| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * mm/page-writeback.c | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2002, Linus Torvalds. | 
|  | 5 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
|  | 6 | * | 
|  | 7 | * Contains functions related to writing back dirty pages at the | 
|  | 8 | * address_space level. | 
|  | 9 | * | 
|  | 10 | * 10Apr2002	Andrew Morton | 
|  | 11 | *		Initial version | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/kernel.h> | 
|  | 15 | #include <linux/export.h> | 
|  | 16 | #include <linux/spinlock.h> | 
|  | 17 | #include <linux/fs.h> | 
|  | 18 | #include <linux/mm.h> | 
|  | 19 | #include <linux/swap.h> | 
|  | 20 | #include <linux/slab.h> | 
|  | 21 | #include <linux/pagemap.h> | 
|  | 22 | #include <linux/writeback.h> | 
|  | 23 | #include <linux/init.h> | 
|  | 24 | #include <linux/backing-dev.h> | 
|  | 25 | #include <linux/task_io_accounting_ops.h> | 
|  | 26 | #include <linux/blkdev.h> | 
|  | 27 | #include <linux/mpage.h> | 
|  | 28 | #include <linux/rmap.h> | 
|  | 29 | #include <linux/percpu.h> | 
|  | 30 | #include <linux/smp.h> | 
|  | 31 | #include <linux/sysctl.h> | 
|  | 32 | #include <linux/cpu.h> | 
|  | 33 | #include <linux/syscalls.h> | 
|  | 34 | #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ | 
|  | 35 | #include <linux/pagevec.h> | 
|  | 36 | #include <linux/timer.h> | 
|  | 37 | #include <linux/sched/rt.h> | 
|  | 38 | #include <linux/sched/signal.h> | 
|  | 39 | #include <linux/mm_inline.h> | 
|  | 40 | #include <trace/events/writeback.h> | 
|  | 41 |  | 
|  | 42 | #include "internal.h" | 
|  | 43 |  | 
|  | 44 | /* | 
|  | 45 | * Sleep at most 200ms at a time in balance_dirty_pages(). | 
|  | 46 | */ | 
|  | 47 | #define MAX_PAUSE		max(HZ/5, 1) | 
|  | 48 |  | 
|  | 49 | /* | 
|  | 50 | * Try to keep balance_dirty_pages() call intervals higher than this many pages | 
|  | 51 | * by raising pause time to max_pause when falls below it. | 
|  | 52 | */ | 
|  | 53 | #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10)) | 
|  | 54 |  | 
|  | 55 | /* | 
|  | 56 | * Estimate write bandwidth at 200ms intervals. | 
|  | 57 | */ | 
|  | 58 | #define BANDWIDTH_INTERVAL	max(HZ/5, 1) | 
|  | 59 |  | 
|  | 60 | #define RATELIMIT_CALC_SHIFT	10 | 
|  | 61 |  | 
|  | 62 | /* | 
|  | 63 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | 
|  | 64 | * will look to see if it needs to force writeback or throttling. | 
|  | 65 | */ | 
|  | 66 | static long ratelimit_pages = 32; | 
|  | 67 |  | 
|  | 68 | /* The following parameters are exported via /proc/sys/vm */ | 
|  | 69 |  | 
|  | 70 | /* | 
|  | 71 | * Start background writeback (via writeback threads) at this percentage | 
|  | 72 | */ | 
|  | 73 | int dirty_background_ratio = 10; | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of | 
|  | 77 | * dirty_background_ratio * the amount of dirtyable memory | 
|  | 78 | */ | 
|  | 79 | unsigned long dirty_background_bytes; | 
|  | 80 |  | 
|  | 81 | /* | 
|  | 82 | * free highmem will not be subtracted from the total free memory | 
|  | 83 | * for calculating free ratios if vm_highmem_is_dirtyable is true | 
|  | 84 | */ | 
|  | 85 | int vm_highmem_is_dirtyable; | 
|  | 86 |  | 
|  | 87 | /* | 
|  | 88 | * The generator of dirty data starts writeback at this percentage | 
|  | 89 | */ | 
|  | 90 | int vm_dirty_ratio = 20; | 
|  | 91 |  | 
|  | 92 | /* | 
|  | 93 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of | 
|  | 94 | * vm_dirty_ratio * the amount of dirtyable memory | 
|  | 95 | */ | 
|  | 96 | unsigned long vm_dirty_bytes; | 
|  | 97 |  | 
|  | 98 | /* | 
|  | 99 | * The interval between `kupdate'-style writebacks | 
|  | 100 | */ | 
|  | 101 | unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ | 
|  | 102 |  | 
|  | 103 | EXPORT_SYMBOL_GPL(dirty_writeback_interval); | 
|  | 104 |  | 
|  | 105 | /* | 
|  | 106 | * The longest time for which data is allowed to remain dirty | 
|  | 107 | */ | 
|  | 108 | unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ | 
|  | 109 |  | 
|  | 110 | /* | 
|  | 111 | * Flag that makes the machine dump writes/reads and block dirtyings. | 
|  | 112 | */ | 
|  | 113 | int block_dump; | 
|  | 114 |  | 
|  | 115 | /* | 
|  | 116 | * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: | 
|  | 117 | * a full sync is triggered after this time elapses without any disk activity. | 
|  | 118 | */ | 
|  | 119 | int laptop_mode; | 
|  | 120 |  | 
|  | 121 | EXPORT_SYMBOL(laptop_mode); | 
|  | 122 |  | 
|  | 123 | /* End of sysctl-exported parameters */ | 
|  | 124 |  | 
|  | 125 | struct wb_domain global_wb_domain; | 
|  | 126 |  | 
|  | 127 | /* consolidated parameters for balance_dirty_pages() and its subroutines */ | 
|  | 128 | struct dirty_throttle_control { | 
|  | 129 | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | 130 | struct wb_domain	*dom; | 
|  | 131 | struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */ | 
|  | 132 | #endif | 
|  | 133 | struct bdi_writeback	*wb; | 
|  | 134 | struct fprop_local_percpu *wb_completions; | 
|  | 135 |  | 
|  | 136 | unsigned long		avail;		/* dirtyable */ | 
|  | 137 | unsigned long		dirty;		/* file_dirty + write + nfs */ | 
|  | 138 | unsigned long		thresh;		/* dirty threshold */ | 
|  | 139 | unsigned long		bg_thresh;	/* dirty background threshold */ | 
|  | 140 |  | 
|  | 141 | unsigned long		wb_dirty;	/* per-wb counterparts */ | 
|  | 142 | unsigned long		wb_thresh; | 
|  | 143 | unsigned long		wb_bg_thresh; | 
|  | 144 |  | 
|  | 145 | unsigned long		pos_ratio; | 
|  | 146 | }; | 
|  | 147 |  | 
|  | 148 | /* | 
|  | 149 | * Length of period for aging writeout fractions of bdis. This is an | 
|  | 150 | * arbitrarily chosen number. The longer the period, the slower fractions will | 
|  | 151 | * reflect changes in current writeout rate. | 
|  | 152 | */ | 
|  | 153 | #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) | 
|  | 154 |  | 
|  | 155 | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | 156 |  | 
|  | 157 | #define GDTC_INIT(__wb)		.wb = (__wb),				\ | 
|  | 158 | .dom = &global_wb_domain,		\ | 
|  | 159 | .wb_completions = &(__wb)->completions | 
|  | 160 |  | 
|  | 161 | #define GDTC_INIT_NO_WB		.dom = &global_wb_domain | 
|  | 162 |  | 
|  | 163 | #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\ | 
|  | 164 | .dom = mem_cgroup_wb_domain(__wb),	\ | 
|  | 165 | .wb_completions = &(__wb)->memcg_completions, \ | 
|  | 166 | .gdtc = __gdtc | 
|  | 167 |  | 
|  | 168 | static bool mdtc_valid(struct dirty_throttle_control *dtc) | 
|  | 169 | { | 
|  | 170 | return dtc->dom; | 
|  | 171 | } | 
|  | 172 |  | 
|  | 173 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) | 
|  | 174 | { | 
|  | 175 | return dtc->dom; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) | 
|  | 179 | { | 
|  | 180 | return mdtc->gdtc; | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) | 
|  | 184 | { | 
|  | 185 | return &wb->memcg_completions; | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | static void wb_min_max_ratio(struct bdi_writeback *wb, | 
|  | 189 | unsigned long *minp, unsigned long *maxp) | 
|  | 190 | { | 
|  | 191 | unsigned long this_bw = wb->avg_write_bandwidth; | 
|  | 192 | unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); | 
|  | 193 | unsigned long long min = wb->bdi->min_ratio; | 
|  | 194 | unsigned long long max = wb->bdi->max_ratio; | 
|  | 195 |  | 
|  | 196 | /* | 
|  | 197 | * @wb may already be clean by the time control reaches here and | 
|  | 198 | * the total may not include its bw. | 
|  | 199 | */ | 
|  | 200 | if (this_bw < tot_bw) { | 
|  | 201 | if (min) { | 
|  | 202 | min *= this_bw; | 
|  | 203 | min = div64_ul(min, tot_bw); | 
|  | 204 | } | 
|  | 205 | if (max < 100) { | 
|  | 206 | max *= this_bw; | 
|  | 207 | max = div64_ul(max, tot_bw); | 
|  | 208 | } | 
|  | 209 | } | 
|  | 210 |  | 
|  | 211 | *minp = min; | 
|  | 212 | *maxp = max; | 
|  | 213 | } | 
|  | 214 |  | 
|  | 215 | #else	/* CONFIG_CGROUP_WRITEBACK */ | 
|  | 216 |  | 
|  | 217 | #define GDTC_INIT(__wb)		.wb = (__wb),                           \ | 
|  | 218 | .wb_completions = &(__wb)->completions | 
|  | 219 | #define GDTC_INIT_NO_WB | 
|  | 220 | #define MDTC_INIT(__wb, __gdtc) | 
|  | 221 |  | 
|  | 222 | static bool mdtc_valid(struct dirty_throttle_control *dtc) | 
|  | 223 | { | 
|  | 224 | return false; | 
|  | 225 | } | 
|  | 226 |  | 
|  | 227 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) | 
|  | 228 | { | 
|  | 229 | return &global_wb_domain; | 
|  | 230 | } | 
|  | 231 |  | 
|  | 232 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) | 
|  | 233 | { | 
|  | 234 | return NULL; | 
|  | 235 | } | 
|  | 236 |  | 
|  | 237 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) | 
|  | 238 | { | 
|  | 239 | return NULL; | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | static void wb_min_max_ratio(struct bdi_writeback *wb, | 
|  | 243 | unsigned long *minp, unsigned long *maxp) | 
|  | 244 | { | 
|  | 245 | *minp = wb->bdi->min_ratio; | 
|  | 246 | *maxp = wb->bdi->max_ratio; | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | #endif	/* CONFIG_CGROUP_WRITEBACK */ | 
|  | 250 |  | 
|  | 251 | /* | 
|  | 252 | * In a memory zone, there is a certain amount of pages we consider | 
|  | 253 | * available for the page cache, which is essentially the number of | 
|  | 254 | * free and reclaimable pages, minus some zone reserves to protect | 
