| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family | 
 | 3 |  * | 
 | 4 |  * Copyright (c) 2014-2015 Takashi Sakamoto | 
 | 5 |  * Copyright (C) 2012 Robin Gareus <robin@gareus.org> | 
 | 6 |  * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com> | 
 | 7 |  * | 
 | 8 |  * Licensed under the terms of the GNU General Public License, version 2. | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #include <sound/pcm.h> | 
 | 12 | #include "digi00x.h" | 
 | 13 |  | 
 | 14 | #define CIP_FMT_AM		0x10 | 
 | 15 |  | 
 | 16 | /* 'Clock-based rate control mode' is just supported. */ | 
 | 17 | #define AMDTP_FDF_AM824		0x00 | 
 | 18 |  | 
 | 19 | /* | 
 | 20 |  * Nominally 3125 bytes/second, but the MIDI port's clock might be | 
 | 21 |  * 1% too slow, and the bus clock 100 ppm too fast. | 
 | 22 |  */ | 
 | 23 | #define MIDI_BYTES_PER_SECOND	3093 | 
 | 24 |  | 
 | 25 | /* | 
 | 26 |  * Several devices look only at the first eight data blocks. | 
 | 27 |  * In any case, this is more than enough for the MIDI data rate. | 
 | 28 |  */ | 
 | 29 | #define MAX_MIDI_RX_BLOCKS	8 | 
 | 30 |  | 
 | 31 | /* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */ | 
 | 32 | #define MAX_MIDI_PORTS		3 | 
 | 33 |  | 
 | 34 | /* | 
 | 35 |  * The double-oh-three algorithm was discovered by Robin Gareus and Damien | 
 | 36 |  * Zammit in 2012, with reverse-engineering for Digi 003 Rack. | 
 | 37 |  */ | 
 | 38 | struct dot_state { | 
 | 39 | 	u8 carry; | 
 | 40 | 	u8 idx; | 
 | 41 | 	unsigned int off; | 
 | 42 | }; | 
 | 43 |  | 
 | 44 | struct amdtp_dot { | 
 | 45 | 	unsigned int pcm_channels; | 
 | 46 | 	struct dot_state state; | 
 | 47 |  | 
 | 48 | 	struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS]; | 
 | 49 | 	int midi_fifo_used[MAX_MIDI_PORTS]; | 
 | 50 | 	int midi_fifo_limit; | 
 | 51 | }; | 
 | 52 |  | 
 | 53 | /* | 
 | 54 |  * double-oh-three look up table | 
 | 55 |  * | 
 | 56 |  * @param idx index byte (audio-sample data) 0x00..0xff | 
 | 57 |  * @param off channel offset shift | 
 | 58 |  * @return salt to XOR with given data | 
 | 59 |  */ | 
 | 60 | #define BYTE_PER_SAMPLE (4) | 
 | 61 | #define MAGIC_DOT_BYTE (2) | 
 | 62 | #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE) | 
 | 63 | static u8 dot_scrt(const u8 idx, const unsigned int off) | 
 | 64 | { | 
 | 65 | 	/* | 
 | 66 | 	 * the length of the added pattern only depends on the lower nibble | 
 | 67 | 	 * of the last non-zero data | 
 | 68 | 	 */ | 
 | 69 | 	static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14, | 
 | 70 | 				   12, 10, 8, 6, 4, 2, 0}; | 
 | 71 |  | 
 | 72 | 	/* | 
 | 73 | 	 * the lower nibble of the salt. Interleaved sequence. | 
 | 74 | 	 * this is walked backwards according to len[] | 
 | 75 | 	 */ | 
 | 76 | 	static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4, | 
 | 77 | 				   0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf}; | 
 | 78 |  | 
