blob: 2b2a936cf8480c57e2fa4525ec6b540817ac5af6 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * gendisk handling
3 */
4
5#include <linux/module.h>
6#include <linux/fs.h>
7#include <linux/genhd.h>
8#include <linux/kdev_t.h>
9#include <linux/kernel.h>
10#include <linux/blkdev.h>
11#include <linux/backing-dev.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
14#include <linux/proc_fs.h>
15#include <linux/seq_file.h>
16#include <linux/slab.h>
17#include <linux/kmod.h>
18#include <linux/kobj_map.h>
19#include <linux/mutex.h>
20#include <linux/idr.h>
21#include <linux/log2.h>
22#include <linux/pm_runtime.h>
23#include <linux/badblocks.h>
24
25#include "blk.h"
26
27static DEFINE_MUTEX(block_class_lock);
28struct kobject *block_depr;
29
30/* for extended dynamic devt allocation, currently only one major is used */
31#define NR_EXT_DEVT (1 << MINORBITS)
32
33/* For extended devt allocation. ext_devt_lock prevents look up
34 * results from going away underneath its user.
35 */
36static DEFINE_SPINLOCK(ext_devt_lock);
37static DEFINE_IDR(ext_devt_idr);
38
39static const struct device_type disk_type;
40
41static void disk_check_events(struct disk_events *ev,
42 unsigned int *clearing_ptr);
43static void disk_alloc_events(struct gendisk *disk);
44static void disk_add_events(struct gendisk *disk);
45static void disk_del_events(struct gendisk *disk);
46static void disk_release_events(struct gendisk *disk);
47
48void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49{
50 if (q->mq_ops)
51 return;
52
53 atomic_inc(&part->in_flight[rw]);
54 if (part->partno)
55 atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56}
57
58void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59{
60 if (q->mq_ops)
61 return;
62
63 atomic_dec(&part->in_flight[rw]);
64 if (part->partno)
65 atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66}
67
68void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 unsigned int inflight[2])
70{
71 if (q->mq_ops) {
72 blk_mq_in_flight(q, part, inflight);
73 return;
74 }
75
76 inflight[0] = atomic_read(&part->in_flight[0]) +
77 atomic_read(&part->in_flight[1]);
78 if (part->partno) {
79 part = &part_to_disk(part)->part0;
80 inflight[1] = atomic_read(&part->in_flight[0]) +
81 atomic_read(&part->in_flight[1]);
82 }
83}
84
85void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
86 unsigned int inflight[2])
87{
88 if (q->mq_ops) {
89 blk_mq_in_flight_rw(q, part, inflight);
90 return;
91 }
92
93 inflight[0] = atomic_read(&part->in_flight[0]);
94 inflight[1] = atomic_read(&part->in_flight[1]);
95}
96
97struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
98{
99 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
100
101 if (unlikely(partno < 0 || partno >= ptbl->len))
102 return NULL;
103 return rcu_dereference(ptbl->part[partno]);
104}
105
106/**
107 * disk_get_part - get partition
108 * @disk: disk to look partition from
109 * @partno: partition number
110 *
111 * Look for partition @partno from @disk. If found, increment
112 * reference count and return it.
113 *
114 * CONTEXT:
115 * Don't care.
116 *
117 * RETURNS:
118 * Pointer to the found partition on success, NULL if not found.
119 */
120struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
121{
122 struct hd_struct *part;
123
124 rcu_read_lock();
125 part = __disk_get_part(disk, partno);
126 if (part)
127 get_device(part_to_dev(part));
128 rcu_read_unlock();
129
130 return part;
131}
132EXPORT_SYMBOL_GPL(disk_get_part);
133
134/**
135 * disk_part_iter_init - initialize partition iterator
136 * @piter: iterator to initialize
137 * @disk: disk to iterate over
138 * @flags: DISK_PITER_* flags
139 *
140 * Initialize @piter so that it iterates over partitions of @disk.
141 *
142 * CONTEXT:
143 * Don't care.
144 */
145void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
146 unsigned int flags)
147{
148 struct disk_part_tbl *ptbl;
149
150 rcu_read_lock();
151 ptbl = rcu_dereference(disk->part_tbl);
152
153 piter->disk = disk;
154 piter->part = NULL;
155
156 if (flags & DISK_PITER_REVERSE)
157 piter->idx = ptbl->len - 1;
158 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
159 piter->idx = 0;
160 else
161 piter->idx = 1;
162
163 piter->flags = flags;
164
165 rcu_read_unlock();
166}
167EXPORT_SYMBOL_GPL(disk_part_iter_init);
168
169/**
170 * disk_part_iter_next - proceed iterator to the next partition and return it
171 * @piter: iterator of interest
172 *
173 * Proceed @piter to the next partition and return it.
174 *
175 * CONTEXT:
176 * Don't care.
177 */
178struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
179{
180 struct disk_part_tbl *ptbl;
181 int inc, end;
182
183 /* put the last partition */
184 disk_put_part(piter->part);
185 piter->part = NULL;
186
187 /* get part_tbl */
188 rcu_read_lock();
189 ptbl = rcu_dereference(piter->disk->part_tbl);
190
191 /* determine iteration parameters */
192 if (piter->flags & DISK_PITER_REVERSE) {
193 inc = -1;
194 if (piter->flags & (DISK_PITER_INCL_PART0 |
195 DISK_PITER_INCL_EMPTY_PART0))
196 end = -1;
197 else
198 end = 0;
199 } else {
200 inc = 1;
201 end = ptbl->len;
202 }
203
204 /* iterate to the next partition */
205 for (; piter->idx != end; piter->idx += inc) {
206 struct hd_struct *part;
207
208 part = rcu_dereference(ptbl->part[piter->idx]);
209 if (!part)
210 continue;
211 if (!part_nr_sects_read(part) &&
212 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
213 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
214 piter->idx == 0))
215 continue;
216
217 get_device(part_to_dev(part));
218 piter->part = part;
219 piter->idx += inc;
220 break;
221 }
222
223 rcu_read_unlock();
224
225 return piter->part;
226}
227EXPORT_SYMBOL_GPL(disk_part_iter_next);
228
229/**
230 * disk_part_iter_exit - finish up partition iteration
231 * @piter: iter of interest
232 *
233 * Called when iteration is over. Cleans up @piter.
234 *
235 * CONTEXT:
236 * Don't care.
237 */
238void disk_part_iter_exit(struct disk_part_iter *piter)
239{
240 disk_put_part(piter->part);
241 piter->part = NULL;
242}
243EXPORT_SYMBOL_GPL(disk_part_iter_exit);
244
245static inline int sector_in_part(struct hd_struct *part, sector_t sector)
246{
247 return part->start_sect <= sector &&
248 sector < part->start_sect + part_nr_sects_read(part);
249}
250
251/**
252 * disk_map_sector_rcu - map sector to partition
253 * @disk: gendisk of interest
254 * @sector: sector to map
255 *
256 * Find out which partition @sector maps to on @disk. This is
257 * primarily used for stats accounting.
258 *
259 * CONTEXT:
260 * RCU read locked. The returned partition pointer is valid only
261 * while preemption is disabled.
262 *
263 * RETURNS:
264 * Found partition on success, part0 is returned if no partition matches
265 */
266struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
267{
268 struct disk_part_tbl *ptbl;
269 struct hd_struct *part;
270 int i;
271
272 ptbl = rcu_dereference(disk->part_tbl);
273
274 part = rcu_dereference(ptbl->last_lookup);
275 if (part && sector_in_part(part, sector))
276 return part;
277
278 for (i = 1; i < ptbl->len; i++) {
279 part = rcu_dereference(ptbl->part[i]);
280
281 if (part && sector_in_part(part, sector)) {
282 rcu_assign_pointer(ptbl->last_lookup, part);
283 return part;
284 }
285 }
286 return &disk->part0;
287}
288EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
289
290/*
291 * Can be deleted altogether. Later.
