | static int add_delayed_refs(const struct btrfs_fs_info *fs_info, | 
|  | 758 | struct btrfs_delayed_ref_head *head, u64 seq, | 
|  | 759 | struct preftrees *preftrees, u64 *total_refs, | 
|  | 760 | struct share_check *sc) | 
|  | 761 | { | 
|  | 762 | struct btrfs_delayed_ref_node *node; | 
|  | 763 | struct btrfs_delayed_extent_op *extent_op = head->extent_op; | 
|  | 764 | struct btrfs_key key; | 
|  | 765 | struct btrfs_key tmp_op_key; | 
|  | 766 | struct rb_node *n; | 
|  | 767 | int count; | 
|  | 768 | int ret = 0; | 
|  | 769 |  | 
|  | 770 | if (extent_op && extent_op->update_key) | 
|  | 771 | btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); | 
|  | 772 |  | 
|  | 773 | spin_lock(&head->lock); | 
|  | 774 | for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) { | 
|  | 775 | node = rb_entry(n, struct btrfs_delayed_ref_node, | 
|  | 776 | ref_node); | 
|  | 777 | if (node->seq > seq) | 
|  | 778 | continue; | 
|  | 779 |  | 
|  | 780 | switch (node->action) { | 
|  | 781 | case BTRFS_ADD_DELAYED_EXTENT: | 
|  | 782 | case BTRFS_UPDATE_DELAYED_HEAD: | 
|  | 783 | WARN_ON(1); | 
|  | 784 | continue; | 
|  | 785 | case BTRFS_ADD_DELAYED_REF: | 
|  | 786 | count = node->ref_mod; | 
|  | 787 | break; | 
|  | 788 | case BTRFS_DROP_DELAYED_REF: | 
|  | 789 | count = node->ref_mod * -1; | 
|  | 790 | break; | 
|  | 791 | default: | 
|  | 792 | BUG_ON(1); | 
|  | 793 | } | 
|  | 794 | *total_refs += count; | 
|  | 795 | switch (node->type) { | 
|  | 796 | case BTRFS_TREE_BLOCK_REF_KEY: { | 
|  | 797 | /* NORMAL INDIRECT METADATA backref */ | 
|  | 798 | struct btrfs_delayed_tree_ref *ref; | 
|  | 799 |  | 
|  | 800 | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  | 801 | ret = add_indirect_ref(fs_info, preftrees, ref->root, | 
|  | 802 | &tmp_op_key, ref->level + 1, | 
|  | 803 | node->bytenr, count, sc, | 
|  | 804 | GFP_ATOMIC); | 
|  | 805 | break; | 
|  | 806 | } | 
|  | 807 | case BTRFS_SHARED_BLOCK_REF_KEY: { | 
|  | 808 | /* SHARED DIRECT METADATA backref */ | 
|  | 809 | struct btrfs_delayed_tree_ref *ref; | 
|  | 810 |  | 
|  | 811 | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  | 812 |  | 
|  | 813 | ret = add_direct_ref(fs_info, preftrees, ref->level + 1, | 
|  | 814 | ref->parent, node->bytenr, count, | 
|  | 815 | sc, GFP_ATOMIC); | 
|  | 816 | break; | 
|  | 817 | } | 
|  | 818 | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | 819 | /* NORMAL INDIRECT DATA backref */ | 
|  | 820 | struct btrfs_delayed_data_ref *ref; | 
|  | 821 | ref = btrfs_delayed_node_to_data_ref(node); | 
|  | 822 |  | 
|  | 823 | key.objectid = ref->objectid; | 
|  | 824 | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | 825 | key.offset = ref->offset; | 
|  | 826 |  | 
|  | 827 | /* | 
|  | 828 | * Found a inum that doesn't match our known inum, we | 
|  | 829 | * know it's shared. | 
|  | 830 | */ | 
|  | 831 | if (sc && sc->inum && ref->objectid != sc->inum) { | 
|  | 832 | ret = BACKREF_FOUND_SHARED; | 
|  | 833 | goto out; | 
|  | 834 | } | 
|  | 835 |  | 
|  | 836 | ret = add_indirect_ref(fs_info, preftrees, ref->root, | 
|  | 837 | &key, 0, node->bytenr, count, sc, | 
|  | 838 | GFP_ATOMIC); | 
|  | 839 | break; | 
|  | 840 | } | 
|  | 841 | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | 842 | /* SHARED DIRECT FULL backref */ | 
|  | 843 | struct btrfs_delayed_data_ref *ref; | 
|  | 844 |  | 
|  | 845 | ref = btrfs_delayed_node_to_data_ref(node); | 
|  | 846 |  | 
|  | 847 | ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, | 
|  | 848 | node->bytenr, count, sc, | 
|  | 849 | GFP_ATOMIC); | 
|  | 850 | break; | 
|  | 851 | } | 
|  | 852 | default: | 
|  | 853 | WARN_ON(1); | 
|  | 854 | } | 
|  | 855 | /* | 
|  | 856 | * We must ignore BACKREF_FOUND_SHARED until all delayed | 
|  | 857 | * refs have been checked. | 
|  | 858 | */ | 
|  | 859 | if (ret && (ret != BACKREF_FOUND_SHARED)) | 
|  | 860 | break; | 
|  | 861 | } | 
|  | 862 | if (!ret) | 
|  | 863 | ret = extent_is_shared(sc); | 
|  | 864 | out: | 
|  | 865 | spin_unlock(&head->lock); | 
|  | 866 | return ret; | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | /* | 
|  | 870 | * add all inline backrefs for bytenr to the list | 
|  | 871 | * | 
|  | 872 | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
|  | 873 | */ | 
|  | 874 | static int add_inline_refs(const struct btrfs_fs_info *fs_info, | 
|  | 875 | struct btrfs_path *path, u64 bytenr, | 
|  | 876 | int *info_level, struct preftrees *preftrees, | 
|  | 877 | u64 *total_refs, struct share_check *sc) | 
|  | 878 | { | 
|  | 879 | int ret = 0; | 
|  | 880 | int slot; | 
|  | 881 | struct extent_buffer *leaf; | 
|  | 882 | struct btrfs_key key; | 
|  | 883 | struct btrfs_key found_key; | 
|  | 884 | unsigned long ptr; | 
|  | 885 | unsigned long end; | 
|  | 886 | struct btrfs_extent_item *ei; | 
|  | 887 | u64 flags; | 
|  | 888 | u64 item_size; | 
|  | 889 |  | 
|  | 890 | /* | 
|  | 891 | * enumerate all inline refs | 
|  | 892 | */ | 
|  | 893 | leaf = path->nodes[0]; | 
|  | 894 | slot = path->slots[0]; | 
|  | 895 |  | 
|  | 896 | item_size = btrfs_item_size_nr(leaf, slot); | 
|  | 897 | BUG_ON(item_size < sizeof(*ei)); | 
|  | 898 |  | 
|  | 899 | ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); | 
|  | 900 | flags = btrfs_extent_flags(leaf, ei); | 
|  | 901 | *total_refs += btrfs_extent_refs(leaf, ei); | 
|  | 902 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  | 903 |  | 
|  | 904 | ptr = (unsigned long)(ei + 1); | 
|  | 905 | end = (unsigned long)ei + item_size; | 
|  | 906 |  | 
|  | 907 | if (found_key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | 908 | flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | 909 | struct btrfs_tree_block_info *info; | 
|  | 910 |  | 
|  | 911 | info = (struct btrfs_tree_block_info *)ptr; | 
|  | 912 | *info_level = btrfs_tree_block_level(leaf, info); | 
|  | 913 | ptr += sizeof(struct btrfs_tree_block_info); | 
|  | 914 | BUG_ON(ptr > end); | 
|  | 915 | } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { | 
|  | 916 | *info_level = found_key.offset; | 
|  | 917 | } else { | 
|  | 918 | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); | 
|  | 919 | } | 
|  | 920 |  | 
|  | 921 | while (ptr < end) { | 
|  | 922 | struct btrfs_extent_inline_ref *iref; | 
|  | 923 | u64 offset; | 
|  | 924 | int type; | 
|  | 925 |  | 
|  | 926 | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | 927 | type = btrfs_get_extent_inline_ref_type(leaf, iref, | 
|  | 928 | BTRFS_REF_TYPE_ANY); | 
|  | 929 | if (type == BTRFS_REF_TYPE_INVALID) | 
|  | 930 | return -EUCLEAN; | 
|  | 931 |  | 
|  | 932 | offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
|  | 933 |  | 
|  | 934 | switch (type) { | 
|  | 935 | case BTRFS_SHARED_BLOCK_REF_KEY: | 
|  | 936 | ret = add_direct_ref(fs_info, preftrees, | 
|  | 937 | *info_level + 1, offset, | 
|  | 938 | bytenr, 1, NULL, GFP_NOFS); | 
|  | 939 | break; | 
|  | 940 | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | 941 | struct btrfs_shared_data_ref *sdref; | 
|  | 942 | int count; | 
|  | 943 |  | 
|  | 944 | sdref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | 945 | count = btrfs_shared_data_ref_count(leaf, sdref); | 
|  | 946 |  | 
|  | 947 | ret = add_direct_ref(fs_info, preftrees, 0, offset, | 
|  | 948 | bytenr, count, sc, GFP_NOFS); | 
|  | 949 | break; | 
