| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Simple NUMA memory policy for the Linux kernel. | 
|  | 3 | * | 
|  | 4 | * Copyright 2003,2004 Andi Kleen, SuSE Labs. | 
|  | 5 | * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. | 
|  | 6 | * Subject to the GNU Public License, version 2. | 
|  | 7 | * | 
|  | 8 | * NUMA policy allows the user to give hints in which node(s) memory should | 
|  | 9 | * be allocated. | 
|  | 10 | * | 
|  | 11 | * Support four policies per VMA and per process: | 
|  | 12 | * | 
|  | 13 | * The VMA policy has priority over the process policy for a page fault. | 
|  | 14 | * | 
|  | 15 | * interleave     Allocate memory interleaved over a set of nodes, | 
|  | 16 | *                with normal fallback if it fails. | 
|  | 17 | *                For VMA based allocations this interleaves based on the | 
|  | 18 | *                offset into the backing object or offset into the mapping | 
|  | 19 | *                for anonymous memory. For process policy an process counter | 
|  | 20 | *                is used. | 
|  | 21 | * | 
|  | 22 | * bind           Only allocate memory on a specific set of nodes, | 
|  | 23 | *                no fallback. | 
|  | 24 | *                FIXME: memory is allocated starting with the first node | 
|  | 25 | *                to the last. It would be better if bind would truly restrict | 
|  | 26 | *                the allocation to memory nodes instead | 
|  | 27 | * | 
|  | 28 | * preferred       Try a specific node first before normal fallback. | 
|  | 29 | *                As a special case NUMA_NO_NODE here means do the allocation | 
|  | 30 | *                on the local CPU. This is normally identical to default, | 
|  | 31 | *                but useful to set in a VMA when you have a non default | 
|  | 32 | *                process policy. | 
|  | 33 | * | 
|  | 34 | * default        Allocate on the local node first, or when on a VMA | 
|  | 35 | *                use the process policy. This is what Linux always did | 
|  | 36 | *		  in a NUMA aware kernel and still does by, ahem, default. | 
|  | 37 | * | 
|  | 38 | * The process policy is applied for most non interrupt memory allocations | 
|  | 39 | * in that process' context. Interrupts ignore the policies and always | 
|  | 40 | * try to allocate on the local CPU. The VMA policy is only applied for memory | 
|  | 41 | * allocations for a VMA in the VM. | 
|  | 42 | * | 
|  | 43 | * Currently there are a few corner cases in swapping where the policy | 
|  | 44 | * is not applied, but the majority should be handled. When process policy | 
|  | 45 | * is used it is not remembered over swap outs/swap ins. | 
|  | 46 | * | 
|  | 47 | * Only the highest zone in the zone hierarchy gets policied. Allocations | 
|  | 48 | * requesting a lower zone just use default policy. This implies that | 
|  | 49 | * on systems with highmem kernel lowmem allocation don't get policied. | 
|  | 50 | * Same with GFP_DMA allocations. | 
|  | 51 | * | 
|  | 52 | * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between | 
|  | 53 | * all users and remembered even when nobody has memory mapped. | 
|  | 54 | */ | 
|  | 55 |  | 
|  | 56 | /* Notebook: | 
|  | 57 | fix mmap readahead to honour policy and enable policy for any page cache | 
|  | 58 | object | 
|  | 59 | statistics for bigpages | 
|  | 60 | global policy for page cache? currently it uses process policy. Requires | 
|  | 61 | first item above. | 
|  | 62 | handle mremap for shared memory (currently ignored for the policy) | 
|  | 63 | grows down? | 
|  | 64 | make bind policy root only? It can trigger oom much faster and the | 
|  | 65 | kernel is not always grateful with that. | 
|  | 66 | */ | 
|  | 67 |  | 
|  | 68 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 69 |  | 
|  | 70 | #include <linux/mempolicy.h> | 
|  | 71 | #include <linux/mm.h> | 
|  | 72 | #include <linux/highmem.h> | 
|  | 73 | #include <linux/hugetlb.h> | 
|  | 74 | #include <linux/kernel.h> | 
|  | 75 | #include <linux/sched.h> | 
|  | 76 | #include <linux/sched/mm.h> | 
|  | 77 | #include <linux/sched/numa_balancing.h> | 
|  | 78 | #include <linux/sched/task.h> | 
|  | 79 | #include <linux/nodemask.h> | 
|  | 80 | #include <linux/cpuset.h> | 
|  | 81 | #include <linux/slab.h> | 
|  | 82 | #include <linux/string.h> | 
|  | 83 | #include <linux/export.h> | 
|  | 84 | #include <linux/nsproxy.h> | 
|  | 85 | #include <linux/interrupt.h> | 
|  | 86 | #include <linux/init.h> | 
|  | 87 | #include <linux/compat.h> | 
|  | 88 | #include <linux/ptrace.h> | 
|  | 89 | #include <linux/swap.h> | 
|  | 90 | #include <linux/seq_file.h> | 
|  | 91 | #include <linux/proc_fs.h> | 
|  | 92 | #include <linux/migrate.h> | 
|  | 93 | #include <linux/ksm.h> | 
|  | 94 | #include <linux/rmap.h> | 
|  | 95 | #include <linux/security.h> | 
|  | 96 | #include <linux/syscalls.h> | 
|  | 97 | #include <linux/ctype.h> | 
|  | 98 | #include <linux/mm_inline.h> | 
|  | 99 | #include <linux/mmu_notifier.h> | 
|  | 100 | #include <linux/printk.h> | 
|  | 101 | #include <linux/swapops.h> | 
|  | 102 |  | 
|  | 103 | #include <asm/tlbflush.h> | 
|  | 104 | #include <linux/uaccess.h> | 
|  | 105 |  | 
|  | 106 | #include "internal.h" | 
|  | 107 |  | 
|  | 108 | /* Internal flags */ | 
|  | 109 | #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */ | 
|  | 110 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */ | 
|  | 111 |  | 
|  | 112 | static struct kmem_cache *policy_cache; | 
|  | 113 | static struct kmem_cache *sn_cache; | 
|  | 114 |  | 
|  | 115 | /* Highest zone. An specific allocation for a zone below that is not | 
|  | 116 | policied. */ | 
|  | 117 | enum zone_type policy_zone = 0; | 
|  | 118 |  | 
|  | 119 | /* | 
|  | 120 | * run-time system-wide default policy => local allocation | 
|  | 121 | */ | 
|  | 122 | static struct mempolicy default_policy = { | 
|  | 123 | .refcnt = ATOMIC_INIT(1), /* never free it */ | 
|  | 124 | .mode = MPOL_PREFERRED, | 
|  | 125 | .flags = MPOL_F_LOCAL, | 
|  | 126 | }; | 
|  | 127 |  | 
|  | 128 | static struct mempolicy preferred_node_policy[MAX_NUMNODES]; | 
|  | 129 |  | 
|  | 130 | struct mempolicy *get_task_policy(struct task_struct *p) | 
|  | 131 | { | 
|  | 132 | struct mempolicy *pol = p->mempolicy; | 
|  | 133 | int node; | 
|  | 134 |  | 
|  | 135 | if (pol) | 
|  | 136 | return pol; | 
|  | 137 |  | 
|  | 138 | node = numa_node_id(); | 
|  | 139 | if (node != NUMA_NO_NODE) { | 
|  | 140 | pol = &preferred_node_policy[node]; | 
|  | 141 | /* preferred_node_policy is not initialised early in boot */ | 
|  | 142 | if (pol->mode) | 
|  | 143 | return pol; | 
|  | 144 | } | 
|  | 145 |  | 
|  | 146 | return &default_policy; | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | static const struct mempolicy_operations { | 
|  | 150 | int (*create)(struct mempolicy *pol, const nodemask_t *nodes); | 
|  | 151 | void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); | 
|  | 152 | } mpol_ops[MPOL_MAX]; | 
|  | 153 |  | 
|  | 154 | static inline int mpol_store_user_nodemask(const struct mempolicy *pol) | 
|  | 155 | { | 
|  | 156 | return pol->flags & MPOL_MODE_FLAGS; | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 | static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, | 
|  | 160 | const nodemask_t *rel) | 
|  | 161 | { | 
|  | 162 | nodemask_t tmp; | 
|  | 163 | nodes_fold(tmp, *orig, nodes_weight(*rel)); | 
|  | 164 | nodes_onto(*ret, tmp, *rel); | 
|  | 165 | } | 
|  | 166 |  | 
|  | 167 | static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | 168 | { | 
|  | 169 | if (nodes_empty(*nodes)) | 
|  | 170 | return -EINVAL; | 
|  | 171 | pol->v.nodes = *nodes; | 
|  | 172 | return 0; | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | 176 | { | 
|  | 177 | if (!nodes) | 
|  | 178 | pol->flags |= MPOL_F_LOCAL;	/* local allocation */ | 
|  | 179 | else if (nodes_empty(*nodes)) | 
|  | 180 | return -EINVAL;			/*  no allowed nodes */ | 
|  | 181 | else | 
|  | 182 | pol->v.preferred_node = first_node(*nodes); | 
|  | 183 | return 0; | 
|  | 184 | } | 
|  | 185 |  | 
|  | 186 | static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | 187 | { | 
|  | 188 | if (nodes_empty(*nodes)) | 
|  | 189 | return -EINVAL; | 
|  | 190 | pol->v.nodes = *nodes; | 
|  | 191 | return 0; | 
|  | 192 | } | 
|  | 193 |  | 
|  | 194 | /* | 
|  | 195 | * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if | 
|  | 196 | * any, for the new policy.  mpol_new() has already validated the nodes | 
|  | 197 | * parameter with respect to the policy mode and flags.  But, we need to | 
|  | 198 | * handle an empty nodemask with MPOL_PREFERRED here. | 
|  | 199 | * | 
|  | 200 | * Must be called holding task's alloc_lock to protect task's mems_allowed | 
|  | 201 | * and mempolicy.  May also be called holding the mmap_semaphore for write. | 
|  | 202 | */ | 
|  | 203 | static int mpol_set_nodemask(struct mempolicy *pol, | 
|  | 204 | const nodemask_t *nodes, struct nodemask_scratch *nsc) | 
|  | 205 | { | 
|  | 206 | int ret; | 
|  | 207 |  | 
|  | 208 | /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ | 
|  | 209 | if (pol == NULL) | 
|  | 210 | return 0; | 
|  | 211 | /* Check N_MEMORY */ | 
|  | 212 | nodes_and(nsc->mask1, | 
|  | 213 | cpuset_current_mems_allowed, node_states[N_MEMORY]); | 
|  | 214 |  | 
|  | 215 | VM_BUG_ON(!nodes); | 
|  | 216 | if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) | 
|  | 217 | nodes = NULL;	/* explicit local allocation */ | 
|  | 218 | else { | 
|  | 219 | if (pol->flags & MPOL_F_RELATIVE_NODES) | 
|  | 220 | mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); | 
|  | 221 | else | 
|  | 222 | nodes_and(nsc->mask2, *nodes, nsc->mask1); | 
|  | 223 |  | 
|  | 224 | if (mpol_store_user_nodemask(pol)) | 
|  | 225 | pol->w.user_nodemask = *nodes; | 
|  | 226 | else | 
|  | 227 | pol->w.cpuset_mems_allowed = | 
|  | 228 | cpuset_current_mems_allowed; | 
|  | 229 | } | 
|  | 230 |  | 
|  | 231 | if (nodes) | 
|  | 232 | ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); | 
|  | 233 | else | 
|  | 234 | ret = mpol_ops[pol->mode].create(pol, NULL); | 
|  | 235 | return ret; | 
|  | 236 | } | 
|  | 237 |  | 
|  | 238 | /* | 
|  | 239 | * This function just creates a new policy, does some check and simple | 
|  | 240 | * initialization. You must invoke mpol_set_nodemask() to set nodes. | 
|  | 241 | */ | 
|  | 242 | static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, | 
|  | 243 | nodemask_t *nodes) | 
|  | 244 | { | 
|  | 245 | struct mempolicy *policy; | 
|  | 246 |  | 
|  | 247 | pr_debug("setting mode %d flags %d nodes[0] %lx\n", | 
|  | 248 | mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); | 
|  | 249 |  | 
|  | 250 | if (mode == MPOL_DEFAULT) { | 
|  | 251 | if (nodes && !nodes_empty(*nodes)) | 
|  | 252 | return ERR_PTR(-EINVAL); | 
|  | 253 | return NULL; | 
|  | 254 | } | 
|  | 255 | VM_BUG_ON(!nodes); | 
|  | 256 |  | 
|  | 257 | /* | 
|  | 258 | * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or | 
|  | 259 | * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). | 
|  | 260 | * All other modes require a valid pointer to a non-empty nodemask. | 
|  | 261 | */ | 
|  | 262 | if (mode == MPOL_PREFERRED) { | 
|  | 263 | if (nodes_empty(*nodes)) { | 
|  | 264 | if (((flags & MPOL_F_STATIC_NODES) || | 
|  | 265 | (flags & MPOL_F_RELATIVE_NODES))) | 
|  | 266 | return ERR_PTR(-EINVAL); | 
|  | 267 | } | 
|  | 268 | } else if (mode == MPOL_LOCAL) { | 
|  | 269 | if (!nodes_empty(*nodes) || | 
|  | 270 | (flags & MPOL_F_STATIC_NODES) || | 
|  | 271 | (flags & MPOL_F_RELATIVE_NODES)) | 
|  | 272 | return ERR_PTR(-EINVAL); | 
|  | 273 | mode = MPOL_PREFERRED; | 
|  | 274 | } else if (nodes_empty(*nodes)) | 
|  | 275 | return ERR_PTR(-EINVAL); | 
|  | 276 | policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
|  | 277 | if (!policy) | 
|  | 278 | return ERR_PTR(-ENOMEM); | 
|  | 279 | atomic_set(&policy->refcnt, 1); | 
|  | 280 | policy->mode = mode; | 
|  | 281 | policy->flags = flags; | 
|  | 282 |  | 
|  | 283 | return policy; | 
|  | 284 | } | 
|  | 285 |  | 
|  | 286 | /* Slow path of a mpol destructor. */ | 
|  | 287 | void __mpol_put(struct mempolicy *p) | 
|  | 288 | { | 
|  | 289 | if (!atomic_dec_and_test(&p->refcnt)) | 
|  | 290 | return; | 
|  | 291 | kmem_cache_free(policy_cache, p); | 
|  | 292 | } | 
|  | 293 |  | 
|  | 294 | static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | 295 | { | 
|  | 296 | } | 
|  | 297 |  | 
|  | 298 | static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | 299 | { | 
|  | 300 | nodemask_t tmp; | 
|  | 301 |  | 
|  | 302 | if (pol->flags & MPOL_F_STATIC_NODES) | 
|  | 303 | nodes_and(tmp, pol->w.user_nodemask, *nodes); | 
|  | 304 | else if (pol->flags & MPOL_F_RELATIVE_NODES) | 
|  | 305 | mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); | 
|  | 306 | else { | 
|  | 307 | nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, | 
|  | 308 | *nodes); | 
|  | 309 | pol->w.cpuset_mems_allowed = *nodes; | 
|  | 310 | } | 
|  | 311 |  | 
|  | 312 | if (nodes_empty(tmp)) | 
|  | 313 | tmp = *nodes; | 
|  | 314 |  | 
|  | 315 | pol->v.nodes = tmp; | 
|  | 316 | } | 
|  | 317 |  | 
|  | 318 | static void mpol_rebind_preferred(struct mempolicy *pol, | 
|  | 319 | const nodemask_t *nodes) | 
|  | 320 | { | 
|  | 321 | nodemask_t tmp; | 
|  | 322 |  | 
|  | 323 | if (pol->flags & MPOL_F_STATIC_NODES) { | 
|  | 324 | int node = first_node(pol->w.user_nodemask); | 
|  | 325 |  | 
|  | 326 | if (node_isset(node, *nodes)) { | 
|  | 327 | pol->v.preferred_node = node; | 
|  | 328 | pol->flags &= ~MPOL_F_LOCAL; | 
|  | 329 | } else | 
|  | 330 | pol->flags |= MPOL_F_LOCAL; | 
|  | 331 | } else if (pol->flags & MPOL_F_RELATIVE_NODES) { | 
|  | 332 | mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); | 
|  | 333 | pol->v.preferred_node = first_node(tmp); | 
|  | 334 | } else if (!(pol->flags & MPOL_F_LOCAL)) { | 
|  | 335 | pol->v.preferred_node = node_remap(pol->v.preferred_node, | 
|  | 336 | pol->w.cpuset_mems_allowed, | 
|  | 337 | *nodes); | 
|  | 338 | pol->w.cpuset_mems_allowed = *nodes; | 
|  | 339 | } | 
|  | 340 | } | 
|  | 341 |  | 
|  | 342 | /* | 
|  | 343 | * mpol_rebind_policy - Migrate a policy to a different set of nodes | 
|  | 344 | * | 