 | 79 | 	/* circular list for the salt's hi nibble. */ | 
 | 80 | 	static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4, | 
 | 81 | 				   0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa}; | 
 | 82 |  | 
 | 83 | 	/* | 
 | 84 | 	 * start offset for upper nibble mapping. | 
 | 85 | 	 * note: 9 is /special/. In the case where the high nibble == 0x9, | 
 | 86 | 	 * hir[] is not used and - coincidentally - the salt's hi nibble is | 
 | 87 | 	 * 0x09 regardless of the offset. | 
 | 88 | 	 */ | 
 | 89 | 	static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4, | 
 | 90 | 				   3, 0x00, 14, 13, 8, 9, 10, 2}; | 
 | 91 |  | 
 | 92 | 	const u8 ln = idx & 0xf; | 
 | 93 | 	const u8 hn = (idx >> 4) & 0xf; | 
 | 94 | 	const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15]; | 
 | 95 |  | 
 | 96 | 	if (len[ln] < off) | 
 | 97 | 		return 0x00; | 
 | 98 |  | 
 | 99 | 	return ((nib[14 + off - len[ln]]) | (hr << 4)); | 
 | 100 | } | 
 | 101 |  | 
 | 102 | static void dot_encode_step(struct dot_state *state, __be32 *const buffer) | 
 | 103 | { | 
 | 104 | 	u8 * const data = (u8 *) buffer; | 
 | 105 |  | 
 | 106 | 	if (data[MAGIC_DOT_BYTE] != 0x00) { | 
 | 107 | 		state->off = 0; | 
 | 108 | 		state->idx = data[MAGIC_DOT_BYTE] ^ state->carry; | 
 | 109 | 	} | 
 | 110 | 	data[MAGIC_DOT_BYTE] ^= state->carry; | 
 | 111 | 	state->carry = dot_scrt(state->idx, ++(state->off)); | 
 | 112 | } | 
 | 113 |  | 
 | 114 | int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate, | 
 | 115 | 			     unsigned int pcm_channels) | 
 | 116 | { | 
 | 117 | 	struct amdtp_dot *p = s->protocol; | 
 | 118 | 	int err; | 
 | 119 |  | 
 | 120 | 	if (amdtp_stream_running(s)) | 
 | 121 | 		return -EBUSY; | 
 | 122 |  | 
 | 123 | 	/* | 
 | 124 | 	 * A first data channel is for MIDI messages, the rest is Multi Bit | 
 | 125 | 	 * Linear Audio data channel. | 
 | 126 | 	 */ | 
 | 127 | 	err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1); | 
 | 128 | 	if (err < 0) | 
 | 129 | 		return err; | 
 | 130 |  | 
 | 131 | 	s->fdf = AMDTP_FDF_AM824 | s->sfc; | 
 | 132 |  | 
 | 133 | 	p->pcm_channels = pcm_channels; | 
 | 134 |  | 
 | 135 | 	/* | 
 | 136 | 	 * We do not know the actual MIDI FIFO size of most devices.  Just | 
 | 137 | 	 * assume two bytes, i.e., one byte can be received over the bus while | 
 | 138 | 	 * the previous one is transmitted over MIDI. | 
 | 139 | 	 * (The value here is adjusted for midi_ratelimit_per_packet().) | 
 | 140 | 	 */ | 
 | 141 | 	p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1; | 
 | 142 |  | 
 | 143 | 	return 0; | 
 | 144 | } | 
 | 145 |  | 
 | 146 | static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, | 
 | 147 | 			  __be32 *buffer, unsigned int frames) | 
 | 148 | { | 
 | 149 | 	struct amdtp_dot *p = s->protocol; | 
 | 150 | 	struct snd_pcm_runtime *runtime = pcm->runtime; | 
 | 151 | 	unsigned int channels, remaining_frames, i, c; | 