|  | 950 | } | 
|  | 951 | case BTRFS_TREE_BLOCK_REF_KEY: | 
|  | 952 | ret = add_indirect_ref(fs_info, preftrees, offset, | 
|  | 953 | NULL, *info_level + 1, | 
|  | 954 | bytenr, 1, NULL, GFP_NOFS); | 
|  | 955 | break; | 
|  | 956 | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | 957 | struct btrfs_extent_data_ref *dref; | 
|  | 958 | int count; | 
|  | 959 | u64 root; | 
|  | 960 |  | 
|  | 961 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | 962 | count = btrfs_extent_data_ref_count(leaf, dref); | 
|  | 963 | key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
|  | 964 | dref); | 
|  | 965 | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | 966 | key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
|  | 967 |  | 
|  | 968 | if (sc && sc->inum && key.objectid != sc->inum) { | 
|  | 969 | ret = BACKREF_FOUND_SHARED; | 
|  | 970 | break; | 
|  | 971 | } | 
|  | 972 |  | 
|  | 973 | root = btrfs_extent_data_ref_root(leaf, dref); | 
|  | 974 |  | 
|  | 975 | ret = add_indirect_ref(fs_info, preftrees, root, | 
|  | 976 | &key, 0, bytenr, count, | 
|  | 977 | sc, GFP_NOFS); | 
|  | 978 | break; | 
|  | 979 | } | 
|  | 980 | default: | 
|  | 981 | WARN_ON(1); | 
|  | 982 | } | 
|  | 983 | if (ret) | 
|  | 984 | return ret; | 
|  | 985 | ptr += btrfs_extent_inline_ref_size(type); | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | return 0; | 
|  | 989 | } | 
|  | 990 |  | 
|  | 991 | /* | 
|  | 992 | * add all non-inline backrefs for bytenr to the list | 
|  | 993 | * | 
|  | 994 | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
|  | 995 | */ | 
|  | 996 | static int add_keyed_refs(struct btrfs_fs_info *fs_info, | 
|  | 997 | struct btrfs_path *path, u64 bytenr, | 
|  | 998 | int info_level, struct preftrees *preftrees, | 
|  | 999 | struct share_check *sc) | 
|  | 1000 | { | 
|  | 1001 | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | 1002 | int ret; | 
|  | 1003 | int slot; | 
|  | 1004 | struct extent_buffer *leaf; | 
|  | 1005 | struct btrfs_key key; | 
|  | 1006 |  | 
|  | 1007 | while (1) { | 
|  | 1008 | ret = btrfs_next_item(extent_root, path); | 
|  | 1009 | if (ret < 0) | 
|  | 1010 | break; | 
|  | 1011 | if (ret) { | 
|  | 1012 | ret = 0; | 
|  | 1013 | break; | 
|  | 1014 | } | 
|  | 1015 |  | 
|  | 1016 | slot = path->slots[0]; | 
|  | 1017 | leaf = path->nodes[0]; | 
|  | 1018 | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | 1019 |  | 
|  | 1020 | if (key.objectid != bytenr) | 
|  | 1021 | break; | 
|  | 1022 | if (key.type < BTRFS_TREE_BLOCK_REF_KEY) | 
|  | 1023 | continue; | 
|  | 1024 | if (key.type > BTRFS_SHARED_DATA_REF_KEY) | 
|  | 1025 | break; | 
|  | 1026 |  | 
|  | 1027 | switch (key.type) { | 
|  | 1028 | case BTRFS_SHARED_BLOCK_REF_KEY: | 
|  | 1029 | /* SHARED DIRECT METADATA backref */ | 
|  | 1030 | ret = add_direct_ref(fs_info, preftrees, | 
|  | 1031 | info_level + 1, key.offset, | 
|  | 1032 | bytenr, 1, NULL, GFP_NOFS); | 
|  | 1033 | break; | 
|  | 1034 | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | 1035 | /* SHARED DIRECT FULL backref */ | 
|  | 1036 | struct btrfs_shared_data_ref *sdref; | 
|  | 1037 | int count; | 
|  | 1038 |  | 
|  | 1039 | sdref = btrfs_item_ptr(leaf, slot, | 
|  | 1040 | struct btrfs_shared_data_ref); | 
|  | 1041 | count = btrfs_shared_data_ref_count(leaf, sdref); | 
|  | 1042 | ret = add_direct_ref(fs_info, preftrees, 0, | 
|  | 1043 | key.offset, bytenr, count, | 
|  | 1044 | sc, GFP_NOFS); | 
|  | 1045 | break; | 
|  | 1046 | } | 
|  | 1047 | case BTRFS_TREE_BLOCK_REF_KEY: | 
|  | 1048 | /* NORMAL INDIRECT METADATA backref */ | 
|  | 1049 | ret = add_indirect_ref(fs_info, preftrees, key.offset, | 
|  | 1050 | NULL, info_level + 1, bytenr, | 
|  | 1051 | 1, NULL, GFP_NOFS); | 
|  | 1052 | break; | 
|  | 1053 | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | 1054 | /* NORMAL INDIRECT DATA backref */ | 
|  | 1055 | struct btrfs_extent_data_ref *dref; | 
|  | 1056 | int count; | 
|  | 1057 | u64 root; | 
|  | 1058 |  | 
|  | 1059 | dref = btrfs_item_ptr(leaf, slot, | 
|  | 1060 | struct btrfs_extent_data_ref); | 
|  | 1061 | count = btrfs_extent_data_ref_count(leaf, dref); | 
|  | 1062 | key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
|  | 1063 | dref); | 
|  | 1064 | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | 1065 | key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
|  | 1066 |  | 
|  | 1067 | if (sc && sc->inum && key.objectid != sc->inum) { | 
|  | 1068 | ret = BACKREF_FOUND_SHARED; | 
|  | 1069 | break; | 
|  | 1070 | } | 
|  | 1071 |  | 
|  | 1072 | root = btrfs_extent_data_ref_root(leaf, dref); | 
|  | 1073 | ret = add_indirect_ref(fs_info, preftrees, root, | 
|  | 1074 | &key, 0, bytenr, count, | 
|  | 1075 | sc, GFP_NOFS); | 
|  | 1076 | break; | 
|  | 1077 | } | 
|  | 1078 | default: | 
|  | 1079 | WARN_ON(1); | 
|  | 1080 | } | 
|  | 1081 | if (ret) | 
|  | 1082 | return ret; | 
|  | 1083 |  | 
|  | 1084 | } | 
|  | 1085 |  | 
|  | 1086 | return ret; | 
|  | 1087 | } | 
|  | 1088 |  | 
|  | 1089 | /* | 
|  | 1090 | * this adds all existing backrefs (inline backrefs, backrefs and delayed | 
|  | 1091 | * refs) for the given bytenr to the refs list, merges duplicates and resolves | 
|  | 1092 | * indirect refs to their parent bytenr. | 
|  | 1093 | * When roots are found, they're added to the roots list | 
|  | 1094 | * | 
|  | 1095 | * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave | 
|  | 1096 | * much like trans == NULL case, the difference only lies in it will not | 
|  | 1097 | * commit root. | 
|  | 1098 | * The special case is for qgroup to search roots in commit_transaction(). | 
|  | 1099 | * | 
|  | 1100 | * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a | 
|  | 1101 | * shared extent is detected. | 
|  | 1102 | * | 
|  | 1103 | * Otherwise this returns 0 for success and <0 for an error. | 
|  | 1104 | * | 
|  | 1105 | * If ignore_offset is set to false, only extent refs whose offsets match | 
|  | 1106 | * extent_item_pos are returned.  If true, every extent ref is returned | 
|  | 1107 | * and extent_item_pos is ignored. | 
|  | 1108 | * | 
|  | 1109 | * FIXME some caching might speed things up | 
|  | 1110 | */ | 
|  | 1111 | static int find_parent_nodes(struct btrfs_trans_handle *trans, | 
|  | 1112 | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | 1113 | u64 time_seq, struct ulist *refs, | 
|  | 1114 | struct ulist *roots, const u64 *extent_item_pos, | 
|  | 1115 | struct share_check *sc, bool ignore_offset) | 
|  | 1116 | { | 
|  | 1117 | struct btrfs_key key; | 
|  | 1118 | struct btrfs_path *path; | 
|  | 1119 | struct btrfs_delayed_ref_root *delayed_refs = NULL; | 
|  | 1120 | struct btrfs_delayed_ref_head *head; | 
|  | 1121 | int info_level = 0; | 
|  | 1122 | int ret; | 
|  | 1123 | struct prelim_ref *ref; | 
|  | 1124 | struct rb_node *node; | 
|  | 1125 | struct extent_inode_elem *eie = NULL; | 
|  | 1126 | /* total of both direct AND indirect refs! */ | 
|  | 1127 | u64 total_refs = 0; | 
|  | 1128 | struct preftrees preftrees = { | 
|  | 1129 | .direct = PREFTREE_INIT, | 
|  | 1130 | .indirect = PREFTREE_INIT, | 
|  | 1131 | .indirect_missing_keys = PREFTREE_INIT | 
|  | 1132 | }; | 
|  | 1133 |  | 
|  | 1134 | key.objectid = bytenr; | 
|  | 1135 | key.offset = (u64)-1; | 