|  | 345 | * Per-vma policies are protected by mmap_sem. Allocations using per-task | 
|  | 346 | * policies are protected by task->mems_allowed_seq to prevent a premature | 
|  | 347 | * OOM/allocation failure due to parallel nodemask modification. | 
|  | 348 | */ | 
|  | 349 | static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) | 
|  | 350 | { | 
|  | 351 | if (!pol) | 
|  | 352 | return; | 
|  | 353 | if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && | 
|  | 354 | nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) | 
|  | 355 | return; | 
|  | 356 |  | 
|  | 357 | mpol_ops[pol->mode].rebind(pol, newmask); | 
|  | 358 | } | 
|  | 359 |  | 
|  | 360 | /* | 
|  | 361 | * Wrapper for mpol_rebind_policy() that just requires task | 
|  | 362 | * pointer, and updates task mempolicy. | 
|  | 363 | * | 
|  | 364 | * Called with task's alloc_lock held. | 
|  | 365 | */ | 
|  | 366 |  | 
|  | 367 | void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) | 
|  | 368 | { | 
|  | 369 | mpol_rebind_policy(tsk->mempolicy, new); | 
|  | 370 | } | 
|  | 371 |  | 
|  | 372 | /* | 
|  | 373 | * Rebind each vma in mm to new nodemask. | 
|  | 374 | * | 
|  | 375 | * Call holding a reference to mm.  Takes mm->mmap_sem during call. | 
|  | 376 | */ | 
|  | 377 |  | 
|  | 378 | void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) | 
|  | 379 | { | 
|  | 380 | struct vm_area_struct *vma; | 
|  | 381 |  | 
|  | 382 | down_write(&mm->mmap_sem); | 
|  | 383 | for (vma = mm->mmap; vma; vma = vma->vm_next) | 
|  | 384 | mpol_rebind_policy(vma->vm_policy, new); | 
|  | 385 | up_write(&mm->mmap_sem); | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { | 
|  | 389 | [MPOL_DEFAULT] = { | 
|  | 390 | .rebind = mpol_rebind_default, | 
|  | 391 | }, | 
|  | 392 | [MPOL_INTERLEAVE] = { | 
|  | 393 | .create = mpol_new_interleave, | 
|  | 394 | .rebind = mpol_rebind_nodemask, | 
|  | 395 | }, | 
|  | 396 | [MPOL_PREFERRED] = { | 
|  | 397 | .create = mpol_new_preferred, | 
|  | 398 | .rebind = mpol_rebind_preferred, | 
|  | 399 | }, | 
|  | 400 | [MPOL_BIND] = { | 
|  | 401 | .create = mpol_new_bind, | 
|  | 402 | .rebind = mpol_rebind_nodemask, | 
|  | 403 | }, | 
|  | 404 | }; | 
|  | 405 |  | 
|  | 406 | static int migrate_page_add(struct page *page, struct list_head *pagelist, | 
|  | 407 | unsigned long flags); | 
|  | 408 |  | 
|  | 409 | struct queue_pages { | 
|  | 410 | struct list_head *pagelist; | 
|  | 411 | unsigned long flags; | 
|  | 412 | nodemask_t *nmask; | 
|  | 413 | struct vm_area_struct *prev; | 
|  | 414 | }; | 
|  | 415 |  | 
|  | 416 | /* | 
|  | 417 | * Check if the page's nid is in qp->nmask. | 
|  | 418 | * | 
|  | 419 | * If MPOL_MF_INVERT is set in qp->flags, check if the nid is | 
|  | 420 | * in the invert of qp->nmask. | 
|  | 421 | */ | 
|  | 422 | static inline bool queue_pages_required(struct page *page, | 
|  | 423 | struct queue_pages *qp) | 
|  | 424 | { | 
|  | 425 | int nid = page_to_nid(page); | 
|  | 426 | unsigned long flags = qp->flags; | 
|  | 427 |  | 
|  | 428 | return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); | 
|  | 429 | } | 
|  | 430 |  | 
|  | 431 | /* | 
|  | 432 | * queue_pages_pmd() has four possible return values: | 
|  | 433 | * 0 - pages are placed on the right node or queued successfully. | 
|  | 434 | * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were | 
|  | 435 | *     specified. | 
|  | 436 | * 2 - THP was split. | 
|  | 437 | * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an | 
|  | 438 | *        existing page was already on a node that does not follow the | 
|  | 439 | *        policy. | 
|  | 440 | */ | 
|  | 441 | static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, | 
|  | 442 | unsigned long end, struct mm_walk *walk) | 
|  | 443 | { | 
|  | 444 | int ret = 0; | 
|  | 445 | struct page *page; | 
|  | 446 | struct queue_pages *qp = walk->private; | 
|  | 447 | unsigned long flags; | 
|  | 448 |  | 
|  | 449 | if (unlikely(is_pmd_migration_entry(*pmd))) { | 
|  | 450 | ret = -EIO; | 
|  | 451 | goto unlock; | 
|  | 452 | } | 
|  | 453 | page = pmd_page(*pmd); | 
|  | 454 | if (is_huge_zero_page(page)) { | 
|  | 455 | spin_unlock(ptl); | 
|  | 456 | __split_huge_pmd(walk->vma, pmd, addr, false, NULL); | 
|  | 457 | ret = 2; | 
|  | 458 | goto out; | 
|  | 459 | } | 
|  | 460 | if (!queue_pages_required(page, qp)) | 
|  | 461 | goto unlock; | 
|  | 462 |  | 
|  | 463 | flags = qp->flags; | 
|  | 464 | /* go to thp migration */ | 
|  | 465 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { | 
|  | 466 | if (!vma_migratable(walk->vma) || | 
|  | 467 | migrate_page_add(page, qp->pagelist, flags)) { | 
|  | 468 | ret = 1; | 
|  | 469 | goto unlock; | 
|  | 470 | } | 
|  | 471 | } else | 
|  | 472 | ret = -EIO; | 
|  | 473 | unlock: | 
|  | 474 | spin_unlock(ptl); | 
|  | 475 | out: | 
|  | 476 | return ret; | 
|  | 477 | } | 
|  | 478 |  | 
|  | 479 | /* | 
|  | 480 | * Scan through pages checking if pages follow certain conditions, | 
|  | 481 | * and move them to the pagelist if they do. | 
|  | 482 | * | 
|  | 483 | * queue_pages_pte_range() has three possible return values: | 
|  | 484 | * 0 - pages are placed on the right node or queued successfully. | 
|  | 485 | * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were | 
|  | 486 | *     specified. | 
|  | 487 | * -EIO - only MPOL_MF_STRICT was specified and an existing page was already | 
|  | 488 | *        on a node that does not follow the policy. | 
|  | 489 | */ | 
|  | 490 | static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, | 
|  | 491 | unsigned long end, struct mm_walk *walk) | 
|  | 492 | { | 
|  | 493 | struct vm_area_struct *vma = walk->vma; | 
|  | 494 | struct page *page; | 
|  | 495 | struct queue_pages *qp = walk->private; | 
|  | 496 | unsigned long flags = qp->flags; | 
|  | 497 | int ret; | 
|  | 498 | bool has_unmovable = false; | 
|  | 499 | pte_t *pte; | 
|  | 500 | spinlock_t *ptl; | 
|  | 501 |  | 
|  | 502 | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | 503 | if (ptl) { | 
|  | 504 | ret = queue_pages_pmd(pmd, ptl, addr, end, walk); | 
|  | 505 | if (ret != 2) | 
|  | 506 | return ret; | 
|  | 507 | } | 
|  | 508 | /* THP was split, fall through to pte walk */ | 
|  | 509 |  | 
|  | 510 | if (pmd_trans_unstable(pmd)) | 
|  | 511 | return 0; | 
|  | 512 |  | 
|  | 513 | pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); | 
|  | 514 | for (; addr != end; pte++, addr += PAGE_SIZE) { | 
|  | 515 | if (!pte_present(*pte)) | 
|  | 516 | continue; | 
|  | 517 | page = vm_normal_page(vma, addr, *pte); | 
|  | 518 | if (!page) | 
|  | 519 | continue; | 
|  | 520 | /* | 
|  | 521 | * vm_normal_page() filters out zero pages, but there might | 
|  | 522 | * still be PageReserved pages to skip, perhaps in a VDSO. | 
|  | 523 | */ | 
|  | 524 | if (PageReserved(page)) | 
|  | 525 | continue; | 
|  | 526 | if (!queue_pages_required(page, qp)) | 
|  | 527 | continue; | 
|  | 528 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { | 
|  | 529 | /* MPOL_MF_STRICT must be specified if we get here */ | 
|  | 530 | if (!vma_migratable(vma)) { | 
|  | 531 | has_unmovable = true; | 
|  | 532 | break; | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | /* | 
|  | 536 | * Do not abort immediately since there may be | 
|  | 537 | * temporary off LRU pages in the range.  Still | 
|  | 538 | * need migrate other LRU pages. | 
|  | 539 | */ | 
|  | 540 | if (migrate_page_add(page, qp->pagelist, flags)) | 
|  | 541 | has_unmovable = true; | 
|  | 542 | } else | 
|  | 543 | break; | 
|  | 544 | } | 
|  | 545 | pte_unmap_unlock(pte - 1, ptl); | 
|  | 546 | cond_resched(); | 
|  | 547 |  | 
|  | 548 | if (has_unmovable) | 
|  | 549 | return 1; | 
|  | 550 |  | 
|  | 551 | return addr != end ? -EIO : 0; | 
|  | 552 | } | 
|  | 553 |  | 
|  | 554 | static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, | 
|  | 555 | unsigned long addr, unsigned long end, | 
|  | 556 | struct mm_walk *walk) | 
|  | 557 | { | 
|  | 558 | #ifdef CONFIG_HUGETLB_PAGE | 
|  | 559 | struct queue_pages *qp = walk->private; | 
|  | 560 | unsigned long flags = qp->flags; | 
|  | 561 | struct page *page; | 
|  | 562 | spinlock_t *ptl; | 
|  | 563 | pte_t entry; | 
|  | 564 |  | 
|  | 565 | ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); | 
|  | 566 | entry = huge_ptep_get(pte); | 
|  | 567 | if (!pte_present(entry)) | 
|  | 568 | goto unlock; | 
|  | 569 | page = pte_page(entry); | 
|  | 570 | if (!queue_pages_required(page, qp)) | 
|  | 571 | goto unlock; | 
|  | 572 | /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ | 
|  | 573 | if (flags & (MPOL_MF_MOVE_ALL) || | 
|  | 574 | (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) | 
|  | 575 | isolate_huge_page(page, qp->pagelist); | 
|  | 576 | unlock: | 
|  | 577 | spin_unlock(ptl); | 
|  | 578 | #else | 
|  | 579 | BUG(); | 
|  | 580 | #endif | 
|  | 581 | return 0; | 
|  | 582 | } | 
|  | 583 |  | 
|  | 584 | #ifdef CONFIG_NUMA_BALANCING | 
|  | 585 | /* | 
|  | 586 | * This is used to mark a range of virtual addresses to be inaccessible. | 
|  | 587 | * These are later cleared by a NUMA hinting fault. Depending on these | 
|  | 588 | * faults, pages may be migrated for better NUMA placement. | 
|  | 589 | * | 
|  | 590 | * This is assuming that NUMA faults are handled using PROT_NONE. If | 
|  | 591 | * an architecture makes a different choice, it will need further | 
|  | 592 | * changes to the core. | 
|  | 593 | */ | 
|  | 594 | unsigned long change_prot_numa(struct vm_area_struct *vma, | 
|  | 595 | unsigned long addr, unsigned long end) | 
|  | 596 | { | 
|  | 597 | int nr_updated; | 
|  | 598 |  | 
|  | 599 | nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); | 
|  | 600 | if (nr_updated) | 
|  | 601 | count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); | 
|  | 602 |  | 
|  | 603 | return nr_updated; | 
|  | 604 | } | 
|  | 605 | #else | 
|  | 606 | static unsigned long change_prot_numa(struct vm_area_struct *vma, | 
|  | 607 | unsigned long addr, unsigned long end) | 
|  | 608 | { | 
|  | 609 | return 0; | 
|  | 610 | } | 
|  | 611 | #endif /* CONFIG_NUMA_BALANCING */ | 
|  | 612 |  | 
|  | 613 | static int queue_pages_test_walk(unsigned long start, unsigned long end, | 
|  | 614 | struct mm_walk *walk) | 
|  | 615 | { | 
|  | 616 | struct vm_area_struct *vma = walk->vma; | 
|  | 617 | struct queue_pages *qp = walk->private; | 
|  | 618 | unsigned long endvma = vma->vm_end; | 
|  | 619 | unsigned long flags = qp->flags; | 
|  | 620 |  | 
|  | 621 | /* | 
|  | 622 | * Need check MPOL_MF_STRICT to return -EIO if possible | 
|  | 623 | * regardless of vma_migratable | 
|  | 624 | */ | 
|  | 625 | if (!vma_migratable(vma) && | 
|  | 626 | !(flags & MPOL_MF_STRICT)) | 
|  | 627 | return 1; | 
|  | 628 |  | 
|  | 629 | if (endvma > end) | 
|  | 630 | endvma = end; | 
|  | 631 | if (vma->vm_start > start) | 
|  | 632 | start = vma->vm_start; | 
|  | 633 |  | 
|  | 634 | if (!(flags & MPOL_MF_DISCONTIG_OK)) { | 
|  | 635 | if (!vma->vm_next && vma->vm_end < end) | 
|  | 636 | return -EFAULT; | 
|  | 637 | if (qp->prev && qp->prev->vm_end < vma->vm_start) | 
|  | 638 | return -EFAULT; | 
|  | 639 | } | 
|  | 640 |  | 
|  | 641 | qp->prev = vma; | 
|  | 642 |  | 
|  | 643 | if (flags & MPOL_MF_LAZY) { | 
|  | 644 | /* Similar to task_numa_work, skip inaccessible VMAs */ | 
|  | 645 | if (!is_vm_hugetlb_page(vma) && | 
|  | 646 | (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && | 
|  | 647 | !(vma->vm_flags & VM_MIXEDMAP)) | 
|  | 648 | change_prot_numa(vma, start, endvma); | 
|  | 649 | return 1; | 
|  | 650 | } | 
|  | 651 |  | 
|  | 652 | /* queue pages from current vma */ | 
|  | 653 | if (flags & MPOL_MF_VALID) | 
|  | 654 | return 0; | 
|  | 655 | return 1; | 
|  | 656 | } | 
|  | 657 |  | 
|  | 658 | /* | 
|  | 659 | * Walk through page tables and collect pages to be migrated. | 
|  | 660 | * | 
|  | 661 | * If pages found in a given range are on a set of nodes (determined by | 
|  | 662 | * @nodes and @flags,) it's isolated and queued to the pagelist which is | 
|  | 663 | * passed via @private. | 
|  | 664 | * | 
|  | 665 | * queue_pages_range() has three possible return values: | 
|  | 666 | * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were | 
|  | 667 | *     specified. | 
|  | 668 | * 0 - queue pages successfully or no misplaced page. | 
|  | 669 | * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or | 
|  | 670 | *         memory range specified by nodemask and maxnode points outside | 
|  | 671 | *         your accessible address space (-EFAULT) | 
|  | 672 | */ | 
|  | 673 | static int | 
|  | 674 | queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, | 
|  | 675 | nodemask_t *nodes, unsigned long flags, | 
|  | 676 | struct list_head *pagelist) | 
|  | 677 | { | 
|  | 678 | struct queue_pages qp = { | 
|  | 679 | .pagelist = pagelist, | 
|  | 680 | .flags = flags, | 
|  | 681 | .nmask = nodes, | 
|  | 682 | .prev = NULL, | 
|  | 683 | }; | 
|  | 684 | struct mm_walk queue_pages_walk = { | 
|  | 685 | .hugetlb_entry = queue_pages_hugetlb, | 
|  | 686 | .pmd_entry = queue_pages_pte_range, | 
|  | 687 | .test_walk = queue_pages_test_walk, | 
|  | 688 | .mm = mm, | 
|  | 689 | .private = &qp, | 
|  | 690 | }; | 
|  | 691 |  | 
|  | 692 | return walk_page_range(start, end, &queue_pages_walk); | 
|  | 693 | } | 
|  | 694 |  | 
|  | 695 | /* | 
|  | 696 | * Apply policy to a single VMA | 
|  | 697 | * This must be called with the mmap_sem held for writing. | 
|  | 698 | */ | 
|  | 699 | static int vma_replace_policy(struct vm_area_struct *vma, | 
|  | 700 | struct mempolicy *pol) | 
|  | 701 | { | 
|  | 702 | int err; | 
|  | 703 | struct mempolicy *old; | 
|  | 704 | struct mempolicy *new; | 
|  | 705 |  | 
|  | 706 | pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", | 
|  | 707 | vma->vm_start, vma->vm_end, vma->vm_pgoff, | 
|  | 708 | vma->vm_ops, vma->vm_file, | 
|  | 709 | vma->vm_ops ? vma->vm_ops->set_policy : NULL); | 
|  | 710 |  | 
|  | 711 | new = mpol_dup(pol); | 
|  | 712 | if (IS_ERR(new)) | 
|  | 713 | return PTR_ERR(new); | 
|  | 714 |  | 
|  | 715 | if (vma->vm_ops && vma->vm_ops->set_policy) { | 
|  | 716 | err = vma->vm_ops->set_policy(vma, new); | 
|  | 717 | if (err) | 
|  | 718 | goto err_out; | 
|  | 719 | } | 
|  | 720 |  | 