292 *
293 */
294#define BLKDEV_MAJOR_HASH_SIZE 255
295static struct blk_major_name {
296 struct blk_major_name *next;
297 int major;
298 char name[16];
299} *major_names[BLKDEV_MAJOR_HASH_SIZE];
300
301/* index in the above - for now: assume no multimajor ranges */
302static inline int major_to_index(unsigned major)
303{
304 return major % BLKDEV_MAJOR_HASH_SIZE;
305}
306
307#ifdef CONFIG_PROC_FS
308void blkdev_show(struct seq_file *seqf, off_t offset)
309{
310 struct blk_major_name *dp;
311
312 mutex_lock(&block_class_lock);
313 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
314 if (dp->major == offset)
315 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
316 mutex_unlock(&block_class_lock);
317}
318#endif /* CONFIG_PROC_FS */
319
320/**
321 * register_blkdev - register a new block device
322 *
323 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
324 * @major = 0, try to allocate any unused major number.
325 * @name: the name of the new block device as a zero terminated string
326 *
327 * The @name must be unique within the system.
328 *
329 * The return value depends on the @major input parameter:
330 *
331 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
332 * then the function returns zero on success, or a negative error code
333 * - if any unused major number was requested with @major = 0 parameter
334 * then the return value is the allocated major number in range
335 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
336 *
337 * See Documentation/admin-guide/devices.txt for the list of allocated
338 * major numbers.
339 */
340int register_blkdev(unsigned int major, const char *name)
341{
342 struct blk_major_name **n, *p;
343 int index, ret = 0;
344
345 mutex_lock(&block_class_lock);
346
347 /* temporary */
348 if (major == 0) {
349 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
350 if (major_names[index] == NULL)
351 break;
352 }
353
354 if (index == 0) {
355 printk("register_blkdev: failed to get major for %s\n",
356 name);
357 ret = -EBUSY;
358 goto out;
359 }
360 major = index;
361 ret = major;
362 }
363
364 if (major >= BLKDEV_MAJOR_MAX) {
365 pr_err("register_blkdev: major requested (%u) is greater than the maximum (%u) for %s\n",
366 major, BLKDEV_MAJOR_MAX-1, name);
367
368 ret = -EINVAL;
369 goto out;
370 }
371
372 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
373 if (p == NULL) {
374 ret = -ENOMEM;
375 goto out;
376 }
377
378 p->major = major;
379 strlcpy(p->name, name, sizeof(p->name));
380 p->next = NULL;
381 index = major_to_index(major);
382
383 for (n = &major_names[index]; *n; n = &(*n)->next) {
384 if ((*n)->major == major)
385 break;
386 }
387 if (!*n)
388 *n = p;
389 else
390 ret = -EBUSY;
391
392 if (ret < 0) {
393 printk("register_blkdev: cannot get major %u for %s\n",
394 major, name);
395 kfree(p);
396 }
397out:
398 mutex_unlock(&block_class_lock);
399 return ret;
400}
401
402EXPORT_SYMBOL(register_blkdev);
403
404void unregister_blkdev(unsigned int major, const char *name)
405{
406 struct blk_major_name **n;
407 struct blk_major_name *p = NULL;
408 int index = major_to_index(major);
409
410 mutex_lock(&block_class_lock);
411 for (n = &major_names[index]; *n; n = &(*n)->next)
412 if ((*n)->major == major)
413 break;
414 if (!*n || strcmp((*n)->name, name)) {
415 WARN_ON(1);
416 } else {
417 p = *n;
418 *n = p->next;
419 }
420 mutex_unlock(&block_class_lock);
421 kfree(p);
422}
423
424EXPORT_SYMBOL(unregister_blkdev);
425
426static struct kobj_map *bdev_map;
427
428/**
429 * blk_mangle_minor - scatter minor numbers apart
430 * @minor: minor number to mangle
431 *
432 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
433 * is enabled. Mangling twice gives the original value.
434 *
435 * RETURNS:
436 * Mangled value.
437 *
438 * CONTEXT:
439 * Don't care.
440 */
441static int blk_mangle_minor(int minor)
442{
443#ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
444 int i;
445
446 for (i = 0; i < MINORBITS / 2; i++) {
447 int low = minor & (1 << i);
448 int high = minor & (1 << (MINORBITS - 1 - i));
449 int distance = MINORBITS - 1 - 2 * i;
450
451 minor ^= low | high; /* clear both bits */
452 low <<= distance; /* swap the positions */
453 high >>= distance;
454 minor |= low | high; /* and set */
455 }
456#endif
457 return minor;
458}
459
460/**
461 * blk_alloc_devt - allocate a dev_t for a partition
462 * @part: partition to allocate dev_t for
463 * @devt: out parameter for resulting dev_t
464 *
465 * Allocate a dev_t for block device.
466 *
467 * RETURNS:
468 * 0 on success, allocated dev_t is returned in *@devt. -errno on
469 * failure.
470 *
471 * CONTEXT:
472 * Might sleep.
473 */
474int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
475{
476 struct gendisk *disk = part_to_disk(part);
477 int idx;
478
479 /* in consecutive minor range? */
480 if (part->partno < disk->minors) {
481 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
482 return 0;
483 }
484
485 /* allocate ext devt */
486 idr_preload(GFP_KERNEL);
487
488 spin_lock_bh(&ext_devt_lock);
489 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
490 spin_unlock_bh(&ext_devt_lock);
491
492 idr_preload_end();
493 if (idx < 0)
494 return idx == -ENOSPC ? -EBUSY : idx;
495
496 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
497 return 0;
498}
499
500/**
501 * blk_free_devt - free a dev_t
502 * @devt: dev_t to free
503 *
504 * Free @devt which was allocated using blk_alloc_devt().
505 *
506 * CONTEXT:
507 * Might sleep.
508 */
509void blk_free_devt(dev_t devt)
510{
511 if (devt == MKDEV(0, 0))
512 return;
513
514 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
515 spin_lock_bh(&ext_devt_lock);
516 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
517 spin_unlock_bh(&ext_devt_lock);
518 }
519}
520
521/**
522 * We invalidate devt by assigning NULL pointer for devt in idr.
523 */
524void blk_invalidate_devt(dev_t devt)
525{
526 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
527 spin_lock_bh(&ext_devt_lock);
528 idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
529 spin_unlock_bh(&ext_devt_lock);
530 }
531}
532
533static char *bdevt_str(dev_t devt, char *buf)
534{
535 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
536 char tbuf[BDEVT_SIZE];
537 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
538 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
539 } else
540 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
541
542 return buf;
543}
544
545/*
546 * Register device numbers dev..(dev+range-1)
547 * range must be nonzero
548 * The hash chain is sorted on range, so that subranges can override.