|  | 1136 | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | 1137 | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | 1138 | else | 
|  | 1139 | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | 1140 |  | 
|  | 1141 | path = btrfs_alloc_path(); | 
|  | 1142 | if (!path) | 
|  | 1143 | return -ENOMEM; | 
|  | 1144 | if (!trans) { | 
|  | 1145 | path->search_commit_root = 1; | 
|  | 1146 | path->skip_locking = 1; | 
|  | 1147 | } | 
|  | 1148 |  | 
|  | 1149 | if (time_seq == SEQ_LAST) | 
|  | 1150 | path->skip_locking = 1; | 
|  | 1151 |  | 
|  | 1152 | /* | 
|  | 1153 | * grab both a lock on the path and a lock on the delayed ref head. | 
|  | 1154 | * We need both to get a consistent picture of how the refs look | 
|  | 1155 | * at a specified point in time | 
|  | 1156 | */ | 
|  | 1157 | again: | 
|  | 1158 | head = NULL; | 
|  | 1159 |  | 
|  | 1160 | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); | 
|  | 1161 | if (ret < 0) | 
|  | 1162 | goto out; | 
|  | 1163 | BUG_ON(ret == 0); | 
|  | 1164 |  | 
|  | 1165 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | 1166 | if (trans && likely(trans->type != __TRANS_DUMMY) && | 
|  | 1167 | time_seq != SEQ_LAST) { | 
|  | 1168 | #else | 
|  | 1169 | if (trans && time_seq != SEQ_LAST) { | 
|  | 1170 | #endif | 
|  | 1171 | /* | 
|  | 1172 | * look if there are updates for this ref queued and lock the | 
|  | 1173 | * head | 
|  | 1174 | */ | 
|  | 1175 | delayed_refs = &trans->transaction->delayed_refs; | 
|  | 1176 | spin_lock(&delayed_refs->lock); | 
|  | 1177 | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | 1178 | if (head) { | 
|  | 1179 | if (!mutex_trylock(&head->mutex)) { | 
|  | 1180 | refcount_inc(&head->refs); | 
|  | 1181 | spin_unlock(&delayed_refs->lock); | 
|  | 1182 |  | 
|  | 1183 | btrfs_release_path(path); | 
|  | 1184 |  | 
|  | 1185 | /* | 
|  | 1186 | * Mutex was contended, block until it's | 
|  | 1187 | * released and try again | 
|  | 1188 | */ | 
|  | 1189 | mutex_lock(&head->mutex); | 
|  | 1190 | mutex_unlock(&head->mutex); | 
|  | 1191 | btrfs_put_delayed_ref_head(head); | 
|  | 1192 | goto again; | 
|  | 1193 | } | 
|  | 1194 | spin_unlock(&delayed_refs->lock); | 
|  | 1195 | ret = add_delayed_refs(fs_info, head, time_seq, | 
|  | 1196 | &preftrees, &total_refs, sc); | 
|  | 1197 | mutex_unlock(&head->mutex); | 
|  | 1198 | if (ret) | 
|  | 1199 | goto out; | 
|  | 1200 | } else { | 
|  | 1201 | spin_unlock(&delayed_refs->lock); | 
|  | 1202 | } | 
|  | 1203 | } | 
|  | 1204 |  | 
|  | 1205 | if (path->slots[0]) { | 
|  | 1206 | struct extent_buffer *leaf; | 
|  | 1207 | int slot; | 
|  | 1208 |  | 
|  | 1209 | path->slots[0]--; | 
|  | 1210 | leaf = path->nodes[0]; | 
|  | 1211 | slot = path->slots[0]; | 
|  | 1212 | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | 1213 | if (key.objectid == bytenr && | 
|  | 1214 | (key.type == BTRFS_EXTENT_ITEM_KEY || | 
|  | 1215 | key.type == BTRFS_METADATA_ITEM_KEY)) { | 
|  | 1216 | ret = add_inline_refs(fs_info, path, bytenr, | 
|  | 1217 | &info_level, &preftrees, | 
|  | 1218 | &total_refs, sc); | 
|  | 1219 | if (ret) | 
|  | 1220 | goto out; | 
|  | 1221 | ret = add_keyed_refs(fs_info, path, bytenr, info_level, | 
|  | 1222 | &preftrees, sc); | 
|  | 1223 | if (ret) | 
|  | 1224 | goto out; | 
|  | 1225 | } | 
|  | 1226 | } | 
|  | 1227 |  | 
|  | 1228 | btrfs_release_path(path); | 
|  | 1229 |  | 
|  | 1230 | ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); | 
|  | 1231 | if (ret) | 
|  | 1232 | goto out; | 
|  | 1233 |  | 
|  | 1234 | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root)); | 
|  | 1235 |  | 
|  | 1236 | ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, | 
|  | 1237 | extent_item_pos, total_refs, sc, ignore_offset); | 
|  | 1238 | if (ret) | 
|  | 1239 | goto out; | 
|  | 1240 |  | 
|  | 1241 | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root)); | 
|  | 1242 |  | 
|  | 1243 | /* | 
|  | 1244 | * This walks the tree of merged and resolved refs. Tree blocks are | 
|  | 1245 | * read in as needed. Unique entries are added to the ulist, and | 
|  | 1246 | * the list of found roots is updated. | 
|  | 1247 | * | 
|  | 1248 | * We release the entire tree in one go before returning. | 
|  | 1249 | */ | 
|  | 1250 | node = rb_first(&preftrees.direct.root); | 
|  | 1251 | while (node) { | 
|  | 1252 | ref = rb_entry(node, struct prelim_ref, rbnode); | 
|  | 1253 | node = rb_next(&ref->rbnode); | 
|  | 1254 | /* | 
|  | 1255 | * ref->count < 0 can happen here if there are delayed | 
|  | 1256 | * refs with a node->action of BTRFS_DROP_DELAYED_REF. | 
|  | 1257 | * prelim_ref_insert() relies on this when merging | 
|  | 1258 | * identical refs to keep the overall count correct. | 
|  | 1259 | * prelim_ref_insert() will merge only those refs | 
|  | 1260 | * which compare identically.  Any refs having | 
|  | 1261 | * e.g. different offsets would not be merged, | 
|  | 1262 | * and would retain their original ref->count < 0. | 
|  | 1263 | */ | 
|  | 1264 | if (roots && ref->count && ref->root_id && ref->parent == 0) { | 
|  | 1265 | if (sc && sc->root_objectid && | 
|  | 1266 | ref->root_id != sc->root_objectid) { | 
|  | 1267 | ret = BACKREF_FOUND_SHARED; | 
|  | 1268 | goto out; | 
|  | 1269 | } | 
|  | 1270 |  | 
|  | 1271 | /* no parent == root of tree */ | 
|  | 1272 | ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); | 
|  | 1273 | if (ret < 0) | 
|  | 1274 | goto out; | 
|  | 1275 | } | 
|  | 1276 | if (ref->count && ref->parent) { | 
|  | 1277 | if (extent_item_pos && !ref->inode_list && | 
|  | 1278 | ref->level == 0) { | 
|  | 1279 | struct extent_buffer *eb; | 
|  | 1280 |  | 
|  | 1281 | eb = read_tree_block(fs_info, ref->parent, 0, | 
|  | 1282 | ref->level, NULL); | 
|  | 1283 | if (IS_ERR(eb)) { | 
|  | 1284 | ret = PTR_ERR(eb); | 
|  | 1285 | goto out; | 
|  | 1286 | } else if (!extent_buffer_uptodate(eb)) { | 
|  | 1287 | free_extent_buffer(eb); | 
|  | 1288 | ret = -EIO; | 
|  | 1289 | goto out; | 
|  | 1290 | } | 
|  | 1291 | if (!path->skip_locking) { | 
|  | 1292 | btrfs_tree_read_lock(eb); | 
|  | 1293 | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | 1294 | } | 
|  | 1295 | ret = find_extent_in_eb(eb, bytenr, | 
|  | 1296 | *extent_item_pos, &eie, ignore_offset); | 
|  | 1297 | if (!path->skip_locking) | 
|  | 1298 | btrfs_tree_read_unlock_blocking(eb); | 
|  | 1299 | free_extent_buffer(eb); | 
|  | 1300 | if (ret < 0) | 
|  | 1301 | goto out; | 
|  | 1302 | ref->inode_list = eie; | 
|  | 1303 | } | 
|  | 1304 | ret = ulist_add_merge_ptr(refs, ref->parent, | 
|  | 1305 | ref->inode_list, | 
|  | 1306 | (void **)&eie, GFP_NOFS); | 
|  | 1307 | if (ret < 0) | 
|  | 1308 | goto out; | 
|  | 1309 | if (!ret && extent_item_pos) { | 
|  | 1310 | /* | 
|  | 1311 | * we've recorded that parent, so we must extend | 
|  | 1312 | * its inode list here | 
|  | 1313 | */ | 
|  | 1314 | BUG_ON(!eie); | 
|  | 1315 | while (eie->next) | 
|  | 1316 | eie = eie->next; | 
|  | 1317 | eie->next = ref->inode_list; | 
|  | 1318 | } | 
|  | 1319 | eie = NULL; | 
|  | 1320 | } | 
|  | 1321 | cond_resched(); | 
|  | 1322 | } | 
|  | 1323 |  | 
|  | 1324 | out: | 
|  | 1325 | btrfs_free_path(path); | 
|  | 1326 |  | 
|  | 1327 | prelim_release(&preftrees.direct); | 
|  | 1328 | prelim_release(&preftrees.indirect); | 
|  | 1329 | prelim_release(&preftrees.indirect_missing_keys); | 