|  | 721 | old = vma->vm_policy; | 
|  | 722 | vma->vm_policy = new; /* protected by mmap_sem */ | 
|  | 723 | mpol_put(old); | 
|  | 724 |  | 
|  | 725 | return 0; | 
|  | 726 | err_out: | 
|  | 727 | mpol_put(new); | 
|  | 728 | return err; | 
|  | 729 | } | 
|  | 730 |  | 
|  | 731 | /* Step 2: apply policy to a range and do splits. */ | 
|  | 732 | static int mbind_range(struct mm_struct *mm, unsigned long start, | 
|  | 733 | unsigned long end, struct mempolicy *new_pol) | 
|  | 734 | { | 
|  | 735 | struct vm_area_struct *next; | 
|  | 736 | struct vm_area_struct *prev; | 
|  | 737 | struct vm_area_struct *vma; | 
|  | 738 | int err = 0; | 
|  | 739 | pgoff_t pgoff; | 
|  | 740 | unsigned long vmstart; | 
|  | 741 | unsigned long vmend; | 
|  | 742 |  | 
|  | 743 | vma = find_vma(mm, start); | 
|  | 744 | if (!vma || vma->vm_start > start) | 
|  | 745 | return -EFAULT; | 
|  | 746 |  | 
|  | 747 | prev = vma->vm_prev; | 
|  | 748 | if (start > vma->vm_start) | 
|  | 749 | prev = vma; | 
|  | 750 |  | 
|  | 751 | for (; vma && vma->vm_start < end; prev = vma, vma = next) { | 
|  | 752 | next = vma->vm_next; | 
|  | 753 | vmstart = max(start, vma->vm_start); | 
|  | 754 | vmend   = min(end, vma->vm_end); | 
|  | 755 |  | 
|  | 756 | if (mpol_equal(vma_policy(vma), new_pol)) | 
|  | 757 | continue; | 
|  | 758 |  | 
|  | 759 | pgoff = vma->vm_pgoff + | 
|  | 760 | ((vmstart - vma->vm_start) >> PAGE_SHIFT); | 
|  | 761 | prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, | 
|  | 762 | vma->anon_vma, vma->vm_file, pgoff, | 
|  | 763 | new_pol, vma->vm_userfaultfd_ctx, | 
|  | 764 | vma_get_anon_name(vma)); | 
|  | 765 | if (prev) { | 
|  | 766 | vma = prev; | 
|  | 767 | next = vma->vm_next; | 
|  | 768 | if (mpol_equal(vma_policy(vma), new_pol)) | 
|  | 769 | continue; | 
|  | 770 | /* vma_merge() joined vma && vma->next, case 8 */ | 
|  | 771 | goto replace; | 
|  | 772 | } | 
|  | 773 | if (vma->vm_start != vmstart) { | 
|  | 774 | err = split_vma(vma->vm_mm, vma, vmstart, 1); | 
|  | 775 | if (err) | 
|  | 776 | goto out; | 
|  | 777 | } | 
|  | 778 | if (vma->vm_end != vmend) { | 
|  | 779 | err = split_vma(vma->vm_mm, vma, vmend, 0); | 
|  | 780 | if (err) | 
|  | 781 | goto out; | 
|  | 782 | } | 
|  | 783 | replace: | 
|  | 784 | err = vma_replace_policy(vma, new_pol); | 
|  | 785 | if (err) | 
|  | 786 | goto out; | 
|  | 787 | } | 
|  | 788 |  | 
|  | 789 | out: | 
|  | 790 | return err; | 
|  | 791 | } | 
|  | 792 |  | 
|  | 793 | /* Set the process memory policy */ | 
|  | 794 | static long do_set_mempolicy(unsigned short mode, unsigned short flags, | 
|  | 795 | nodemask_t *nodes) | 
|  | 796 | { | 
|  | 797 | struct mempolicy *new, *old; | 
|  | 798 | NODEMASK_SCRATCH(scratch); | 
|  | 799 | int ret; | 
|  | 800 |  | 
|  | 801 | if (!scratch) | 
|  | 802 | return -ENOMEM; | 
|  | 803 |  | 
|  | 804 | new = mpol_new(mode, flags, nodes); | 
|  | 805 | if (IS_ERR(new)) { | 
|  | 806 | ret = PTR_ERR(new); | 
|  | 807 | goto out; | 
|  | 808 | } | 
|  | 809 |  | 
|  | 810 | task_lock(current); | 
|  | 811 | ret = mpol_set_nodemask(new, nodes, scratch); | 
|  | 812 | if (ret) { | 
|  | 813 | task_unlock(current); | 
|  | 814 | mpol_put(new); | 
|  | 815 | goto out; | 
|  | 816 | } | 
|  | 817 | old = current->mempolicy; | 
|  | 818 | current->mempolicy = new; | 
|  | 819 | if (new && new->mode == MPOL_INTERLEAVE) | 
|  | 820 | current->il_prev = MAX_NUMNODES-1; | 
|  | 821 | task_unlock(current); | 
|  | 822 | mpol_put(old); | 
|  | 823 | ret = 0; | 
|  | 824 | out: | 
|  | 825 | NODEMASK_SCRATCH_FREE(scratch); | 
|  | 826 | return ret; | 
|  | 827 | } | 
|  | 828 |  | 
|  | 829 | /* | 
|  | 830 | * Return nodemask for policy for get_mempolicy() query | 
|  | 831 | * | 
|  | 832 | * Called with task's alloc_lock held | 
|  | 833 | */ | 
|  | 834 | static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) | 
|  | 835 | { | 
|  | 836 | nodes_clear(*nodes); | 
|  | 837 | if (p == &default_policy) | 
|  | 838 | return; | 
|  | 839 |  | 
|  | 840 | switch (p->mode) { | 
|  | 841 | case MPOL_BIND: | 
|  | 842 | /* Fall through */ | 
|  | 843 | case MPOL_INTERLEAVE: | 
|  | 844 | *nodes = p->v.nodes; | 
|  | 845 | break; | 
|  | 846 | case MPOL_PREFERRED: | 
|  | 847 | if (!(p->flags & MPOL_F_LOCAL)) | 
|  | 848 | node_set(p->v.preferred_node, *nodes); | 
|  | 849 | /* else return empty node mask for local allocation */ | 
|  | 850 | break; | 
|  | 851 | default: | 
|  | 852 | BUG(); | 
|  | 853 | } | 
|  | 854 | } | 
|  | 855 |  | 
|  | 856 | static int lookup_node(unsigned long addr) | 
|  | 857 | { | 
|  | 858 | struct page *p; | 
|  | 859 | int err; | 
|  | 860 |  | 
|  | 861 | err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); | 
|  | 862 | if (err >= 0) { | 
|  | 863 | err = page_to_nid(p); | 
|  | 864 | put_page(p); | 
|  | 865 | } | 
|  | 866 | return err; | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | /* Retrieve NUMA policy */ | 
|  | 870 | static long do_get_mempolicy(int *policy, nodemask_t *nmask, | 
|  | 871 | unsigned long addr, unsigned long flags) | 
|  | 872 | { | 
|  | 873 | int err; | 
|  | 874 | struct mm_struct *mm = current->mm; | 
|  | 875 | struct vm_area_struct *vma = NULL; | 
|  | 876 | struct mempolicy *pol = current->mempolicy; | 
|  | 877 |  | 
|  | 878 | if (flags & | 
|  | 879 | ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) | 
|  | 880 | return -EINVAL; | 
|  | 881 |  | 
|  | 882 | if (flags & MPOL_F_MEMS_ALLOWED) { | 
|  | 883 | if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) | 
|  | 884 | return -EINVAL; | 
|  | 885 | *policy = 0;	/* just so it's initialized */ | 
|  | 886 | task_lock(current); | 
|  | 887 | *nmask  = cpuset_current_mems_allowed; | 
|  | 888 | task_unlock(current); | 
|  | 889 | return 0; | 
|  | 890 | } | 
|  | 891 |  | 
|  | 892 | if (flags & MPOL_F_ADDR) { | 
|  | 893 | /* | 
|  | 894 | * Do NOT fall back to task policy if the | 
|  | 895 | * vma/shared policy at addr is NULL.  We | 
|  | 896 | * want to return MPOL_DEFAULT in this case. | 
|  | 897 | */ | 
|  | 898 | down_read(&mm->mmap_sem); | 
|  | 899 | vma = find_vma_intersection(mm, addr, addr+1); | 
|  | 900 | if (!vma) { | 
|  | 901 | up_read(&mm->mmap_sem); | 
|  | 902 | return -EFAULT; | 
|  | 903 | } | 
|  | 904 | if (vma->vm_ops && vma->vm_ops->get_policy) | 
|  | 905 | pol = vma->vm_ops->get_policy(vma, addr); | 
|  | 906 | else | 
|  | 907 | pol = vma->vm_policy; | 
|  | 908 | } else if (addr) | 
|  | 909 | return -EINVAL; | 
|  | 910 |  | 
|  | 911 | if (!pol) | 
|  | 912 | pol = &default_policy;	/* indicates default behavior */ | 
|  | 913 |  | 
|  | 914 | if (flags & MPOL_F_NODE) { | 
|  | 915 | if (flags & MPOL_F_ADDR) { | 
|  | 916 | err = lookup_node(addr); | 
|  | 917 | if (err < 0) | 
|  | 918 | goto out; | 
|  | 919 | *policy = err; | 
|  | 920 | } else if (pol == current->mempolicy && | 
|  | 921 | pol->mode == MPOL_INTERLEAVE) { | 
|  | 922 | *policy = next_node_in(current->il_prev, pol->v.nodes); | 
|  | 923 | } else { | 
|  | 924 | err = -EINVAL; | 
|  | 925 | goto out; | 
|  | 926 | } | 
|  | 927 | } else { | 
|  | 928 | *policy = pol == &default_policy ? MPOL_DEFAULT : | 
|  | 929 | pol->mode; | 
|  | 930 | /* | 
|  | 931 | * Internal mempolicy flags must be masked off before exposing | 
|  | 932 | * the policy to userspace. | 
|  | 933 | */ | 
|  | 934 | *policy |= (pol->flags & MPOL_MODE_FLAGS); | 
|  | 935 | } | 
|  | 936 |  | 
|  | 937 | err = 0; | 
|  | 938 | if (nmask) { | 
|  | 939 | if (mpol_store_user_nodemask(pol)) { | 
|  | 940 | *nmask = pol->w.user_nodemask; | 
|  | 941 | } else { | 
|  | 942 | task_lock(current); | 
|  | 943 | get_policy_nodemask(pol, nmask); | 
|  | 944 | task_unlock(current); | 
|  | 945 | } | 
|  | 946 | } | 
|  | 947 |  | 
|  | 948 | out: | 
|  | 949 | mpol_cond_put(pol); | 
|  | 950 | if (vma) | 
|  | 951 | up_read(¤t->mm->mmap_sem); | 
|  | 952 | return err; | 
|  | 953 | } | 
|  | 954 |  | 
|  | 955 | #ifdef CONFIG_MIGRATION | 
|  | 956 | /* | 
|  | 957 | * page migration, thp tail pages can be passed. | 
|  | 958 | */ | 
|  | 959 | static int migrate_page_add(struct page *page, struct list_head *pagelist, | 
|  | 960 | unsigned long flags) | 
|  | 961 | { | 
|  | 962 | struct page *head = compound_head(page); | 
|  | 963 | /* | 
|  | 964 | * Avoid migrating a page that is shared with others. | 
|  | 965 | */ | 
|  | 966 | if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { | 
|  | 967 | if (!isolate_lru_page(head)) { | 
|  | 968 | list_add_tail(&head->lru, pagelist); | 
|  | 969 | mod_node_page_state(page_pgdat(head), | 
|  | 970 | NR_ISOLATED_ANON + page_is_file_cache(head), | 
|  | 971 | hpage_nr_pages(head)); | 
|  | 972 | } else if (flags & MPOL_MF_STRICT) { | 
|  | 973 | /* | 
|  | 974 | * Non-movable page may reach here.  And, there may be | 
|  | 975 | * temporary off LRU pages or non-LRU movable pages. | 
|  | 976 | * Treat them as unmovable pages since they can't be | 
|  | 977 | * isolated, so they can't be moved at the moment.  It | 
|  | 978 | * should return -EIO for this case too. | 
|  | 979 | */ | 
|  | 980 | return -EIO; | 
|  | 981 | } | 
|  | 982 | } | 
|  | 983 |  | 
|  | 984 | return 0; | 
|  | 985 | } | 
|  | 986 |  | 
|  | 987 | /* page allocation callback for NUMA node migration */ | 
|  | 988 | struct page *alloc_new_node_page(struct page *page, unsigned long node) | 
|  | 989 | { | 
|  | 990 | if (PageHuge(page)) | 
|  | 991 | return alloc_huge_page_node(page_hstate(compound_head(page)), | 
|  | 992 | node); | 
|  | 993 | else if (PageTransHuge(page)) { | 
|  | 994 | struct page *thp; | 
|  | 995 |  | 
|  | 996 | thp = alloc_pages_node(node, | 
|  | 997 | (GFP_TRANSHUGE | __GFP_THISNODE), | 
|  | 998 | HPAGE_PMD_ORDER); | 
|  | 999 | if (!thp) | 
|  | 1000 | return NULL; | 
|  | 1001 | prep_transhuge_page(thp); | 
|  | 1002 | return thp; | 
|  | 1003 | } else | 
|  | 1004 | return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | | 
|  | 1005 | __GFP_THISNODE, 0); | 
|  | 1006 | } | 
|  | 1007 |  | 
|  | 1008 | /* | 
|  | 1009 | * Migrate pages from one node to a target node. | 
|  | 1010 | * Returns error or the number of pages not migrated. | 
|  | 1011 | */ | 
|  | 1012 | static int migrate_to_node(struct mm_struct *mm, int source, int dest, | 
|  | 1013 | int flags) | 
|  | 1014 | { | 
|  | 1015 | nodemask_t nmask; | 
|  | 1016 | LIST_HEAD(pagelist); | 
|  | 1017 | int err = 0; | 
|  | 1018 |  | 
|  | 1019 | nodes_clear(nmask); | 
|  | 1020 | node_set(source, nmask); | 
|  | 1021 |  | 
|  | 1022 | /* | 
|  | 1023 | * This does not "check" the range but isolates all pages that | 
|  | 1024 | * need migration.  Between passing in the full user address | 
|  | 1025 | * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. | 
|  | 1026 | */ | 
|  | 1027 | VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); | 
|  | 1028 | queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, | 
|  | 1029 | flags | MPOL_MF_DISCONTIG_OK, &pagelist); | 
|  | 1030 |  | 
|  | 1031 | if (!list_empty(&pagelist)) { | 
|  | 1032 | err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, | 
|  | 1033 | MIGRATE_SYNC, MR_SYSCALL); | 
|  | 1034 | if (err) | 
|  | 1035 | putback_movable_pages(&pagelist); | 
|  | 1036 | } | 
|  | 1037 |  | 
|  | 1038 | return err; | 
|  | 1039 | } | 
|  | 1040 |  | 
|  | 1041 | /* | 
|  | 1042 | * Move pages between the two nodesets so as to preserve the physical | 
|  | 1043 | * layout as much as possible. | 
|  | 1044 | * | 
|  | 1045 | * Returns the number of page that could not be moved. | 
|  | 1046 | */ | 
|  | 1047 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, | 
|  | 1048 | const nodemask_t *to, int flags) | 
|  | 1049 | { | 
|  | 1050 | int busy = 0; | 
|  | 1051 | int err; | 
|  | 1052 | nodemask_t tmp; | 
|  | 1053 |  | 
|  | 1054 | err = migrate_prep(); | 
|  | 1055 | if (err) | 
|  | 1056 | return err; | 
|  | 1057 |  | 
|  | 1058 | down_read(&mm->mmap_sem); | 
|  | 1059 |  | 
|  | 1060 | /* | 
|  | 1061 | * Find a 'source' bit set in 'tmp' whose corresponding 'dest' | 
|  | 1062 | * bit in 'to' is not also set in 'tmp'.  Clear the found 'source' | 
|  | 1063 | * bit in 'tmp', and return that <source, dest> pair for migration. | 
|  | 1064 | * The pair of nodemasks 'to' and 'from' define the map. | 
|  | 1065 | * | 
|  | 1066 | * If no pair of bits is found that way, fallback to picking some | 
|  | 1067 | * pair of 'source' and 'dest' bits that are not the same.  If the | 
|  | 1068 | * 'source' and 'dest' bits are the same, this represents a node | 
|  | 1069 | * that will be migrating to itself, so no pages need move. | 
|  | 1070 | * | 
|  | 1071 | * If no bits are left in 'tmp', or if all remaining bits left | 
|  | 1072 | * in 'tmp' correspond to the same bit in 'to', return false | 
|  | 1073 | * (nothing left to migrate). | 
|  | 1074 | * | 
|  | 1075 | * This lets us pick a pair of nodes to migrate between, such that | 
|  | 1076 | * if possible the dest node is not already occupied by some other | 
|  | 1077 | * source node, minimizing the risk of overloading the memory on a | 
|  | 1078 | * node that would happen if we migrated incoming memory to a node | 
|  | 1079 | * before migrating outgoing memory source that same node. | 
|  | 1080 | * | 
|  | 1081 | * A single scan of tmp is sufficient.  As we go, we remember the | 
|  | 1082 | * most recent <s, d> pair that moved (s != d).  If we find a pair | 
|  | 1083 | * that not only moved, but what's better, moved to an empty slot | 
|  | 1084 | * (d is not set in tmp), then we break out then, with that pair. | 
|  | 1085 | * Otherwise when we finish scanning from_tmp, we at least have the | 
|  | 1086 | * most recent <s, d> pair that moved.  If we get all the way through | 
|  | 1087 | * the scan of tmp without finding any node that moved, much less | 
|  | 1088 | * moved to an empty node, then there is nothing left worth migrating. | 
|  | 1089 | */ | 
|  | 1090 |  | 
|  | 1091 | tmp = *from; | 
|  | 1092 | while (!nodes_empty(tmp)) { | 
|  | 1093 | int s,d; | 
|  | 1094 | int source = NUMA_NO_NODE; | 
|  | 1095 | int dest = 0; | 
|  | 1096 |  | 
|  | 1097 | for_each_node_mask(s, tmp) { | 
|  | 1098 |  | 
|  | 1099 | /* | 
|  | 1100 | * do_migrate_pages() tries to maintain the relative | 
|  | 1101 | * node relationship of the pages established between | 
|  | 1102 | * threads and memory areas. | 