549 */
550void blk_register_region(dev_t devt, unsigned long range, struct module *module,
551 struct kobject *(*probe)(dev_t, int *, void *),
552 int (*lock)(dev_t, void *), void *data)
553{
554 kobj_map(bdev_map, devt, range, module, probe, lock, data);
555}
556
557EXPORT_SYMBOL(blk_register_region);
558
559void blk_unregister_region(dev_t devt, unsigned long range)
560{
561 kobj_unmap(bdev_map, devt, range);
562}
563
564EXPORT_SYMBOL(blk_unregister_region);
565
566static struct kobject *exact_match(dev_t devt, int *partno, void *data)
567{
568 struct gendisk *p = data;
569
570 return &disk_to_dev(p)->kobj;
571}
572
573static int exact_lock(dev_t devt, void *data)
574{
575 struct gendisk *p = data;
576
577 if (!get_disk_and_module(p))
578 return -1;
579 return 0;
580}
581
582static void register_disk(struct device *parent, struct gendisk *disk)
583{
584 struct device *ddev = disk_to_dev(disk);
585 struct block_device *bdev;
586 struct disk_part_iter piter;
587 struct hd_struct *part;
588 int err;
589
590 ddev->parent = parent;
591
592 dev_set_name(ddev, "%s", disk->disk_name);
593
594 /* delay uevents, until we scanned partition table */
595 dev_set_uevent_suppress(ddev, 1);
596
597 if (device_add(ddev))
598 return;
599 if (!sysfs_deprecated) {
600 err = sysfs_create_link(block_depr, &ddev->kobj,
601 kobject_name(&ddev->kobj));
602 if (err) {
603 device_del(ddev);
604 return;
605 }
606 }
607
608 /*
609 * avoid probable deadlock caused by allocating memory with
610 * GFP_KERNEL in runtime_resume callback of its all ancestor
611 * devices
612 */
613 pm_runtime_set_memalloc_noio(ddev, true);
614
615 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
616 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
617
618 if (disk->flags & GENHD_FL_HIDDEN) {
619 dev_set_uevent_suppress(ddev, 0);
620 return;
621 }
622
623 /* No minors to use for partitions */
624 if (!disk_part_scan_enabled(disk))
625 goto exit;
626
627 /* No such device (e.g., media were just removed) */
628 if (!get_capacity(disk))
629 goto exit;
630
631 bdev = bdget_disk(disk, 0);
632 if (!bdev)
633 goto exit;
634
635 bdev->bd_invalidated = 1;
636 err = blkdev_get(bdev, FMODE_READ, NULL);
637 if (err < 0)
638 goto exit;
639 blkdev_put(bdev, FMODE_READ);
640
641exit:
642 /* announce disk after possible partitions are created */
643 dev_set_uevent_suppress(ddev, 0);
644 kobject_uevent(&ddev->kobj, KOBJ_ADD);
645
646 /* announce possible partitions */
647 disk_part_iter_init(&piter, disk, 0);
648 while ((part = disk_part_iter_next(&piter)))
649 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
650 disk_part_iter_exit(&piter);
651
652 err = sysfs_create_link(&ddev->kobj,
653 &disk->queue->backing_dev_info->dev->kobj,
654 "bdi");
655 WARN_ON(err);
656}
657
658/**
659 * __device_add_disk - add disk information to kernel list
660 * @parent: parent device for the disk
661 * @disk: per-device partitioning information
662 * @register_queue: register the queue if set to true
663 *
664 * This function registers the partitioning information in @disk
665 * with the kernel.
666 *
667 * FIXME: error handling
668 */
669static void __device_add_disk(struct device *parent, struct gendisk *disk,
670 bool register_queue)
671{
672 dev_t devt;
673 int retval;
674
675 /* minors == 0 indicates to use ext devt from part0 and should
676 * be accompanied with EXT_DEVT flag. Make sure all
677 * parameters make sense.
678 */
679 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
680 WARN_ON(!disk->minors &&
681 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
682
683 disk->flags |= GENHD_FL_UP;
684
685 retval = blk_alloc_devt(&disk->part0, &devt);
686 if (retval) {
687 WARN_ON(1);
688 return;
689 }
690 disk->major = MAJOR(devt);
691 disk->first_minor = MINOR(devt);
692
693 disk_alloc_events(disk);
694
695 if (disk->flags & GENHD_FL_HIDDEN) {
696 /*
697 * Don't let hidden disks show up in /proc/partitions,
698 * and don't bother scanning for partitions either.
699 */
700 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
701 disk->flags |= GENHD_FL_NO_PART_SCAN;
702 } else {
703 int ret;
704
705 /* Register BDI before referencing it from bdev */
706 disk_to_dev(disk)->devt = devt;
707 ret = bdi_register_owner(disk->queue->backing_dev_info,
708 disk_to_dev(disk));
709 WARN_ON(ret);
710 blk_register_region(disk_devt(disk), disk->minors, NULL,
711 exact_match, exact_lock, disk);
712 }
713 register_disk(parent, disk);
714 if (register_queue)
715 blk_register_queue(disk);
716
717 /*
718 * Take an extra ref on queue which will be put on disk_release()
719 * so that it sticks around as long as @disk is there.
720 */
721 WARN_ON_ONCE(!blk_get_queue(disk->queue));
722
723 disk_add_events(disk);
724 blk_integrity_add(disk);
725}
726
727void device_add_disk(struct device *parent, struct gendisk *disk)
728{
729 __device_add_disk(parent, disk, true);
730}
731EXPORT_SYMBOL(device_add_disk);
732
733void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
734{
735 __device_add_disk(parent, disk, false);
736}
737EXPORT_SYMBOL(device_add_disk_no_queue_reg);
738
739void del_gendisk(struct gendisk *disk)
740{
741 struct disk_part_iter piter;
742 struct hd_struct *part;
743
744 blk_integrity_del(disk);
745 disk_del_events(disk);
746
747 /*
748 * Block lookups of the disk until all bdevs are unhashed and the
749 * disk is marked as dead (GENHD_FL_UP cleared).
750 */
751 down_write(&disk->lookup_sem);
752 /* invalidate stuff */
753 disk_part_iter_init(&piter, disk,
754 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
755 while ((part = disk_part_iter_next(&piter))) {
756 invalidate_partition(disk, part->partno);
757 bdev_unhash_inode(part_devt(part));
758 delete_partition(disk, part->partno);
759 }
760 disk_part_iter_exit(&piter);
761
762 invalidate_partition(disk, 0);
763 bdev_unhash_inode(disk_devt(disk));
764 set_capacity(disk, 0);
765 disk->flags &= ~GENHD_FL_UP;
766 up_write(&disk->lookup_sem);
767
768 if (!(disk->flags & GENHD_FL_HIDDEN))
769 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
770 if (disk->queue) {
771 /*
772 * Unregister bdi before releasing device numbers (as they can
773 * get reused and we'd get clashes in sysfs).
774 */
775 if (!(disk->flags & GENHD_FL_HIDDEN))
776 bdi_unregister(disk->queue->backing_dev_info);
777 blk_unregister_queue(disk);
778 } else {
779 WARN_ON(1);
780 }
781
782 if (!(disk->flags & GENHD_FL_HIDDEN))
783 blk_unregister_region(disk_devt(disk), disk->minors);
784 /*
785 * Remove gendisk pointer from idr so that it cannot be looked up
786 * while RCU period before freeing gendisk is running to prevent
787 * use-after-free issues. Note that the device number stays
788 * "in-use" until we really free the gendisk.