|  | 1330 |  | 
|  | 1331 | if (ret < 0) | 
|  | 1332 | free_inode_elem_list(eie); | 
|  | 1333 | return ret; | 
|  | 1334 | } | 
|  | 1335 |  | 
|  | 1336 | static void free_leaf_list(struct ulist *blocks) | 
|  | 1337 | { | 
|  | 1338 | struct ulist_node *node = NULL; | 
|  | 1339 | struct extent_inode_elem *eie; | 
|  | 1340 | struct ulist_iterator uiter; | 
|  | 1341 |  | 
|  | 1342 | ULIST_ITER_INIT(&uiter); | 
|  | 1343 | while ((node = ulist_next(blocks, &uiter))) { | 
|  | 1344 | if (!node->aux) | 
|  | 1345 | continue; | 
|  | 1346 | eie = unode_aux_to_inode_list(node); | 
|  | 1347 | free_inode_elem_list(eie); | 
|  | 1348 | node->aux = 0; | 
|  | 1349 | } | 
|  | 1350 |  | 
|  | 1351 | ulist_free(blocks); | 
|  | 1352 | } | 
|  | 1353 |  | 
|  | 1354 | /* | 
|  | 1355 | * Finds all leafs with a reference to the specified combination of bytenr and | 
|  | 1356 | * offset. key_list_head will point to a list of corresponding keys (caller must | 
|  | 1357 | * free each list element). The leafs will be stored in the leafs ulist, which | 
|  | 1358 | * must be freed with ulist_free. | 
|  | 1359 | * | 
|  | 1360 | * returns 0 on success, <0 on error | 
|  | 1361 | */ | 
|  | 1362 | static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, | 
|  | 1363 | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | 1364 | u64 time_seq, struct ulist **leafs, | 
|  | 1365 | const u64 *extent_item_pos, bool ignore_offset) | 
|  | 1366 | { | 
|  | 1367 | int ret; | 
|  | 1368 |  | 
|  | 1369 | *leafs = ulist_alloc(GFP_NOFS); | 
|  | 1370 | if (!*leafs) | 
|  | 1371 | return -ENOMEM; | 
|  | 1372 |  | 
|  | 1373 | ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, | 
|  | 1374 | *leafs, NULL, extent_item_pos, NULL, ignore_offset); | 
|  | 1375 | if (ret < 0 && ret != -ENOENT) { | 
|  | 1376 | free_leaf_list(*leafs); | 
|  | 1377 | return ret; | 
|  | 1378 | } | 
|  | 1379 |  | 
|  | 1380 | return 0; | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | /* | 
|  | 1384 | * walk all backrefs for a given extent to find all roots that reference this | 
|  | 1385 | * extent. Walking a backref means finding all extents that reference this | 
|  | 1386 | * extent and in turn walk the backrefs of those, too. Naturally this is a | 
|  | 1387 | * recursive process, but here it is implemented in an iterative fashion: We | 
|  | 1388 | * find all referencing extents for the extent in question and put them on a | 
|  | 1389 | * list. In turn, we find all referencing extents for those, further appending | 
|  | 1390 | * to the list. The way we iterate the list allows adding more elements after | 
|  | 1391 | * the current while iterating. The process stops when we reach the end of the | 
|  | 1392 | * list. Found roots are added to the roots list. | 
|  | 1393 | * | 
|  | 1394 | * returns 0 on success, < 0 on error. | 
|  | 1395 | */ | 
|  | 1396 | static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, | 
|  | 1397 | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | 1398 | u64 time_seq, struct ulist **roots, | 
|  | 1399 | bool ignore_offset) | 
|  | 1400 | { | 
|  | 1401 | struct ulist *tmp; | 
|  | 1402 | struct ulist_node *node = NULL; | 
|  | 1403 | struct ulist_iterator uiter; | 
|  | 1404 | int ret; | 
|  | 1405 |  | 
|  | 1406 | tmp = ulist_alloc(GFP_NOFS); | 
|  | 1407 | if (!tmp) | 
|  | 1408 | return -ENOMEM; | 
|  | 1409 | *roots = ulist_alloc(GFP_NOFS); | 
|  | 1410 | if (!*roots) { | 
|  | 1411 | ulist_free(tmp); | 
|  | 1412 | return -ENOMEM; | 
|  | 1413 | } | 
|  | 1414 |  | 
|  | 1415 | ULIST_ITER_INIT(&uiter); | 
|  | 1416 | while (1) { | 
|  | 1417 | ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, | 
|  | 1418 | tmp, *roots, NULL, NULL, ignore_offset); | 
|  | 1419 | if (ret < 0 && ret != -ENOENT) { | 
|  | 1420 | ulist_free(tmp); | 
|  | 1421 | ulist_free(*roots); | 
|  | 1422 | return ret; | 
|  | 1423 | } | 
|  | 1424 | node = ulist_next(tmp, &uiter); | 
|  | 1425 | if (!node) | 
|  | 1426 | break; | 
|  | 1427 | bytenr = node->val; | 
|  | 1428 | cond_resched(); | 
|  | 1429 | } | 
|  | 1430 |  | 
|  | 1431 | ulist_free(tmp); | 
|  | 1432 | return 0; | 
|  | 1433 | } | 
|  | 1434 |  | 
|  | 1435 | int btrfs_find_all_roots(struct btrfs_trans_handle *trans, | 
|  | 1436 | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | 1437 | u64 time_seq, struct ulist **roots, | 
|  | 1438 | bool ignore_offset) | 
|  | 1439 | { | 
|  | 1440 | int ret; | 
|  | 1441 |  | 
|  | 1442 | if (!trans) | 
|  | 1443 | down_read(&fs_info->commit_root_sem); | 
|  | 1444 | ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, | 
|  | 1445 | time_seq, roots, ignore_offset); | 
|  | 1446 | if (!trans) | 
|  | 1447 | up_read(&fs_info->commit_root_sem); | 
|  | 1448 | return ret; | 
|  | 1449 | } | 
|  | 1450 |  | 
|  | 1451 | /** | 
|  | 1452 | * btrfs_check_shared - tell us whether an extent is shared | 
|  | 1453 | * | 
|  | 1454 | * btrfs_check_shared uses the backref walking code but will short | 
|  | 1455 | * circuit as soon as it finds a root or inode that doesn't match the | 
|  | 1456 | * one passed in. This provides a significant performance benefit for | 
|  | 1457 | * callers (such as fiemap) which want to know whether the extent is | 
|  | 1458 | * shared but do not need a ref count. | 
|  | 1459 | * | 
|  | 1460 | * This attempts to attach to the running transaction in order to account for | 
|  | 1461 | * delayed refs, but continues on even when no running transaction exists. | 
|  | 1462 | * | 
|  | 1463 | * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. | 
|  | 1464 | */ | 
|  | 1465 | int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) | 
|  | 1466 | { | 
|  | 1467 | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | 1468 | struct btrfs_trans_handle *trans; | 
|  | 1469 | struct ulist *tmp = NULL; | 
|  | 1470 | struct ulist *roots = NULL; | 
|  | 1471 | struct ulist_iterator uiter; | 
|  | 1472 | struct ulist_node *node; | 
|  | 1473 | struct seq_list elem = SEQ_LIST_INIT(elem); | 
|  | 1474 | int ret = 0; | 
|  | 1475 | struct share_check shared = { | 
|  | 1476 | .root_objectid = root->objectid, | 
|  | 1477 | .inum = inum, | 
|  | 1478 | .share_count = 0, | 
|  | 1479 | }; | 
|  | 1480 |  | 
|  | 1481 | tmp = ulist_alloc(GFP_NOFS); | 
|  | 1482 | roots = ulist_alloc(GFP_NOFS); | 
|  | 1483 | if (!tmp || !roots) { | 
|  | 1484 | ret = -ENOMEM; | 
|  | 1485 | goto out; | 
|  | 1486 | } | 
|  | 1487 |  | 
|  | 1488 | trans = btrfs_join_transaction_nostart(root); | 
|  | 1489 | if (IS_ERR(trans)) { | 
|  | 1490 | if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { | 
|  | 1491 | ret = PTR_ERR(trans); | 
|  | 1492 | goto out; | 
|  | 1493 | } | 
|  | 1494 | trans = NULL; | 
|  | 1495 | down_read(&fs_info->commit_root_sem); | 
|  | 1496 | } else { | 
|  | 1497 | btrfs_get_tree_mod_seq(fs_info, &elem); | 
|  | 1498 | } | 
|  | 1499 |  | 
|  | 1500 | ULIST_ITER_INIT(&uiter); | 
|  | 1501 | while (1) { | 
|  | 1502 | ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, | 
|  | 1503 | roots, NULL, &shared, false); | 
|  | 1504 | if (ret == BACKREF_FOUND_SHARED) { | 
|  | 1505 | /* this is the only condition under which we return 1 */ | 
|  | 1506 | ret = 1; | 
|  | 1507 | break; | 
|  | 1508 | } | 
|  | 1509 | if (ret < 0 && ret != -ENOENT) | 
|  | 1510 | break; | 
|  | 1511 | ret = 0; | 