|  | 1103 | * | 
|  | 1104 | * However if the number of source nodes is not equal to | 
|  | 1105 | * the number of destination nodes we can not preserve | 
|  | 1106 | * this node relative relationship.  In that case, skip | 
|  | 1107 | * copying memory from a node that is in the destination | 
|  | 1108 | * mask. | 
|  | 1109 | * | 
|  | 1110 | * Example: [2,3,4] -> [3,4,5] moves everything. | 
|  | 1111 | *          [0-7] - > [3,4,5] moves only 0,1,2,6,7. | 
|  | 1112 | */ | 
|  | 1113 |  | 
|  | 1114 | if ((nodes_weight(*from) != nodes_weight(*to)) && | 
|  | 1115 | (node_isset(s, *to))) | 
|  | 1116 | continue; | 
|  | 1117 |  | 
|  | 1118 | d = node_remap(s, *from, *to); | 
|  | 1119 | if (s == d) | 
|  | 1120 | continue; | 
|  | 1121 |  | 
|  | 1122 | source = s;	/* Node moved. Memorize */ | 
|  | 1123 | dest = d; | 
|  | 1124 |  | 
|  | 1125 | /* dest not in remaining from nodes? */ | 
|  | 1126 | if (!node_isset(dest, tmp)) | 
|  | 1127 | break; | 
|  | 1128 | } | 
|  | 1129 | if (source == NUMA_NO_NODE) | 
|  | 1130 | break; | 
|  | 1131 |  | 
|  | 1132 | node_clear(source, tmp); | 
|  | 1133 | err = migrate_to_node(mm, source, dest, flags); | 
|  | 1134 | if (err > 0) | 
|  | 1135 | busy += err; | 
|  | 1136 | if (err < 0) | 
|  | 1137 | break; | 
|  | 1138 | } | 
|  | 1139 | up_read(&mm->mmap_sem); | 
|  | 1140 | if (err < 0) | 
|  | 1141 | return err; | 
|  | 1142 | return busy; | 
|  | 1143 |  | 
|  | 1144 | } | 
|  | 1145 |  | 
|  | 1146 | /* | 
|  | 1147 | * Allocate a new page for page migration based on vma policy. | 
|  | 1148 | * Start by assuming the page is mapped by the same vma as contains @start. | 
|  | 1149 | * Search forward from there, if not.  N.B., this assumes that the | 
|  | 1150 | * list of pages handed to migrate_pages()--which is how we get here-- | 
|  | 1151 | * is in virtual address order. | 
|  | 1152 | */ | 
|  | 1153 | static struct page *new_page(struct page *page, unsigned long start) | 
|  | 1154 | { | 
|  | 1155 | struct vm_area_struct *vma; | 
|  | 1156 | unsigned long uninitialized_var(address); | 
|  | 1157 |  | 
|  | 1158 | vma = find_vma(current->mm, start); | 
|  | 1159 | while (vma) { | 
|  | 1160 | address = page_address_in_vma(page, vma); | 
|  | 1161 | if (address != -EFAULT) | 
|  | 1162 | break; | 
|  | 1163 | vma = vma->vm_next; | 
|  | 1164 | } | 
|  | 1165 |  | 
|  | 1166 | if (PageHuge(page)) { | 
|  | 1167 | return alloc_huge_page_vma(page_hstate(compound_head(page)), | 
|  | 1168 | vma, address); | 
|  | 1169 | } else if (PageTransHuge(page)) { | 
|  | 1170 | struct page *thp; | 
|  | 1171 |  | 
|  | 1172 | thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, | 
|  | 1173 | HPAGE_PMD_ORDER); | 
|  | 1174 | if (!thp) | 
|  | 1175 | return NULL; | 
|  | 1176 | prep_transhuge_page(thp); | 
|  | 1177 | return thp; | 
|  | 1178 | } | 
|  | 1179 | /* | 
|  | 1180 | * if !vma, alloc_page_vma() will use task or system default policy | 
|  | 1181 | */ | 
|  | 1182 | return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, | 
|  | 1183 | vma, address); | 
|  | 1184 | } | 
|  | 1185 | #else | 
|  | 1186 |  | 
|  | 1187 | static int migrate_page_add(struct page *page, struct list_head *pagelist, | 
|  | 1188 | unsigned long flags) | 
|  | 1189 | { | 
|  | 1190 | return -EIO; | 
|  | 1191 | } | 
|  | 1192 |  | 
|  | 1193 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, | 
|  | 1194 | const nodemask_t *to, int flags) | 
|  | 1195 | { | 
|  | 1196 | return -ENOSYS; | 
|  | 1197 | } | 
|  | 1198 |  | 
|  | 1199 | static struct page *new_page(struct page *page, unsigned long start) | 
|  | 1200 | { | 
|  | 1201 | return NULL; | 
|  | 1202 | } | 
|  | 1203 | #endif | 
|  | 1204 |  | 
|  | 1205 | static long do_mbind(unsigned long start, unsigned long len, | 
|  | 1206 | unsigned short mode, unsigned short mode_flags, | 
|  | 1207 | nodemask_t *nmask, unsigned long flags) | 
|  | 1208 | { | 
|  | 1209 | struct mm_struct *mm = current->mm; | 
|  | 1210 | struct mempolicy *new; | 
|  | 1211 | unsigned long end; | 
|  | 1212 | int err; | 
|  | 1213 | int ret; | 
|  | 1214 | LIST_HEAD(pagelist); | 
|  | 1215 |  | 
|  | 1216 | if (flags & ~(unsigned long)MPOL_MF_VALID) | 
|  | 1217 | return -EINVAL; | 
|  | 1218 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
|  | 1219 | return -EPERM; | 
|  | 1220 |  | 
|  | 1221 | if (start & ~PAGE_MASK) | 
|  | 1222 | return -EINVAL; | 
|  | 1223 |  | 
|  | 1224 | if (mode == MPOL_DEFAULT) | 
|  | 1225 | flags &= ~MPOL_MF_STRICT; | 
|  | 1226 |  | 
|  | 1227 | len = (len + PAGE_SIZE - 1) & PAGE_MASK; | 
|  | 1228 | end = start + len; | 
|  | 1229 |  | 
|  | 1230 | if (end < start) | 
|  | 1231 | return -EINVAL; | 
|  | 1232 | if (end == start) | 
|  | 1233 | return 0; | 
|  | 1234 |  | 
|  | 1235 | new = mpol_new(mode, mode_flags, nmask); | 
|  | 1236 | if (IS_ERR(new)) | 
|  | 1237 | return PTR_ERR(new); | 
|  | 1238 |  | 
|  | 1239 | if (flags & MPOL_MF_LAZY) | 
|  | 1240 | new->flags |= MPOL_F_MOF; | 
|  | 1241 |  | 
|  | 1242 | /* | 
|  | 1243 | * If we are using the default policy then operation | 
|  | 1244 | * on discontinuous address spaces is okay after all | 
|  | 1245 | */ | 
|  | 1246 | if (!new) | 
|  | 1247 | flags |= MPOL_MF_DISCONTIG_OK; | 
|  | 1248 |  | 
|  | 1249 | pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", | 
|  | 1250 | start, start + len, mode, mode_flags, | 
|  | 1251 | nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); | 
|  | 1252 |  | 
|  | 1253 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { | 
|  | 1254 |  | 
|  | 1255 | err = migrate_prep(); | 
|  | 1256 | if (err) | 
|  | 1257 | goto mpol_out; | 
|  | 1258 | } | 
|  | 1259 | { | 
|  | 1260 | NODEMASK_SCRATCH(scratch); | 
|  | 1261 | if (scratch) { | 
|  | 1262 | down_write(&mm->mmap_sem); | 
|  | 1263 | task_lock(current); | 
|  | 1264 | err = mpol_set_nodemask(new, nmask, scratch); | 
|  | 1265 | task_unlock(current); | 
|  | 1266 | if (err) | 
|  | 1267 | up_write(&mm->mmap_sem); | 
|  | 1268 | } else | 
|  | 1269 | err = -ENOMEM; | 
|  | 1270 | NODEMASK_SCRATCH_FREE(scratch); | 
|  | 1271 | } | 
|  | 1272 | if (err) | 
|  | 1273 | goto mpol_out; | 
|  | 1274 |  | 
|  | 1275 | ret = queue_pages_range(mm, start, end, nmask, | 
|  | 1276 | flags | MPOL_MF_INVERT, &pagelist); | 
|  | 1277 |  | 
|  | 1278 | if (ret < 0) { | 
|  | 1279 | err = ret; | 
|  | 1280 | goto up_out; | 
|  | 1281 | } | 
|  | 1282 |  | 
|  | 1283 | err = mbind_range(mm, start, end, new); | 
|  | 1284 |  | 
|  | 1285 | if (!err) { | 
|  | 1286 | int nr_failed = 0; | 
|  | 1287 |  | 
|  | 1288 | if (!list_empty(&pagelist)) { | 
|  | 1289 | WARN_ON_ONCE(flags & MPOL_MF_LAZY); | 
|  | 1290 | nr_failed = migrate_pages(&pagelist, new_page, NULL, | 
|  | 1291 | start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); | 
|  | 1292 | if (nr_failed) | 
|  | 1293 | putback_movable_pages(&pagelist); | 
|  | 1294 | } | 
|  | 1295 |  | 
|  | 1296 | if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) | 
|  | 1297 | err = -EIO; | 
|  | 1298 | } else { | 
|  | 1299 | up_out: | 
|  | 1300 | if (!list_empty(&pagelist)) | 
|  | 1301 | putback_movable_pages(&pagelist); | 
|  | 1302 | } | 
|  | 1303 |  | 
|  | 1304 | up_write(&mm->mmap_sem); | 
|  | 1305 | mpol_out: | 
|  | 1306 | mpol_put(new); | 
|  | 1307 | return err; | 
|  | 1308 | } | 
|  | 1309 |  | 
|  | 1310 | /* | 
|  | 1311 | * User space interface with variable sized bitmaps for nodelists. | 
|  | 1312 | */ | 
|  | 1313 |  | 
|  | 1314 | /* Copy a node mask from user space. */ | 
|  | 1315 | static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, | 
|  | 1316 | unsigned long maxnode) | 
|  | 1317 | { | 
|  | 1318 | unsigned long k; | 
|  | 1319 | unsigned long t; | 
|  | 1320 | unsigned long nlongs; | 
|  | 1321 | unsigned long endmask; | 
|  | 1322 |  | 
|  | 1323 | --maxnode; | 
|  | 1324 | nodes_clear(*nodes); | 
|  | 1325 | if (maxnode == 0 || !nmask) | 
|  | 1326 | return 0; | 
|  | 1327 | if (maxnode > PAGE_SIZE*BITS_PER_BYTE) | 
|  | 1328 | return -EINVAL; | 
|  | 1329 |  | 
|  | 1330 | nlongs = BITS_TO_LONGS(maxnode); | 
|  | 1331 | if ((maxnode % BITS_PER_LONG) == 0) | 
|  | 1332 | endmask = ~0UL; | 
|  | 1333 | else | 
|  | 1334 | endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; | 
|  | 1335 |  | 
|  | 1336 | /* | 
|  | 1337 | * When the user specified more nodes than supported just check | 
|  | 1338 | * if the non supported part is all zero. | 
|  | 1339 | * | 
|  | 1340 | * If maxnode have more longs than MAX_NUMNODES, check | 
|  | 1341 | * the bits in that area first. And then go through to | 
|  | 1342 | * check the rest bits which equal or bigger than MAX_NUMNODES. | 
|  | 1343 | * Otherwise, just check bits [MAX_NUMNODES, maxnode). | 
|  | 1344 | */ | 
|  | 1345 | if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { | 
|  | 1346 | for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { | 
|  | 1347 | if (get_user(t, nmask + k)) | 
|  | 1348 | return -EFAULT; | 
|  | 1349 | if (k == nlongs - 1) { | 
|  | 1350 | if (t & endmask) | 
|  | 1351 | return -EINVAL; | 
|  | 1352 | } else if (t) | 
|  | 1353 | return -EINVAL; | 
|  | 1354 | } | 
|  | 1355 | nlongs = BITS_TO_LONGS(MAX_NUMNODES); | 
|  | 1356 | endmask = ~0UL; | 
|  | 1357 | } | 
|  | 1358 |  | 
|  | 1359 | if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { | 
|  | 1360 | unsigned long valid_mask = endmask; | 
|  | 1361 |  | 
|  | 1362 | valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); | 
|  | 1363 | if (get_user(t, nmask + nlongs - 1)) | 
|  | 1364 | return -EFAULT; | 
|  | 1365 | if (t & valid_mask) | 
|  | 1366 | return -EINVAL; | 
|  | 1367 | } | 
|  | 1368 |  | 
|  | 1369 | if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) | 
|  | 1370 | return -EFAULT; | 
|  | 1371 | nodes_addr(*nodes)[nlongs-1] &= endmask; | 
|  | 1372 | return 0; | 
|  | 1373 | } | 
|  | 1374 |  | 
|  | 1375 | /* Copy a kernel node mask to user space */ | 
|  | 1376 | static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, | 
|  | 1377 | nodemask_t *nodes) | 
|  | 1378 | { | 
|  | 1379 | unsigned long copy = ALIGN(maxnode-1, 64) / 8; | 
|  | 1380 | unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); | 
|  | 1381 |  | 
|  | 1382 | if (copy > nbytes) { | 
|  | 1383 | if (copy > PAGE_SIZE) | 
|  | 1384 | return -EINVAL; | 
|  | 1385 | if (clear_user((char __user *)mask + nbytes, copy - nbytes)) | 
|  | 1386 | return -EFAULT; | 
|  | 1387 | copy = nbytes; | 
|  | 1388 | } | 
|  | 1389 | return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; | 
|  | 1390 | } | 
|  | 1391 |  | 
|  | 1392 | static long kernel_mbind(unsigned long start, unsigned long len, | 
|  | 1393 | unsigned long mode, const unsigned long __user *nmask, | 
|  | 1394 | unsigned long maxnode, unsigned int flags) | 
|  | 1395 | { | 
|  | 1396 | nodemask_t nodes; | 
|  | 1397 | int err; | 
|  | 1398 | unsigned short mode_flags; | 
|  | 1399 |  | 
|  | 1400 | start = untagged_addr(start); | 
|  | 1401 | mode_flags = mode & MPOL_MODE_FLAGS; | 
|  | 1402 | mode &= ~MPOL_MODE_FLAGS; | 
|  | 1403 | if (mode >= MPOL_MAX) | 
|  | 1404 | return -EINVAL; | 
|  | 1405 | if ((mode_flags & MPOL_F_STATIC_NODES) && | 
|  | 1406 | (mode_flags & MPOL_F_RELATIVE_NODES)) | 
|  | 1407 | return -EINVAL; | 
|  | 1408 | err = get_nodes(&nodes, nmask, maxnode); | 
|  | 1409 | if (err) | 
|  | 1410 | return err; | 
|  | 1411 | return do_mbind(start, len, mode, mode_flags, &nodes, flags); | 
|  | 1412 | } | 
|  | 1413 |  | 
|  | 1414 | SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, | 
|  | 1415 | unsigned long, mode, const unsigned long __user *, nmask, | 
|  | 1416 | unsigned long, maxnode, unsigned int, flags) | 
|  | 1417 | { | 
|  | 1418 | return kernel_mbind(start, len, mode, nmask, maxnode, flags); | 
|  | 1419 | } | 
|  | 1420 |  | 
|  | 1421 | /* Set the process memory policy */ | 
|  | 1422 | static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, | 
|  | 1423 | unsigned long maxnode) | 
|  | 1424 | { | 
|  | 1425 | int err; | 
|  | 1426 | nodemask_t nodes; | 
|  | 1427 | unsigned short flags; | 
|  | 1428 |  | 
|  | 1429 | flags = mode & MPOL_MODE_FLAGS; | 
|  | 1430 | mode &= ~MPOL_MODE_FLAGS; | 
|  | 1431 | if ((unsigned int)mode >= MPOL_MAX) | 
|  | 1432 | return -EINVAL; | 
|  | 1433 | if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) | 
|  | 1434 | return -EINVAL; | 
|  | 1435 | err = get_nodes(&nodes, nmask, maxnode); | 
|  | 1436 | if (err) | 
|  | 1437 | return err; | 
|  | 1438 | return do_set_mempolicy(mode, flags, &nodes); | 
|  | 1439 | } | 
|  | 1440 |  | 
|  | 1441 | SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, | 
|  | 1442 | unsigned long, maxnode) | 
|  | 1443 | { | 
|  | 1444 | return kernel_set_mempolicy(mode, nmask, maxnode); | 
|  | 1445 | } | 
|  | 1446 |  | 
|  | 1447 | static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, | 
|  | 1448 | const unsigned long __user *old_nodes, | 
|  | 1449 | const unsigned long __user *new_nodes) | 
|  | 1450 | { | 
|  | 1451 | struct mm_struct *mm = NULL; | 
|  | 1452 | struct task_struct *task; | 
|  | 1453 | nodemask_t task_nodes; | 
|  | 1454 | int err; | 
|  | 1455 | nodemask_t *old; | 
|  | 1456 | nodemask_t *new; | 
|  | 1457 | NODEMASK_SCRATCH(scratch); | 
|  | 1458 |  | 
|  | 1459 | if (!scratch) | 
|  | 1460 | return -ENOMEM; | 
|  | 1461 |  | 
|  | 1462 | old = &scratch->mask1; | 
|  | 1463 | new = &scratch->mask2; | 
|  | 1464 |  | 
|  | 1465 | err = get_nodes(old, old_nodes, maxnode); | 
|  | 1466 | if (err) | 
|  | 1467 | goto out; | 
|  | 1468 |  | 
|  | 1469 | err = get_nodes(new, new_nodes, maxnode); | 
|  | 1470 | if (err) | 
|  | 1471 | goto out; | 
|  | 1472 |  | 
|  | 1473 | /* Find the mm_struct */ | 
|  | 1474 | rcu_read_lock(); | 
|  | 1475 | task = pid ? find_task_by_vpid(pid) : current; | 
|  | 1476 | if (!task) { | 
|  | 1477 | rcu_read_unlock(); | 
|  | 1478 | err = -ESRCH; | 
|  | 1479 | goto out; | 
|  | 1480 | } | 
|  | 1481 | get_task_struct(task); | 
|  | 1482 |  | 
|  | 1483 | err = -EINVAL; | 
|  | 1484 |  | 
|  | 1485 | /* | 
|  | 1486 | * Check if this process has the right to modify the specified process. | 
|  | 1487 | * Use the regular "ptrace_may_access()" checks. | 
|  | 1488 | */ | 
|  | 1489 | if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { | 
|  | 1490 | rcu_read_unlock(); | 