789 */
790 blk_invalidate_devt(disk_devt(disk));
791
792 kobject_put(disk->part0.holder_dir);
793 kobject_put(disk->slave_dir);
794
795 part_stat_set_all(&disk->part0, 0);
796 disk->part0.stamp = 0;
797 if (!sysfs_deprecated)
798 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
799 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
800 device_del(disk_to_dev(disk));
801}
802EXPORT_SYMBOL(del_gendisk);
803
804/* sysfs access to bad-blocks list. */
805static ssize_t disk_badblocks_show(struct device *dev,
806 struct device_attribute *attr,
807 char *page)
808{
809 struct gendisk *disk = dev_to_disk(dev);
810
811 if (!disk->bb)
812 return sprintf(page, "\n");
813
814 return badblocks_show(disk->bb, page, 0);
815}
816
817static ssize_t disk_badblocks_store(struct device *dev,
818 struct device_attribute *attr,
819 const char *page, size_t len)
820{
821 struct gendisk *disk = dev_to_disk(dev);
822
823 if (!disk->bb)
824 return -ENXIO;
825
826 return badblocks_store(disk->bb, page, len, 0);
827}
828
829/**
830 * get_gendisk - get partitioning information for a given device
831 * @devt: device to get partitioning information for
832 * @partno: returned partition index
833 *
834 * This function gets the structure containing partitioning
835 * information for the given device @devt.
836 */
837struct gendisk *get_gendisk(dev_t devt, int *partno)
838{
839 struct gendisk *disk = NULL;
840
841 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
842 struct kobject *kobj;
843
844 kobj = kobj_lookup(bdev_map, devt, partno);
845 if (kobj)
846 disk = dev_to_disk(kobj_to_dev(kobj));
847 } else {
848 struct hd_struct *part;
849
850 spin_lock_bh(&ext_devt_lock);
851 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
852 if (part && get_disk_and_module(part_to_disk(part))) {
853 *partno = part->partno;
854 disk = part_to_disk(part);
855 }
856 spin_unlock_bh(&ext_devt_lock);
857 }
858
859 if (!disk)
860 return NULL;
861
862 /*
863 * Synchronize with del_gendisk() to not return disk that is being
864 * destroyed.
865 */
866 down_read(&disk->lookup_sem);
867 if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
868 !(disk->flags & GENHD_FL_UP))) {
869 up_read(&disk->lookup_sem);
870 put_disk_and_module(disk);
871 disk = NULL;
872 } else {
873 up_read(&disk->lookup_sem);
874 }
875 return disk;
876}
877EXPORT_SYMBOL(get_gendisk);
878
879/**
880 * bdget_disk - do bdget() by gendisk and partition number
881 * @disk: gendisk of interest
882 * @partno: partition number
883 *
884 * Find partition @partno from @disk, do bdget() on it.
885 *
886 * CONTEXT:
887 * Don't care.
888 *
889 * RETURNS:
890 * Resulting block_device on success, NULL on failure.
891 */
892struct block_device *bdget_disk(struct gendisk *disk, int partno)
893{
894 struct hd_struct *part;
895 struct block_device *bdev = NULL;
896
897 part = disk_get_part(disk, partno);
898 if (part)
899 bdev = bdget(part_devt(part));
900 disk_put_part(part);
901
902 return bdev;
903}
904EXPORT_SYMBOL(bdget_disk);
905
906/*
907 * print a full list of all partitions - intended for places where the root
908 * filesystem can't be mounted and thus to give the victim some idea of what
909 * went wrong
910 */
911void __init printk_all_partitions(void)
912{
913 struct class_dev_iter iter;
914 struct device *dev;
915
916 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
917 while ((dev = class_dev_iter_next(&iter))) {
918 struct gendisk *disk = dev_to_disk(dev);
919 struct disk_part_iter piter;
920 struct hd_struct *part;
921 char name_buf[BDEVNAME_SIZE];
922 char devt_buf[BDEVT_SIZE];
923
924 /*
925 * Don't show empty devices or things that have been
926 * suppressed
927 */
928 if (get_capacity(disk) == 0 ||
929 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
930 continue;
931
932 /*
933 * Note, unlike /proc/partitions, I am showing the
934 * numbers in hex - the same format as the root=
935 * option takes.
936 */
937 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
938 while ((part = disk_part_iter_next(&piter))) {
939 bool is_part0 = part == &disk->part0;
940
941 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
942 bdevt_str(part_devt(part), devt_buf),
943 (unsigned long long)part_nr_sects_read(part) >> 1
944 , disk_name(disk, part->partno, name_buf),
945 part->info ? part->info->uuid : "");
946 if (is_part0) {
947 if (dev->parent && dev->parent->driver)
948 printk(" driver: %s\n",
949 dev->parent->driver->name);
950 else
951 printk(" (driver?)\n");
952 } else
953 printk("\n");
954 }
955 disk_part_iter_exit(&piter);
956 }
957 class_dev_iter_exit(&iter);
958}
959
960#ifdef CONFIG_PROC_FS
961/* iterator */
962static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
963{
964 loff_t skip = *pos;
965 struct class_dev_iter *iter;
966 struct device *dev;
967
968 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
969 if (!iter)
970 return ERR_PTR(-ENOMEM);
971
972 seqf->private = iter;
973 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
974 do {
975 dev = class_dev_iter_next(iter);
976 if (!dev)
977 return NULL;
978 } while (skip--);
979
980 return dev_to_disk(dev);
981}
982
983static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
984{
985 struct device *dev;
986
987 (*pos)++;
988 dev = class_dev_iter_next(seqf->private);
989 if (dev)
990 return dev_to_disk(dev);
991
992 return NULL;
993}
994
995static void disk_seqf_stop(struct seq_file *seqf, void *v)
996{
997 struct class_dev_iter *iter = seqf->private;
998
999 /* stop is called even after start failed :-( */
1000 if (iter) {
1001 class_dev_iter_exit(iter);
1002 kfree(iter);
1003 seqf->private = NULL;
1004 }
1005}
1006
1007static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1008{
1009 void *p;
1010
1011 p = disk_seqf_start(seqf, pos);
1012 if (!IS_ERR_OR_NULL(p) && !*pos)
1013 seq_puts(seqf, "major minor #blocks name\n\n");
1014 return p;
1015}
1016
1017static int show_partition(struct seq_file *seqf, void *v)
1018{
1019 struct gendisk *sgp = v;
1020 struct disk_part_iter piter;
1021 struct hd_struct *part;
1022 char buf[BDEVNAME_SIZE];
1023
1024 /* Don't show non-partitionable removeable devices or empty devices */
1025 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1026 (sgp->flags & GENHD_FL_REMOVABLE)))
1027 return 0;
1028 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1029 return 0;
1030
1031 /* show the full disk and all non-0 size partitions of it */
1032 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1033 while ((part = disk_part_iter_next(&piter)))
1034 seq_printf(seqf, "%4d %7d %10llu %s\n",
1035 MAJOR(part_devt(part)), MINOR(part_devt(part)),
1036 (unsigned long long)part_nr_sects_read(part) >> 1,
1037 disk_name(sgp, part->partno, buf));
1038 disk_part_iter_exit(&piter);
1039
1040 return 0;
1041}
1042
1043static const struct seq_operations partitions_op = {
1044 .start = show_partition_start,
1045 .next = disk_seqf_next,
1046 .stop = disk_seqf_stop,
1047 .show = show_partition
1048};
1049#endif
1050
1051
1052static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1053{
1054 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1055 /* Make old-style 2.4 aliases work */
1056 request_module("block-major-%d", MAJOR(devt));
1057 return NULL;
1058}
1059
1060static int __init genhd_device_init(void)
1061{
1062 int error;
1063
1064 block_class.dev_kobj = sysfs_dev_block_kobj;
1065 error = class_register(&block_class);
1066 if (unlikely(error))
1067 return error;
1068 bdev_map = kobj_map_init(base_probe, &block_class_lock);
1069 blk_dev_init();
1070
1071 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1072
1073 /* create top-level block dir */