|  | 255 | * lowmem and the ability to uphold the zone's watermarks without | 
|  | 256 | * requiring writeback. | 
|  | 257 | * | 
|  | 258 | * This number of dirtyable pages is the base value of which the | 
|  | 259 | * user-configurable dirty ratio is the effictive number of pages that | 
|  | 260 | * are allowed to be actually dirtied.  Per individual zone, or | 
|  | 261 | * globally by using the sum of dirtyable pages over all zones. | 
|  | 262 | * | 
|  | 263 | * Because the user is allowed to specify the dirty limit globally as | 
|  | 264 | * absolute number of bytes, calculating the per-zone dirty limit can | 
|  | 265 | * require translating the configured limit into a percentage of | 
|  | 266 | * global dirtyable memory first. | 
|  | 267 | */ | 
|  | 268 |  | 
|  | 269 | /** | 
|  | 270 | * node_dirtyable_memory - number of dirtyable pages in a node | 
|  | 271 | * @pgdat: the node | 
|  | 272 | * | 
|  | 273 | * Returns the node's number of pages potentially available for dirty | 
|  | 274 | * page cache.  This is the base value for the per-node dirty limits. | 
|  | 275 | */ | 
|  | 276 | static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) | 
|  | 277 | { | 
|  | 278 | unsigned long nr_pages = 0; | 
|  | 279 | int z; | 
|  | 280 |  | 
|  | 281 | for (z = 0; z < MAX_NR_ZONES; z++) { | 
|  | 282 | struct zone *zone = pgdat->node_zones + z; | 
|  | 283 |  | 
|  | 284 | if (!populated_zone(zone)) | 
|  | 285 | continue; | 
|  | 286 |  | 
|  | 287 | nr_pages += zone_page_state(zone, NR_FREE_PAGES); | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | /* | 
|  | 291 | * Pages reserved for the kernel should not be considered | 
|  | 292 | * dirtyable, to prevent a situation where reclaim has to | 
|  | 293 | * clean pages in order to balance the zones. | 
|  | 294 | */ | 
|  | 295 | nr_pages -= min(nr_pages, pgdat->totalreserve_pages); | 
|  | 296 |  | 
|  | 297 | nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); | 
|  | 298 | nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); | 
|  | 299 |  | 
|  | 300 | return nr_pages; | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | static unsigned long highmem_dirtyable_memory(unsigned long total) | 
|  | 304 | { | 
|  | 305 | #ifdef CONFIG_HIGHMEM | 
|  | 306 | int node; | 
|  | 307 | unsigned long x = 0; | 
|  | 308 | int i; | 
|  | 309 |  | 
|  | 310 | for_each_node_state(node, N_HIGH_MEMORY) { | 
|  | 311 | for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { | 
|  | 312 | struct zone *z; | 
|  | 313 | unsigned long nr_pages; | 
|  | 314 |  | 
|  | 315 | if (!is_highmem_idx(i)) | 
|  | 316 | continue; | 
|  | 317 |  | 
|  | 318 | z = &NODE_DATA(node)->node_zones[i]; | 
|  | 319 | if (!populated_zone(z)) | 
|  | 320 | continue; | 
|  | 321 |  | 
|  | 322 | nr_pages = zone_page_state(z, NR_FREE_PAGES); | 
|  | 323 | /* watch for underflows */ | 
|  | 324 | nr_pages -= min(nr_pages, high_wmark_pages(z)); | 
|  | 325 | nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); | 
|  | 326 | nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); | 
|  | 327 | x += nr_pages; | 
|  | 328 | } | 
|  | 329 | } | 
|  | 330 |  | 
|  | 331 | /* | 
|  | 332 | * Unreclaimable memory (kernel memory or anonymous memory | 
|  | 333 | * without swap) can bring down the dirtyable pages below | 
|  | 334 | * the zone's dirty balance reserve and the above calculation | 
|  | 335 | * will underflow.  However we still want to add in nodes | 
|  | 336 | * which are below threshold (negative values) to get a more | 
|  | 337 | * accurate calculation but make sure that the total never | 
|  | 338 | * underflows. | 
|  | 339 | */ | 
|  | 340 | if ((long)x < 0) | 
|  | 341 | x = 0; | 
|  | 342 |  | 
|  | 343 | /* | 
|  | 344 | * Make sure that the number of highmem pages is never larger | 
|  | 345 | * than the number of the total dirtyable memory. This can only | 
|  | 346 | * occur in very strange VM situations but we want to make sure | 
|  | 347 | * that this does not occur. | 
|  | 348 | */ | 
|  | 349 | return min(x, total); | 
|  | 350 | #else | 
|  | 351 | return 0; | 
|  | 352 | #endif | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | /** | 
|  | 356 | * global_dirtyable_memory - number of globally dirtyable pages | 
|  | 357 | * | 
|  | 358 | * Returns the global number of pages potentially available for dirty | 
|  | 359 | * page cache.  This is the base value for the global dirty limits. | 
|  | 360 | */ | 
|  | 361 | static unsigned long global_dirtyable_memory(void) | 
|  | 362 | { | 
|  | 363 | unsigned long x; | 
|  | 364 |  | 
|  | 365 | x = global_zone_page_state(NR_FREE_PAGES); | 
|  | 366 | /* | 
|  | 367 | * Pages reserved for the kernel should not be considered | 
|  | 368 | * dirtyable, to prevent a situation where reclaim has to | 
|  | 369 | * clean pages in order to balance the zones. | 
|  | 370 | */ | 
|  | 371 | x -= min(x, totalreserve_pages); | 
|  | 372 |  | 
|  | 373 | x += global_node_page_state(NR_INACTIVE_FILE); | 
|  | 374 | x += global_node_page_state(NR_ACTIVE_FILE); | 
|  | 375 |  | 
|  | 376 | if (!vm_highmem_is_dirtyable) | 
|  | 377 | x -= highmem_dirtyable_memory(x); | 
|  | 378 |  | 
|  | 379 | return x + 1;	/* Ensure that we never return 0 */ | 
|  | 380 | } | 
|  | 381 |  | 
|  | 382 | /** | 
|  | 383 | * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain | 
|  | 384 | * @dtc: dirty_throttle_control of interest | 
|  | 385 | * | 
|  | 386 | * Calculate @dtc->thresh and ->bg_thresh considering | 
|  | 387 | * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller | 
|  | 388 | * must ensure that @dtc->avail is set before calling this function.  The | 
|  | 389 | * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and | 
|  | 390 | * real-time tasks. | 
|  | 391 | */ | 
|  | 392 | static void domain_dirty_limits(struct dirty_throttle_control *dtc) | 
|  | 393 | { | 
|  | 394 | const unsigned long available_memory = dtc->avail; | 
|  | 395 | struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); | 
|  | 396 | unsigned long bytes = vm_dirty_bytes; | 
|  | 397 | unsigned long bg_bytes = dirty_background_bytes; | 
|  | 398 | /* convert ratios to per-PAGE_SIZE for higher precision */ | 
|  | 399 | unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; | 
|  | 400 | unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; | 
|  | 401 | unsigned long thresh; | 
|  | 402 | unsigned long bg_thresh; | 
|  | 403 | struct task_struct *tsk; | 
|  | 404 |  | 
|  | 405 | /* gdtc is !NULL iff @dtc is for memcg domain */ | 
|  | 406 | if (gdtc) { | 
|  | 407 | unsigned long global_avail = gdtc->avail; | 
|  | 408 |  | 
|  | 409 | /* | 
|  | 410 | * The byte settings can't be applied directly to memcg | 
|  | 411 | * domains.  Convert them to ratios by scaling against | 
|  | 412 | * globally available memory.  As the ratios are in | 
|  | 413 | * per-PAGE_SIZE, they can be obtained by dividing bytes by | 
|  | 414 | * number of pages. | 
|  | 415 | */ | 
|  | 416 | if (bytes) | 
|  | 417 | ratio = min(DIV_ROUND_UP(bytes, global_avail), | 
|  | 418 | PAGE_SIZE); | 
|  | 419 | if (bg_bytes) | 
|  | 420 | bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), | 
|  | 421 | PAGE_SIZE); | 
|  | 422 | bytes = bg_bytes = 0; | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | if (bytes) | 
|  | 426 | thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); | 
|  | 427 | else | 
|  | 428 | thresh = (ratio * available_memory) / PAGE_SIZE; | 
|  | 429 |  | 
|  | 430 | if (bg_bytes) | 
|  | 431 | bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); | 
|  | 432 | else | 
|  | 433 | bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; | 
|  | 434 |  | 
|  | 435 | if (bg_thresh >= thresh) | 
|  | 436 | bg_thresh = thresh / 2; | 
|  | 437 | tsk = current; | 
|  | 438 | if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { | 
|  | 439 | bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; | 
|  | 440 | thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; | 
|  | 441 | } | 
|  | 442 | dtc->thresh = thresh; | 
|  | 443 | dtc->bg_thresh = bg_thresh; | 
|  | 444 |  | 
|  | 445 | /* we should eventually report the domain in the TP */ | 
|  | 446 | if (!gdtc) | 
|  | 447 | trace_global_dirty_state(bg_thresh, thresh); | 
|  | 448 | } | 
|  | 449 |  | 
|  | 450 | /** | 
|  | 451 | * global_dirty_limits - background-writeback and dirty-throttling thresholds | 
|  | 452 | * @pbackground: out parameter for bg_thresh | 
|  | 453 | * @pdirty: out parameter for thresh | 
|  | 454 | * | 
|  | 455 | * Calculate bg_thresh and thresh for global_wb_domain.  See | 
|  | 456 | * domain_dirty_limits() for details. | 
|  | 457 | */ | 
|  | 458 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) | 
|  | 459 | { | 
|  | 460 | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; | 
|  | 461 |  | 
|  | 462 | gdtc.avail = global_dirtyable_memory(); | 
|  | 463 | domain_dirty_limits(&gdtc); | 
|  | 464 |  | 
|  | 465 | *pbackground = gdtc.bg_thresh; | 
|  | 466 | *pdirty = gdtc.thresh; | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | /** | 
|  | 470 | * node_dirty_limit - maximum number of dirty pages allowed in a node | 
|  | 471 | * @pgdat: the node | 
|  | 472 | * | 
|  | 473 | * Returns the maximum number of dirty pages allowed in a node, based | 
|  | 474 | * on the node's dirtyable memory. | 
|  | 475 | */ | 
|  | 476 | static unsigned long node_dirty_limit(struct pglist_data *pgdat) | 
|  | 477 | { | 
|  | 478 | unsigned long node_memory = node_dirtyable_memory(pgdat); | 