|  | 1491 | err = -EPERM; | 
|  | 1492 | goto out_put; | 
|  | 1493 | } | 
|  | 1494 | rcu_read_unlock(); | 
|  | 1495 |  | 
|  | 1496 | task_nodes = cpuset_mems_allowed(task); | 
|  | 1497 | /* Is the user allowed to access the target nodes? */ | 
|  | 1498 | if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { | 
|  | 1499 | err = -EPERM; | 
|  | 1500 | goto out_put; | 
|  | 1501 | } | 
|  | 1502 |  | 
|  | 1503 | task_nodes = cpuset_mems_allowed(current); | 
|  | 1504 | nodes_and(*new, *new, task_nodes); | 
|  | 1505 | if (nodes_empty(*new)) | 
|  | 1506 | goto out_put; | 
|  | 1507 |  | 
|  | 1508 | nodes_and(*new, *new, node_states[N_MEMORY]); | 
|  | 1509 | if (nodes_empty(*new)) | 
|  | 1510 | goto out_put; | 
|  | 1511 |  | 
|  | 1512 | err = security_task_movememory(task); | 
|  | 1513 | if (err) | 
|  | 1514 | goto out_put; | 
|  | 1515 |  | 
|  | 1516 | mm = get_task_mm(task); | 
|  | 1517 | put_task_struct(task); | 
|  | 1518 |  | 
|  | 1519 | if (!mm) { | 
|  | 1520 | err = -EINVAL; | 
|  | 1521 | goto out; | 
|  | 1522 | } | 
|  | 1523 |  | 
|  | 1524 | err = do_migrate_pages(mm, old, new, | 
|  | 1525 | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); | 
|  | 1526 |  | 
|  | 1527 | mmput(mm); | 
|  | 1528 | out: | 
|  | 1529 | NODEMASK_SCRATCH_FREE(scratch); | 
|  | 1530 |  | 
|  | 1531 | return err; | 
|  | 1532 |  | 
|  | 1533 | out_put: | 
|  | 1534 | put_task_struct(task); | 
|  | 1535 | goto out; | 
|  | 1536 |  | 
|  | 1537 | } | 
|  | 1538 |  | 
|  | 1539 | SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | 
|  | 1540 | const unsigned long __user *, old_nodes, | 
|  | 1541 | const unsigned long __user *, new_nodes) | 
|  | 1542 | { | 
|  | 1543 | return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); | 
|  | 1544 | } | 
|  | 1545 |  | 
|  | 1546 |  | 
|  | 1547 | /* Retrieve NUMA policy */ | 
|  | 1548 | static int kernel_get_mempolicy(int __user *policy, | 
|  | 1549 | unsigned long __user *nmask, | 
|  | 1550 | unsigned long maxnode, | 
|  | 1551 | unsigned long addr, | 
|  | 1552 | unsigned long flags) | 
|  | 1553 | { | 
|  | 1554 | int err; | 
|  | 1555 | int uninitialized_var(pval); | 
|  | 1556 | nodemask_t nodes; | 
|  | 1557 |  | 
|  | 1558 | addr = untagged_addr(addr); | 
|  | 1559 |  | 
|  | 1560 | if (nmask != NULL && maxnode < nr_node_ids) | 
|  | 1561 | return -EINVAL; | 
|  | 1562 |  | 
|  | 1563 | err = do_get_mempolicy(&pval, &nodes, addr, flags); | 
|  | 1564 |  | 
|  | 1565 | if (err) | 
|  | 1566 | return err; | 
|  | 1567 |  | 
|  | 1568 | if (policy && put_user(pval, policy)) | 
|  | 1569 | return -EFAULT; | 
|  | 1570 |  | 
|  | 1571 | if (nmask) | 
|  | 1572 | err = copy_nodes_to_user(nmask, maxnode, &nodes); | 
|  | 1573 |  | 
|  | 1574 | return err; | 
|  | 1575 | } | 
|  | 1576 |  | 
|  | 1577 | SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, | 
|  | 1578 | unsigned long __user *, nmask, unsigned long, maxnode, | 
|  | 1579 | unsigned long, addr, unsigned long, flags) | 
|  | 1580 | { | 
|  | 1581 | return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); | 
|  | 1582 | } | 
|  | 1583 |  | 
|  | 1584 | #ifdef CONFIG_COMPAT | 
|  | 1585 |  | 
|  | 1586 | COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, | 
|  | 1587 | compat_ulong_t __user *, nmask, | 
|  | 1588 | compat_ulong_t, maxnode, | 
|  | 1589 | compat_ulong_t, addr, compat_ulong_t, flags) | 
|  | 1590 | { | 
|  | 1591 | long err; | 
|  | 1592 | unsigned long __user *nm = NULL; | 
|  | 1593 | unsigned long nr_bits, alloc_size; | 
|  | 1594 | DECLARE_BITMAP(bm, MAX_NUMNODES); | 
|  | 1595 |  | 
|  | 1596 | nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); | 
|  | 1597 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; | 
|  | 1598 |  | 
|  | 1599 | if (nmask) | 
|  | 1600 | nm = compat_alloc_user_space(alloc_size); | 
|  | 1601 |  | 
|  | 1602 | err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); | 
|  | 1603 |  | 
|  | 1604 | if (!err && nmask) { | 
|  | 1605 | unsigned long copy_size; | 
|  | 1606 | copy_size = min_t(unsigned long, sizeof(bm), alloc_size); | 
|  | 1607 | err = copy_from_user(bm, nm, copy_size); | 
|  | 1608 | /* ensure entire bitmap is zeroed */ | 
|  | 1609 | err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); | 
|  | 1610 | err |= compat_put_bitmap(nmask, bm, nr_bits); | 
|  | 1611 | } | 
|  | 1612 |  | 
|  | 1613 | return err; | 
|  | 1614 | } | 
|  | 1615 |  | 
|  | 1616 | COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, | 
|  | 1617 | compat_ulong_t, maxnode) | 
|  | 1618 | { | 
|  | 1619 | unsigned long __user *nm = NULL; | 
|  | 1620 | unsigned long nr_bits, alloc_size; | 
|  | 1621 | DECLARE_BITMAP(bm, MAX_NUMNODES); | 
|  | 1622 |  | 
|  | 1623 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); | 
|  | 1624 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; | 
|  | 1625 |  | 
|  | 1626 | if (nmask) { | 
|  | 1627 | if (compat_get_bitmap(bm, nmask, nr_bits)) | 
|  | 1628 | return -EFAULT; | 
|  | 1629 | nm = compat_alloc_user_space(alloc_size); | 
|  | 1630 | if (copy_to_user(nm, bm, alloc_size)) | 
|  | 1631 | return -EFAULT; | 
|  | 1632 | } | 
|  | 1633 |  | 
|  | 1634 | return kernel_set_mempolicy(mode, nm, nr_bits+1); | 
|  | 1635 | } | 
|  | 1636 |  | 
|  | 1637 | COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, | 
|  | 1638 | compat_ulong_t, mode, compat_ulong_t __user *, nmask, | 
|  | 1639 | compat_ulong_t, maxnode, compat_ulong_t, flags) | 
|  | 1640 | { | 
|  | 1641 | unsigned long __user *nm = NULL; | 
|  | 1642 | unsigned long nr_bits, alloc_size; | 
|  | 1643 | nodemask_t bm; | 
|  | 1644 |  | 
|  | 1645 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); | 
|  | 1646 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; | 
|  | 1647 |  | 
|  | 1648 | if (nmask) { | 
|  | 1649 | if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) | 
|  | 1650 | return -EFAULT; | 
|  | 1651 | nm = compat_alloc_user_space(alloc_size); | 
|  | 1652 | if (copy_to_user(nm, nodes_addr(bm), alloc_size)) | 
|  | 1653 | return -EFAULT; | 
|  | 1654 | } | 
|  | 1655 |  | 
|  | 1656 | return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); | 
|  | 1657 | } | 
|  | 1658 |  | 
|  | 1659 | COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, | 
|  | 1660 | compat_ulong_t, maxnode, | 
|  | 1661 | const compat_ulong_t __user *, old_nodes, | 
|  | 1662 | const compat_ulong_t __user *, new_nodes) | 
|  | 1663 | { | 
|  | 1664 | unsigned long __user *old = NULL; | 
|  | 1665 | unsigned long __user *new = NULL; | 
|  | 1666 | nodemask_t tmp_mask; | 
|  | 1667 | unsigned long nr_bits; | 
|  | 1668 | unsigned long size; | 
|  | 1669 |  | 
|  | 1670 | nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); | 
|  | 1671 | size = ALIGN(nr_bits, BITS_PER_LONG) / 8; | 
|  | 1672 | if (old_nodes) { | 
|  | 1673 | if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) | 
|  | 1674 | return -EFAULT; | 
|  | 1675 | old = compat_alloc_user_space(new_nodes ? size * 2 : size); | 
|  | 1676 | if (new_nodes) | 
|  | 1677 | new = old + size / sizeof(unsigned long); | 
|  | 1678 | if (copy_to_user(old, nodes_addr(tmp_mask), size)) | 
|  | 1679 | return -EFAULT; | 
|  | 1680 | } | 
|  | 1681 | if (new_nodes) { | 
|  | 1682 | if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) | 
|  | 1683 | return -EFAULT; | 
|  | 1684 | if (new == NULL) | 
|  | 1685 | new = compat_alloc_user_space(size); | 
|  | 1686 | if (copy_to_user(new, nodes_addr(tmp_mask), size)) | 
|  | 1687 | return -EFAULT; | 
|  | 1688 | } | 
|  | 1689 | return kernel_migrate_pages(pid, nr_bits + 1, old, new); | 
|  | 1690 | } | 
|  | 1691 |  | 
|  | 1692 | #endif /* CONFIG_COMPAT */ | 
|  | 1693 |  | 
|  | 1694 | struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, | 
|  | 1695 | unsigned long addr) | 
|  | 1696 | { | 
|  | 1697 | struct mempolicy *pol = NULL; | 
|  | 1698 |  | 
|  | 1699 | if (vma) { | 
|  | 1700 | if (vma->vm_ops && vma->vm_ops->get_policy) { | 
|  | 1701 | pol = vma->vm_ops->get_policy(vma, addr); | 
|  | 1702 | } else if (vma->vm_policy) { | 
|  | 1703 | pol = vma->vm_policy; | 
|  | 1704 |  | 
|  | 1705 | /* | 
|  | 1706 | * shmem_alloc_page() passes MPOL_F_SHARED policy with | 
|  | 1707 | * a pseudo vma whose vma->vm_ops=NULL. Take a reference | 
|  | 1708 | * count on these policies which will be dropped by | 
|  | 1709 | * mpol_cond_put() later | 
|  | 1710 | */ | 
|  | 1711 | if (mpol_needs_cond_ref(pol)) | 
|  | 1712 | mpol_get(pol); | 
|  | 1713 | } | 
|  | 1714 | } | 
|  | 1715 |  | 
|  | 1716 | return pol; | 
|  | 1717 | } | 
|  | 1718 |  | 
|  | 1719 | /* | 
|  | 1720 | * get_vma_policy(@vma, @addr) | 
|  | 1721 | * @vma: virtual memory area whose policy is sought | 
|  | 1722 | * @addr: address in @vma for shared policy lookup | 
|  | 1723 | * | 
|  | 1724 | * Returns effective policy for a VMA at specified address. | 
|  | 1725 | * Falls back to current->mempolicy or system default policy, as necessary. | 
|  | 1726 | * Shared policies [those marked as MPOL_F_SHARED] require an extra reference | 
|  | 1727 | * count--added by the get_policy() vm_op, as appropriate--to protect against | 
|  | 1728 | * freeing by another task.  It is the caller's responsibility to free the | 
|  | 1729 | * extra reference for shared policies. | 
|  | 1730 | */ | 
|  | 1731 | static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, | 
|  | 1732 | unsigned long addr) | 
|  | 1733 | { | 
|  | 1734 | struct mempolicy *pol = __get_vma_policy(vma, addr); | 
|  | 1735 |  | 
|  | 1736 | if (!pol) | 
|  | 1737 | pol = get_task_policy(current); | 
|  | 1738 |  | 
|  | 1739 | return pol; | 
|  | 1740 | } | 
|  | 1741 |  | 
|  | 1742 | bool vma_policy_mof(struct vm_area_struct *vma) | 
|  | 1743 | { | 
|  | 1744 | struct mempolicy *pol; | 
|  | 1745 |  | 
|  | 1746 | if (vma->vm_ops && vma->vm_ops->get_policy) { | 
|  | 1747 | bool ret = false; | 
|  | 1748 |  | 
|  | 1749 | pol = vma->vm_ops->get_policy(vma, vma->vm_start); | 
|  | 1750 | if (pol && (pol->flags & MPOL_F_MOF)) | 
|  | 1751 | ret = true; | 
|  | 1752 | mpol_cond_put(pol); | 
|  | 1753 |  | 
|  | 1754 | return ret; | 
|  | 1755 | } | 
|  | 1756 |  | 
|  | 1757 | pol = vma->vm_policy; | 
|  | 1758 | if (!pol) | 
|  | 1759 | pol = get_task_policy(current); | 
|  | 1760 |  | 
|  | 1761 | return pol->flags & MPOL_F_MOF; | 
|  | 1762 | } | 
|  | 1763 |  | 
|  | 1764 | static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) | 
|  | 1765 | { | 
|  | 1766 | enum zone_type dynamic_policy_zone = policy_zone; | 
|  | 1767 |  | 
|  | 1768 | BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); | 
|  | 1769 |  | 
|  | 1770 | /* | 
|  | 1771 | * if policy->v.nodes has movable memory only, | 
|  | 1772 | * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. | 
|  | 1773 | * | 
|  | 1774 | * policy->v.nodes is intersect with node_states[N_MEMORY]. | 
|  | 1775 | * so if the following test faile, it implies | 
|  | 1776 | * policy->v.nodes has movable memory only. | 
|  | 1777 | */ | 
|  | 1778 | if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) | 
|  | 1779 | dynamic_policy_zone = ZONE_MOVABLE; | 
|  | 1780 |  | 
|  | 1781 | return zone >= dynamic_policy_zone; | 
|  | 1782 | } | 
|  | 1783 |  | 
|  | 1784 | /* | 
|  | 1785 | * Return a nodemask representing a mempolicy for filtering nodes for | 
|  | 1786 | * page allocation | 
|  | 1787 | */ | 
|  | 1788 | static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) | 
|  | 1789 | { | 
|  | 1790 | /* Lower zones don't get a nodemask applied for MPOL_BIND */ | 
|  | 1791 | if (unlikely(policy->mode == MPOL_BIND) && | 
|  | 1792 | apply_policy_zone(policy, gfp_zone(gfp)) && | 
|  | 1793 | cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) | 
|  | 1794 | return &policy->v.nodes; | 
|  | 1795 |  | 
|  | 1796 | return NULL; | 
|  | 1797 | } | 
|  | 1798 |  | 
|  | 1799 | /* Return the node id preferred by the given mempolicy, or the given id */ | 
|  | 1800 | static int policy_node(gfp_t gfp, struct mempolicy *policy, | 
|  | 1801 | int nd) | 
|  | 1802 | { | 
|  | 1803 | if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) | 
|  | 1804 | nd = policy->v.preferred_node; | 
|  | 1805 | else { | 
|  | 1806 | /* | 
|  | 1807 | * __GFP_THISNODE shouldn't even be used with the bind policy | 
|  | 1808 | * because we might easily break the expectation to stay on the | 
|  | 1809 | * requested node and not break the policy. | 
|  | 1810 | */ | 
|  | 1811 | WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); | 
|  | 1812 | } | 
|  | 1813 |  | 
|  | 1814 | return nd; | 
|  | 1815 | } | 
|  | 1816 |  | 
|  | 1817 | /* Do dynamic interleaving for a process */ | 
|  | 1818 | static unsigned interleave_nodes(struct mempolicy *policy) | 
|  | 1819 | { | 
|  | 1820 | unsigned next; | 
|  | 1821 | struct task_struct *me = current; | 
|  | 1822 |  | 
|  | 1823 | next = next_node_in(me->il_prev, policy->v.nodes); | 
|  | 1824 | if (next < MAX_NUMNODES) | 
|  | 1825 | me->il_prev = next; | 
|  | 1826 | return next; | 
|  | 1827 | } | 
|  | 1828 |  | 
|  | 1829 | /* | 
|  | 1830 | * Depending on the memory policy provide a node from which to allocate the | 
|  | 1831 | * next slab entry. | 
|  | 1832 | */ | 
|  | 1833 | unsigned int mempolicy_slab_node(void) | 
|  | 1834 | { | 
|  | 1835 | struct mempolicy *policy; | 
|  | 1836 | int node = numa_mem_id(); | 
|  | 1837 |  | 
|  | 1838 | if (in_interrupt()) | 
|  | 1839 | return node; | 
|  | 1840 |  | 
|  | 1841 | policy = current->mempolicy; | 
|  | 1842 | if (!policy || policy->flags & MPOL_F_LOCAL) | 
|  | 1843 | return node; | 
|  | 1844 |  | 
|  | 1845 | switch (policy->mode) { | 
|  | 1846 | case MPOL_PREFERRED: | 
|  | 1847 | /* | 
|  | 1848 | * handled MPOL_F_LOCAL above | 
|  | 1849 | */ | 
|  | 1850 | return policy->v.preferred_node; | 
|  | 1851 |  | 
|  | 1852 | case MPOL_INTERLEAVE: | 
|  | 1853 | return interleave_nodes(policy); | 
|  | 1854 |  | 
|  | 1855 | case MPOL_BIND: { | 
|  | 1856 | struct zoneref *z; | 
|  | 1857 |  | 
|  | 1858 | /* | 
|  | 1859 | * Follow bind policy behavior and start allocation at the | 
|  | 1860 | * first node. | 
|  | 1861 | */ | 
|  | 1862 | struct zonelist *zonelist; | 
|  | 1863 | enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); | 
|  | 1864 | zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; | 