|  | 1512 | node = ulist_next(tmp, &uiter); | 
|  | 1513 | if (!node) | 
|  | 1514 | break; | 
|  | 1515 | bytenr = node->val; | 
|  | 1516 | shared.share_count = 0; | 
|  | 1517 | cond_resched(); | 
|  | 1518 | } | 
|  | 1519 |  | 
|  | 1520 | if (trans) { | 
|  | 1521 | btrfs_put_tree_mod_seq(fs_info, &elem); | 
|  | 1522 | btrfs_end_transaction(trans); | 
|  | 1523 | } else { | 
|  | 1524 | up_read(&fs_info->commit_root_sem); | 
|  | 1525 | } | 
|  | 1526 | out: | 
|  | 1527 | ulist_free(tmp); | 
|  | 1528 | ulist_free(roots); | 
|  | 1529 | return ret; | 
|  | 1530 | } | 
|  | 1531 |  | 
|  | 1532 | int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, | 
|  | 1533 | u64 start_off, struct btrfs_path *path, | 
|  | 1534 | struct btrfs_inode_extref **ret_extref, | 
|  | 1535 | u64 *found_off) | 
|  | 1536 | { | 
|  | 1537 | int ret, slot; | 
|  | 1538 | struct btrfs_key key; | 
|  | 1539 | struct btrfs_key found_key; | 
|  | 1540 | struct btrfs_inode_extref *extref; | 
|  | 1541 | const struct extent_buffer *leaf; | 
|  | 1542 | unsigned long ptr; | 
|  | 1543 |  | 
|  | 1544 | key.objectid = inode_objectid; | 
|  | 1545 | key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | 1546 | key.offset = start_off; | 
|  | 1547 |  | 
|  | 1548 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | 1549 | if (ret < 0) | 
|  | 1550 | return ret; | 
|  | 1551 |  | 
|  | 1552 | while (1) { | 
|  | 1553 | leaf = path->nodes[0]; | 
|  | 1554 | slot = path->slots[0]; | 
|  | 1555 | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | 1556 | /* | 
|  | 1557 | * If the item at offset is not found, | 
|  | 1558 | * btrfs_search_slot will point us to the slot | 
|  | 1559 | * where it should be inserted. In our case | 
|  | 1560 | * that will be the slot directly before the | 
|  | 1561 | * next INODE_REF_KEY_V2 item. In the case | 
|  | 1562 | * that we're pointing to the last slot in a | 
|  | 1563 | * leaf, we must move one leaf over. | 
|  | 1564 | */ | 
|  | 1565 | ret = btrfs_next_leaf(root, path); | 
|  | 1566 | if (ret) { | 
|  | 1567 | if (ret >= 1) | 
|  | 1568 | ret = -ENOENT; | 
|  | 1569 | break; | 
|  | 1570 | } | 
|  | 1571 | continue; | 
|  | 1572 | } | 
|  | 1573 |  | 
|  | 1574 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  | 1575 |  | 
|  | 1576 | /* | 
|  | 1577 | * Check that we're still looking at an extended ref key for | 
|  | 1578 | * this particular objectid. If we have different | 
|  | 1579 | * objectid or type then there are no more to be found | 
|  | 1580 | * in the tree and we can exit. | 
|  | 1581 | */ | 
|  | 1582 | ret = -ENOENT; | 
|  | 1583 | if (found_key.objectid != inode_objectid) | 
|  | 1584 | break; | 
|  | 1585 | if (found_key.type != BTRFS_INODE_EXTREF_KEY) | 
|  | 1586 | break; | 
|  | 1587 |  | 
|  | 1588 | ret = 0; | 
|  | 1589 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | 1590 | extref = (struct btrfs_inode_extref *)ptr; | 
|  | 1591 | *ret_extref = extref; | 
|  | 1592 | if (found_off) | 
|  | 1593 | *found_off = found_key.offset; | 
|  | 1594 | break; | 
|  | 1595 | } | 
|  | 1596 |  | 
|  | 1597 | return ret; | 
|  | 1598 | } | 
|  | 1599 |  | 
|  | 1600 | /* | 
|  | 1601 | * this iterates to turn a name (from iref/extref) into a full filesystem path. | 
|  | 1602 | * Elements of the path are separated by '/' and the path is guaranteed to be | 
|  | 1603 | * 0-terminated. the path is only given within the current file system. | 
|  | 1604 | * Therefore, it never starts with a '/'. the caller is responsible to provide | 
|  | 1605 | * "size" bytes in "dest". the dest buffer will be filled backwards. finally, | 
|  | 1606 | * the start point of the resulting string is returned. this pointer is within | 
|  | 1607 | * dest, normally. | 
|  | 1608 | * in case the path buffer would overflow, the pointer is decremented further | 
|  | 1609 | * as if output was written to the buffer, though no more output is actually | 
|  | 1610 | * generated. that way, the caller can determine how much space would be | 
|  | 1611 | * required for the path to fit into the buffer. in that case, the returned | 
|  | 1612 | * value will be smaller than dest. callers must check this! | 
|  | 1613 | */ | 
|  | 1614 | char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, | 
|  | 1615 | u32 name_len, unsigned long name_off, | 
|  | 1616 | struct extent_buffer *eb_in, u64 parent, | 
|  | 1617 | char *dest, u32 size) | 
|  | 1618 | { | 
|  | 1619 | int slot; | 
|  | 1620 | u64 next_inum; | 
|  | 1621 | int ret; | 
|  | 1622 | s64 bytes_left = ((s64)size) - 1; | 
|  | 1623 | struct extent_buffer *eb = eb_in; | 
|  | 1624 | struct btrfs_key found_key; | 
|  | 1625 | int leave_spinning = path->leave_spinning; | 
|  | 1626 | struct btrfs_inode_ref *iref; | 
|  | 1627 |  | 
|  | 1628 | if (bytes_left >= 0) | 
|  | 1629 | dest[bytes_left] = '\0'; | 
|  | 1630 |  | 
|  | 1631 | path->leave_spinning = 1; | 
|  | 1632 | while (1) { | 
|  | 1633 | bytes_left -= name_len; | 
|  | 1634 | if (bytes_left >= 0) | 
|  | 1635 | read_extent_buffer(eb, dest + bytes_left, | 
|  | 1636 | name_off, name_len); | 
|  | 1637 | if (eb != eb_in) { | 
|  | 1638 | if (!path->skip_locking) | 
|  | 1639 | btrfs_tree_read_unlock_blocking(eb); | 
|  | 1640 | free_extent_buffer(eb); | 
|  | 1641 | } | 
|  | 1642 | ret = btrfs_find_item(fs_root, path, parent, 0, | 
|  | 1643 | BTRFS_INODE_REF_KEY, &found_key); | 
|  | 1644 | if (ret > 0) | 
|  | 1645 | ret = -ENOENT; | 
|  | 1646 | if (ret) | 
|  | 1647 | break; | 
|  | 1648 |  | 
|  | 1649 | next_inum = found_key.offset; | 
|  | 1650 |  | 
|  | 1651 | /* regular exit ahead */ | 
|  | 1652 | if (parent == next_inum) | 
|  | 1653 | break; | 
|  | 1654 |  | 
|  | 1655 | slot = path->slots[0]; | 
|  | 1656 | eb = path->nodes[0]; | 
|  | 1657 | /* make sure we can use eb after releasing the path */ | 
|  | 1658 | if (eb != eb_in) { | 
|  | 1659 | if (!path->skip_locking) | 
|  | 1660 | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | 1661 | path->nodes[0] = NULL; | 
|  | 1662 | path->locks[0] = 0; | 
|  | 1663 | } | 
|  | 1664 | btrfs_release_path(path); | 
|  | 1665 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
|  | 1666 |  | 
|  | 1667 | name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | 1668 | name_off = (unsigned long)(iref + 1); | 
|  | 1669 |  | 
|  | 1670 | parent = next_inum; | 
|  | 1671 | --bytes_left; | 
|  | 1672 | if (bytes_left >= 0) | 
|  | 1673 | dest[bytes_left] = '/'; | 
|  | 1674 | } | 
|  | 1675 |  | 
|  | 1676 | btrfs_release_path(path); | 
|  | 1677 | path->leave_spinning = leave_spinning; | 
|  | 1678 |  | 
|  | 1679 | if (ret) | 
|  | 1680 | return ERR_PTR(ret); | 
|  | 1681 |  | 
|  | 1682 | return dest + bytes_left; | 
|  | 1683 | } | 
|  | 1684 |  | 
|  | 1685 | /* | 
|  | 1686 | * this makes the path point to (logical EXTENT_ITEM *) | 
|  | 1687 | * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for | 
|  | 1688 | * tree blocks and <0 on error. | 
|  | 1689 | */ | 
|  | 1690 | int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, | 
|  | 1691 | struct btrfs_path *path, struct btrfs_key *found_key, | 
|  | 1692 | u64 *flags_ret) | 
|  | 1693 | { | 
|  | 1694 | int ret; | 
|  | 1695 | u64 flags; | 
|  | 1696 | u64 size = 0; | 
|  | 1697 | u32 item_size; | 
|  | 1698 | const struct extent_buffer *eb; | 
|  | 1699 | struct btrfs_extent_item *ei; | 