1074 if (!sysfs_deprecated)
1075 block_depr = kobject_create_and_add("block", NULL);
1076 return 0;
1077}
1078
1079subsys_initcall(genhd_device_init);
1080
1081static ssize_t disk_range_show(struct device *dev,
1082 struct device_attribute *attr, char *buf)
1083{
1084 struct gendisk *disk = dev_to_disk(dev);
1085
1086 return sprintf(buf, "%d\n", disk->minors);
1087}
1088
1089static ssize_t disk_ext_range_show(struct device *dev,
1090 struct device_attribute *attr, char *buf)
1091{
1092 struct gendisk *disk = dev_to_disk(dev);
1093
1094 return sprintf(buf, "%d\n", disk_max_parts(disk));
1095}
1096
1097static ssize_t disk_removable_show(struct device *dev,
1098 struct device_attribute *attr, char *buf)
1099{
1100 struct gendisk *disk = dev_to_disk(dev);
1101
1102 return sprintf(buf, "%d\n",
1103 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1104}
1105
1106static ssize_t disk_hidden_show(struct device *dev,
1107 struct device_attribute *attr, char *buf)
1108{
1109 struct gendisk *disk = dev_to_disk(dev);
1110
1111 return sprintf(buf, "%d\n",
1112 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1113}
1114
1115static ssize_t disk_ro_show(struct device *dev,
1116 struct device_attribute *attr, char *buf)
1117{
1118 struct gendisk *disk = dev_to_disk(dev);
1119
1120 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1121}
1122
1123static ssize_t disk_capability_show(struct device *dev,
1124 struct device_attribute *attr, char *buf)
1125{
1126 struct gendisk *disk = dev_to_disk(dev);
1127
1128 return sprintf(buf, "%x\n", disk->flags);
1129}
1130
1131static ssize_t disk_alignment_offset_show(struct device *dev,
1132 struct device_attribute *attr,
1133 char *buf)
1134{
1135 struct gendisk *disk = dev_to_disk(dev);
1136
1137 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1138}
1139
1140static ssize_t disk_discard_alignment_show(struct device *dev,
1141 struct device_attribute *attr,
1142 char *buf)
1143{
1144 struct gendisk *disk = dev_to_disk(dev);
1145
1146 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1147}
1148
1149static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1150static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1151static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1152static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1153static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1154static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1155static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1156static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1157static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1158static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1159static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1160static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1161#ifdef CONFIG_FAIL_MAKE_REQUEST
1162static struct device_attribute dev_attr_fail =
1163 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1164#endif
1165#ifdef CONFIG_FAIL_IO_TIMEOUT
1166static struct device_attribute dev_attr_fail_timeout =
1167 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1168#endif
1169
1170static struct attribute *disk_attrs[] = {
1171 &dev_attr_range.attr,
1172 &dev_attr_ext_range.attr,
1173 &dev_attr_removable.attr,
1174 &dev_attr_hidden.attr,
1175 &dev_attr_ro.attr,
1176 &dev_attr_size.attr,
1177 &dev_attr_alignment_offset.attr,
1178 &dev_attr_discard_alignment.attr,
1179 &dev_attr_capability.attr,
1180 &dev_attr_stat.attr,
1181 &dev_attr_inflight.attr,
1182 &dev_attr_badblocks.attr,
1183#ifdef CONFIG_FAIL_MAKE_REQUEST
1184 &dev_attr_fail.attr,
1185#endif
1186#ifdef CONFIG_FAIL_IO_TIMEOUT
1187 &dev_attr_fail_timeout.attr,
1188#endif
1189 NULL
1190};
1191
1192static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1193{
1194 struct device *dev = container_of(kobj, typeof(*dev), kobj);
1195 struct gendisk *disk = dev_to_disk(dev);
1196
1197 if (a == &dev_attr_badblocks.attr && !disk->bb)
1198 return 0;
1199 return a->mode;
1200}
1201
1202static struct attribute_group disk_attr_group = {
1203 .attrs = disk_attrs,
1204 .is_visible = disk_visible,
1205};
1206
1207static const struct attribute_group *disk_attr_groups[] = {
1208 &disk_attr_group,
1209 NULL
1210};
1211
1212/**
1213 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1214 * @disk: disk to replace part_tbl for
1215 * @new_ptbl: new part_tbl to install
1216 *
1217 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1218 * original ptbl is freed using RCU callback.
1219 *
1220 * LOCKING:
1221 * Matching bd_mutex locked or the caller is the only user of @disk.
1222 */
1223static void disk_replace_part_tbl(struct gendisk *disk,
1224 struct disk_part_tbl *new_ptbl)
1225{
1226 struct disk_part_tbl *old_ptbl =
1227 rcu_dereference_protected(disk->part_tbl, 1);
1228
1229 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1230
1231 if (old_ptbl) {
1232 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1233 kfree_rcu(old_ptbl, rcu_head);
1234 }
1235}
1236
1237/**
1238 * disk_expand_part_tbl - expand disk->part_tbl
1239 * @disk: disk to expand part_tbl for
1240 * @partno: expand such that this partno can fit in
1241 *
1242 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1243 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1244 *
1245 * LOCKING:
1246 * Matching bd_mutex locked or the caller is the only user of @disk.
1247 * Might sleep.
1248 *
1249 * RETURNS:
1250 * 0 on success, -errno on failure.
1251 */
1252int disk_expand_part_tbl(struct gendisk *disk, int partno)
1253{
1254 struct disk_part_tbl *old_ptbl =
1255 rcu_dereference_protected(disk->part_tbl, 1);
1256 struct disk_part_tbl *new_ptbl;
1257 int len = old_ptbl ? old_ptbl->len : 0;
1258 int i, target;
1259 size_t size;
1260
1261 /*
1262 * check for int overflow, since we can get here from blkpg_ioctl()
1263 * with a user passed 'partno'.
1264 */
1265 target = partno + 1;
1266 if (target < 0)
1267 return -EINVAL;
1268
1269 /* disk_max_parts() is zero during initialization, ignore if so */
1270 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1271 return -EINVAL;
1272
1273 if (target <= len)
1274 return 0;
1275
1276 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1277 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1278 if (!new_ptbl)
1279 return -ENOMEM;
1280
1281 new_ptbl->len = target;
1282
1283 for (i = 0; i < len; i++)
1284 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1285
1286 disk_replace_part_tbl(disk, new_ptbl);
1287 return 0;
1288}
1289
1290static void disk_release(struct device *dev)
1291{
1292 struct gendisk *disk = dev_to_disk(dev);
1293
1294 blk_free_devt(dev->devt);
1295 disk_release_events(disk);
1296 kfree(disk->random);
1297 disk_replace_part_tbl(disk, NULL);
1298 hd_free_part(&disk->part0);
1299 if (disk->queue)
1300 blk_put_queue(disk->queue);
1301 kfree(disk);
1302}
1303struct class block_class = {
1304 .name = "block",
1305};
1306
1307static char *block_devnode(struct device *dev, umode_t *mode,
1308 kuid_t *uid, kgid_t *gid)
1309{
1310 struct gendisk *disk = dev_to_disk(dev);
1311
1312 if (disk->devnode)
1313 return disk->devnode(disk, mode);
1314 return NULL;
1315}
1316
1317static const struct device_type disk_type = {
1318 .name = "disk",
1319 .groups = disk_attr_groups,
1320 .release = disk_release,
1321 .devnode = block_devnode,
1322};
1323
1324#ifdef CONFIG_PROC_FS
1325/*
1326 * aggregate disk stat collector. Uses the same stats that the sysfs
1327 * entries do, above, but makes them available through one seq_file.
1328 *
1329 * The output looks suspiciously like /proc/partitions with a bunch of
1330 * extra fields.