 | 152 | 	const u32 *src; | 
 | 153 |  | 
 | 154 | 	channels = p->pcm_channels; | 
 | 155 | 	src = (void *)runtime->dma_area + | 
 | 156 | 			frames_to_bytes(runtime, s->pcm_buffer_pointer); | 
 | 157 | 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; | 
 | 158 |  | 
 | 159 | 	buffer++; | 
 | 160 | 	for (i = 0; i < frames; ++i) { | 
 | 161 | 		for (c = 0; c < channels; ++c) { | 
 | 162 | 			buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000); | 
 | 163 | 			dot_encode_step(&p->state, &buffer[c]); | 
 | 164 | 			src++; | 
 | 165 | 		} | 
 | 166 | 		buffer += s->data_block_quadlets; | 
 | 167 | 		if (--remaining_frames == 0) | 
 | 168 | 			src = (void *)runtime->dma_area; | 
 | 169 | 	} | 
 | 170 | } | 
 | 171 |  | 
 | 172 | static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, | 
 | 173 | 			 __be32 *buffer, unsigned int frames) | 
 | 174 | { | 
 | 175 | 	struct amdtp_dot *p = s->protocol; | 
 | 176 | 	struct snd_pcm_runtime *runtime = pcm->runtime; | 
 | 177 | 	unsigned int channels, remaining_frames, i, c; | 
 | 178 | 	u32 *dst; | 
 | 179 |  | 
 | 180 | 	channels = p->pcm_channels; | 
 | 181 | 	dst  = (void *)runtime->dma_area + | 
 | 182 | 			frames_to_bytes(runtime, s->pcm_buffer_pointer); | 
 | 183 | 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; | 
 | 184 |  | 
 | 185 | 	buffer++; | 
 | 186 | 	for (i = 0; i < frames; ++i) { | 
 | 187 | 		for (c = 0; c < channels; ++c) { | 
 | 188 | 			*dst = be32_to_cpu(buffer[c]) << 8; | 
 | 189 | 			dst++; | 
 | 190 | 		} | 
 | 191 | 		buffer += s->data_block_quadlets; | 
 | 192 | 		if (--remaining_frames == 0) | 
 | 193 | 			dst = (void *)runtime->dma_area; | 
 | 194 | 	} | 
 | 195 | } | 
 | 196 |  | 
 | 197 | static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer, | 
 | 198 | 			      unsigned int data_blocks) | 
 | 199 | { | 
 | 200 | 	struct amdtp_dot *p = s->protocol; | 
 | 201 | 	unsigned int channels, i, c; | 
 | 202 |  | 
 | 203 | 	channels = p->pcm_channels; | 
 | 204 |  | 
 | 205 | 	buffer++; | 
 | 206 | 	for (i = 0; i < data_blocks; ++i) { | 
 | 207 | 		for (c = 0; c < channels; ++c) | 
 | 208 | 			buffer[c] = cpu_to_be32(0x40000000); | 
 | 209 | 		buffer += s->data_block_quadlets; | 
 | 210 | 	} | 
 | 211 | } | 
 | 212 |  | 
 | 213 | static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port) | 
 | 214 | { | 
 | 215 | 	struct amdtp_dot *p = s->protocol; | 
 | 216 | 	int used; | 
 | 217 |  | 
 | 218 | 	used = p->midi_fifo_used[port]; | 
 | 219 | 	if (used == 0) | 
 | 220 | 		return true; | 
 | 221 |  | 
 | 222 | 	used -= MIDI_BYTES_PER_SECOND * s->syt_interval; | 
 | 223 | 	used = max(used, 0); | 
 | 224 | 	p->midi_fifo_used[port] = used; | 
 | 225 |  | 
 | 226 | 	return used < p->midi_fifo_limit; | 
 | 227 | } | 
 | 228 |  | 
 | 229 | static inline void midi_use_bytes(struct amdtp_stream *s, | 
 | 230 | 				  unsigned int port, unsigned int count) | 