|  | 1865 | z = first_zones_zonelist(zonelist, highest_zoneidx, | 
|  | 1866 | &policy->v.nodes); | 
|  | 1867 | return z->zone ? zone_to_nid(z->zone) : node; | 
|  | 1868 | } | 
|  | 1869 |  | 
|  | 1870 | default: | 
|  | 1871 | BUG(); | 
|  | 1872 | } | 
|  | 1873 | } | 
|  | 1874 |  | 
|  | 1875 | /* | 
|  | 1876 | * Do static interleaving for a VMA with known offset @n.  Returns the n'th | 
|  | 1877 | * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the | 
|  | 1878 | * number of present nodes. | 
|  | 1879 | */ | 
|  | 1880 | static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) | 
|  | 1881 | { | 
|  | 1882 | unsigned nnodes = nodes_weight(pol->v.nodes); | 
|  | 1883 | unsigned target; | 
|  | 1884 | int i; | 
|  | 1885 | int nid; | 
|  | 1886 |  | 
|  | 1887 | if (!nnodes) | 
|  | 1888 | return numa_node_id(); | 
|  | 1889 | target = (unsigned int)n % nnodes; | 
|  | 1890 | nid = first_node(pol->v.nodes); | 
|  | 1891 | for (i = 0; i < target; i++) | 
|  | 1892 | nid = next_node(nid, pol->v.nodes); | 
|  | 1893 | return nid; | 
|  | 1894 | } | 
|  | 1895 |  | 
|  | 1896 | /* Determine a node number for interleave */ | 
|  | 1897 | static inline unsigned interleave_nid(struct mempolicy *pol, | 
|  | 1898 | struct vm_area_struct *vma, unsigned long addr, int shift) | 
|  | 1899 | { | 
|  | 1900 | if (vma) { | 
|  | 1901 | unsigned long off; | 
|  | 1902 |  | 
|  | 1903 | /* | 
|  | 1904 | * for small pages, there is no difference between | 
|  | 1905 | * shift and PAGE_SHIFT, so the bit-shift is safe. | 
|  | 1906 | * for huge pages, since vm_pgoff is in units of small | 
|  | 1907 | * pages, we need to shift off the always 0 bits to get | 
|  | 1908 | * a useful offset. | 
|  | 1909 | */ | 
|  | 1910 | BUG_ON(shift < PAGE_SHIFT); | 
|  | 1911 | off = vma->vm_pgoff >> (shift - PAGE_SHIFT); | 
|  | 1912 | off += (addr - vma->vm_start) >> shift; | 
|  | 1913 | return offset_il_node(pol, off); | 
|  | 1914 | } else | 
|  | 1915 | return interleave_nodes(pol); | 
|  | 1916 | } | 
|  | 1917 |  | 
|  | 1918 | #ifdef CONFIG_HUGETLBFS | 
|  | 1919 | /* | 
|  | 1920 | * huge_node(@vma, @addr, @gfp_flags, @mpol) | 
|  | 1921 | * @vma: virtual memory area whose policy is sought | 
|  | 1922 | * @addr: address in @vma for shared policy lookup and interleave policy | 
|  | 1923 | * @gfp_flags: for requested zone | 
|  | 1924 | * @mpol: pointer to mempolicy pointer for reference counted mempolicy | 
|  | 1925 | * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask | 
|  | 1926 | * | 
|  | 1927 | * Returns a nid suitable for a huge page allocation and a pointer | 
|  | 1928 | * to the struct mempolicy for conditional unref after allocation. | 
|  | 1929 | * If the effective policy is 'BIND, returns a pointer to the mempolicy's | 
|  | 1930 | * @nodemask for filtering the zonelist. | 
|  | 1931 | * | 
|  | 1932 | * Must be protected by read_mems_allowed_begin() | 
|  | 1933 | */ | 
|  | 1934 | int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, | 
|  | 1935 | struct mempolicy **mpol, nodemask_t **nodemask) | 
|  | 1936 | { | 
|  | 1937 | int nid; | 
|  | 1938 |  | 
|  | 1939 | *mpol = get_vma_policy(vma, addr); | 
|  | 1940 | *nodemask = NULL;	/* assume !MPOL_BIND */ | 
|  | 1941 |  | 
|  | 1942 | if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { | 
|  | 1943 | nid = interleave_nid(*mpol, vma, addr, | 
|  | 1944 | huge_page_shift(hstate_vma(vma))); | 
|  | 1945 | } else { | 
|  | 1946 | nid = policy_node(gfp_flags, *mpol, numa_node_id()); | 
|  | 1947 | if ((*mpol)->mode == MPOL_BIND) | 
|  | 1948 | *nodemask = &(*mpol)->v.nodes; | 
|  | 1949 | } | 
|  | 1950 | return nid; | 
|  | 1951 | } | 
|  | 1952 |  | 
|  | 1953 | /* | 
|  | 1954 | * init_nodemask_of_mempolicy | 
|  | 1955 | * | 
|  | 1956 | * If the current task's mempolicy is "default" [NULL], return 'false' | 
|  | 1957 | * to indicate default policy.  Otherwise, extract the policy nodemask | 
|  | 1958 | * for 'bind' or 'interleave' policy into the argument nodemask, or | 
|  | 1959 | * initialize the argument nodemask to contain the single node for | 
|  | 1960 | * 'preferred' or 'local' policy and return 'true' to indicate presence | 
|  | 1961 | * of non-default mempolicy. | 
|  | 1962 | * | 
|  | 1963 | * We don't bother with reference counting the mempolicy [mpol_get/put] | 
|  | 1964 | * because the current task is examining it's own mempolicy and a task's | 
|  | 1965 | * mempolicy is only ever changed by the task itself. | 
|  | 1966 | * | 
|  | 1967 | * N.B., it is the caller's responsibility to free a returned nodemask. | 
|  | 1968 | */ | 
|  | 1969 | bool init_nodemask_of_mempolicy(nodemask_t *mask) | 
|  | 1970 | { | 
|  | 1971 | struct mempolicy *mempolicy; | 
|  | 1972 | int nid; | 
|  | 1973 |  | 
|  | 1974 | if (!(mask && current->mempolicy)) | 
|  | 1975 | return false; | 
|  | 1976 |  | 
|  | 1977 | task_lock(current); | 
|  | 1978 | mempolicy = current->mempolicy; | 
|  | 1979 | switch (mempolicy->mode) { | 
|  | 1980 | case MPOL_PREFERRED: | 
|  | 1981 | if (mempolicy->flags & MPOL_F_LOCAL) | 
|  | 1982 | nid = numa_node_id(); | 
|  | 1983 | else | 
|  | 1984 | nid = mempolicy->v.preferred_node; | 
|  | 1985 | init_nodemask_of_node(mask, nid); | 
|  | 1986 | break; | 
|  | 1987 |  | 
|  | 1988 | case MPOL_BIND: | 
|  | 1989 | /* Fall through */ | 
|  | 1990 | case MPOL_INTERLEAVE: | 
|  | 1991 | *mask =  mempolicy->v.nodes; | 
|  | 1992 | break; | 
|  | 1993 |  | 
|  | 1994 | default: | 
|  | 1995 | BUG(); | 
|  | 1996 | } | 
|  | 1997 | task_unlock(current); | 
|  | 1998 |  | 
|  | 1999 | return true; | 
|  | 2000 | } | 
|  | 2001 | #endif | 
|  | 2002 |  | 
|  | 2003 | /* | 
|  | 2004 | * mempolicy_nodemask_intersects | 
|  | 2005 | * | 
|  | 2006 | * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default | 
|  | 2007 | * policy.  Otherwise, check for intersection between mask and the policy | 
|  | 2008 | * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local' | 
|  | 2009 | * policy, always return true since it may allocate elsewhere on fallback. | 
|  | 2010 | * | 
|  | 2011 | * Takes task_lock(tsk) to prevent freeing of its mempolicy. | 
|  | 2012 | */ | 
|  | 2013 | bool mempolicy_nodemask_intersects(struct task_struct *tsk, | 
|  | 2014 | const nodemask_t *mask) | 
|  | 2015 | { | 
|  | 2016 | struct mempolicy *mempolicy; | 
|  | 2017 | bool ret = true; | 
|  | 2018 |  | 
|  | 2019 | if (!mask) | 
|  | 2020 | return ret; | 
|  | 2021 | task_lock(tsk); | 
|  | 2022 | mempolicy = tsk->mempolicy; | 
|  | 2023 | if (!mempolicy) | 
|  | 2024 | goto out; | 
|  | 2025 |  | 
|  | 2026 | switch (mempolicy->mode) { | 
|  | 2027 | case MPOL_PREFERRED: | 
|  | 2028 | /* | 
|  | 2029 | * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to | 
|  | 2030 | * allocate from, they may fallback to other nodes when oom. | 
|  | 2031 | * Thus, it's possible for tsk to have allocated memory from | 
|  | 2032 | * nodes in mask. | 
|  | 2033 | */ | 
|  | 2034 | break; | 
|  | 2035 | case MPOL_BIND: | 
|  | 2036 | case MPOL_INTERLEAVE: | 
|  | 2037 | ret = nodes_intersects(mempolicy->v.nodes, *mask); | 
|  | 2038 | break; | 
|  | 2039 | default: | 
|  | 2040 | BUG(); | 
|  | 2041 | } | 
|  | 2042 | out: | 
|  | 2043 | task_unlock(tsk); | 
|  | 2044 | return ret; | 
|  | 2045 | } | 
|  | 2046 |  | 
|  | 2047 | /* Allocate a page in interleaved policy. | 
|  | 2048 | Own path because it needs to do special accounting. */ | 
|  | 2049 | static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, | 
|  | 2050 | unsigned nid) | 
|  | 2051 | { | 
|  | 2052 | struct page *page; | 
|  | 2053 |  | 
|  | 2054 | page = __alloc_pages(gfp, order, nid); | 
|  | 2055 | /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ | 
|  | 2056 | if (!static_branch_likely(&vm_numa_stat_key)) | 
|  | 2057 | return page; | 
|  | 2058 | if (page && page_to_nid(page) == nid) { | 
|  | 2059 | preempt_disable(); | 
|  | 2060 | __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); | 
|  | 2061 | preempt_enable(); | 
|  | 2062 | } | 
|  | 2063 | return page; | 
|  | 2064 | } | 
|  | 2065 |  | 
|  | 2066 | /** | 
|  | 2067 | * 	alloc_pages_vma	- Allocate a page for a VMA. | 
|  | 2068 | * | 
|  | 2069 | * 	@gfp: | 
|  | 2070 | *      %GFP_USER    user allocation. | 
|  | 2071 | *      %GFP_KERNEL  kernel allocations, | 
|  | 2072 | *      %GFP_HIGHMEM highmem/user allocations, | 
|  | 2073 | *      %GFP_FS      allocation should not call back into a file system. | 
|  | 2074 | *      %GFP_ATOMIC  don't sleep. | 
|  | 2075 | * | 
|  | 2076 | *	@order:Order of the GFP allocation. | 
|  | 2077 | * 	@vma:  Pointer to VMA or NULL if not available. | 
|  | 2078 | *	@addr: Virtual Address of the allocation. Must be inside the VMA. | 
|  | 2079 | *	@node: Which node to prefer for allocation (modulo policy). | 
|  | 2080 | *	@hugepage: for hugepages try only the preferred node if possible | 
|  | 2081 | * | 
|  | 2082 | * 	This function allocates a page from the kernel page pool and applies | 
|  | 2083 | *	a NUMA policy associated with the VMA or the current process. | 
|  | 2084 | *	When VMA is not NULL caller must hold down_read on the mmap_sem of the | 
|  | 2085 | *	mm_struct of the VMA to prevent it from going away. Should be used for | 
|  | 2086 | *	all allocations for pages that will be mapped into user space. Returns | 
|  | 2087 | *	NULL when no page can be allocated. | 
|  | 2088 | */ | 
|  | 2089 | struct page * | 
|  | 2090 | alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, | 
|  | 2091 | unsigned long addr, int node, bool hugepage) | 
|  | 2092 | { | 
|  | 2093 | struct mempolicy *pol; | 
|  | 2094 | struct page *page; | 
|  | 2095 | int preferred_nid; | 
|  | 2096 | nodemask_t *nmask; | 
|  | 2097 |  | 
|  | 2098 | pol = get_vma_policy(vma, addr); | 
|  | 2099 |  | 
|  | 2100 | if (pol->mode == MPOL_INTERLEAVE) { | 
|  | 2101 | unsigned nid; | 
|  | 2102 |  | 
|  | 2103 | nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); | 
|  | 2104 | mpol_cond_put(pol); | 
|  | 2105 | page = alloc_page_interleave(gfp, order, nid); | 
|  | 2106 | goto out; | 
|  | 2107 | } | 
|  | 2108 |  | 
|  | 2109 | if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { | 
|  | 2110 | int hpage_node = node; | 
|  | 2111 |  | 
|  | 2112 | /* | 
|  | 2113 | * For hugepage allocation and non-interleave policy which | 
|  | 2114 | * allows the current node (or other explicitly preferred | 
|  | 2115 | * node) we only try to allocate from the current/preferred | 
|  | 2116 | * node and don't fall back to other nodes, as the cost of | 
|  | 2117 | * remote accesses would likely offset THP benefits. | 
|  | 2118 | * | 
|  | 2119 | * If the policy is interleave, or does not allow the current | 
|  | 2120 | * node in its nodemask, we allocate the standard way. | 
|  | 2121 | */ | 
|  | 2122 | if (pol->mode == MPOL_PREFERRED && | 
|  | 2123 | !(pol->flags & MPOL_F_LOCAL)) | 
|  | 2124 | hpage_node = pol->v.preferred_node; | 
|  | 2125 |  | 
|  | 2126 | nmask = policy_nodemask(gfp, pol); | 
|  | 2127 | if (!nmask || node_isset(hpage_node, *nmask)) { | 
|  | 2128 | mpol_cond_put(pol); | 
|  | 2129 | /* | 
|  | 2130 | * We cannot invoke reclaim if __GFP_THISNODE | 
|  | 2131 | * is set. Invoking reclaim with | 
|  | 2132 | * __GFP_THISNODE set, would cause THP | 
|  | 2133 | * allocations to trigger heavy swapping | 
|  | 2134 | * despite there may be tons of free memory | 
|  | 2135 | * (including potentially plenty of THP | 
|  | 2136 | * already available in the buddy) on all the | 
|  | 2137 | * other NUMA nodes. | 
|  | 2138 | * | 
|  | 2139 | * At most we could invoke compaction when | 
|  | 2140 | * __GFP_THISNODE is set (but we would need to | 
|  | 2141 | * refrain from invoking reclaim even if | 
|  | 2142 | * compaction returned COMPACT_SKIPPED because | 
|  | 2143 | * there wasn't not enough memory to succeed | 
|  | 2144 | * compaction). For now just avoid | 
|  | 2145 | * __GFP_THISNODE instead of limiting the | 
|  | 2146 | * allocation path to a strict and single | 
|  | 2147 | * compaction invocation. | 
|  | 2148 | * | 
|  | 2149 | * Supposedly if direct reclaim was enabled by | 
|  | 2150 | * the caller, the app prefers THP regardless | 
|  | 2151 | * of the node it comes from so this would be | 
|  | 2152 | * more desiderable behavior than only | 
|  | 2153 | * providing THP originated from the local | 
|  | 2154 | * node in such case. | 
|  | 2155 | */ | 
|  | 2156 | if (!(gfp & __GFP_DIRECT_RECLAIM)) | 
|  | 2157 | gfp |= __GFP_THISNODE; | 
|  | 2158 | page = __alloc_pages_node(hpage_node, gfp, order); | 
|  | 2159 | goto out; | 
|  | 2160 | } | 
|  | 2161 | } | 
|  | 2162 |  | 
|  | 2163 | nmask = policy_nodemask(gfp, pol); | 
|  | 2164 | preferred_nid = policy_node(gfp, pol, node); | 
|  | 2165 | page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); | 
|  | 2166 | mpol_cond_put(pol); | 
|  | 2167 | out: | 
|  | 2168 | return page; | 
|  | 2169 | } | 
|  | 2170 |  | 
|  | 2171 | /** | 
|  | 2172 | * 	alloc_pages_current - Allocate pages. | 
|  | 2173 | * | 
|  | 2174 | *	@gfp: | 
|  | 2175 | *		%GFP_USER   user allocation, | 
|  | 2176 | *      	%GFP_KERNEL kernel allocation, | 
|  | 2177 | *      	%GFP_HIGHMEM highmem allocation, | 
|  | 2178 | *      	%GFP_FS     don't call back into a file system. | 
|  | 2179 | *      	%GFP_ATOMIC don't sleep. | 
|  | 2180 | *	@order: Power of two of allocation size in pages. 0 is a single page. | 
|  | 2181 | * | 
|  | 2182 | *	Allocate a page from the kernel page pool.  When not in | 
|  | 2183 | *	interrupt context and apply the current process NUMA policy. | 
|  | 2184 | *	Returns NULL when no page can be allocated. | 
|  | 2185 | */ | 
|  | 2186 | struct page *alloc_pages_current(gfp_t gfp, unsigned order) | 
|  | 2187 | { | 
|  | 2188 | struct mempolicy *pol = &default_policy; | 
|  | 2189 | struct page *page; | 
|  | 2190 |  | 
|  | 2191 | if (!in_interrupt() && !(gfp & __GFP_THISNODE)) | 
|  | 2192 | pol = get_task_policy(current); | 
|  | 2193 |  | 
|  | 2194 | /* | 
|  | 2195 | * No reference counting needed for current->mempolicy | 
|  | 2196 | * nor system default_policy | 
|  | 2197 | */ | 
|  | 2198 | if (pol->mode == MPOL_INTERLEAVE) | 
|  | 2199 | page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); | 
|  | 2200 | else | 
|  | 2201 | page = __alloc_pages_nodemask(gfp, order, | 