1331 */
1332static int diskstats_show(struct seq_file *seqf, void *v)
1333{
1334 struct gendisk *gp = v;
1335 struct disk_part_iter piter;
1336 struct hd_struct *hd;
1337 char buf[BDEVNAME_SIZE];
1338 unsigned int inflight[2];
1339 int cpu;
1340
1341 /*
1342 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1343 seq_puts(seqf, "major minor name"
1344 " rio rmerge rsect ruse wio wmerge "
1345 "wsect wuse running use aveq"
1346 "\n\n");
1347 */
1348
1349 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1350 while ((hd = disk_part_iter_next(&piter))) {
1351 cpu = part_stat_lock();
1352 part_round_stats(gp->queue, cpu, hd);
1353 part_stat_unlock();
1354 part_in_flight(gp->queue, hd, inflight);
1355 seq_printf(seqf, "%4d %7d %s "
1356 "%lu %lu %lu %u "
1357 "%lu %lu %lu %u "
1358 "%u %u %u "
1359 "%lu %lu %lu %u\n",
1360 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1361 disk_name(gp, hd->partno, buf),
1362 part_stat_read(hd, ios[STAT_READ]),
1363 part_stat_read(hd, merges[STAT_READ]),
1364 part_stat_read(hd, sectors[STAT_READ]),
1365 (unsigned int)part_stat_read_msecs(hd, STAT_READ),
1366 part_stat_read(hd, ios[STAT_WRITE]),
1367 part_stat_read(hd, merges[STAT_WRITE]),
1368 part_stat_read(hd, sectors[STAT_WRITE]),
1369 (unsigned int)part_stat_read_msecs(hd, STAT_WRITE),
1370 inflight[0],
1371 jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1372 jiffies_to_msecs(part_stat_read(hd, time_in_queue)),
1373 part_stat_read(hd, ios[STAT_DISCARD]),
1374 part_stat_read(hd, merges[STAT_DISCARD]),
1375 part_stat_read(hd, sectors[STAT_DISCARD]),
1376 (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD)
1377 );
1378 }
1379 disk_part_iter_exit(&piter);
1380
1381 return 0;
1382}
1383
1384static const struct seq_operations diskstats_op = {
1385 .start = disk_seqf_start,
1386 .next = disk_seqf_next,
1387 .stop = disk_seqf_stop,
1388 .show = diskstats_show
1389};
1390
1391static int __init proc_genhd_init(void)
1392{
1393 proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1394 proc_create_seq("partitions", 0, NULL, &partitions_op);
1395 return 0;
1396}
1397module_init(proc_genhd_init);
1398#endif /* CONFIG_PROC_FS */
1399
1400dev_t blk_lookup_devt(const char *name, int partno)
1401{
1402 dev_t devt = MKDEV(0, 0);
1403 struct class_dev_iter iter;
1404 struct device *dev;
1405
1406 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1407 while ((dev = class_dev_iter_next(&iter))) {
1408 struct gendisk *disk = dev_to_disk(dev);
1409 struct hd_struct *part;
1410
1411 if (strcmp(dev_name(dev), name))
1412 continue;
1413
1414 if (partno < disk->minors) {
1415 /* We need to return the right devno, even
1416 * if the partition doesn't exist yet.
1417 */
1418 devt = MKDEV(MAJOR(dev->devt),
1419 MINOR(dev->devt) + partno);
1420 break;
1421 }
1422 part = disk_get_part(disk, partno);
1423 if (part) {
1424 devt = part_devt(part);
1425 disk_put_part(part);
1426 break;
1427 }
1428 disk_put_part(part);
1429 }
1430 class_dev_iter_exit(&iter);
1431 return devt;
1432}
1433EXPORT_SYMBOL(blk_lookup_devt);
1434
1435struct gendisk *__alloc_disk_node(int minors, int node_id)
1436{
1437 struct gendisk *disk;
1438 struct disk_part_tbl *ptbl;
1439
1440 if (minors > DISK_MAX_PARTS) {
1441 printk(KERN_ERR
1442 "block: can't allocate more than %d partitions\n",
1443 DISK_MAX_PARTS);
1444 minors = DISK_MAX_PARTS;
1445 }
1446
1447 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1448 if (disk) {
1449 if (!init_part_stats(&disk->part0)) {
1450 kfree(disk);
1451 return NULL;
1452 }
1453 init_rwsem(&disk->lookup_sem);
1454 disk->node_id = node_id;
1455 if (disk_expand_part_tbl(disk, 0)) {
1456 free_part_stats(&disk->part0);
1457 kfree(disk);
1458 return NULL;
1459 }
1460 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1461 rcu_assign_pointer(ptbl->part[0], &disk->part0);
1462
1463 /*
1464 * set_capacity() and get_capacity() currently don't use
1465 * seqcounter to read/update the part0->nr_sects. Still init
1466 * the counter as we can read the sectors in IO submission
1467 * patch using seqence counters.
1468 *
1469 * TODO: Ideally set_capacity() and get_capacity() should be
1470 * converted to make use of bd_mutex and sequence counters.
1471 */
1472 seqcount_init(&disk->part0.nr_sects_seq);
1473 if (hd_ref_init(&disk->part0)) {
1474 hd_free_part(&disk->part0);
1475 kfree(disk);
1476 return NULL;
1477 }
1478
1479 disk->minors = minors;
1480 rand_initialize_disk(disk);
1481 disk_to_dev(disk)->class = &block_class;
1482 disk_to_dev(disk)->type = &disk_type;
1483 device_initialize(disk_to_dev(disk));
1484 }
1485 return disk;
1486}
1487EXPORT_SYMBOL(__alloc_disk_node);
1488
1489struct kobject *get_disk_and_module(struct gendisk *disk)
1490{
1491 struct module *owner;
1492 struct kobject *kobj;
1493
1494 if (!disk->fops)
1495 return NULL;
1496 owner = disk->fops->owner;
1497 if (owner && !try_module_get(owner))
1498 return NULL;
1499 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1500 if (kobj == NULL) {
1501 module_put(owner);
1502 return NULL;
1503 }
1504 return kobj;
1505
1506}
1507EXPORT_SYMBOL(get_disk_and_module);
1508
1509void put_disk(struct gendisk *disk)
1510{
1511 if (disk)
1512 kobject_put(&disk_to_dev(disk)->kobj);
1513}
1514EXPORT_SYMBOL(put_disk);
1515
1516/*
1517 * This is a counterpart of get_disk_and_module() and thus also of
1518 * get_gendisk().
1519 */
1520void put_disk_and_module(struct gendisk *disk)
1521{
1522 if (disk) {
1523 struct module *owner = disk->fops->owner;
1524
1525 put_disk(disk);
1526 module_put(owner);
1527 }
1528}
1529EXPORT_SYMBOL(put_disk_and_module);
1530
1531static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1532{
1533 char event[] = "DISK_RO=1";
1534 char *envp[] = { event, NULL };
1535
1536 if (!ro)
1537 event[8] = '0';
1538 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1539}
1540
1541void set_device_ro(struct block_device *bdev, int flag)
1542{
1543 bdev->bd_part->policy = flag;
1544}
1545
1546EXPORT_SYMBOL(set_device_ro);
1547
1548void set_disk_ro(struct gendisk *disk, int flag)
1549{
1550 struct disk_part_iter piter;
1551 struct hd_struct *part;
1552
1553 if (disk->part0.policy != flag) {
1554 set_disk_ro_uevent(disk, flag);
1555 disk->part0.policy = flag;
1556 }
1557
1558 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1559 while ((part = disk_part_iter_next(&piter)))
1560 part->policy = flag;
1561 disk_part_iter_exit(&piter);
1562}
1563
1564EXPORT_SYMBOL(set_disk_ro);
1565
1566int bdev_read_only(struct block_device *bdev)
1567{
1568 if (!bdev)
1569 return 0;
1570 return bdev->bd_part->policy;
1571}
1572
1573EXPORT_SYMBOL(bdev_read_only);
1574
1575int invalidate_partition(struct gendisk *disk, int partno)
1576{
1577 int res = 0;
1578 struct block_device *bdev = bdget_disk(disk, partno);
1579 if (bdev) {
1580 fsync_bdev(bdev);
1581 res = __invalidate_device(bdev, true);
1582 bdput(bdev);
1583 }
1584 return res;
1585}
1586
1587EXPORT_SYMBOL(invalidate_partition);
1588
1589/*
1590 * Disk events - monitor disk events like media change and eject request.