|  | 1700 | struct btrfs_key key; | 
|  | 1701 |  | 
|  | 1702 | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | 1703 | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | 1704 | else | 
|  | 1705 | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | 1706 | key.objectid = logical; | 
|  | 1707 | key.offset = (u64)-1; | 
|  | 1708 |  | 
|  | 1709 | ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); | 
|  | 1710 | if (ret < 0) | 
|  | 1711 | return ret; | 
|  | 1712 |  | 
|  | 1713 | ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); | 
|  | 1714 | if (ret) { | 
|  | 1715 | if (ret > 0) | 
|  | 1716 | ret = -ENOENT; | 
|  | 1717 | return ret; | 
|  | 1718 | } | 
|  | 1719 | btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); | 
|  | 1720 | if (found_key->type == BTRFS_METADATA_ITEM_KEY) | 
|  | 1721 | size = fs_info->nodesize; | 
|  | 1722 | else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) | 
|  | 1723 | size = found_key->offset; | 
|  | 1724 |  | 
|  | 1725 | if (found_key->objectid > logical || | 
|  | 1726 | found_key->objectid + size <= logical) { | 
|  | 1727 | btrfs_debug(fs_info, | 
|  | 1728 | "logical %llu is not within any extent", logical); | 
|  | 1729 | return -ENOENT; | 
|  | 1730 | } | 
|  | 1731 |  | 
|  | 1732 | eb = path->nodes[0]; | 
|  | 1733 | item_size = btrfs_item_size_nr(eb, path->slots[0]); | 
|  | 1734 | BUG_ON(item_size < sizeof(*ei)); | 
|  | 1735 |  | 
|  | 1736 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
|  | 1737 | flags = btrfs_extent_flags(eb, ei); | 
|  | 1738 |  | 
|  | 1739 | btrfs_debug(fs_info, | 
|  | 1740 | "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", | 
|  | 1741 | logical, logical - found_key->objectid, found_key->objectid, | 
|  | 1742 | found_key->offset, flags, item_size); | 
|  | 1743 |  | 
|  | 1744 | WARN_ON(!flags_ret); | 
|  | 1745 | if (flags_ret) { | 
|  | 1746 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | 1747 | *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; | 
|  | 1748 | else if (flags & BTRFS_EXTENT_FLAG_DATA) | 
|  | 1749 | *flags_ret = BTRFS_EXTENT_FLAG_DATA; | 
|  | 1750 | else | 
|  | 1751 | BUG_ON(1); | 
|  | 1752 | return 0; | 
|  | 1753 | } | 
|  | 1754 |  | 
|  | 1755 | return -EIO; | 
|  | 1756 | } | 
|  | 1757 |  | 
|  | 1758 | /* | 
|  | 1759 | * helper function to iterate extent inline refs. ptr must point to a 0 value | 
|  | 1760 | * for the first call and may be modified. it is used to track state. | 
|  | 1761 | * if more refs exist, 0 is returned and the next call to | 
|  | 1762 | * get_extent_inline_ref must pass the modified ptr parameter to get the | 
|  | 1763 | * next ref. after the last ref was processed, 1 is returned. | 
|  | 1764 | * returns <0 on error | 
|  | 1765 | */ | 
|  | 1766 | static int get_extent_inline_ref(unsigned long *ptr, | 
|  | 1767 | const struct extent_buffer *eb, | 
|  | 1768 | const struct btrfs_key *key, | 
|  | 1769 | const struct btrfs_extent_item *ei, | 
|  | 1770 | u32 item_size, | 
|  | 1771 | struct btrfs_extent_inline_ref **out_eiref, | 
|  | 1772 | int *out_type) | 
|  | 1773 | { | 
|  | 1774 | unsigned long end; | 
|  | 1775 | u64 flags; | 
|  | 1776 | struct btrfs_tree_block_info *info; | 
|  | 1777 |  | 
|  | 1778 | if (!*ptr) { | 
|  | 1779 | /* first call */ | 
|  | 1780 | flags = btrfs_extent_flags(eb, ei); | 
|  | 1781 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | 1782 | if (key->type == BTRFS_METADATA_ITEM_KEY) { | 
|  | 1783 | /* a skinny metadata extent */ | 
|  | 1784 | *out_eiref = | 
|  | 1785 | (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | 1786 | } else { | 
|  | 1787 | WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); | 
|  | 1788 | info = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | 1789 | *out_eiref = | 
|  | 1790 | (struct btrfs_extent_inline_ref *)(info + 1); | 
|  | 1791 | } | 
|  | 1792 | } else { | 
|  | 1793 | *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | 1794 | } | 
|  | 1795 | *ptr = (unsigned long)*out_eiref; | 
|  | 1796 | if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) | 
|  | 1797 | return -ENOENT; | 
|  | 1798 | } | 
|  | 1799 |  | 
|  | 1800 | end = (unsigned long)ei + item_size; | 
|  | 1801 | *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); | 
|  | 1802 | *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, | 
|  | 1803 | BTRFS_REF_TYPE_ANY); | 
|  | 1804 | if (*out_type == BTRFS_REF_TYPE_INVALID) | 
|  | 1805 | return -EUCLEAN; | 
|  | 1806 |  | 
|  | 1807 | *ptr += btrfs_extent_inline_ref_size(*out_type); | 
|  | 1808 | WARN_ON(*ptr > end); | 
|  | 1809 | if (*ptr == end) | 
|  | 1810 | return 1; /* last */ | 
|  | 1811 |  | 
|  | 1812 | return 0; | 
|  | 1813 | } | 
|  | 1814 |  | 
|  | 1815 | /* | 
|  | 1816 | * reads the tree block backref for an extent. tree level and root are returned | 
|  | 1817 | * through out_level and out_root. ptr must point to a 0 value for the first | 
|  | 1818 | * call and may be modified (see get_extent_inline_ref comment). | 
|  | 1819 | * returns 0 if data was provided, 1 if there was no more data to provide or | 
|  | 1820 | * <0 on error. | 
|  | 1821 | */ | 
|  | 1822 | int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, | 
|  | 1823 | struct btrfs_key *key, struct btrfs_extent_item *ei, | 
|  | 1824 | u32 item_size, u64 *out_root, u8 *out_level) | 
|  | 1825 | { | 
|  | 1826 | int ret; | 
|  | 1827 | int type; | 
|  | 1828 | struct btrfs_extent_inline_ref *eiref; | 
|  | 1829 |  | 
|  | 1830 | if (*ptr == (unsigned long)-1) | 
|  | 1831 | return 1; | 
|  | 1832 |  | 
|  | 1833 | while (1) { | 
|  | 1834 | ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, | 
|  | 1835 | &eiref, &type); | 
|  | 1836 | if (ret < 0) | 
|  | 1837 | return ret; | 
|  | 1838 |  | 
|  | 1839 | if (type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | 1840 | type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | 1841 | break; | 
|  | 1842 |  | 
|  | 1843 | if (ret == 1) | 
|  | 1844 | return 1; | 
|  | 1845 | } | 
|  | 1846 |  | 
|  | 1847 | /* we can treat both ref types equally here */ | 
|  | 1848 | *out_root = btrfs_extent_inline_ref_offset(eb, eiref); | 
|  | 1849 |  | 
|  | 1850 | if (key->type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | 1851 | struct btrfs_tree_block_info *info; | 
|  | 1852 |  | 
|  | 1853 | info = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | 1854 | *out_level = btrfs_tree_block_level(eb, info); | 
|  | 1855 | } else { | 
|  | 1856 | ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); | 
|  | 1857 | *out_level = (u8)key->offset; | 
|  | 1858 | } | 
|  | 1859 |  | 
|  | 1860 | if (ret == 1) | 
|  | 1861 | *ptr = (unsigned long)-1; | 
|  | 1862 |  | 
|  | 1863 | return 0; | 
|  | 1864 | } | 
|  | 1865 |  | 
|  | 1866 | static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, | 
|  | 1867 | struct extent_inode_elem *inode_list, | 
|  | 1868 | u64 root, u64 extent_item_objectid, | 
|  | 1869 | iterate_extent_inodes_t *iterate, void *ctx) | 
|  | 1870 | { | 
|  | 1871 | struct extent_inode_elem *eie; | 
|  | 1872 | int ret = 0; | 
|  | 1873 |  | 
|  | 1874 | for (eie = inode_list; eie; eie = eie->next) { | 
|  | 1875 | btrfs_debug(fs_info, | 
|  | 1876 | "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", | 
|  | 1877 | extent_item_objectid, eie->inum, | 