 | 231 | { | 
 | 232 | 	struct amdtp_dot *p = s->protocol; | 
 | 233 |  | 
 | 234 | 	p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count; | 
 | 235 | } | 
 | 236 |  | 
 | 237 | static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer, | 
 | 238 | 				unsigned int data_blocks) | 
 | 239 | { | 
 | 240 | 	struct amdtp_dot *p = s->protocol; | 
 | 241 | 	unsigned int f, port; | 
 | 242 | 	int len; | 
 | 243 | 	u8 *b; | 
 | 244 |  | 
 | 245 | 	for (f = 0; f < data_blocks; f++) { | 
 | 246 | 		port = (s->data_block_counter + f) % 8; | 
 | 247 | 		b = (u8 *)&buffer[0]; | 
 | 248 |  | 
 | 249 | 		len = 0; | 
 | 250 | 		if (port < MAX_MIDI_PORTS && | 
 | 251 | 		    midi_ratelimit_per_packet(s, port) && | 
 | 252 | 		    p->midi[port] != NULL) | 
 | 253 | 			len = snd_rawmidi_transmit(p->midi[port], b + 1, 2); | 
 | 254 |  | 
 | 255 | 		if (len > 0) { | 
 | 256 | 			/* | 
 | 257 | 			 * Upper 4 bits of LSB represent port number. | 
 | 258 | 			 * - 0000b: physical MIDI port 1. | 
 | 259 | 			 * - 0010b: physical MIDI port 2. | 
 | 260 | 			 * - 1110b: console MIDI port. | 
 | 261 | 			 */ | 
 | 262 | 			if (port == 2) | 
 | 263 | 				b[3] = 0xe0; | 
 | 264 | 			else if (port == 1) | 
 | 265 | 				b[3] = 0x20; | 
 | 266 | 			else | 
 | 267 | 				b[3] = 0x00; | 
 | 268 | 			b[3] |= len; | 
 | 269 | 			midi_use_bytes(s, port, len); | 
 | 270 | 		} else { | 
 | 271 | 			b[1] = 0; | 
 | 272 | 			b[2] = 0; | 
 | 273 | 			b[3] = 0; | 
 | 274 | 		} | 
 | 275 | 		b[0] = 0x80; | 
 | 276 |  | 
 | 277 | 		buffer += s->data_block_quadlets; | 
 | 278 | 	} | 
 | 279 | } | 
 | 280 |  | 
 | 281 | static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer, | 
 | 282 | 			       unsigned int data_blocks) | 
 | 283 | { | 
 | 284 | 	struct amdtp_dot *p = s->protocol; | 
 | 285 | 	unsigned int f, port, len; | 
 | 286 | 	u8 *b; | 
 | 287 |  | 
 | 288 | 	for (f = 0; f < data_blocks; f++) { | 
 | 289 | 		b = (u8 *)&buffer[0]; | 
 | 290 |  | 
 | 291 | 		len = b[3] & 0x0f; | 
 | 292 | 		if (len > 0) { | 
 | 293 | 			/* | 
 | 294 | 			 * Upper 4 bits of LSB represent port number. | 
 | 295 | 			 * - 0000b: physical MIDI port 1. Use port 0. | 
 | 296 | 			 * - 1110b: console MIDI port. Use port 2. | 
 | 297 | 			 */ | 
 | 298 | 			if (b[3] >> 4 > 0) | 
 | 299 | 				port = 2; | 
 | 300 | 			else | 
 | 301 | 				port = 0; | 
 | 302 |  | 
 | 303 | 			if (port < MAX_MIDI_PORTS && p->midi[port]) | 
 | 304 | 				snd_rawmidi_receive(p->midi[port], b + 1, len); | 
 | 305 | 		} | 
 | 306 |  | 
 | 307 | 		buffer += s->data_block_quadlets; | 
 | 308 | 	} | 
 | 309 | } | 
 | 310 |  | 
 | 311 | int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s, | 
 | 312 | 				     struct snd_pcm_runtime *runtime) | 
 | 313 | { | 
 | 314 | 	int err; | 
 | 315 |  | 
 | 316 | 	/* This protocol delivers 24 bit data in 32bit data channel. */ | 
 | 317 | 	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); | 