1591 */
1592struct disk_events {
1593 struct list_head node; /* all disk_event's */
1594 struct gendisk *disk; /* the associated disk */
1595 spinlock_t lock;
1596
1597 struct mutex block_mutex; /* protects blocking */
1598 int block; /* event blocking depth */
1599 unsigned int pending; /* events already sent out */
1600 unsigned int clearing; /* events being cleared */
1601
1602 long poll_msecs; /* interval, -1 for default */
1603 struct delayed_work dwork;
1604};
1605
1606static const char *disk_events_strs[] = {
1607 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1608 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1609};
1610
1611static char *disk_uevents[] = {
1612 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1613 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1614};
1615
1616/* list of all disk_events */
1617static DEFINE_MUTEX(disk_events_mutex);
1618static LIST_HEAD(disk_events);
1619
1620/* disable in-kernel polling by default */
1621static unsigned long disk_events_dfl_poll_msecs;
1622
1623static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1624{
1625 struct disk_events *ev = disk->ev;
1626 long intv_msecs = 0;
1627
1628 /*
1629 * If device-specific poll interval is set, always use it. If
1630 * the default is being used, poll iff there are events which
1631 * can't be monitored asynchronously.
1632 */
1633 if (ev->poll_msecs >= 0)
1634 intv_msecs = ev->poll_msecs;
1635 else if (disk->events & ~disk->async_events)
1636 intv_msecs = disk_events_dfl_poll_msecs;
1637
1638 return msecs_to_jiffies(intv_msecs);
1639}
1640
1641/**
1642 * disk_block_events - block and flush disk event checking
1643 * @disk: disk to block events for
1644 *
1645 * On return from this function, it is guaranteed that event checking
1646 * isn't in progress and won't happen until unblocked by
1647 * disk_unblock_events(). Events blocking is counted and the actual
1648 * unblocking happens after the matching number of unblocks are done.
1649 *
1650 * Note that this intentionally does not block event checking from
1651 * disk_clear_events().
1652 *
1653 * CONTEXT:
1654 * Might sleep.
1655 */
1656void disk_block_events(struct gendisk *disk)
1657{
1658 struct disk_events *ev = disk->ev;
1659 unsigned long flags;
1660 bool cancel;
1661
1662 if (!ev)
1663 return;
1664
1665 /*
1666 * Outer mutex ensures that the first blocker completes canceling
1667 * the event work before further blockers are allowed to finish.
1668 */
1669 mutex_lock(&ev->block_mutex);
1670
1671 spin_lock_irqsave(&ev->lock, flags);
1672 cancel = !ev->block++;
1673 spin_unlock_irqrestore(&ev->lock, flags);
1674
1675 if (cancel)
1676 cancel_delayed_work_sync(&disk->ev->dwork);
1677
1678 mutex_unlock(&ev->block_mutex);
1679}
1680
1681static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1682{
1683 struct disk_events *ev = disk->ev;
1684 unsigned long intv;
1685 unsigned long flags;
1686
1687 spin_lock_irqsave(&ev->lock, flags);
1688
1689 if (WARN_ON_ONCE(ev->block <= 0))
1690 goto out_unlock;
1691
1692 if (--ev->block)
1693 goto out_unlock;
1694
1695 intv = disk_events_poll_jiffies(disk);
1696 if (check_now)
1697 queue_delayed_work(system_freezable_power_efficient_wq,
1698 &ev->dwork, 0);
1699 else if (intv)
1700 queue_delayed_work(system_freezable_power_efficient_wq,
1701 &ev->dwork, intv);
1702out_unlock:
1703 spin_unlock_irqrestore(&ev->lock, flags);
1704}
1705
1706/**
1707 * disk_unblock_events - unblock disk event checking
1708 * @disk: disk to unblock events for
1709 *
1710 * Undo disk_block_events(). When the block count reaches zero, it
1711 * starts events polling if configured.
1712 *
1713 * CONTEXT:
1714 * Don't care. Safe to call from irq context.
1715 */
1716void disk_unblock_events(struct gendisk *disk)
1717{
1718 if (disk->ev)
1719 __disk_unblock_events(disk, false);
1720}
1721
1722/**
1723 * disk_flush_events - schedule immediate event checking and flushing
1724 * @disk: disk to check and flush events for
1725 * @mask: events to flush
1726 *
1727 * Schedule immediate event checking on @disk if not blocked. Events in
1728 * @mask are scheduled to be cleared from the driver. Note that this
1729 * doesn't clear the events from @disk->ev.
1730 *
1731 * CONTEXT:
1732 * If @mask is non-zero must be called with bdev->bd_mutex held.
1733 */
1734void disk_flush_events(struct gendisk *disk, unsigned int mask)
1735{
1736 struct disk_events *ev = disk->ev;
1737
1738 if (!ev)
1739 return;
1740
1741 spin_lock_irq(&ev->lock);
1742 ev->clearing |= mask;
1743 if (!ev->block)
1744 mod_delayed_work(system_freezable_power_efficient_wq,
1745 &ev->dwork, 0);
1746 spin_unlock_irq(&ev->lock);
1747}
1748
1749/**
1750 * disk_clear_events - synchronously check, clear and return pending events
1751 * @disk: disk to fetch and clear events from
1752 * @mask: mask of events to be fetched and cleared
1753 *
1754 * Disk events are synchronously checked and pending events in @mask
1755 * are cleared and returned. This ignores the block count.
1756 *
1757 * CONTEXT:
1758 * Might sleep.
1759 */
1760unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1761{
1762 const struct block_device_operations *bdops = disk->fops;
1763 struct disk_events *ev = disk->ev;
1764 unsigned int pending;
1765 unsigned int clearing = mask;
1766
1767 if (!ev) {
1768 /* for drivers still using the old ->media_changed method */
1769 if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1770 bdops->media_changed && bdops->media_changed(disk))
1771 return DISK_EVENT_MEDIA_CHANGE;
1772 return 0;
1773 }
1774
1775 disk_block_events(disk);
1776
1777 /*
1778 * store the union of mask and ev->clearing on the stack so that the
1779 * race with disk_flush_events does not cause ambiguity (ev->clearing
1780 * can still be modified even if events are blocked).
1781 */
1782 spin_lock_irq(&ev->lock);
1783 clearing |= ev->clearing;
1784 ev->clearing = 0;
1785 spin_unlock_irq(&ev->lock);
1786
1787 disk_check_events(ev, &clearing);
1788 /*
1789 * if ev->clearing is not 0, the disk_flush_events got called in the
1790 * middle of this function, so we want to run the workfn without delay.