|  | 479 | struct task_struct *tsk = current; | 
|  | 480 | unsigned long dirty; | 
|  | 481 |  | 
|  | 482 | if (vm_dirty_bytes) | 
|  | 483 | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * | 
|  | 484 | node_memory / global_dirtyable_memory(); | 
|  | 485 | else | 
|  | 486 | dirty = vm_dirty_ratio * node_memory / 100; | 
|  | 487 |  | 
|  | 488 | if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) | 
|  | 489 | dirty += dirty / 4; | 
|  | 490 |  | 
|  | 491 | return dirty; | 
|  | 492 | } | 
|  | 493 |  | 
|  | 494 | /** | 
|  | 495 | * node_dirty_ok - tells whether a node is within its dirty limits | 
|  | 496 | * @pgdat: the node to check | 
|  | 497 | * | 
|  | 498 | * Returns %true when the dirty pages in @pgdat are within the node's | 
|  | 499 | * dirty limit, %false if the limit is exceeded. | 
|  | 500 | */ | 
|  | 501 | bool node_dirty_ok(struct pglist_data *pgdat) | 
|  | 502 | { | 
|  | 503 | unsigned long limit = node_dirty_limit(pgdat); | 
|  | 504 | unsigned long nr_pages = 0; | 
|  | 505 |  | 
|  | 506 | nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); | 
|  | 507 | nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS); | 
|  | 508 | nr_pages += node_page_state(pgdat, NR_WRITEBACK); | 
|  | 509 |  | 
|  | 510 | return nr_pages <= limit; | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | int dirty_background_ratio_handler(struct ctl_table *table, int write, | 
|  | 514 | void __user *buffer, size_t *lenp, | 
|  | 515 | loff_t *ppos) | 
|  | 516 | { | 
|  | 517 | int ret; | 
|  | 518 |  | 
|  | 519 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|  | 520 | if (ret == 0 && write) | 
|  | 521 | dirty_background_bytes = 0; | 
|  | 522 | return ret; | 
|  | 523 | } | 
|  | 524 |  | 
|  | 525 | int dirty_background_bytes_handler(struct ctl_table *table, int write, | 
|  | 526 | void __user *buffer, size_t *lenp, | 
|  | 527 | loff_t *ppos) | 
|  | 528 | { | 
|  | 529 | int ret; | 
|  | 530 |  | 
|  | 531 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
|  | 532 | if (ret == 0 && write) | 
|  | 533 | dirty_background_ratio = 0; | 
|  | 534 | return ret; | 
|  | 535 | } | 
|  | 536 |  | 
|  | 537 | int dirty_ratio_handler(struct ctl_table *table, int write, | 
|  | 538 | void __user *buffer, size_t *lenp, | 
|  | 539 | loff_t *ppos) | 
|  | 540 | { | 
|  | 541 | int old_ratio = vm_dirty_ratio; | 
|  | 542 | int ret; | 
|  | 543 |  | 
|  | 544 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|  | 545 | if (ret == 0 && write && vm_dirty_ratio != old_ratio) { | 
|  | 546 | writeback_set_ratelimit(); | 
|  | 547 | vm_dirty_bytes = 0; | 
|  | 548 | } | 
|  | 549 | return ret; | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 | int dirty_bytes_handler(struct ctl_table *table, int write, | 
|  | 553 | void __user *buffer, size_t *lenp, | 
|  | 554 | loff_t *ppos) | 
|  | 555 | { | 
|  | 556 | unsigned long old_bytes = vm_dirty_bytes; | 
|  | 557 | int ret; | 
|  | 558 |  | 
|  | 559 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
|  | 560 | if (ret == 0 && write && vm_dirty_bytes != old_bytes) { | 
|  | 561 | writeback_set_ratelimit(); | 
|  | 562 | vm_dirty_ratio = 0; | 
|  | 563 | } | 
|  | 564 | return ret; | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | static unsigned long wp_next_time(unsigned long cur_time) | 
|  | 568 | { | 
|  | 569 | cur_time += VM_COMPLETIONS_PERIOD_LEN; | 
|  | 570 | /* 0 has a special meaning... */ | 
|  | 571 | if (!cur_time) | 
|  | 572 | return 1; | 
|  | 573 | return cur_time; | 
|  | 574 | } | 
|  | 575 |  | 
|  | 576 | static void wb_domain_writeout_inc(struct wb_domain *dom, | 
|  | 577 | struct fprop_local_percpu *completions, | 
|  | 578 | unsigned int max_prop_frac) | 
|  | 579 | { | 
|  | 580 | __fprop_inc_percpu_max(&dom->completions, completions, | 
|  | 581 | max_prop_frac); | 
|  | 582 | /* First event after period switching was turned off? */ | 
|  | 583 | if (unlikely(!dom->period_time)) { | 
|  | 584 | /* | 
|  | 585 | * We can race with other __bdi_writeout_inc calls here but | 
|  | 586 | * it does not cause any harm since the resulting time when | 
|  | 587 | * timer will fire and what is in writeout_period_time will be | 
|  | 588 | * roughly the same. | 
|  | 589 | */ | 
|  | 590 | dom->period_time = wp_next_time(jiffies); | 
|  | 591 | mod_timer(&dom->period_timer, dom->period_time); | 
|  | 592 | } | 
|  | 593 | } | 
|  | 594 |  | 
|  | 595 | /* | 
|  | 596 | * Increment @wb's writeout completion count and the global writeout | 
|  | 597 | * completion count. Called from test_clear_page_writeback(). | 
|  | 598 | */ | 
|  | 599 | static inline void __wb_writeout_inc(struct bdi_writeback *wb) | 
|  | 600 | { | 
|  | 601 | struct wb_domain *cgdom; | 
|  | 602 |  | 
|  | 603 | inc_wb_stat(wb, WB_WRITTEN); | 
|  | 604 | wb_domain_writeout_inc(&global_wb_domain, &wb->completions, | 
|  | 605 | wb->bdi->max_prop_frac); | 
|  | 606 |  | 
|  | 607 | cgdom = mem_cgroup_wb_domain(wb); | 
|  | 608 | if (cgdom) | 
|  | 609 | wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), | 
|  | 610 | wb->bdi->max_prop_frac); | 
|  | 611 | } | 
|  | 612 |  | 
|  | 613 | void wb_writeout_inc(struct bdi_writeback *wb) | 
|  | 614 | { | 
|  | 615 | unsigned long flags; | 
|  | 616 |  | 
|  | 617 | local_irq_save(flags); | 
|  | 618 | __wb_writeout_inc(wb); | 
|  | 619 | local_irq_restore(flags); | 
|  | 620 | } | 
|  | 621 | EXPORT_SYMBOL_GPL(wb_writeout_inc); | 
|  | 622 |  | 
|  | 623 | /* | 
|  | 624 | * On idle system, we can be called long after we scheduled because we use | 
|  | 625 | * deferred timers so count with missed periods. | 
|  | 626 | */ | 
|  | 627 | static void writeout_period(struct timer_list *t) | 
|  | 628 | { | 
|  | 629 | struct wb_domain *dom = from_timer(dom, t, period_timer); | 
|  | 630 | int miss_periods = (jiffies - dom->period_time) / | 
|  | 631 | VM_COMPLETIONS_PERIOD_LEN; | 
|  | 632 |  | 
|  | 633 | if (fprop_new_period(&dom->completions, miss_periods + 1)) { | 
|  | 634 | dom->period_time = wp_next_time(dom->period_time + | 
|  | 635 | miss_periods * VM_COMPLETIONS_PERIOD_LEN); | 
|  | 636 | mod_timer(&dom->period_timer, dom->period_time); | 
|  | 637 | } else { | 
|  | 638 | /* | 
|  | 639 | * Aging has zeroed all fractions. Stop wasting CPU on period | 
|  | 640 | * updates. | 
|  | 641 | */ | 
|  | 642 | dom->period_time = 0; | 
|  | 643 | } | 
|  | 644 | } | 
|  | 645 |  | 
|  | 646 | int wb_domain_init(struct wb_domain *dom, gfp_t gfp) | 
|  | 647 | { | 
|  | 648 | memset(dom, 0, sizeof(*dom)); | 
|  | 649 |  | 
|  | 650 | spin_lock_init(&dom->lock); | 
|  | 651 |  | 
|  | 652 | timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); | 
|  | 653 |  | 
|  | 654 | dom->dirty_limit_tstamp = jiffies; | 
|  | 655 |  | 
|  | 656 | return fprop_global_init(&dom->completions, gfp); | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | 660 | void wb_domain_exit(struct wb_domain *dom) | 
|  | 661 | { | 
|  | 662 | del_timer_sync(&dom->period_timer); | 
|  | 663 | fprop_global_destroy(&dom->completions); | 
|  | 664 | } | 
|  | 665 | #endif | 
|  | 666 |  | 
|  | 667 | /* | 
|  | 668 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all | 
|  | 669 | * registered backing devices, which, for obvious reasons, can not | 
|  | 670 | * exceed 100%. | 
|  | 671 | */ | 
|  | 672 | static unsigned int bdi_min_ratio; | 
|  | 673 |  | 
|  | 674 | int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) | 
|  | 675 | { | 
|  | 676 | int ret = 0; | 
|  | 677 |  | 
|  | 678 | spin_lock_bh(&bdi_lock); | 
|  | 679 | if (min_ratio > bdi->max_ratio) { | 
|  | 680 | ret = -EINVAL; | 
|  | 681 | } else { | 
|  | 682 | min_ratio -= bdi->min_ratio; | 
|  | 683 | if (bdi_min_ratio + min_ratio < 100) { | 
|  | 684 | bdi_min_ratio += min_ratio; | 
|  | 685 | bdi->min_ratio += min_ratio; | 
|  | 686 | } else { | 
|  | 687 | ret = -EINVAL; | 
|  | 688 | } | 
|  | 689 | } | 
|  | 690 | spin_unlock_bh(&bdi_lock); | 
|  | 691 |  | 
|  | 692 | return ret; | 
|  | 693 | } | 
|  | 694 |  | 
|  | 695 | int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) | 
|  | 696 | { | 
|  | 697 | int ret = 0; | 
|  | 698 |  | 
|  | 699 | if (max_ratio > 100) | 
|  | 700 | return -EINVAL; | 
|  | 701 |  | 
|  | 702 | spin_lock_bh(&bdi_lock); | 
|  | 703 | if (bdi->min_ratio > max_ratio) { | 
|  | 704 | ret = -EINVAL; | 
|  | 705 | } else { | 
|  | 706 | bdi->max_ratio = max_ratio; | 
|  | 707 | bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; | 
|  | 708 | } | 
|  | 709 | spin_unlock_bh(&bdi_lock); | 
|  | 710 |  | 
|  | 711 | return ret; | 
|  | 712 | } | 
|  | 713 | EXPORT_SYMBOL(bdi_set_max_ratio); | 
|  | 714 |  | 
|  | 715 | static unsigned long dirty_freerun_ceiling(unsigned long thresh, | 
|  | 716 | unsigned long bg_thresh) | 
|  | 717 | { | 
|  | 718 | return (thresh + bg_thresh) / 2; | 
|  | 719 | } | 
|  | 720 |  | 
|  | 721 | static unsigned long hard_dirty_limit(struct wb_domain *dom, | 
|  | 722 | unsigned long thresh) | 
|  | 723 | { | 
|  | 724 | return max(thresh, dom->dirty_limit); | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | /* | 
|  | 728 | * Memory which can be further allocated to a memcg domain is capped by | 
|  | 729 | * system-wide clean memory excluding the amount being used in the domain. | 
|  | 730 | */ | 
|  | 731 | static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, | 
|  | 732 | unsigned long filepages, unsigned long headroom) | 