|  | 2202 | policy_node(gfp, pol, numa_node_id()), | 
|  | 2203 | policy_nodemask(gfp, pol)); | 
|  | 2204 |  | 
|  | 2205 | return page; | 
|  | 2206 | } | 
|  | 2207 | EXPORT_SYMBOL(alloc_pages_current); | 
|  | 2208 |  | 
|  | 2209 | int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) | 
|  | 2210 | { | 
|  | 2211 | struct mempolicy *pol = mpol_dup(vma_policy(src)); | 
|  | 2212 |  | 
|  | 2213 | if (IS_ERR(pol)) | 
|  | 2214 | return PTR_ERR(pol); | 
|  | 2215 | dst->vm_policy = pol; | 
|  | 2216 | return 0; | 
|  | 2217 | } | 
|  | 2218 |  | 
|  | 2219 | /* | 
|  | 2220 | * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it | 
|  | 2221 | * rebinds the mempolicy its copying by calling mpol_rebind_policy() | 
|  | 2222 | * with the mems_allowed returned by cpuset_mems_allowed().  This | 
|  | 2223 | * keeps mempolicies cpuset relative after its cpuset moves.  See | 
|  | 2224 | * further kernel/cpuset.c update_nodemask(). | 
|  | 2225 | * | 
|  | 2226 | * current's mempolicy may be rebinded by the other task(the task that changes | 
|  | 2227 | * cpuset's mems), so we needn't do rebind work for current task. | 
|  | 2228 | */ | 
|  | 2229 |  | 
|  | 2230 | /* Slow path of a mempolicy duplicate */ | 
|  | 2231 | struct mempolicy *__mpol_dup(struct mempolicy *old) | 
|  | 2232 | { | 
|  | 2233 | struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
|  | 2234 |  | 
|  | 2235 | if (!new) | 
|  | 2236 | return ERR_PTR(-ENOMEM); | 
|  | 2237 |  | 
|  | 2238 | /* task's mempolicy is protected by alloc_lock */ | 
|  | 2239 | if (old == current->mempolicy) { | 
|  | 2240 | task_lock(current); | 
|  | 2241 | *new = *old; | 
|  | 2242 | task_unlock(current); | 
|  | 2243 | } else | 
|  | 2244 | *new = *old; | 
|  | 2245 |  | 
|  | 2246 | if (current_cpuset_is_being_rebound()) { | 
|  | 2247 | nodemask_t mems = cpuset_mems_allowed(current); | 
|  | 2248 | mpol_rebind_policy(new, &mems); | 
|  | 2249 | } | 
|  | 2250 | atomic_set(&new->refcnt, 1); | 
|  | 2251 | return new; | 
|  | 2252 | } | 
|  | 2253 |  | 
|  | 2254 | /* Slow path of a mempolicy comparison */ | 
|  | 2255 | bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) | 
|  | 2256 | { | 
|  | 2257 | if (!a || !b) | 
|  | 2258 | return false; | 
|  | 2259 | if (a->mode != b->mode) | 
|  | 2260 | return false; | 
|  | 2261 | if (a->flags != b->flags) | 
|  | 2262 | return false; | 
|  | 2263 | if (mpol_store_user_nodemask(a)) | 
|  | 2264 | if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) | 
|  | 2265 | return false; | 
|  | 2266 |  | 
|  | 2267 | switch (a->mode) { | 
|  | 2268 | case MPOL_BIND: | 
|  | 2269 | /* Fall through */ | 
|  | 2270 | case MPOL_INTERLEAVE: | 
|  | 2271 | return !!nodes_equal(a->v.nodes, b->v.nodes); | 
|  | 2272 | case MPOL_PREFERRED: | 
|  | 2273 | /* a's ->flags is the same as b's */ | 
|  | 2274 | if (a->flags & MPOL_F_LOCAL) | 
|  | 2275 | return true; | 
|  | 2276 | return a->v.preferred_node == b->v.preferred_node; | 
|  | 2277 | default: | 
|  | 2278 | BUG(); | 
|  | 2279 | return false; | 
|  | 2280 | } | 
|  | 2281 | } | 
|  | 2282 |  | 
|  | 2283 | /* | 
|  | 2284 | * Shared memory backing store policy support. | 
|  | 2285 | * | 
|  | 2286 | * Remember policies even when nobody has shared memory mapped. | 
|  | 2287 | * The policies are kept in Red-Black tree linked from the inode. | 
|  | 2288 | * They are protected by the sp->lock rwlock, which should be held | 
|  | 2289 | * for any accesses to the tree. | 
|  | 2290 | */ | 
|  | 2291 |  | 
|  | 2292 | /* | 
|  | 2293 | * lookup first element intersecting start-end.  Caller holds sp->lock for | 
|  | 2294 | * reading or for writing | 
|  | 2295 | */ | 
|  | 2296 | static struct sp_node * | 
|  | 2297 | sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) | 
|  | 2298 | { | 
|  | 2299 | struct rb_node *n = sp->root.rb_node; | 
|  | 2300 |  | 
|  | 2301 | while (n) { | 
|  | 2302 | struct sp_node *p = rb_entry(n, struct sp_node, nd); | 
|  | 2303 |  | 
|  | 2304 | if (start >= p->end) | 
|  | 2305 | n = n->rb_right; | 
|  | 2306 | else if (end <= p->start) | 
|  | 2307 | n = n->rb_left; | 
|  | 2308 | else | 
|  | 2309 | break; | 
|  | 2310 | } | 
|  | 2311 | if (!n) | 
|  | 2312 | return NULL; | 
|  | 2313 | for (;;) { | 
|  | 2314 | struct sp_node *w = NULL; | 
|  | 2315 | struct rb_node *prev = rb_prev(n); | 
|  | 2316 | if (!prev) | 
|  | 2317 | break; | 
|  | 2318 | w = rb_entry(prev, struct sp_node, nd); | 
|  | 2319 | if (w->end <= start) | 
|  | 2320 | break; | 
|  | 2321 | n = prev; | 
|  | 2322 | } | 
|  | 2323 | return rb_entry(n, struct sp_node, nd); | 
|  | 2324 | } | 
|  | 2325 |  | 
|  | 2326 | /* | 
|  | 2327 | * Insert a new shared policy into the list.  Caller holds sp->lock for | 
|  | 2328 | * writing. | 
|  | 2329 | */ | 
|  | 2330 | static void sp_insert(struct shared_policy *sp, struct sp_node *new) | 
|  | 2331 | { | 
|  | 2332 | struct rb_node **p = &sp->root.rb_node; | 
|  | 2333 | struct rb_node *parent = NULL; | 
|  | 2334 | struct sp_node *nd; | 
|  | 2335 |  | 
|  | 2336 | while (*p) { | 
|  | 2337 | parent = *p; | 
|  | 2338 | nd = rb_entry(parent, struct sp_node, nd); | 
|  | 2339 | if (new->start < nd->start) | 
|  | 2340 | p = &(*p)->rb_left; | 
|  | 2341 | else if (new->end > nd->end) | 
|  | 2342 | p = &(*p)->rb_right; | 
|  | 2343 | else | 
|  | 2344 | BUG(); | 
|  | 2345 | } | 
|  | 2346 | rb_link_node(&new->nd, parent, p); | 
|  | 2347 | rb_insert_color(&new->nd, &sp->root); | 
|  | 2348 | pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, | 
|  | 2349 | new->policy ? new->policy->mode : 0); | 
|  | 2350 | } | 
|  | 2351 |  | 
|  | 2352 | /* Find shared policy intersecting idx */ | 
|  | 2353 | struct mempolicy * | 
|  | 2354 | mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) | 
|  | 2355 | { | 
|  | 2356 | struct mempolicy *pol = NULL; | 
|  | 2357 | struct sp_node *sn; | 
|  | 2358 |  | 
|  | 2359 | if (!sp->root.rb_node) | 
|  | 2360 | return NULL; | 
|  | 2361 | read_lock(&sp->lock); | 
|  | 2362 | sn = sp_lookup(sp, idx, idx+1); | 
|  | 2363 | if (sn) { | 
|  | 2364 | mpol_get(sn->policy); | 
|  | 2365 | pol = sn->policy; | 
|  | 2366 | } | 
|  | 2367 | read_unlock(&sp->lock); | 
|  | 2368 | return pol; | 
|  | 2369 | } | 
|  | 2370 |  | 
|  | 2371 | static void sp_free(struct sp_node *n) | 
|  | 2372 | { | 
|  | 2373 | mpol_put(n->policy); | 
|  | 2374 | kmem_cache_free(sn_cache, n); | 
|  | 2375 | } | 
|  | 2376 |  | 
|  | 2377 | /** | 
|  | 2378 | * mpol_misplaced - check whether current page node is valid in policy | 
|  | 2379 | * | 
|  | 2380 | * @page: page to be checked | 
|  | 2381 | * @vma: vm area where page mapped | 
|  | 2382 | * @addr: virtual address where page mapped | 
|  | 2383 | * | 
|  | 2384 | * Lookup current policy node id for vma,addr and "compare to" page's | 
|  | 2385 | * node id. | 
|  | 2386 | * | 
|  | 2387 | * Returns: | 
|  | 2388 | *	-1	- not misplaced, page is in the right node | 
|  | 2389 | *	node	- node id where the page should be | 
|  | 2390 | * | 
|  | 2391 | * Policy determination "mimics" alloc_page_vma(). | 
|  | 2392 | * Called from fault path where we know the vma and faulting address. | 
|  | 2393 | */ | 
|  | 2394 | int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) | 
|  | 2395 | { | 
|  | 2396 | struct mempolicy *pol; | 
|  | 2397 | struct zoneref *z; | 
|  | 2398 | int curnid = page_to_nid(page); | 
|  | 2399 | unsigned long pgoff; | 
|  | 2400 | int thiscpu = raw_smp_processor_id(); | 
|  | 2401 | int thisnid = cpu_to_node(thiscpu); | 
|  | 2402 | int polnid = -1; | 
|  | 2403 | int ret = -1; | 
|  | 2404 |  | 
|  | 2405 | pol = get_vma_policy(vma, addr); | 
|  | 2406 | if (!(pol->flags & MPOL_F_MOF)) | 
|  | 2407 | goto out; | 
|  | 2408 |  | 
|  | 2409 | switch (pol->mode) { | 
|  | 2410 | case MPOL_INTERLEAVE: | 
|  | 2411 | pgoff = vma->vm_pgoff; | 
|  | 2412 | pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | 2413 | polnid = offset_il_node(pol, pgoff); | 
|  | 2414 | break; | 
|  | 2415 |  | 
|  | 2416 | case MPOL_PREFERRED: | 
|  | 2417 | if (pol->flags & MPOL_F_LOCAL) | 
|  | 2418 | polnid = numa_node_id(); | 
|  | 2419 | else | 
|  | 2420 | polnid = pol->v.preferred_node; | 
|  | 2421 | break; | 
|  | 2422 |  | 
|  | 2423 | case MPOL_BIND: | 
|  | 2424 |  | 
|  | 2425 | /* | 
|  | 2426 | * allows binding to multiple nodes. | 
|  | 2427 | * use current page if in policy nodemask, | 
|  | 2428 | * else select nearest allowed node, if any. | 
|  | 2429 | * If no allowed nodes, use current [!misplaced]. | 
|  | 2430 | */ | 
|  | 2431 | if (node_isset(curnid, pol->v.nodes)) | 
|  | 2432 | goto out; | 
|  | 2433 | z = first_zones_zonelist( | 
|  | 2434 | node_zonelist(numa_node_id(), GFP_HIGHUSER), | 
|  | 2435 | gfp_zone(GFP_HIGHUSER), | 
|  | 2436 | &pol->v.nodes); | 
|  | 2437 | polnid = zone_to_nid(z->zone); | 
|  | 2438 | break; | 
|  | 2439 |  | 
|  | 2440 | default: | 
|  | 2441 | BUG(); | 
|  | 2442 | } | 
|  | 2443 |  | 
|  | 2444 | /* Migrate the page towards the node whose CPU is referencing it */ | 
|  | 2445 | if (pol->flags & MPOL_F_MORON) { | 
|  | 2446 | polnid = thisnid; | 
|  | 2447 |  | 
|  | 2448 | if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) | 
|  | 2449 | goto out; | 
|  | 2450 | } | 
|  | 2451 |  | 
|  | 2452 | if (curnid != polnid) | 
|  | 2453 | ret = polnid; | 
|  | 2454 | out: | 
|  | 2455 | mpol_cond_put(pol); | 
|  | 2456 |  | 
|  | 2457 | return ret; | 
|  | 2458 | } | 
|  | 2459 |  | 
|  | 2460 | /* | 
|  | 2461 | * Drop the (possibly final) reference to task->mempolicy.  It needs to be | 
|  | 2462 | * dropped after task->mempolicy is set to NULL so that any allocation done as | 
|  | 2463 | * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed | 
|  | 2464 | * policy. | 
|  | 2465 | */ | 
|  | 2466 | void mpol_put_task_policy(struct task_struct *task) | 
|  | 2467 | { | 
|  | 2468 | struct mempolicy *pol; | 
|  | 2469 |  | 
|  | 2470 | task_lock(task); | 
|  | 2471 | pol = task->mempolicy; | 
|  | 2472 | task->mempolicy = NULL; | 
|  | 2473 | task_unlock(task); | 
|  | 2474 | mpol_put(pol); | 
|  | 2475 | } | 
|  | 2476 |  | 
|  | 2477 | static void sp_delete(struct shared_policy *sp, struct sp_node *n) | 
|  | 2478 | { | 
|  | 2479 | pr_debug("deleting %lx-l%lx\n", n->start, n->end); | 
|  | 2480 | rb_erase(&n->nd, &sp->root); | 
|  | 2481 | sp_free(n); | 
|  | 2482 | } | 
|  | 2483 |  | 
|  | 2484 | static void sp_node_init(struct sp_node *node, unsigned long start, | 
|  | 2485 | unsigned long end, struct mempolicy *pol) | 
|  | 2486 | { | 
|  | 2487 | node->start = start; | 
|  | 2488 | node->end = end; | 
|  | 2489 | node->policy = pol; | 
|  | 2490 | } | 
|  | 2491 |  | 
|  | 2492 | static struct sp_node *sp_alloc(unsigned long start, unsigned long end, | 
|  | 2493 | struct mempolicy *pol) | 
|  | 2494 | { | 
|  | 2495 | struct sp_node *n; | 
|  | 2496 | struct mempolicy *newpol; | 
|  | 2497 |  | 
|  | 2498 | n = kmem_cache_alloc(sn_cache, GFP_KERNEL); | 
|  | 2499 | if (!n) | 
|  | 2500 | return NULL; | 
|  | 2501 |  | 
|  | 2502 | newpol = mpol_dup(pol); | 
|  | 2503 | if (IS_ERR(newpol)) { | 
|  | 2504 | kmem_cache_free(sn_cache, n); | 
|  | 2505 | return NULL; | 
|  | 2506 | } | 
|  | 2507 | newpol->flags |= MPOL_F_SHARED; | 
|  | 2508 | sp_node_init(n, start, end, newpol); | 
|  | 2509 |  | 
|  | 2510 | return n; | 
|  | 2511 | } | 
|  | 2512 |  | 
|  | 2513 | /* Replace a policy range. */ | 
|  | 2514 | static int shared_policy_replace(struct shared_policy *sp, unsigned long start, | 
|  | 2515 | unsigned long end, struct sp_node *new) | 
|  | 2516 | { | 
|  | 2517 | struct sp_node *n; | 
|  | 2518 | struct sp_node *n_new = NULL; | 
|  | 2519 | struct mempolicy *mpol_new = NULL; | 
|  | 2520 | int ret = 0; | 
|  | 2521 |  | 
|  | 2522 | restart: | 
|  | 2523 | write_lock(&sp->lock); | 
|  | 2524 | n = sp_lookup(sp, start, end); | 
|  | 2525 | /* Take care of old policies in the same range. */ | 
|  | 2526 | while (n && n->start < end) { | 
|  | 2527 | struct rb_node *next = rb_next(&n->nd); | 
|  | 2528 | if (n->start >= start) { | 
|  | 2529 | if (n->end <= end) | 
|  | 2530 | sp_delete(sp, n); | 
|  | 2531 | else | 
|  | 2532 | n->start = end; | 
|  | 2533 | } else { | 
|  | 2534 | /* Old policy spanning whole new range. */ | 
|  | 2535 | if (n->end > end) { | 
|  | 2536 | if (!n_new) | 
|  | 2537 | goto alloc_new; | 
|  | 2538 |  | 
|  | 2539 | *mpol_new = *n->policy; | 
|  | 2540 | atomic_set(&mpol_new->refcnt, 1); | 
|  | 2541 | sp_node_init(n_new, end, n->end, mpol_new); | 
|  | 2542 | n->end = start; | 
|  | 2543 | sp_insert(sp, n_new); | 
|  | 2544 | n_new = NULL; | 
|  | 2545 | mpol_new = NULL; | 
|  | 2546 | break; | 
|  | 2547 | } else | 
|  | 2548 | n->end = start; | 
|  | 2549 | } | 
|  | 2550 | if (!next) | 
|  | 2551 | break; | 
|  | 2552 | n = rb_entry(next, struct sp_node, nd); | 
|  | 2553 | } | 
|  | 2554 | if (new) | 
|  | 2555 | sp_insert(sp, new); | 
|  | 2556 | write_unlock(&sp->lock); | 
|  | 2557 | ret = 0; | 
|  | 2558 |  | 
|  | 2559 | err_out: | 
|  | 2560 | if (mpol_new) | 
|  | 2561 | mpol_put(mpol_new); | 
|  | 2562 | if (n_new) | 
|  | 2563 | kmem_cache_free(sn_cache, n_new); | 
|  | 2564 |  | 
|  | 2565 | return ret; | 
|  | 2566 |  | 
|  | 2567 | alloc_new: | 
|  | 2568 | write_unlock(&sp->lock); | 
|  | 2569 | ret = -ENOMEM; | 
|  | 2570 | n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); | 
|  | 2571 | if (!n_new) | 
|  | 2572 | goto err_out; | 
|  | 2573 | mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
|  | 2574 | if (!mpol_new) | 
|  | 2575 | goto err_out; | 
|  | 2576 | goto restart; | 
|  | 2577 | } | 
|  | 2578 |  | 
|  | 2579 | /** | 
|  | 2580 | * mpol_shared_policy_init - initialize shared policy for inode | 
|  | 2581 | * @sp: pointer to inode shared policy | 
|  | 2582 | * @mpol:  struct mempolicy to install | 
|  | 2583 | * | 
|  | 2584 | * Install non-NULL @mpol in inode's shared policy rb-tree. | 
|  | 2585 | * On entry, the current task has a reference on a non-NULL @mpol. | 
|  | 2586 | * This must be released on exit. | 
|  | 2587 | * This is called at get_inode() calls and we can use GFP_KERNEL. | 
|  | 2588 | */ | 
|  | 2589 | void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) | 
|  | 2590 | { | 
|  | 2591 | int ret; | 
|  | 2592 |  | 
|  | 2593 | sp->root = RB_ROOT;		/* empty tree == default mempolicy */ | 