 | 318 | 	if (err < 0) | 
 | 319 | 		return err; | 
 | 320 |  | 
 | 321 | 	return amdtp_stream_add_pcm_hw_constraints(s, runtime); | 
 | 322 | } | 
 | 323 |  | 
 | 324 | void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port, | 
 | 325 | 			  struct snd_rawmidi_substream *midi) | 
 | 326 | { | 
 | 327 | 	struct amdtp_dot *p = s->protocol; | 
 | 328 |  | 
 | 329 | 	if (port < MAX_MIDI_PORTS) | 
 | 330 | 		WRITE_ONCE(p->midi[port], midi); | 
 | 331 | } | 
 | 332 |  | 
 | 333 | static unsigned int process_tx_data_blocks(struct amdtp_stream *s, | 
 | 334 | 					   __be32 *buffer, | 
 | 335 | 					   unsigned int data_blocks, | 
 | 336 | 					   unsigned int *syt) | 
 | 337 | { | 
 | 338 | 	struct snd_pcm_substream *pcm; | 
 | 339 | 	unsigned int pcm_frames; | 
 | 340 |  | 
 | 341 | 	pcm = READ_ONCE(s->pcm); | 
 | 342 | 	if (pcm) { | 
 | 343 | 		read_pcm_s32(s, pcm, buffer, data_blocks); | 
 | 344 | 		pcm_frames = data_blocks; | 
 | 345 | 	} else { | 
 | 346 | 		pcm_frames = 0; | 
 | 347 | 	} | 
 | 348 |  | 
 | 349 | 	read_midi_messages(s, buffer, data_blocks); | 
 | 350 |  | 
 | 351 | 	return pcm_frames; | 
 | 352 | } | 
 | 353 |  | 
 | 354 | static unsigned int process_rx_data_blocks(struct amdtp_stream *s, | 
 | 355 | 					   __be32 *buffer, | 
 | 356 | 					   unsigned int data_blocks, | 
 | 357 | 					   unsigned int *syt) | 
 | 358 | { | 
 | 359 | 	struct snd_pcm_substream *pcm; | 
 | 360 | 	unsigned int pcm_frames; | 
 | 361 |  | 
 | 362 | 	pcm = READ_ONCE(s->pcm); | 
 | 363 | 	if (pcm) { | 
 | 364 | 		write_pcm_s32(s, pcm, buffer, data_blocks); | 
 | 365 | 		pcm_frames = data_blocks; | 
 | 366 | 	} else { | 
 | 367 | 		write_pcm_silence(s, buffer, data_blocks); | 
 | 368 | 		pcm_frames = 0; | 
 | 369 | 	} | 
 | 370 |  | 
 | 371 | 	write_midi_messages(s, buffer, data_blocks); | 
 | 372 |  | 
 | 373 | 	return pcm_frames; | 
 | 374 | } | 
 | 375 |  | 
 | 376 | int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit, | 
 | 377 | 		 enum amdtp_stream_direction dir) | 
 | 378 | { | 
 | 379 | 	amdtp_stream_process_data_blocks_t process_data_blocks; | 
 | 380 | 	enum cip_flags flags; | 
 | 381 |  | 
 | 382 | 	/* Use different mode between incoming/outgoing. */ | 
 | 383 | 	if (dir == AMDTP_IN_STREAM) { | 
 | 384 | 		flags = CIP_NONBLOCKING; | 
 | 385 | 		process_data_blocks = process_tx_data_blocks; | 
 | 386 | 	} else { | 
 | 387 | 		flags = CIP_BLOCKING; | 
 | 388 | 		process_data_blocks = process_rx_data_blocks; | 
 | 389 | 	} | 
 | 390 |  | 
 | 391 | 	return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM, | 
 | 392 | 				 process_data_blocks, sizeof(struct amdtp_dot)); | 
 | 393 | } | 
 | 394 |  | 
 | 395 | void amdtp_dot_reset(struct amdtp_stream *s) | 
 | 396 | { | 
 | 397 | 	struct amdtp_dot *p = s->protocol; | 
 | 398 |  | 
 | 399 | 	p->state.carry = 0x00; | 
 | 400 | 	p->state.idx = 0x00; | 
 | 401 | 	p->state.off = 0; | 
 | 402 | } |