|  | 733 | { | 
|  | 734 | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); | 
|  | 735 | unsigned long clean = filepages - min(filepages, mdtc->dirty); | 
|  | 736 | unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); | 
|  | 737 | unsigned long other_clean = global_clean - min(global_clean, clean); | 
|  | 738 |  | 
|  | 739 | mdtc->avail = filepages + min(headroom, other_clean); | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | /** | 
|  | 743 | * __wb_calc_thresh - @wb's share of dirty throttling threshold | 
|  | 744 | * @dtc: dirty_throttle_context of interest | 
|  | 745 | * | 
|  | 746 | * Returns @wb's dirty limit in pages. The term "dirty" in the context of | 
|  | 747 | * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. | 
|  | 748 | * | 
|  | 749 | * Note that balance_dirty_pages() will only seriously take it as a hard limit | 
|  | 750 | * when sleeping max_pause per page is not enough to keep the dirty pages under | 
|  | 751 | * control. For example, when the device is completely stalled due to some error | 
|  | 752 | * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. | 
|  | 753 | * In the other normal situations, it acts more gently by throttling the tasks | 
|  | 754 | * more (rather than completely block them) when the wb dirty pages go high. | 
|  | 755 | * | 
|  | 756 | * It allocates high/low dirty limits to fast/slow devices, in order to prevent | 
|  | 757 | * - starving fast devices | 
|  | 758 | * - piling up dirty pages (that will take long time to sync) on slow devices | 
|  | 759 | * | 
|  | 760 | * The wb's share of dirty limit will be adapting to its throughput and | 
|  | 761 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. | 
|  | 762 | */ | 
|  | 763 | static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) | 
|  | 764 | { | 
|  | 765 | struct wb_domain *dom = dtc_dom(dtc); | 
|  | 766 | unsigned long thresh = dtc->thresh; | 
|  | 767 | u64 wb_thresh; | 
|  | 768 | long numerator, denominator; | 
|  | 769 | unsigned long wb_min_ratio, wb_max_ratio; | 
|  | 770 |  | 
|  | 771 | /* | 
|  | 772 | * Calculate this BDI's share of the thresh ratio. | 
|  | 773 | */ | 
|  | 774 | fprop_fraction_percpu(&dom->completions, dtc->wb_completions, | 
|  | 775 | &numerator, &denominator); | 
|  | 776 |  | 
|  | 777 | wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; | 
|  | 778 | wb_thresh *= numerator; | 
|  | 779 | do_div(wb_thresh, denominator); | 
|  | 780 |  | 
|  | 781 | wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); | 
|  | 782 |  | 
|  | 783 | wb_thresh += (thresh * wb_min_ratio) / 100; | 
|  | 784 | if (wb_thresh > (thresh * wb_max_ratio) / 100) | 
|  | 785 | wb_thresh = thresh * wb_max_ratio / 100; | 
|  | 786 |  | 
|  | 787 | return wb_thresh; | 
|  | 788 | } | 
|  | 789 |  | 
|  | 790 | unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) | 
|  | 791 | { | 
|  | 792 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb), | 
|  | 793 | .thresh = thresh }; | 
|  | 794 | return __wb_calc_thresh(&gdtc); | 
|  | 795 | } | 
|  | 796 |  | 
|  | 797 | /* | 
|  | 798 | *                           setpoint - dirty 3 | 
|  | 799 | *        f(dirty) := 1.0 + (----------------) | 
|  | 800 | *                           limit - setpoint | 
|  | 801 | * | 
|  | 802 | * it's a 3rd order polynomial that subjects to | 
|  | 803 | * | 
|  | 804 | * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast | 
|  | 805 | * (2) f(setpoint) = 1.0 => the balance point | 
|  | 806 | * (3) f(limit)    = 0   => the hard limit | 
|  | 807 | * (4) df/dx      <= 0	 => negative feedback control | 
|  | 808 | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) | 
|  | 809 | *     => fast response on large errors; small oscillation near setpoint | 
|  | 810 | */ | 
|  | 811 | static long long pos_ratio_polynom(unsigned long setpoint, | 
|  | 812 | unsigned long dirty, | 
|  | 813 | unsigned long limit) | 
|  | 814 | { | 
|  | 815 | long long pos_ratio; | 
|  | 816 | long x; | 
|  | 817 |  | 
|  | 818 | x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, | 
|  | 819 | (limit - setpoint) | 1); | 
|  | 820 | pos_ratio = x; | 
|  | 821 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | 
|  | 822 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | 
|  | 823 | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; | 
|  | 824 |  | 
|  | 825 | return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); | 
|  | 826 | } | 
|  | 827 |  | 
|  | 828 | /* | 
|  | 829 | * Dirty position control. | 
|  | 830 | * | 
|  | 831 | * (o) global/bdi setpoints | 
|  | 832 | * | 
|  | 833 | * We want the dirty pages be balanced around the global/wb setpoints. | 
|  | 834 | * When the number of dirty pages is higher/lower than the setpoint, the | 
|  | 835 | * dirty position control ratio (and hence task dirty ratelimit) will be | 
|  | 836 | * decreased/increased to bring the dirty pages back to the setpoint. | 
|  | 837 | * | 
|  | 838 | *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT | 
|  | 839 | * | 
|  | 840 | *     if (dirty < setpoint) scale up   pos_ratio | 
|  | 841 | *     if (dirty > setpoint) scale down pos_ratio | 
|  | 842 | * | 
|  | 843 | *     if (wb_dirty < wb_setpoint) scale up   pos_ratio | 
|  | 844 | *     if (wb_dirty > wb_setpoint) scale down pos_ratio | 
|  | 845 | * | 
|  | 846 | *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT | 
|  | 847 | * | 
|  | 848 | * (o) global control line | 
|  | 849 | * | 
|  | 850 | *     ^ pos_ratio | 
|  | 851 | *     | | 
|  | 852 | *     |            |<===== global dirty control scope ======>| | 
|  | 853 | * 2.0 .............* | 
|  | 854 | *     |            .* | 
|  | 855 | *     |            . * | 
|  | 856 | *     |            .   * | 
|  | 857 | *     |            .     * | 
|  | 858 | *     |            .        * | 
|  | 859 | *     |            .            * | 
|  | 860 | * 1.0 ................................* | 
|  | 861 | *     |            .                  .     * | 
|  | 862 | *     |            .                  .          * | 
|  | 863 | *     |            .                  .              * | 
|  | 864 | *     |            .                  .                 * | 
|  | 865 | *     |            .                  .                    * | 
|  | 866 | *   0 +------------.------------------.----------------------*-------------> | 
|  | 867 | *           freerun^          setpoint^                 limit^   dirty pages | 
|  | 868 | * | 
|  | 869 | * (o) wb control line | 
|  | 870 | * | 
|  | 871 | *     ^ pos_ratio | 
|  | 872 | *     | | 
|  | 873 | *     |            * | 
|  | 874 | *     |              * | 
|  | 875 | *     |                * | 
|  | 876 | *     |                  * | 
|  | 877 | *     |                    * |<=========== span ============>| | 
|  | 878 | * 1.0 .......................* | 
|  | 879 | *     |                      . * | 
|  | 880 | *     |                      .   * | 
|  | 881 | *     |                      .     * | 
|  | 882 | *     |                      .       * | 
|  | 883 | *     |                      .         * | 
|  | 884 | *     |                      .           * | 
|  | 885 | *     |                      .             * | 
|  | 886 | *     |                      .               * | 
|  | 887 | *     |                      .                 * | 
|  | 888 | *     |                      .                   * | 
|  | 889 | *     |                      .                     * | 
|  | 890 | * 1/4 ...............................................* * * * * * * * * * * * | 
|  | 891 | *     |                      .                         . | 
|  | 892 | *     |                      .                           . | 
|  | 893 | *     |                      .                             . | 
|  | 894 | *   0 +----------------------.-------------------------------.-------------> | 
|  | 895 | *                wb_setpoint^                    x_intercept^ | 
|  | 896 | * | 
|  | 897 | * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can | 
|  | 898 | * be smoothly throttled down to normal if it starts high in situations like | 
|  | 899 | * - start writing to a slow SD card and a fast disk at the same time. The SD | 
|  | 900 | *   card's wb_dirty may rush to many times higher than wb_setpoint. | 
|  | 901 | * - the wb dirty thresh drops quickly due to change of JBOD workload | 
|  | 902 | */ | 
|  | 903 | static void wb_position_ratio(struct dirty_throttle_control *dtc) | 
|  | 904 | { | 
|  | 905 | struct bdi_writeback *wb = dtc->wb; | 
|  | 906 | unsigned long write_bw = wb->avg_write_bandwidth; | 
|  | 907 | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); | 
|  | 908 | unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); | 
|  | 909 | unsigned long wb_thresh = dtc->wb_thresh; | 
|  | 910 | unsigned long x_intercept; | 
|  | 911 | unsigned long setpoint;		/* dirty pages' target balance point */ | 
|  | 912 | unsigned long wb_setpoint; | 
|  | 913 | unsigned long span; | 
|  | 914 | long long pos_ratio;		/* for scaling up/down the rate limit */ | 
|  | 915 | long x; | 
|  | 916 |  | 
|  | 917 | dtc->pos_ratio = 0; | 
|  | 918 |  | 
|  | 919 | if (unlikely(dtc->dirty >= limit)) | 
|  | 920 | return; | 
|  | 921 |  | 
|  | 922 | /* | 
|  | 923 | * global setpoint | 
|  | 924 | * | 
|  | 925 | * See comment for pos_ratio_polynom(). | 
|  | 926 | */ | 
|  | 927 | setpoint = (freerun + limit) / 2; | 
|  | 928 | pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); | 