|  | 2594 | rwlock_init(&sp->lock); | 
|  | 2595 |  | 
|  | 2596 | if (mpol) { | 
|  | 2597 | struct vm_area_struct pvma; | 
|  | 2598 | struct mempolicy *new; | 
|  | 2599 | NODEMASK_SCRATCH(scratch); | 
|  | 2600 |  | 
|  | 2601 | if (!scratch) | 
|  | 2602 | goto put_mpol; | 
|  | 2603 | /* contextualize the tmpfs mount point mempolicy */ | 
|  | 2604 | new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); | 
|  | 2605 | if (IS_ERR(new)) | 
|  | 2606 | goto free_scratch; /* no valid nodemask intersection */ | 
|  | 2607 |  | 
|  | 2608 | task_lock(current); | 
|  | 2609 | ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); | 
|  | 2610 | task_unlock(current); | 
|  | 2611 | if (ret) | 
|  | 2612 | goto put_new; | 
|  | 2613 |  | 
|  | 2614 | /* Create pseudo-vma that contains just the policy */ | 
|  | 2615 | vma_init(&pvma, NULL); | 
|  | 2616 | pvma.vm_end = TASK_SIZE;	/* policy covers entire file */ | 
|  | 2617 | mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ | 
|  | 2618 |  | 
|  | 2619 | put_new: | 
|  | 2620 | mpol_put(new);			/* drop initial ref */ | 
|  | 2621 | free_scratch: | 
|  | 2622 | NODEMASK_SCRATCH_FREE(scratch); | 
|  | 2623 | put_mpol: | 
|  | 2624 | mpol_put(mpol);	/* drop our incoming ref on sb mpol */ | 
|  | 2625 | } | 
|  | 2626 | } | 
|  | 2627 |  | 
|  | 2628 | int mpol_set_shared_policy(struct shared_policy *info, | 
|  | 2629 | struct vm_area_struct *vma, struct mempolicy *npol) | 
|  | 2630 | { | 
|  | 2631 | int err; | 
|  | 2632 | struct sp_node *new = NULL; | 
|  | 2633 | unsigned long sz = vma_pages(vma); | 
|  | 2634 |  | 
|  | 2635 | pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", | 
|  | 2636 | vma->vm_pgoff, | 
|  | 2637 | sz, npol ? npol->mode : -1, | 
|  | 2638 | npol ? npol->flags : -1, | 
|  | 2639 | npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); | 
|  | 2640 |  | 
|  | 2641 | if (npol) { | 
|  | 2642 | new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); | 
|  | 2643 | if (!new) | 
|  | 2644 | return -ENOMEM; | 
|  | 2645 | } | 
|  | 2646 | err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); | 
|  | 2647 | if (err && new) | 
|  | 2648 | sp_free(new); | 
|  | 2649 | return err; | 
|  | 2650 | } | 
|  | 2651 |  | 
|  | 2652 | /* Free a backing policy store on inode delete. */ | 
|  | 2653 | void mpol_free_shared_policy(struct shared_policy *p) | 
|  | 2654 | { | 
|  | 2655 | struct sp_node *n; | 
|  | 2656 | struct rb_node *next; | 
|  | 2657 |  | 
|  | 2658 | if (!p->root.rb_node) | 
|  | 2659 | return; | 
|  | 2660 | write_lock(&p->lock); | 
|  | 2661 | next = rb_first(&p->root); | 
|  | 2662 | while (next) { | 
|  | 2663 | n = rb_entry(next, struct sp_node, nd); | 
|  | 2664 | next = rb_next(&n->nd); | 
|  | 2665 | sp_delete(p, n); | 
|  | 2666 | } | 
|  | 2667 | write_unlock(&p->lock); | 
|  | 2668 | } | 
|  | 2669 |  | 
|  | 2670 | #ifdef CONFIG_NUMA_BALANCING | 
|  | 2671 | static int __initdata numabalancing_override; | 
|  | 2672 |  | 
|  | 2673 | static void __init check_numabalancing_enable(void) | 
|  | 2674 | { | 
|  | 2675 | bool numabalancing_default = false; | 
|  | 2676 |  | 
|  | 2677 | if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) | 
|  | 2678 | numabalancing_default = true; | 
|  | 2679 |  | 
|  | 2680 | /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ | 
|  | 2681 | if (numabalancing_override) | 
|  | 2682 | set_numabalancing_state(numabalancing_override == 1); | 
|  | 2683 |  | 
|  | 2684 | if (num_online_nodes() > 1 && !numabalancing_override) { | 
|  | 2685 | pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", | 
|  | 2686 | numabalancing_default ? "Enabling" : "Disabling"); | 
|  | 2687 | set_numabalancing_state(numabalancing_default); | 
|  | 2688 | } | 
|  | 2689 | } | 
|  | 2690 |  | 
|  | 2691 | static int __init setup_numabalancing(char *str) | 
|  | 2692 | { | 
|  | 2693 | int ret = 0; | 
|  | 2694 | if (!str) | 
|  | 2695 | goto out; | 
|  | 2696 |  | 
|  | 2697 | if (!strcmp(str, "enable")) { | 
|  | 2698 | numabalancing_override = 1; | 
|  | 2699 | ret = 1; | 
|  | 2700 | } else if (!strcmp(str, "disable")) { | 
|  | 2701 | numabalancing_override = -1; | 
|  | 2702 | ret = 1; | 
|  | 2703 | } | 
|  | 2704 | out: | 
|  | 2705 | if (!ret) | 
|  | 2706 | pr_warn("Unable to parse numa_balancing=\n"); | 
|  | 2707 |  | 
|  | 2708 | return ret; | 
|  | 2709 | } | 
|  | 2710 | __setup("numa_balancing=", setup_numabalancing); | 
|  | 2711 | #else | 
|  | 2712 | static inline void __init check_numabalancing_enable(void) | 
|  | 2713 | { | 
|  | 2714 | } | 
|  | 2715 | #endif /* CONFIG_NUMA_BALANCING */ | 
|  | 2716 |  | 
|  | 2717 | /* assumes fs == KERNEL_DS */ | 
|  | 2718 | void __init numa_policy_init(void) | 
|  | 2719 | { | 
|  | 2720 | nodemask_t interleave_nodes; | 
|  | 2721 | unsigned long largest = 0; | 
|  | 2722 | int nid, prefer = 0; | 
|  | 2723 |  | 
|  | 2724 | policy_cache = kmem_cache_create("numa_policy", | 
|  | 2725 | sizeof(struct mempolicy), | 
|  | 2726 | 0, SLAB_PANIC, NULL); | 
|  | 2727 |  | 
|  | 2728 | sn_cache = kmem_cache_create("shared_policy_node", | 
|  | 2729 | sizeof(struct sp_node), | 
|  | 2730 | 0, SLAB_PANIC, NULL); | 
|  | 2731 |  | 
|  | 2732 | for_each_node(nid) { | 
|  | 2733 | preferred_node_policy[nid] = (struct mempolicy) { | 
|  | 2734 | .refcnt = ATOMIC_INIT(1), | 
|  | 2735 | .mode = MPOL_PREFERRED, | 
|  | 2736 | .flags = MPOL_F_MOF | MPOL_F_MORON, | 
|  | 2737 | .v = { .preferred_node = nid, }, | 
|  | 2738 | }; | 
|  | 2739 | } | 
|  | 2740 |  | 
|  | 2741 | /* | 
|  | 2742 | * Set interleaving policy for system init. Interleaving is only | 
|  | 2743 | * enabled across suitably sized nodes (default is >= 16MB), or | 
|  | 2744 | * fall back to the largest node if they're all smaller. | 
|  | 2745 | */ | 
|  | 2746 | nodes_clear(interleave_nodes); | 
|  | 2747 | for_each_node_state(nid, N_MEMORY) { | 
|  | 2748 | unsigned long total_pages = node_present_pages(nid); | 
|  | 2749 |  | 
|  | 2750 | /* Preserve the largest node */ | 
|  | 2751 | if (largest < total_pages) { | 
|  | 2752 | largest = total_pages; | 
|  | 2753 | prefer = nid; | 
|  | 2754 | } | 
|  | 2755 |  | 
|  | 2756 | /* Interleave this node? */ | 
|  | 2757 | if ((total_pages << PAGE_SHIFT) >= (16 << 20)) | 
|  | 2758 | node_set(nid, interleave_nodes); | 
|  | 2759 | } | 
|  | 2760 |  | 
|  | 2761 | /* All too small, use the largest */ | 
|  | 2762 | if (unlikely(nodes_empty(interleave_nodes))) | 
|  | 2763 | node_set(prefer, interleave_nodes); | 
|  | 2764 |  | 
|  | 2765 | if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) | 
|  | 2766 | pr_err("%s: interleaving failed\n", __func__); | 
|  | 2767 |  | 
|  | 2768 | check_numabalancing_enable(); | 
|  | 2769 | } | 
|  | 2770 |  | 
|  | 2771 | /* Reset policy of current process to default */ | 
|  | 2772 | void numa_default_policy(void) | 
|  | 2773 | { | 
|  | 2774 | do_set_mempolicy(MPOL_DEFAULT, 0, NULL); | 
|  | 2775 | } | 
|  | 2776 |  | 
|  | 2777 | /* | 
|  | 2778 | * Parse and format mempolicy from/to strings | 
|  | 2779 | */ | 
|  | 2780 |  | 
|  | 2781 | /* | 
|  | 2782 | * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. | 
|  | 2783 | */ | 
|  | 2784 | static const char * const policy_modes[] = | 
|  | 2785 | { | 
|  | 2786 | [MPOL_DEFAULT]    = "default", | 
|  | 2787 | [MPOL_PREFERRED]  = "prefer", | 
|  | 2788 | [MPOL_BIND]       = "bind", | 
|  | 2789 | [MPOL_INTERLEAVE] = "interleave", | 
|  | 2790 | [MPOL_LOCAL]      = "local", | 
|  | 2791 | }; | 
|  | 2792 |  | 
|  | 2793 |  | 
|  | 2794 | #ifdef CONFIG_TMPFS | 
|  | 2795 | /** | 
|  | 2796 | * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. | 
|  | 2797 | * @str:  string containing mempolicy to parse | 
|  | 2798 | * @mpol:  pointer to struct mempolicy pointer, returned on success. | 
|  | 2799 | * | 
|  | 2800 | * Format of input: | 
|  | 2801 | *	<mode>[=<flags>][:<nodelist>] | 
|  | 2802 | * | 
|  | 2803 | * On success, returns 0, else 1 | 
|  | 2804 | */ | 
|  | 2805 | int mpol_parse_str(char *str, struct mempolicy **mpol) | 
|  | 2806 | { | 
|  | 2807 | struct mempolicy *new = NULL; | 
|  | 2808 | unsigned short mode; | 
|  | 2809 | unsigned short mode_flags; | 
|  | 2810 | nodemask_t nodes; | 
|  | 2811 | char *nodelist = strchr(str, ':'); | 
|  | 2812 | char *flags = strchr(str, '='); | 
|  | 2813 | int err = 1; | 
|  | 2814 |  | 
|  | 2815 | if (nodelist) { | 
|  | 2816 | /* NUL-terminate mode or flags string */ | 
|  | 2817 | *nodelist++ = '\0'; | 
|  | 2818 | if (nodelist_parse(nodelist, nodes)) | 
|  | 2819 | goto out; | 
|  | 2820 | if (!nodes_subset(nodes, node_states[N_MEMORY])) | 
|  | 2821 | goto out; | 
|  | 2822 | } else | 
|  | 2823 | nodes_clear(nodes); | 
|  | 2824 |  | 
|  | 2825 | if (flags) | 
|  | 2826 | *flags++ = '\0';	/* terminate mode string */ | 
|  | 2827 |  | 
|  | 2828 | for (mode = 0; mode < MPOL_MAX; mode++) { | 
|  | 2829 | if (!strcmp(str, policy_modes[mode])) { | 
|  | 2830 | break; | 
|  | 2831 | } | 
|  | 2832 | } | 
|  | 2833 | if (mode >= MPOL_MAX) | 
|  | 2834 | goto out; | 
|  | 2835 |  | 
|  | 2836 | switch (mode) { | 
|  | 2837 | case MPOL_PREFERRED: | 
|  | 2838 | /* | 
|  | 2839 | * Insist on a nodelist of one node only | 
|  | 2840 | */ | 
|  | 2841 | if (nodelist) { | 
|  | 2842 | char *rest = nodelist; | 
|  | 2843 | while (isdigit(*rest)) | 
|  | 2844 | rest++; | 
|  | 2845 | if (*rest) | 
|  | 2846 | goto out; | 
|  | 2847 | } | 
|  | 2848 | break; | 
|  | 2849 | case MPOL_INTERLEAVE: | 
|  | 2850 | /* | 
|  | 2851 | * Default to online nodes with memory if no nodelist | 
|  | 2852 | */ | 
|  | 2853 | if (!nodelist) | 
|  | 2854 | nodes = node_states[N_MEMORY]; | 
|  | 2855 | break; | 
|  | 2856 | case MPOL_LOCAL: | 
|  | 2857 | /* | 
|  | 2858 | * Don't allow a nodelist;  mpol_new() checks flags | 
|  | 2859 | */ | 
|  | 2860 | if (nodelist) | 
|  | 2861 | goto out; | 
|  | 2862 | mode = MPOL_PREFERRED; | 
|  | 2863 | break; | 
|  | 2864 | case MPOL_DEFAULT: | 
|  | 2865 | /* | 
|  | 2866 | * Insist on a empty nodelist | 
|  | 2867 | */ | 
|  | 2868 | if (!nodelist) | 
|  | 2869 | err = 0; | 
|  | 2870 | goto out; | 
|  | 2871 | case MPOL_BIND: | 
|  | 2872 | /* | 
|  | 2873 | * Insist on a nodelist | 
|  | 2874 | */ | 
|  | 2875 | if (!nodelist) | 
|  | 2876 | goto out; | 
|  | 2877 | } | 
|  | 2878 |  | 
|  | 2879 | mode_flags = 0; | 
|  | 2880 | if (flags) { | 
|  | 2881 | /* | 
|  | 2882 | * Currently, we only support two mutually exclusive | 
|  | 2883 | * mode flags. | 
|  | 2884 | */ | 
|  | 2885 | if (!strcmp(flags, "static")) | 
|  | 2886 | mode_flags |= MPOL_F_STATIC_NODES; | 
|  | 2887 | else if (!strcmp(flags, "relative")) | 
|  | 2888 | mode_flags |= MPOL_F_RELATIVE_NODES; | 
|  | 2889 | else | 
|  | 2890 | goto out; | 
|  | 2891 | } | 
|  | 2892 |  | 
|  | 2893 | new = mpol_new(mode, mode_flags, &nodes); | 
|  | 2894 | if (IS_ERR(new)) | 
|  | 2895 | goto out; | 
|  | 2896 |  | 
|  | 2897 | /* | 
|  | 2898 | * Save nodes for mpol_to_str() to show the tmpfs mount options | 
|  | 2899 | * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. | 
|  | 2900 | */ | 
|  | 2901 | if (mode != MPOL_PREFERRED) | 
|  | 2902 | new->v.nodes = nodes; | 
|  | 2903 | else if (nodelist) | 
|  | 2904 | new->v.preferred_node = first_node(nodes); | 
|  | 2905 | else | 
|  | 2906 | new->flags |= MPOL_F_LOCAL; | 
|  | 2907 |  | 
|  | 2908 | /* | 
|  | 2909 | * Save nodes for contextualization: this will be used to "clone" | 
|  | 2910 | * the mempolicy in a specific context [cpuset] at a later time. | 
|  | 2911 | */ | 
|  | 2912 | new->w.user_nodemask = nodes; | 
|  | 2913 |  | 
|  | 2914 | err = 0; | 
|  | 2915 |  | 
|  | 2916 | out: | 
|  | 2917 | /* Restore string for error message */ | 
|  | 2918 | if (nodelist) | 
|  | 2919 | *--nodelist = ':'; | 
|  | 2920 | if (flags) | 
|  | 2921 | *--flags = '='; | 
|  | 2922 | if (!err) | 
|  | 2923 | *mpol = new; | 
|  | 2924 | return err; | 
|  | 2925 | } | 
|  | 2926 | #endif /* CONFIG_TMPFS */ | 
|  | 2927 |  | 
|  | 2928 | /** | 
|  | 2929 | * mpol_to_str - format a mempolicy structure for printing | 
|  | 2930 | * @buffer:  to contain formatted mempolicy string | 
|  | 2931 | * @maxlen:  length of @buffer | 
|  | 2932 | * @pol:  pointer to mempolicy to be formatted | 
|  | 2933 | * | 
|  | 2934 | * Convert @pol into a string.  If @buffer is too short, truncate the string. | 
|  | 2935 | * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the | 
|  | 2936 | * longest flag, "relative", and to display at least a few node ids. | 
|  | 2937 | */ | 
|  | 2938 | void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) | 
|  | 2939 | { | 
|  | 2940 | char *p = buffer; | 
|  | 2941 | nodemask_t nodes = NODE_MASK_NONE; | 
|  | 2942 | unsigned short mode = MPOL_DEFAULT; | 
|  | 2943 | unsigned short flags = 0; | 
|  | 2944 |  | 
|  | 2945 | if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { | 
|  | 2946 | mode = pol->mode; | 
|  | 2947 | flags = pol->flags; | 
|  | 2948 | } | 
|  | 2949 |  | 
|  | 2950 | switch (mode) { | 
|  | 2951 | case MPOL_DEFAULT: | 
|  | 2952 | break; | 
|  | 2953 | case MPOL_PREFERRED: | 
|  | 2954 | if (flags & MPOL_F_LOCAL) | 
|  | 2955 | mode = MPOL_LOCAL; | 
|  | 2956 | else | 
|  | 2957 | node_set(pol->v.preferred_node, nodes); | 
|  | 2958 | break; | 
|  | 2959 | case MPOL_BIND: | 
|  | 2960 | case MPOL_INTERLEAVE: | 
|  | 2961 | nodes = pol->v.nodes; | 
|  | 2962 | break; | 
|  | 2963 | default: | 
|  | 2964 | WARN_ON_ONCE(1); | 
|  | 2965 | snprintf(p, maxlen, "unknown"); | 
|  | 2966 | return; | 
|  | 2967 | } | 
|  | 2968 |  | 
|  | 2969 | p += snprintf(p, maxlen, "%s", policy_modes[mode]); | 
|  | 2970 |  | 
|  | 2971 | if (flags & MPOL_MODE_FLAGS) { | 
|  | 2972 | p += snprintf(p, buffer + maxlen - p, "="); | 
|  | 2973 |  | 
|  | 2974 | /* | 
|  | 2975 | * Currently, the only defined flags are mutually exclusive | 
|  | 2976 | */ | 
|  | 2977 | if (flags & MPOL_F_STATIC_NODES) | 
|  | 2978 | p += snprintf(p, buffer + maxlen - p, "static"); | 
|  | 2979 | else if (flags & MPOL_F_RELATIVE_NODES) | 
|  | 2980 | p += snprintf(p, buffer + maxlen - p, "relative"); | 
|  | 2981 | } | 
|  | 2982 |  | 
|  | 2983 | if (!nodes_empty(nodes)) | 
|  | 2984 | p += scnprintf(p, buffer + maxlen - p, ":%*pbl", | 
|  | 2985 | nodemask_pr_args(&nodes)); | 
|  | 2986 | } |