|  | 1878 | eie->offset, root); | 
|  | 1879 | ret = iterate(eie->inum, eie->offset, root, ctx); | 
|  | 1880 | if (ret) { | 
|  | 1881 | btrfs_debug(fs_info, | 
|  | 1882 | "stopping iteration for %llu due to ret=%d", | 
|  | 1883 | extent_item_objectid, ret); | 
|  | 1884 | break; | 
|  | 1885 | } | 
|  | 1886 | } | 
|  | 1887 |  | 
|  | 1888 | return ret; | 
|  | 1889 | } | 
|  | 1890 |  | 
|  | 1891 | /* | 
|  | 1892 | * calls iterate() for every inode that references the extent identified by | 
|  | 1893 | * the given parameters. | 
|  | 1894 | * when the iterator function returns a non-zero value, iteration stops. | 
|  | 1895 | */ | 
|  | 1896 | int iterate_extent_inodes(struct btrfs_fs_info *fs_info, | 
|  | 1897 | u64 extent_item_objectid, u64 extent_item_pos, | 
|  | 1898 | int search_commit_root, | 
|  | 1899 | iterate_extent_inodes_t *iterate, void *ctx, | 
|  | 1900 | bool ignore_offset) | 
|  | 1901 | { | 
|  | 1902 | int ret; | 
|  | 1903 | struct btrfs_trans_handle *trans = NULL; | 
|  | 1904 | struct ulist *refs = NULL; | 
|  | 1905 | struct ulist *roots = NULL; | 
|  | 1906 | struct ulist_node *ref_node = NULL; | 
|  | 1907 | struct ulist_node *root_node = NULL; | 
|  | 1908 | struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); | 
|  | 1909 | struct ulist_iterator ref_uiter; | 
|  | 1910 | struct ulist_iterator root_uiter; | 
|  | 1911 |  | 
|  | 1912 | btrfs_debug(fs_info, "resolving all inodes for extent %llu", | 
|  | 1913 | extent_item_objectid); | 
|  | 1914 |  | 
|  | 1915 | if (!search_commit_root) { | 
|  | 1916 | trans = btrfs_attach_transaction(fs_info->extent_root); | 
|  | 1917 | if (IS_ERR(trans)) { | 
|  | 1918 | if (PTR_ERR(trans) != -ENOENT && | 
|  | 1919 | PTR_ERR(trans) != -EROFS) | 
|  | 1920 | return PTR_ERR(trans); | 
|  | 1921 | trans = NULL; | 
|  | 1922 | } | 
|  | 1923 | } | 
|  | 1924 |  | 
|  | 1925 | if (trans) | 
|  | 1926 | btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); | 
|  | 1927 | else | 
|  | 1928 | down_read(&fs_info->commit_root_sem); | 
|  | 1929 |  | 
|  | 1930 | ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, | 
|  | 1931 | tree_mod_seq_elem.seq, &refs, | 
|  | 1932 | &extent_item_pos, ignore_offset); | 
|  | 1933 | if (ret) | 
|  | 1934 | goto out; | 
|  | 1935 |  | 
|  | 1936 | ULIST_ITER_INIT(&ref_uiter); | 
|  | 1937 | while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { | 
|  | 1938 | ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, | 
|  | 1939 | tree_mod_seq_elem.seq, &roots, | 
|  | 1940 | ignore_offset); | 
|  | 1941 | if (ret) | 
|  | 1942 | break; | 
|  | 1943 | ULIST_ITER_INIT(&root_uiter); | 
|  | 1944 | while (!ret && (root_node = ulist_next(roots, &root_uiter))) { | 
|  | 1945 | btrfs_debug(fs_info, | 
|  | 1946 | "root %llu references leaf %llu, data list %#llx", | 
|  | 1947 | root_node->val, ref_node->val, | 
|  | 1948 | ref_node->aux); | 
|  | 1949 | ret = iterate_leaf_refs(fs_info, | 
|  | 1950 | (struct extent_inode_elem *) | 
|  | 1951 | (uintptr_t)ref_node->aux, | 
|  | 1952 | root_node->val, | 
|  | 1953 | extent_item_objectid, | 
|  | 1954 | iterate, ctx); | 
|  | 1955 | } | 
|  | 1956 | ulist_free(roots); | 
|  | 1957 | } | 
|  | 1958 |  | 
|  | 1959 | free_leaf_list(refs); | 
|  | 1960 | out: | 
|  | 1961 | if (trans) { | 
|  | 1962 | btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); | 
|  | 1963 | btrfs_end_transaction(trans); | 
|  | 1964 | } else { | 
|  | 1965 | up_read(&fs_info->commit_root_sem); | 
|  | 1966 | } | 
|  | 1967 |  | 
|  | 1968 | return ret; | 
|  | 1969 | } | 
|  | 1970 |  | 
|  | 1971 | int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, | 
|  | 1972 | struct btrfs_path *path, | 
|  | 1973 | iterate_extent_inodes_t *iterate, void *ctx, | 
|  | 1974 | bool ignore_offset) | 
|  | 1975 | { | 
|  | 1976 | int ret; | 
|  | 1977 | u64 extent_item_pos; | 
|  | 1978 | u64 flags = 0; | 
|  | 1979 | struct btrfs_key found_key; | 
|  | 1980 | int search_commit_root = path->search_commit_root; | 
|  | 1981 |  | 
|  | 1982 | ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); | 
|  | 1983 | btrfs_release_path(path); | 
|  | 1984 | if (ret < 0) | 
|  | 1985 | return ret; | 
|  | 1986 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | 1987 | return -EINVAL; | 
|  | 1988 |  | 
|  | 1989 | extent_item_pos = logical - found_key.objectid; | 
|  | 1990 | ret = iterate_extent_inodes(fs_info, found_key.objectid, | 
|  | 1991 | extent_item_pos, search_commit_root, | 
|  | 1992 | iterate, ctx, ignore_offset); | 
|  | 1993 |  | 
|  | 1994 | return ret; | 
|  | 1995 | } | 
|  | 1996 |  | 
|  | 1997 | typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, | 
|  | 1998 | struct extent_buffer *eb, void *ctx); | 
|  | 1999 |  | 
|  | 2000 | static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, | 
|  | 2001 | struct btrfs_path *path, | 
|  | 2002 | iterate_irefs_t *iterate, void *ctx) | 
|  | 2003 | { | 
|  | 2004 | int ret = 0; | 
|  | 2005 | int slot; | 
|  | 2006 | u32 cur; | 
|  | 2007 | u32 len; | 
|  | 2008 | u32 name_len; | 
|  | 2009 | u64 parent = 0; | 
|  | 2010 | int found = 0; | 
|  | 2011 | struct extent_buffer *eb; | 
|  | 2012 | struct btrfs_item *item; | 
|  | 2013 | struct btrfs_inode_ref *iref; | 
|  | 2014 | struct btrfs_key found_key; | 
|  | 2015 |  | 
|  | 2016 | while (!ret) { | 
|  | 2017 | ret = btrfs_find_item(fs_root, path, inum, | 
|  | 2018 | parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, | 
|  | 2019 | &found_key); | 
|  | 2020 |  | 
|  | 2021 | if (ret < 0) | 
|  | 2022 | break; | 
|  | 2023 | if (ret) { | 
|  | 2024 | ret = found ? 0 : -ENOENT; | 
|  | 2025 | break; | 
|  | 2026 | } | 
|  | 2027 | ++found; | 
|  | 2028 |  | 
|  | 2029 | parent = found_key.offset; | 
|  | 2030 | slot = path->slots[0]; | 
|  | 2031 | eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | 2032 | if (!eb) { | 
|  | 2033 | ret = -ENOMEM; | 
|  | 2034 | break; | 
|  | 2035 | } | 
|  | 2036 | extent_buffer_get(eb); | 
|  | 2037 | btrfs_tree_read_lock(eb); | 
|  | 2038 | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | 2039 | btrfs_release_path(path); | 
|  | 2040 |  | 
|  | 2041 | item = btrfs_item_nr(slot); | 
|  | 2042 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
|  | 2043 |  | 
|  | 2044 | for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { | 
|  | 2045 | name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | 2046 | /* path must be released before calling iterate()! */ | 
|  | 2047 | btrfs_debug(fs_root->fs_info, | 
|  | 2048 | "following ref at offset %u for inode %llu in tree %llu", | 
|  | 2049 | cur, found_key.objectid, fs_root->objectid); | 
|  | 2050 | ret = iterate(parent, name_len, | 
|  | 2051 | (unsigned long)(iref + 1), eb, ctx); | 
|  | 2052 | if (ret) | 
|  | 2053 | break; | 
|  | 2054 | len = sizeof(*iref) + name_len; | 
|  | 2055 | iref = (struct btrfs_inode_ref *)((char *)iref + len); | 
|  | 2056 | } | 
|  | 2057 | btrfs_tree_read_unlock_blocking(eb); | 
|  | 2058 | free_extent_buffer(eb); | 
|  | 2059 | } | 
|  | 2060 |  | 
|  | 2061 | btrfs_release_path(path); | 
|  | 2062 |  | 
|  | 2063 | return ret; | 
|  | 2064 | } | 
|  | 2065 |  | 
|  | 2066 | static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, | 
|  | 2067 | struct btrfs_path *path, | 
|  | 2068 | iterate_irefs_t *iterate, void *ctx) | 
|  | 2069 | { | 
|  | 2070 | int ret; | 