|  | 929 |  | 
|  | 930 | /* | 
|  | 931 | * The strictlimit feature is a tool preventing mistrusted filesystems | 
|  | 932 | * from growing a large number of dirty pages before throttling. For | 
|  | 933 | * such filesystems balance_dirty_pages always checks wb counters | 
|  | 934 | * against wb limits. Even if global "nr_dirty" is under "freerun". | 
|  | 935 | * This is especially important for fuse which sets bdi->max_ratio to | 
|  | 936 | * 1% by default. Without strictlimit feature, fuse writeback may | 
|  | 937 | * consume arbitrary amount of RAM because it is accounted in | 
|  | 938 | * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". | 
|  | 939 | * | 
|  | 940 | * Here, in wb_position_ratio(), we calculate pos_ratio based on | 
|  | 941 | * two values: wb_dirty and wb_thresh. Let's consider an example: | 
|  | 942 | * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global | 
|  | 943 | * limits are set by default to 10% and 20% (background and throttle). | 
|  | 944 | * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. | 
|  | 945 | * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is | 
|  | 946 | * about ~6K pages (as the average of background and throttle wb | 
|  | 947 | * limits). The 3rd order polynomial will provide positive feedback if | 
|  | 948 | * wb_dirty is under wb_setpoint and vice versa. | 
|  | 949 | * | 
|  | 950 | * Note, that we cannot use global counters in these calculations | 
|  | 951 | * because we want to throttle process writing to a strictlimit wb | 
|  | 952 | * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB | 
|  | 953 | * in the example above). | 
|  | 954 | */ | 
|  | 955 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { | 
|  | 956 | long long wb_pos_ratio; | 
|  | 957 |  | 
|  | 958 | if (dtc->wb_dirty < 8) { | 
|  | 959 | dtc->pos_ratio = min_t(long long, pos_ratio * 2, | 
|  | 960 | 2 << RATELIMIT_CALC_SHIFT); | 
|  | 961 | return; | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | if (dtc->wb_dirty >= wb_thresh) | 
|  | 965 | return; | 
|  | 966 |  | 
|  | 967 | wb_setpoint = dirty_freerun_ceiling(wb_thresh, | 
|  | 968 | dtc->wb_bg_thresh); | 
|  | 969 |  | 
|  | 970 | if (wb_setpoint == 0 || wb_setpoint == wb_thresh) | 
|  | 971 | return; | 
|  | 972 |  | 
|  | 973 | wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, | 
|  | 974 | wb_thresh); | 
|  | 975 |  | 
|  | 976 | /* | 
|  | 977 | * Typically, for strictlimit case, wb_setpoint << setpoint | 
|  | 978 | * and pos_ratio >> wb_pos_ratio. In the other words global | 
|  | 979 | * state ("dirty") is not limiting factor and we have to | 
|  | 980 | * make decision based on wb counters. But there is an | 
|  | 981 | * important case when global pos_ratio should get precedence: | 
|  | 982 | * global limits are exceeded (e.g. due to activities on other | 
|  | 983 | * wb's) while given strictlimit wb is below limit. | 
|  | 984 | * | 
|  | 985 | * "pos_ratio * wb_pos_ratio" would work for the case above, | 
|  | 986 | * but it would look too non-natural for the case of all | 
|  | 987 | * activity in the system coming from a single strictlimit wb | 
|  | 988 | * with bdi->max_ratio == 100%. | 
|  | 989 | * | 
|  | 990 | * Note that min() below somewhat changes the dynamics of the | 
|  | 991 | * control system. Normally, pos_ratio value can be well over 3 | 
|  | 992 | * (when globally we are at freerun and wb is well below wb | 
|  | 993 | * setpoint). Now the maximum pos_ratio in the same situation | 
|  | 994 | * is 2. We might want to tweak this if we observe the control | 
|  | 995 | * system is too slow to adapt. | 
|  | 996 | */ | 
|  | 997 | dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); | 
|  | 998 | return; | 
|  | 999 | } | 
|  | 1000 |  | 
|  | 1001 | /* | 
|  | 1002 | * We have computed basic pos_ratio above based on global situation. If | 
|  | 1003 | * the wb is over/under its share of dirty pages, we want to scale | 
|  | 1004 | * pos_ratio further down/up. That is done by the following mechanism. | 
|  | 1005 | */ | 
|  | 1006 |  | 
|  | 1007 | /* | 
|  | 1008 | * wb setpoint | 
|  | 1009 | * | 
|  | 1010 | *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) | 
|  | 1011 | * | 
|  | 1012 | *                        x_intercept - wb_dirty | 
|  | 1013 | *                     := -------------------------- | 
|  | 1014 | *                        x_intercept - wb_setpoint | 
|  | 1015 | * | 
|  | 1016 | * The main wb control line is a linear function that subjects to | 
|  | 1017 | * | 
|  | 1018 | * (1) f(wb_setpoint) = 1.0 | 
|  | 1019 | * (2) k = - 1 / (8 * write_bw)  (in single wb case) | 
|  | 1020 | *     or equally: x_intercept = wb_setpoint + 8 * write_bw | 
|  | 1021 | * | 
|  | 1022 | * For single wb case, the dirty pages are observed to fluctuate | 
|  | 1023 | * regularly within range | 
|  | 1024 | *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] | 
|  | 1025 | * for various filesystems, where (2) can yield in a reasonable 12.5% | 
|  | 1026 | * fluctuation range for pos_ratio. | 
|  | 1027 | * | 
|  | 1028 | * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its | 
|  | 1029 | * own size, so move the slope over accordingly and choose a slope that | 
|  | 1030 | * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. | 
|  | 1031 | */ | 
|  | 1032 | if (unlikely(wb_thresh > dtc->thresh)) | 
|  | 1033 | wb_thresh = dtc->thresh; | 
|  | 1034 | /* | 
|  | 1035 | * It's very possible that wb_thresh is close to 0 not because the | 
|  | 1036 | * device is slow, but that it has remained inactive for long time. | 
|  | 1037 | * Honour such devices a reasonable good (hopefully IO efficient) | 
|  | 1038 | * threshold, so that the occasional writes won't be blocked and active | 
|  | 1039 | * writes can rampup the threshold quickly. | 
|  | 1040 | */ | 
|  | 1041 | wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); | 
|  | 1042 | /* | 
|  | 1043 | * scale global setpoint to wb's: | 
|  | 1044 | *	wb_setpoint = setpoint * wb_thresh / thresh | 
|  | 1045 | */ | 
|  | 1046 | x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); | 
|  | 1047 | wb_setpoint = setpoint * (u64)x >> 16; | 
|  | 1048 | /* | 
|  | 1049 | * Use span=(8*write_bw) in single wb case as indicated by | 
|  | 1050 | * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. | 
|  | 1051 | * | 
|  | 1052 | *        wb_thresh                    thresh - wb_thresh | 
|  | 1053 | * span = --------- * (8 * write_bw) + ------------------ * wb_thresh | 
|  | 1054 | *         thresh                           thresh | 
|  | 1055 | */ | 
|  | 1056 | span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; | 
|  | 1057 | x_intercept = wb_setpoint + span; | 
|  | 1058 |  | 
|  | 1059 | if (dtc->wb_dirty < x_intercept - span / 4) { | 
|  | 1060 | pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), | 
|  | 1061 | (x_intercept - wb_setpoint) | 1); | 
|  | 1062 | } else | 
|  | 1063 | pos_ratio /= 4; | 
|  | 1064 |  | 
|  | 1065 | /* | 
|  | 1066 | * wb reserve area, safeguard against dirty pool underrun and disk idle | 
|  | 1067 | * It may push the desired control point of global dirty pages higher | 
|  | 1068 | * than setpoint. | 
|  | 1069 | */ | 
|  | 1070 | x_intercept = wb_thresh / 2; | 
|  | 1071 | if (dtc->wb_dirty < x_intercept) { | 
|  | 1072 | if (dtc->wb_dirty > x_intercept / 8) | 
|  | 1073 | pos_ratio = div_u64(pos_ratio * x_intercept, | 
|  | 1074 | dtc->wb_dirty); | 
|  | 1075 | else | 
|  | 1076 | pos_ratio *= 8; | 
|  | 1077 | } | 
|  | 1078 |  | 
|  | 1079 | dtc->pos_ratio = pos_ratio; | 
|  | 1080 | } | 
|  | 1081 |  | 
|  | 1082 | static void wb_update_write_bandwidth(struct bdi_writeback *wb, | 
|  | 1083 | unsigned long elapsed, | 
|  | 1084 | unsigned long written) | 
|  | 1085 | { | 
|  | 1086 | const unsigned long period = roundup_pow_of_two(3 * HZ); | 
|  | 1087 | unsigned long avg = wb->avg_write_bandwidth; | 
|  | 1088 | unsigned long old = wb->write_bandwidth; | 
|  | 1089 | u64 bw; | 
|  | 1090 |  | 
|  | 1091 | /* | 
|  | 1092 | * bw = written * HZ / elapsed | 
|  | 1093 | * | 
|  | 1094 | *                   bw * elapsed + write_bandwidth * (period - elapsed) | 
|  | 1095 | * write_bandwidth = --------------------------------------------------- | 
|  | 1096 | *                                          period | 
|  | 1097 | * | 
|  | 1098 | * @written may have decreased due to account_page_redirty(). | 
|  | 1099 | * Avoid underflowing @bw calculation. | 
|  | 1100 | */ | 
|  | 1101 | bw = written - min(written, wb->written_stamp); | 
|  | 1102 | bw *= HZ; | 
|  | 1103 | if (unlikely(elapsed > period)) { | 
|  | 1104 | do_div(bw, elapsed); | 
|  | 1105 | avg = bw; | 
|  | 1106 | goto out; | 
|  | 1107 | } | 
|  | 1108 | bw += (u64)wb->write_bandwidth * (period - elapsed); | 
|  | 1109 | bw >>= ilog2(period); | 
|  | 1110 |  | 
|  | 1111 | /* | 
|  | 1112 | * one more level of smoothing, for filtering out sudden spikes | 
|  | 1113 | */ | 
|  | 1114 | if (avg > old && old >= (unsigned long)bw) | 
|  | 1115 | avg -= (avg - old) >> 3; | 
|  | 1116 |  | 
|  | 1117 | if (avg < old && old <= (unsigned long)bw) | 
|  | 1118 | avg += (old - avg) >> 3; | 
|  | 1119 |  | 
|  | 1120 | out: | 
|  | 1121 | /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ | 
|  | 1122 | avg = max(avg, 1LU); | 
|  | 1123 | if (wb_has_dirty_io(wb)) { | 
|  | 1124 | long delta = avg - wb->avg_write_bandwidth; | 