1791 */
1792 __disk_unblock_events(disk, ev->clearing ? true : false);
1793
1794 /* then, fetch and clear pending events */
1795 spin_lock_irq(&ev->lock);
1796 pending = ev->pending & mask;
1797 ev->pending &= ~mask;
1798 spin_unlock_irq(&ev->lock);
1799 WARN_ON_ONCE(clearing & mask);
1800
1801 return pending;
1802}
1803
1804/*
1805 * Separate this part out so that a different pointer for clearing_ptr can be
1806 * passed in for disk_clear_events.
1807 */
1808static void disk_events_workfn(struct work_struct *work)
1809{
1810 struct delayed_work *dwork = to_delayed_work(work);
1811 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1812
1813 disk_check_events(ev, &ev->clearing);
1814}
1815
1816static void disk_check_events(struct disk_events *ev,
1817 unsigned int *clearing_ptr)
1818{
1819 struct gendisk *disk = ev->disk;
1820 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1821 unsigned int clearing = *clearing_ptr;
1822 unsigned int events;
1823 unsigned long intv;
1824 int nr_events = 0, i;
1825
1826 /* check events */
1827 events = disk->fops->check_events(disk, clearing);
1828
1829 /* accumulate pending events and schedule next poll if necessary */
1830 spin_lock_irq(&ev->lock);
1831
1832 events &= ~ev->pending;
1833 ev->pending |= events;
1834 *clearing_ptr &= ~clearing;
1835
1836 intv = disk_events_poll_jiffies(disk);
1837 if (!ev->block && intv)
1838 queue_delayed_work(system_freezable_power_efficient_wq,
1839 &ev->dwork, intv);
1840
1841 spin_unlock_irq(&ev->lock);
1842
1843 /*
1844 * Tell userland about new events. Only the events listed in
1845 * @disk->events are reported. Unlisted events are processed the
1846 * same internally but never get reported to userland.
1847 */
1848 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1849 if (events & disk->events & (1 << i))
1850 envp[nr_events++] = disk_uevents[i];
1851
1852 if (nr_events)
1853 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1854}
1855
1856/*
1857 * A disk events enabled device has the following sysfs nodes under
1858 * its /sys/block/X/ directory.
1859 *
1860 * events : list of all supported events
1861 * events_async : list of events which can be detected w/o polling
1862 * events_poll_msecs : polling interval, 0: disable, -1: system default
1863 */
1864static ssize_t __disk_events_show(unsigned int events, char *buf)
1865{
1866 const char *delim = "";
1867 ssize_t pos = 0;
1868 int i;
1869
1870 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1871 if (events & (1 << i)) {
1872 pos += sprintf(buf + pos, "%s%s",
1873 delim, disk_events_strs[i]);
1874 delim = " ";
1875 }
1876 if (pos)
1877 pos += sprintf(buf + pos, "\n");
1878 return pos;
1879}
1880
1881static ssize_t disk_events_show(struct device *dev,
1882 struct device_attribute *attr, char *buf)
1883{
1884 struct gendisk *disk = dev_to_disk(dev);
1885
1886 return __disk_events_show(disk->events, buf);
1887}
1888
1889static ssize_t disk_events_async_show(struct device *dev,
1890 struct device_attribute *attr, char *buf)
1891{
1892 struct gendisk *disk = dev_to_disk(dev);
1893
1894 return __disk_events_show(disk->async_events, buf);
1895}
1896
1897static ssize_t disk_events_poll_msecs_show(struct device *dev,
1898 struct device_attribute *attr,
1899 char *buf)
1900{
1901 struct gendisk *disk = dev_to_disk(dev);
1902
1903 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1904}
1905
1906static ssize_t disk_events_poll_msecs_store(struct device *dev,
1907 struct device_attribute *attr,
1908 const char *buf, size_t count)
1909{
1910 struct gendisk *disk = dev_to_disk(dev);
1911 long intv;
1912
1913 if (!count || !sscanf(buf, "%ld", &intv))
1914 return -EINVAL;
1915
1916 if (intv < 0 && intv != -1)
1917 return -EINVAL;
1918
1919 disk_block_events(disk);
1920 disk->ev->poll_msecs = intv;
1921 __disk_unblock_events(disk, true);
1922
1923 return count;
1924}
1925
1926static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
1927static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
1928static const DEVICE_ATTR(events_poll_msecs, 0644,
1929 disk_events_poll_msecs_show,
1930 disk_events_poll_msecs_store);
1931
1932static const struct attribute *disk_events_attrs[] = {
1933 &dev_attr_events.attr,
1934 &dev_attr_events_async.attr,
1935 &dev_attr_events_poll_msecs.attr,
1936 NULL,
1937};
1938
1939/*
1940 * The default polling interval can be specified by the kernel
1941 * parameter block.events_dfl_poll_msecs which defaults to 0
1942 * (disable). This can also be modified runtime by writing to
1943 * /sys/module/block/events_dfl_poll_msecs.
1944 */
1945static int disk_events_set_dfl_poll_msecs(const char *val,
1946 const struct kernel_param *kp)
1947{
1948 struct disk_events *ev;
1949 int ret;
1950
1951 ret = param_set_ulong(val, kp);
1952 if (ret < 0)
1953 return ret;
1954
1955 mutex_lock(&disk_events_mutex);
1956
1957 list_for_each_entry(ev, &disk_events, node)
1958 disk_flush_events(ev->disk, 0);
1959
1960 mutex_unlock(&disk_events_mutex);
1961
1962 return 0;
1963}
1964
1965static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1966 .set = disk_events_set_dfl_poll_msecs,
1967 .get = param_get_ulong,
1968};
1969
1970#undef MODULE_PARAM_PREFIX
1971#define MODULE_PARAM_PREFIX "block."
1972
1973module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1974 &disk_events_dfl_poll_msecs, 0644);
1975
1976/*
1977 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1978 */
1979static void disk_alloc_events(struct gendisk *disk)
1980{
1981 struct disk_events *ev;
1982
1983 if (!disk->fops->check_events)
1984 return;
1985
1986 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1987 if (!ev) {
1988 pr_warn("%s: failed to initialize events\n", disk->disk_name);
1989 return;
1990 }
1991
1992 INIT_LIST_HEAD(&ev->node);
1993 ev->disk = disk;
1994 spin_lock_init(&ev->lock);
1995 mutex_init(&ev->block_mutex);
1996 ev->block = 1;
1997 ev->poll_msecs = -1;
1998 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1999
2000 disk->ev = ev;
2001}
2002
2003static void disk_add_events(struct gendisk *disk)
2004{
2005 if (!disk->ev)
2006 return;
2007
2008 /* FIXME: error handling */
2009 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2010 pr_warn("%s: failed to create sysfs files for events\n",
2011 disk->disk_name);
2012
2013 mutex_lock(&disk_events_mutex);
2014 list_add_tail(&disk->ev->node, &disk_events);
2015 mutex_unlock(&disk_events_mutex);
2016
2017 /*
2018 * Block count is initialized to 1 and the following initial
2019 * unblock kicks it into action.
2020 */
2021 __disk_unblock_events(disk, true);
2022}
2023
2024static void disk_del_events(struct gendisk *disk)
2025{
2026 if (!disk->ev)
2027 return;
2028
2029 disk_block_events(disk);
2030
2031 mutex_lock(&disk_events_mutex);
2032 list_del_init(&disk->ev->node);
2033 mutex_unlock(&disk_events_mutex);
2034
2035 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2036}
2037
2038static void disk_release_events(struct gendisk *disk)
2039{
2040 /* the block count should be 1 from disk_del_events() */
2041 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2042 kfree(disk->ev);
2043}