|  | 2071 | int slot; | 
|  | 2072 | u64 offset = 0; | 
|  | 2073 | u64 parent; | 
|  | 2074 | int found = 0; | 
|  | 2075 | struct extent_buffer *eb; | 
|  | 2076 | struct btrfs_inode_extref *extref; | 
|  | 2077 | u32 item_size; | 
|  | 2078 | u32 cur_offset; | 
|  | 2079 | unsigned long ptr; | 
|  | 2080 |  | 
|  | 2081 | while (1) { | 
|  | 2082 | ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, | 
|  | 2083 | &offset); | 
|  | 2084 | if (ret < 0) | 
|  | 2085 | break; | 
|  | 2086 | if (ret) { | 
|  | 2087 | ret = found ? 0 : -ENOENT; | 
|  | 2088 | break; | 
|  | 2089 | } | 
|  | 2090 | ++found; | 
|  | 2091 |  | 
|  | 2092 | slot = path->slots[0]; | 
|  | 2093 | eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | 2094 | if (!eb) { | 
|  | 2095 | ret = -ENOMEM; | 
|  | 2096 | break; | 
|  | 2097 | } | 
|  | 2098 | extent_buffer_get(eb); | 
|  | 2099 |  | 
|  | 2100 | btrfs_tree_read_lock(eb); | 
|  | 2101 | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | 2102 | btrfs_release_path(path); | 
|  | 2103 |  | 
|  | 2104 | item_size = btrfs_item_size_nr(eb, slot); | 
|  | 2105 | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | 2106 | cur_offset = 0; | 
|  | 2107 |  | 
|  | 2108 | while (cur_offset < item_size) { | 
|  | 2109 | u32 name_len; | 
|  | 2110 |  | 
|  | 2111 | extref = (struct btrfs_inode_extref *)(ptr + cur_offset); | 
|  | 2112 | parent = btrfs_inode_extref_parent(eb, extref); | 
|  | 2113 | name_len = btrfs_inode_extref_name_len(eb, extref); | 
|  | 2114 | ret = iterate(parent, name_len, | 
|  | 2115 | (unsigned long)&extref->name, eb, ctx); | 
|  | 2116 | if (ret) | 
|  | 2117 | break; | 
|  | 2118 |  | 
|  | 2119 | cur_offset += btrfs_inode_extref_name_len(eb, extref); | 
|  | 2120 | cur_offset += sizeof(*extref); | 
|  | 2121 | } | 
|  | 2122 | btrfs_tree_read_unlock_blocking(eb); | 
|  | 2123 | free_extent_buffer(eb); | 
|  | 2124 |  | 
|  | 2125 | offset++; | 
|  | 2126 | } | 
|  | 2127 |  | 
|  | 2128 | btrfs_release_path(path); | 
|  | 2129 |  | 
|  | 2130 | return ret; | 
|  | 2131 | } | 
|  | 2132 |  | 
|  | 2133 | static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, | 
|  | 2134 | struct btrfs_path *path, iterate_irefs_t *iterate, | 
|  | 2135 | void *ctx) | 
|  | 2136 | { | 
|  | 2137 | int ret; | 
|  | 2138 | int found_refs = 0; | 
|  | 2139 |  | 
|  | 2140 | ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); | 
|  | 2141 | if (!ret) | 
|  | 2142 | ++found_refs; | 
|  | 2143 | else if (ret != -ENOENT) | 
|  | 2144 | return ret; | 
|  | 2145 |  | 
|  | 2146 | ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); | 
|  | 2147 | if (ret == -ENOENT && found_refs) | 
|  | 2148 | return 0; | 
|  | 2149 |  | 
|  | 2150 | return ret; | 
|  | 2151 | } | 
|  | 2152 |  | 
|  | 2153 | /* | 
|  | 2154 | * returns 0 if the path could be dumped (probably truncated) | 
|  | 2155 | * returns <0 in case of an error | 
|  | 2156 | */ | 
|  | 2157 | static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, | 
|  | 2158 | struct extent_buffer *eb, void *ctx) | 
|  | 2159 | { | 
|  | 2160 | struct inode_fs_paths *ipath = ctx; | 
|  | 2161 | char *fspath; | 
|  | 2162 | char *fspath_min; | 
|  | 2163 | int i = ipath->fspath->elem_cnt; | 
|  | 2164 | const int s_ptr = sizeof(char *); | 
|  | 2165 | u32 bytes_left; | 
|  | 2166 |  | 
|  | 2167 | bytes_left = ipath->fspath->bytes_left > s_ptr ? | 
|  | 2168 | ipath->fspath->bytes_left - s_ptr : 0; | 
|  | 2169 |  | 
|  | 2170 | fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; | 
|  | 2171 | fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, | 
|  | 2172 | name_off, eb, inum, fspath_min, bytes_left); | 
|  | 2173 | if (IS_ERR(fspath)) | 
|  | 2174 | return PTR_ERR(fspath); | 
|  | 2175 |  | 
|  | 2176 | if (fspath > fspath_min) { | 
|  | 2177 | ipath->fspath->val[i] = (u64)(unsigned long)fspath; | 
|  | 2178 | ++ipath->fspath->elem_cnt; | 
|  | 2179 | ipath->fspath->bytes_left = fspath - fspath_min; | 
|  | 2180 | } else { | 
|  | 2181 | ++ipath->fspath->elem_missed; | 
|  | 2182 | ipath->fspath->bytes_missing += fspath_min - fspath; | 
|  | 2183 | ipath->fspath->bytes_left = 0; | 
|  | 2184 | } | 
|  | 2185 |  | 
|  | 2186 | return 0; | 
|  | 2187 | } | 
|  | 2188 |  | 
|  | 2189 | /* | 
|  | 2190 | * this dumps all file system paths to the inode into the ipath struct, provided | 
|  | 2191 | * is has been created large enough. each path is zero-terminated and accessed | 
|  | 2192 | * from ipath->fspath->val[i]. | 
|  | 2193 | * when it returns, there are ipath->fspath->elem_cnt number of paths available | 
|  | 2194 | * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the | 
|  | 2195 | * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, | 
|  | 2196 | * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would | 
|  | 2197 | * have been needed to return all paths. | 
|  | 2198 | */ | 
|  | 2199 | int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) | 
|  | 2200 | { | 
|  | 2201 | return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, | 
|  | 2202 | inode_to_path, ipath); | 
|  | 2203 | } | 
|  | 2204 |  | 
|  | 2205 | struct btrfs_data_container *init_data_container(u32 total_bytes) | 
|  | 2206 | { | 
|  | 2207 | struct btrfs_data_container *data; | 
|  | 2208 | size_t alloc_bytes; | 
|  | 2209 |  | 
|  | 2210 | alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); | 
|  | 2211 | data = kvmalloc(alloc_bytes, GFP_KERNEL); | 
|  | 2212 | if (!data) | 
|  | 2213 | return ERR_PTR(-ENOMEM); | 
|  | 2214 |  | 
|  | 2215 | if (total_bytes >= sizeof(*data)) { | 
|  | 2216 | data->bytes_left = total_bytes - sizeof(*data); | 
|  | 2217 | data->bytes_missing = 0; | 
|  | 2218 | } else { | 
|  | 2219 | data->bytes_missing = sizeof(*data) - total_bytes; | 
|  | 2220 | data->bytes_left = 0; | 
|  | 2221 | } | 
|  | 2222 |  | 
|  | 2223 | data->elem_cnt = 0; | 
|  | 2224 | data->elem_missed = 0; | 
|  | 2225 |  | 
|  | 2226 | return data; | 
|  | 2227 | } | 
|  | 2228 |  | 
|  | 2229 | /* | 
|  | 2230 | * allocates space to return multiple file system paths for an inode. | 
|  | 2231 | * total_bytes to allocate are passed, note that space usable for actual path | 
|  | 2232 | * information will be total_bytes - sizeof(struct inode_fs_paths). | 
|  | 2233 | * the returned pointer must be freed with free_ipath() in the end. | 
|  | 2234 | */ | 
|  | 2235 | struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, | 
|  | 2236 | struct btrfs_path *path) | 
|  | 2237 | { | 
|  | 2238 | struct inode_fs_paths *ifp; | 
|  | 2239 | struct btrfs_data_container *fspath; | 
|  | 2240 |  | 
|  | 2241 | fspath = init_data_container(total_bytes); | 
|  | 2242 | if (IS_ERR(fspath)) | 
|  | 2243 | return ERR_CAST(fspath); | 
|  | 2244 |  | 
|  | 2245 | ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); | 
|  | 2246 | if (!ifp) { | 
|  | 2247 | kvfree(fspath); | 
|  | 2248 | return ERR_PTR(-ENOMEM); | 
|  | 2249 | } | 
|  | 2250 |  | 
|  | 2251 | ifp->btrfs_path = path; | 
|  | 2252 | ifp->fspath = fspath; | 
|  | 2253 | ifp->fs_root = fs_root; | 
|  | 2254 |  | 
|  | 2255 | return ifp; | 
|  | 2256 | } | 
|  | 2257 |  | 
|  | 2258 | void free_ipath(struct inode_fs_paths *ipath) | 
|  | 2259 | { | 
|  | 2260 | if (!ipath) | 
|  | 2261 | return; | 
|  | 2262 | kvfree(ipath->fspath); | 
|  | 2263 | kfree(ipath); | 
|  | 2264 | } |