|  | 1125 | WARN_ON_ONCE(atomic_long_add_return(delta, | 
|  | 1126 | &wb->bdi->tot_write_bandwidth) <= 0); | 
|  | 1127 | } | 
|  | 1128 | wb->write_bandwidth = bw; | 
|  | 1129 | wb->avg_write_bandwidth = avg; | 
|  | 1130 | } | 
|  | 1131 |  | 
|  | 1132 | static void update_dirty_limit(struct dirty_throttle_control *dtc) | 
|  | 1133 | { | 
|  | 1134 | struct wb_domain *dom = dtc_dom(dtc); | 
|  | 1135 | unsigned long thresh = dtc->thresh; | 
|  | 1136 | unsigned long limit = dom->dirty_limit; | 
|  | 1137 |  | 
|  | 1138 | /* | 
|  | 1139 | * Follow up in one step. | 
|  | 1140 | */ | 
|  | 1141 | if (limit < thresh) { | 
|  | 1142 | limit = thresh; | 
|  | 1143 | goto update; | 
|  | 1144 | } | 
|  | 1145 |  | 
|  | 1146 | /* | 
|  | 1147 | * Follow down slowly. Use the higher one as the target, because thresh | 
|  | 1148 | * may drop below dirty. This is exactly the reason to introduce | 
|  | 1149 | * dom->dirty_limit which is guaranteed to lie above the dirty pages. | 
|  | 1150 | */ | 
|  | 1151 | thresh = max(thresh, dtc->dirty); | 
|  | 1152 | if (limit > thresh) { | 
|  | 1153 | limit -= (limit - thresh) >> 5; | 
|  | 1154 | goto update; | 
|  | 1155 | } | 
|  | 1156 | return; | 
|  | 1157 | update: | 
|  | 1158 | dom->dirty_limit = limit; | 
|  | 1159 | } | 
|  | 1160 |  | 
|  | 1161 | static void domain_update_bandwidth(struct dirty_throttle_control *dtc, | 
|  | 1162 | unsigned long now) | 
|  | 1163 | { | 
|  | 1164 | struct wb_domain *dom = dtc_dom(dtc); | 
|  | 1165 |  | 
|  | 1166 | /* | 
|  | 1167 | * check locklessly first to optimize away locking for the most time | 
|  | 1168 | */ | 
|  | 1169 | if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) | 
|  | 1170 | return; | 
|  | 1171 |  | 
|  | 1172 | spin_lock(&dom->lock); | 
|  | 1173 | if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { | 
|  | 1174 | update_dirty_limit(dtc); | 
|  | 1175 | dom->dirty_limit_tstamp = now; | 
|  | 1176 | } | 
|  | 1177 | spin_unlock(&dom->lock); | 
|  | 1178 | } | 
|  | 1179 |  | 
|  | 1180 | /* | 
|  | 1181 | * Maintain wb->dirty_ratelimit, the base dirty throttle rate. | 
|  | 1182 | * | 
|  | 1183 | * Normal wb tasks will be curbed at or below it in long term. | 
|  | 1184 | * Obviously it should be around (write_bw / N) when there are N dd tasks. | 
|  | 1185 | */ | 
|  | 1186 | static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, | 
|  | 1187 | unsigned long dirtied, | 
|  | 1188 | unsigned long elapsed) | 
|  | 1189 | { | 
|  | 1190 | struct bdi_writeback *wb = dtc->wb; | 
|  | 1191 | unsigned long dirty = dtc->dirty; | 
|  | 1192 | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); | 
|  | 1193 | unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); | 
|  | 1194 | unsigned long setpoint = (freerun + limit) / 2; | 
|  | 1195 | unsigned long write_bw = wb->avg_write_bandwidth; | 
|  | 1196 | unsigned long dirty_ratelimit = wb->dirty_ratelimit; | 
|  | 1197 | unsigned long dirty_rate; | 
|  | 1198 | unsigned long task_ratelimit; | 
|  | 1199 | unsigned long balanced_dirty_ratelimit; | 
|  | 1200 | unsigned long step; | 
|  | 1201 | unsigned long x; | 
|  | 1202 | unsigned long shift; | 
|  | 1203 |  | 
|  | 1204 | /* | 
|  | 1205 | * The dirty rate will match the writeout rate in long term, except | 
|  | 1206 | * when dirty pages are truncated by userspace or re-dirtied by FS. | 
|  | 1207 | */ | 
|  | 1208 | dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; | 
|  | 1209 |  | 
|  | 1210 | /* | 
|  | 1211 | * task_ratelimit reflects each dd's dirty rate for the past 200ms. | 
|  | 1212 | */ | 
|  | 1213 | task_ratelimit = (u64)dirty_ratelimit * | 
|  | 1214 | dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; | 
|  | 1215 | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ | 
|  | 1216 |  | 
|  | 1217 | /* | 
|  | 1218 | * A linear estimation of the "balanced" throttle rate. The theory is, | 
|  | 1219 | * if there are N dd tasks, each throttled at task_ratelimit, the wb's | 
|  | 1220 | * dirty_rate will be measured to be (N * task_ratelimit). So the below | 
|  | 1221 | * formula will yield the balanced rate limit (write_bw / N). | 
|  | 1222 | * | 
|  | 1223 | * Note that the expanded form is not a pure rate feedback: | 
|  | 1224 | *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1) | 
|  | 1225 | * but also takes pos_ratio into account: | 
|  | 1226 | *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2) | 
|  | 1227 | * | 
|  | 1228 | * (1) is not realistic because pos_ratio also takes part in balancing | 
|  | 1229 | * the dirty rate.  Consider the state | 
|  | 1230 | *	pos_ratio = 0.5						     (3) | 
|  | 1231 | *	rate = 2 * (write_bw / N)				     (4) | 
|  | 1232 | * If (1) is used, it will stuck in that state! Because each dd will | 
|  | 1233 | * be throttled at | 
|  | 1234 | *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5) | 
|  | 1235 | * yielding | 
|  | 1236 | *	dirty_rate = N * task_ratelimit = write_bw		     (6) | 
|  | 1237 | * put (6) into (1) we get | 
|  | 1238 | *	rate_(i+1) = rate_(i)					     (7) | 
|  | 1239 | * | 
|  | 1240 | * So we end up using (2) to always keep | 
|  | 1241 | *	rate_(i+1) ~= (write_bw / N)				     (8) | 
|  | 1242 | * regardless of the value of pos_ratio. As long as (8) is satisfied, | 
|  | 1243 | * pos_ratio is able to drive itself to 1.0, which is not only where | 
|  | 1244 | * the dirty count meet the setpoint, but also where the slope of | 
|  | 1245 | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. | 
|  | 1246 | */ | 
|  | 1247 | balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, | 
|  | 1248 | dirty_rate | 1); | 
|  | 1249 | /* | 
|  | 1250 | * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw | 
|  | 1251 | */ | 
|  | 1252 | if (unlikely(balanced_dirty_ratelimit > write_bw)) | 
|  | 1253 | balanced_dirty_ratelimit = write_bw; | 
|  | 1254 |  | 
|  | 1255 | /* | 
|  | 1256 | * We could safely do this and return immediately: | 
|  | 1257 | * | 
|  | 1258 | *	wb->dirty_ratelimit = balanced_dirty_ratelimit; | 
|  | 1259 | * | 
|  | 1260 | * However to get a more stable dirty_ratelimit, the below elaborated | 
|  | 1261 | * code makes use of task_ratelimit to filter out singular points and | 
|  | 1262 | * limit the step size. | 
|  | 1263 | * | 
|  | 1264 | * The below code essentially only uses the relative value of | 
|  | 1265 | * | 
|  | 1266 | *	task_ratelimit - dirty_ratelimit | 
|  | 1267 | *	= (pos_ratio - 1) * dirty_ratelimit | 
|  | 1268 | * | 
|  | 1269 | * which reflects the direction and size of dirty position error. | 
|  | 1270 | */ | 
|  | 1271 |  | 
|  | 1272 | /* | 
|  | 1273 | * dirty_ratelimit will follow balanced_dirty_ratelimit iff | 
|  | 1274 | * task_ratelimit is on the same side of dirty_ratelimit, too. | 
|  | 1275 | * For example, when | 
|  | 1276 | * - dirty_ratelimit > balanced_dirty_ratelimit | 
|  | 1277 | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) | 
|  | 1278 | * lowering dirty_ratelimit will help meet both the position and rate | 
|  | 1279 | * control targets. Otherwise, don't update dirty_ratelimit if it will | 
|  | 1280 | * only help meet the rate target. After all, what the users ultimately | 
|  | 1281 | * feel and care are stable dirty rate and small position error. | 
|  | 1282 | * | 
|  | 1283 | * |task_ratelimit - dirty_ratelimit| is used to limit the step size | 
|  | 1284 | * and filter out the singular points of balanced_dirty_ratelimit. Which | 
|  | 1285 | * keeps jumping around randomly and can even leap far away at times | 
|  | 1286 | * due to the small 200ms estimation period of dirty_rate (we want to | 
|  | 1287 | * keep that period small to reduce time lags). | 
|  | 1288 | */ | 
|  | 1289 | step = 0; | 
|  | 1290 |  | 
|  | 1291 | /* | 
|  | 1292 | * For strictlimit case, calculations above were based on wb counters | 
|  | 1293 | * and limits (starting from pos_ratio = wb_position_ratio() and up to | 
|  | 1294 | * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). | 
|  | 1295 | * Hence, to calculate "step" properly, we have to use wb_dirty as | 
|  | 1296 | * "dirty" and wb_setpoint as "setpoint". | 
|  | 1297 | * | 
|  | 1298 | * We rampup dirty_ratelimit forcibly if wb_dirty is low because | 
|  | 1299 | * it's possible that wb_thresh is close to zero due to inactivity | 
|  | 1300 | * of backing device. | 
|  | 1301 | */ | 
|  | 1302 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { | 
|  | 1303 | dirty = dtc->wb_dirty; | 
|  | 1304 | if (dtc->wb_dirty < 8) | 
|  | 1305 | setpoint = dtc->wb_dirty + 1; | 
|  | 1306 | else | 
|  | 1307 | setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; | 
|  | 1308 | } | 
|  | 1309 |  | 
|  | 1310 | if (dirty < setpoint) { | 
|  | 1311 | x = min3(wb->balanced_dirty_ratelimit, | 
|  | 1312 | balanced_dirty_ratelimit, task_ratelimit); | 
|  | 1313 | if (dirty_ratelimit < x) | 
|  | 1314 | step = x - dirty_ratelimit; | 
|  | 1315 | } else { | 
|  | 1316 | x = max3(wb->balanced_dirty_ratelimit, | 
|  | 1317 | balanced_dirty_ratelimit, task_ratelimit); | 
|  | 1318 | if (dirty_ratelimit > x) | 
|  | 1319 | step = dirty_ratelimit - x; | 
|  | 1320 | } | 
|  | 1321 |  | 
|  | 1322 | /* | 
|  | 1323 | * Don't pursue 100% rate matching. It's impossible since the balanced | 
|  | 1324 | * rate itself is constantly fluctuating. So decrease the track speed | 
|  | 1325 | * when it gets close to the target. Helps eliminate pointless tremors. | 
|  | 1326 | */ | 
|  | 1327 | shift = dirty_ratelimit / (2 * step + 1); | 
|  | 1328 | if (shift < BITS_PER_LONG) | 
|  | 1329 | step = DIV_ROUND_UP(step >> shift, 8); | 
|  | 1330 | else | 
|  | 1331 | step = 0; | 
|  | 1332 |  | 
|  | 1333 | if (dirty_ratelimit < balanced_dirty_ratelimit) | 
|  | 1334 | dirty_ratelimit += step; | 
|  | 1335 | else | 
|  | 1336 | dirty_ratelimit -= step; | 
|  | 1337 |  | 
|  | 1338 | wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); | 
|  | 1339 | wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; | 
|  | 1340 |  | 
|  | 1341 | trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); | 
|  | 1342 | } | 
|  | 1343 |  | 
|  | 1344 | static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, | 
|  | 1345 | struct dirty_throttle_control *mdtc, | 
|  | 1346 | unsigned long start_time, | 
|  | 1347 | bool update_ratelimit) | 
|  | 1348 | { | 
|  | 1349 | struct bdi_writeback *wb = gdtc->wb; | 
|  | 1350 | unsigned long now = jiffies; | 
|  | 1351 | unsigned long elapsed = now - wb->bw_time_stamp; | 
|  | 1352 | unsigned long dirtied; | 
|  | 1353 | unsigned long written; | 
|  | 1354 |  | 
|  | 1355 | lockdep_assert_held(&wb->list_lock); | 
|  | 1356 |  | 
|  | 1357 | /* | 
|  | 1358 | * rate-limit, only update once every 200ms. | 
|  | 1359 | */ | 
|  | 1360 | if (elapsed < BANDWIDTH_INTERVAL) | 
|  | 1361 | return; | 
|  | 1362 |  | 
|  | 1363 | dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); | 
|  | 1364 | written = percpu_counter_read(&wb->stat[WB_WRITTEN]); | 
|  | 1365 |  | 
|  | 1366 | /* | 
|  | 1367 | * Skip quiet periods when disk bandwidth is under-utilized. | 
|  | 1368 | * (at least 1s idle time between two flusher runs) | 
|  | 1369 | */ | 
|  | 1370 | if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) | 
|  | 1371 | goto snapshot; | 
|  | 1372 |  | 
|  | 1373 | if (update_ratelimit) { | 
|  | 1374 | domain_update_bandwidth(gdtc, now); | 
|  | 1375 | wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); | 
|  | 1376 |  | 
|  | 1377 | /* | 
|  | 1378 | * @mdtc is always NULL if !CGROUP_WRITEBACK but the | 
|  | 1379 | * compiler has no way to figure that out.  Help it. | 
|  | 1380 | */ | 
|  | 1381 | if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { | 
|  | 1382 | domain_update_bandwidth(mdtc, now); | 
|  | 1383 | wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); | 
|  | 1384 | } | 
|  | 1385 | } | 
|  | 1386 | wb_update_write_bandwidth(wb, elapsed, written); | 
|  | 1387 |  | 
|  | 1388 | snapshot: | 
|  | 1389 | wb->dirtied_stamp = dirtied; | 
|  | 1390 | wb->written_stamp = written; | 
|  | 1391 | wb->bw_time_stamp = now; | 
|  | 1392 | } | 
|  | 1393 |  | 
|  | 1394 | void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) | 
|  | 1395 | { | 
|  | 1396 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; | 
|  | 1397 |  | 
|  | 1398 | __wb_update_bandwidth(&gdtc, NULL, start_time, false); | 
|  | 1399 | } | 
|  | 1400 |  | 
|  | 1401 | /* | 
|  | 1402 | * After a task dirtied this many pages, balance_dirty_pages_ratelimited() | 
|  | 1403 | * will look to see if it needs to start dirty throttling. | 
|  | 1404 | * | 
|  | 1405 | * If dirty_poll_interval is too low, big NUMA machines will call the expensive | 
|  | 1406 | * global_zone_page_state() too often. So scale it near-sqrt to the safety margin | 
|  | 1407 | * (the number of pages we may dirty without exceeding the dirty limits). | 
|  | 1408 | */ | 
|  | 1409 | static unsigned long dirty_poll_interval(unsigned long dirty, | 
|  | 1410 | unsigned long thresh) | 
|  | 1411 | { | 
|  | 1412 | if (thresh > dirty) | 
|  | 1413 | return 1UL << (ilog2(thresh - dirty) >> 1); | 
|  | 1414 |  | 
|  | 1415 | return 1; | 
|  | 1416 | } | 
|  | 1417 |  | 
|  | 1418 | static unsigned long wb_max_pause(struct bdi_writeback *wb, | 
|  | 1419 | unsigned long wb_dirty) | 
|  | 1420 | { | 
|  | 1421 | unsigned long bw = wb->avg_write_bandwidth; | 
|  | 1422 | unsigned long t; | 
|  | 1423 |  | 
|  | 1424 | /* | 
|  | 1425 | * Limit pause time for small memory systems. If sleeping for too long | 
|  | 1426 | * time, a small pool of dirty/writeback pages may go empty and disk go | 
|  | 1427 | * idle. | 
|  | 1428 | * | 
|  | 1429 | * 8 serves as the safety ratio. | 
|  | 1430 | */ | 
|  | 1431 | t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); | 
|  | 1432 | t++; | 
|  | 1433 |  | 
|  | 1434 | return min_t(unsigned long, t, MAX_PAUSE); | 
|  | 1435 | } | 
|  | 1436 |  | 
|  | 1437 | static long wb_min_pause(struct bdi_writeback *wb, | 
|  | 1438 | long max_pause, | 
|  | 1439 | unsigned long task_ratelimit, | 
|  | 1440 | unsigned long dirty_ratelimit, | 
|  | 1441 | int *nr_dirtied_pause) | 
|  | 1442 | { | 
|  | 1443 | long hi = ilog2(wb->avg_write_bandwidth); | 
|  | 1444 | long lo = ilog2(wb->dirty_ratelimit); | 
|  | 1445 | long t;		/* target pause */ | 
|  | 1446 | long pause;	/* estimated next pause */ | 
|  | 1447 | int pages;	/* target nr_dirtied_pause */ | 
|  | 1448 |  | 
|  | 1449 | /* target for 10ms pause on 1-dd case */ | 
|  | 1450 | t = max(1, HZ / 100); | 
|  | 1451 |  | 
|  | 1452 | /* | 
|  | 1453 | * Scale up pause time for concurrent dirtiers in order to reduce CPU | 
|  | 1454 | * overheads. | 
|  | 1455 | * | 
|  | 1456 | * (N * 10ms) on 2^N concurrent tasks. | 
|  | 1457 | */ | 
|  | 1458 | if (hi > lo) | 
|  | 1459 | t += (hi - lo) * (10 * HZ) / 1024; | 
|  | 1460 |  | 
|  | 1461 | /* | 
|  | 1462 | * This is a bit convoluted. We try to base the next nr_dirtied_pause | 
|  | 1463 | * on the much more stable dirty_ratelimit. However the next pause time | 
|  | 1464 | * will be computed based on task_ratelimit and the two rate limits may | 
|  | 1465 | * depart considerably at some time. Especially if task_ratelimit goes | 
|  | 1466 | * below dirty_ratelimit/2 and the target pause is max_pause, the next | 
|  | 1467 | * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a | 
|  | 1468 | * result task_ratelimit won't be executed faithfully, which could | 
|  | 1469 | * eventually bring down dirty_ratelimit. | 
|  | 1470 | * | 
|  | 1471 | * We apply two rules to fix it up: | 
|  | 1472 | * 1) try to estimate the next pause time and if necessary, use a lower | 
|  | 1473 | *    nr_dirtied_pause so as not to exceed max_pause. When this happens, | 
|  | 1474 | *    nr_dirtied_pause will be "dancing" with task_ratelimit. | 
|  | 1475 | * 2) limit the target pause time to max_pause/2, so that the normal | 
|  | 1476 | *    small fluctuations of task_ratelimit won't trigger rule (1) and | 
|  | 1477 | *    nr_dirtied_pause will remain as stable as dirty_ratelimit. | 
|  | 1478 | */ | 
|  | 1479 | t = min(t, 1 + max_pause / 2); | 
|  | 1480 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); | 
|  | 1481 |  | 
|  | 1482 | /* | 
|  | 1483 | * Tiny nr_dirtied_pause is found to hurt I/O performance in the test | 
|  | 1484 | * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. | 
|  | 1485 | * When the 16 consecutive reads are often interrupted by some dirty | 
|  | 1486 | * throttling pause during the async writes, cfq will go into idles | 
|  | 1487 | * (deadline is fine). So push nr_dirtied_pause as high as possible | 
|  | 1488 | * until reaches DIRTY_POLL_THRESH=32 pages. | 
|  | 1489 | */ | 
|  | 1490 | if (pages < DIRTY_POLL_THRESH) { | 
|  | 1491 | t = max_pause; | 
|  | 1492 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); | 
|  | 1493 | if (pages > DIRTY_POLL_THRESH) { | 
|  | 1494 | pages = DIRTY_POLL_THRESH; | 
|  | 1495 | t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; | 
|  | 1496 | } | 
|  | 1497 | } | 
|  | 1498 |  | 
|  | 1499 | pause = HZ * pages / (task_ratelimit + 1); | 
|  | 1500 | if (pause > max_pause) { | 
|  | 1501 | t = max_pause; | 
|  | 1502 | pages = task_ratelimit * t / roundup_pow_of_two(HZ); | 
|  | 1503 | } | 
|  | 1504 |  | 
|  | 1505 | *nr_dirtied_pause = pages; | 
|  | 1506 | /* | 
|  | 1507 | * The minimal pause time will normally be half the target pause time. | 
|  | 1508 | */ | 
|  | 1509 | return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; | 
|  | 1510 | } | 
|  | 1511 |  | 
|  | 1512 | static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) | 
|  | 1513 | { | 
|  | 1514 | struct bdi_writeback *wb = dtc->wb; | 
|  | 1515 | unsigned long wb_reclaimable; | 
|  | 1516 |  | 
|  | 1517 | /* | 
|  | 1518 | * wb_thresh is not treated as some limiting factor as | 
|  | 1519 | * dirty_thresh, due to reasons | 
|  | 1520 | * - in JBOD setup, wb_thresh can fluctuate a lot | 
|  | 1521 | * - in a system with HDD and USB key, the USB key may somehow | 
|  | 1522 | *   go into state (wb_dirty >> wb_thresh) either because | 
|  | 1523 | *   wb_dirty starts high, or because wb_thresh drops low. | 
|  | 1524 | *   In this case we don't want to hard throttle the USB key | 
|  | 1525 | *   dirtiers for 100 seconds until wb_dirty drops under | 
|  | 1526 | *   wb_thresh. Instead the auxiliary wb control line in | 
|  | 1527 | *   wb_position_ratio() will let the dirtier task progress | 
|  | 1528 | *   at some rate <= (write_bw / 2) for bringing down wb_dirty. | 
|  | 1529 | */ | 
|  | 1530 | dtc->wb_thresh = __wb_calc_thresh(dtc); | 
|  | 1531 | dtc->wb_bg_thresh = dtc->thresh ? | 
|  | 1532 | div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; | 
|  | 1533 |  | 
|  | 1534 | /* | 
|  | 1535 | * In order to avoid the stacked BDI deadlock we need | 
|  | 1536 | * to ensure we accurately count the 'dirty' pages when | 
|  | 1537 | * the threshold is low. | 
|  | 1538 | * | 
|  | 1539 | * Otherwise it would be possible to get thresh+n pages | 
|  | 1540 | * reported dirty, even though there are thresh-m pages | 
|  | 1541 | * actually dirty; with m+n sitting in the percpu | 
|  | 1542 | * deltas. | 
|  | 1543 | */ | 
|  | 1544 | if (dtc->wb_thresh < 2 * wb_stat_error()) { | 
|  | 1545 | wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); | 
|  | 1546 | dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); | 
|  | 1547 | } else { | 
|  | 1548 | wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); | 
|  | 1549 | dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); | 
|  | 1550 | } | 
|  | 1551 | } | 
|  | 1552 |  | 
|  | 1553 | /* | 
|  | 1554 | * balance_dirty_pages() must be called by processes which are generating dirty | 
|  | 1555 | * data.  It looks at the number of dirty pages in the machine and will force | 
|  | 1556 | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. | 
|  | 1557 | * If we're over `background_thresh' then the writeback threads are woken to | 
|  | 1558 | * perform some writeout. | 
|  | 1559 | */ | 
|  | 1560 | static void balance_dirty_pages(struct bdi_writeback *wb, | 
|  | 1561 | unsigned long pages_dirtied) | 
|  | 1562 | { | 
|  | 1563 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; | 
|  | 1564 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; | 
|  | 1565 | struct dirty_throttle_control * const gdtc = &gdtc_stor; | 
|  | 1566 | struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? | 
|  | 1567 | &mdtc_stor : NULL; | 
|  | 1568 | struct dirty_throttle_control *sdtc; | 
|  | 1569 | unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */ | 
|  | 1570 | long period; | 
|  | 1571 | long pause; | 
|  | 1572 | long max_pause; | 
|  | 1573 | long min_pause; | 
|  | 1574 | int nr_dirtied_pause; | 
|  | 1575 | bool dirty_exceeded = false; | 
|  | 1576 | unsigned long task_ratelimit; | 
|  | 1577 | unsigned long dirty_ratelimit; | 
|  | 1578 | struct backing_dev_info *bdi = wb->bdi; | 
|  | 1579 | bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; | 
|  | 1580 | unsigned long start_time = jiffies; | 
|  | 1581 |  | 
|  | 1582 | for (;;) { | 
|  | 1583 | unsigned long now = jiffies; | 
|  | 1584 | unsigned long dirty, thresh, bg_thresh; | 
|  | 1585 | unsigned long m_dirty = 0;	/* stop bogus uninit warnings */ | 
|  | 1586 | unsigned long m_thresh = 0; | 
|  | 1587 | unsigned long m_bg_thresh = 0; | 
|  | 1588 |  | 
|  | 1589 | /* | 
|  | 1590 | * Unstable writes are a feature of certain networked | 
|  | 1591 | * filesystems (i.e. NFS) in which data may have been | 
|  | 1592 | * written to the server's write cache, but has not yet | 
|  | 1593 | * been flushed to permanent storage. | 
|  | 1594 | */ | 
|  | 1595 | nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) + | 
|  | 1596 | global_node_page_state(NR_UNSTABLE_NFS); | 
|  | 1597 | gdtc->avail = global_dirtyable_memory(); | 
|  | 1598 | gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); | 
|  | 1599 |  | 
|  | 1600 | domain_dirty_limits(gdtc); | 
|  | 1601 |  | 
|  | 1602 | if (unlikely(strictlimit)) { | 
|  | 1603 | wb_dirty_limits(gdtc); | 
|  | 1604 |  | 
|  | 1605 | dirty = gdtc->wb_dirty; | 
|  | 1606 | thresh = gdtc->wb_thresh; | 
|  | 1607 | bg_thresh = gdtc->wb_bg_thresh; | 
|  | 1608 | } else { | 
|  | 1609 | dirty = gdtc->dirty; | 
|  | 1610 | thresh = gdtc->thresh; | 
|  | 1611 | bg_thresh = gdtc->bg_thresh; | 
|  | 1612 | } | 
|  | 1613 |  | 
|  | 1614 | if (mdtc) { | 
|  | 1615 | unsigned long filepages, headroom, writeback; | 
|  | 1616 |  | 
|  | 1617 | /* | 
|  | 1618 | * If @wb belongs to !root memcg, repeat the same | 
|  | 1619 | * basic calculations for the memcg domain. | 
|  | 1620 | */ | 
|  | 1621 | mem_cgroup_wb_stats(wb, &filepages, &headroom, | 
|  | 1622 | &mdtc->dirty, &writeback); | 
|  | 1623 | mdtc->dirty += writeback; | 
|  | 1624 | mdtc_calc_avail(mdtc, filepages, headroom); | 
|  | 1625 |  | 
|  | 1626 | domain_dirty_limits(mdtc); | 
|  | 1627 |  | 
|  | 1628 | if (unlikely(strictlimit)) { | 
|  | 1629 | wb_dirty_limits(mdtc); | 
|  | 1630 | m_dirty = mdtc->wb_dirty; | 
|  | 1631 | m_thresh = mdtc->wb_thresh; | 
|  | 1632 | m_bg_thresh = mdtc->wb_bg_thresh; | 
|  | 1633 | } else { | 
|  | 1634 | m_dirty = mdtc->dirty; | 
|  | 1635 | m_thresh = mdtc->thresh; | 
|  | 1636 | m_bg_thresh = mdtc->bg_thresh; | 
|  | 1637 | } | 
|  | 1638 | } | 
|  | 1639 |  | 
|  | 1640 | /* | 
|  | 1641 | * Throttle it only when the background writeback cannot | 
|  | 1642 | * catch-up. This avoids (excessively) small writeouts | 
|  | 1643 | * when the wb limits are ramping up in case of !strictlimit. | 
|  | 1644 | * | 
|  | 1645 | * In strictlimit case make decision based on the wb counters | 
|  | 1646 | * and limits. Small writeouts when the wb limits are ramping | 
|  | 1647 | * up are the price we consciously pay for strictlimit-ing. | 
|  | 1648 | * | 
|  | 1649 | * If memcg domain is in effect, @dirty should be under | 
|  | 1650 | * both global and memcg freerun ceilings. | 
|  | 1651 | */ | 
|  | 1652 | if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && | 
|  | 1653 | (!mdtc || | 
|  | 1654 | m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { | 
|  | 1655 | unsigned long intv = dirty_poll_interval(dirty, thresh); | 
|  | 1656 | unsigned long m_intv = ULONG_MAX; | 
|  | 1657 |  | 
|  | 1658 | current->dirty_paused_when = now; | 
|  | 1659 | current->nr_dirtied = 0; | 
|  | 1660 | if (mdtc) | 
|  | 1661 | m_intv = dirty_poll_interval(m_dirty, m_thresh); | 
|  | 1662 | current->nr_dirtied_pause = min(intv, m_intv); | 
|  | 1663 | break; | 
|  | 1664 | } | 
|  | 1665 |  | 
|  | 1666 | if (unlikely(!writeback_in_progress(wb))) | 
|  | 1667 | wb_start_background_writeback(wb); | 
|  | 1668 |  | 
|  | 1669 | /* | 
|  | 1670 | * Calculate global domain's pos_ratio and select the | 
|  | 1671 | * global dtc by default. | 
|  | 1672 | */ | 
|  | 1673 | if (!strictlimit) | 
|  | 1674 | wb_dirty_limits(gdtc); | 
|  | 1675 |  | 
|  | 1676 | dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && | 
|  | 1677 | ((gdtc->dirty > gdtc->thresh) || strictlimit); | 
|  | 1678 |  | 
|  | 1679 | wb_position_ratio(gdtc); | 
|  | 1680 | sdtc = gdtc; | 
|  | 1681 |  | 
|  | 1682 | if (mdtc) { | 
|  | 1683 | /* | 
|  | 1684 | * If memcg domain is in effect, calculate its | 
|  | 1685 | * pos_ratio.  @wb should satisfy constraints from | 
|  | 1686 | * both global and memcg domains.  Choose the one | 
|  | 1687 | * w/ lower pos_ratio. | 
|  | 1688 | */ | 
|  | 1689 | if (!strictlimit) | 
|  | 1690 | wb_dirty_limits(mdtc); | 
|  | 1691 |  | 
|  | 1692 | dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && | 
|  | 1693 | ((mdtc->dirty > mdtc->thresh) || strictlimit); | 
|  | 1694 |  | 
|  | 1695 | wb_position_ratio(mdtc); | 
|  | 1696 | if (mdtc->pos_ratio < gdtc->pos_ratio) | 
|  | 1697 | sdtc = mdtc; | 
|  | 1698 | } | 
|  | 1699 |  | 
|  | 1700 | if (dirty_exceeded && !wb->dirty_exceeded) | 
|  | 1701 | wb->dirty_exceeded = 1; | 
|  | 1702 |  | 
|  | 1703 | if (time_is_before_jiffies(wb->bw_time_stamp + | 
|  | 1704 | BANDWIDTH_INTERVAL)) { | 
|  | 1705 | spin_lock(&wb->list_lock); | 
|  | 1706 | __wb_update_bandwidth(gdtc, mdtc, start_time, true); | 
|  | 1707 | spin_unlock(&wb->list_lock); | 
|  | 1708 | } | 
|  | 1709 |  | 
|  | 1710 | /* throttle according to the chosen dtc */ | 
|  | 1711 | dirty_ratelimit = wb->dirty_ratelimit; | 
|  | 1712 | task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> | 
|  | 1713 | RATELIMIT_CALC_SHIFT; | 
|  | 1714 | max_pause = wb_max_pause(wb, sdtc->wb_dirty); | 
|  | 1715 | min_pause = wb_min_pause(wb, max_pause, | 
|  | 1716 | task_ratelimit, dirty_ratelimit, | 
|  | 1717 | &nr_dirtied_pause); | 
|  | 1718 |  | 
|  | 1719 | if (unlikely(task_ratelimit == 0)) { | 
|  | 1720 | period = max_pause; | 
|  | 1721 | pause = max_pause; | 
|  | 1722 | goto pause; | 
|  | 1723 | } | 
|  | 1724 | period = HZ * pages_dirtied / task_ratelimit; | 
|  | 1725 | pause = period; | 
|  | 1726 | if (current->dirty_paused_when) | 
|  | 1727 | pause -= now - current->dirty_paused_when; | 
|  | 1728 | /* | 
|  | 1729 | * For less than 1s think time (ext3/4 may block the dirtier | 
|  | 1730 | * for up to 800ms from time to time on 1-HDD; so does xfs, | 
|  | 1731 | * however at much less frequency), try to compensate it in | 
|  | 1732 | * future periods by updating the virtual time; otherwise just | 
|  | 1733 | * do a reset, as it may be a light dirtier. | 
|  | 1734 | */ | 
|  | 1735 | if (pause < min_pause) { | 
|  | 1736 | trace_balance_dirty_pages(wb, | 
|  | 1737 | sdtc->thresh, | 
|  | 1738 | sdtc->bg_thresh, | 
|  | 1739 | sdtc->dirty, | 
|  | 1740 | sdtc->wb_thresh, | 
|  | 1741 | sdtc->wb_dirty, | 
|  | 1742 | dirty_ratelimit, | 
|  | 1743 | task_ratelimit, | 
|  | 1744 | pages_dirtied, | 
|  | 1745 | period, | 
|  | 1746 | min(pause, 0L), | 
|  | 1747 | start_time); | 
|  | 1748 | if (pause < -HZ) { | 
|  | 1749 | current->dirty_paused_when = now; | 
|  | 1750 | current->nr_dirtied = 0; | 
|  | 1751 | } else if (period) { | 
|  | 1752 | current->dirty_paused_when += period; | 
|  | 1753 | current->nr_dirtied = 0; | 
|  | 1754 | } else if (current->nr_dirtied_pause <= pages_dirtied) | 
|  | 1755 | current->nr_dirtied_pause += pages_dirtied; | 
|  | 1756 | break; | 
|  | 1757 | } | 
|  | 1758 | if (unlikely(pause > max_pause)) { | 
|  | 1759 | /* for occasional dropped task_ratelimit */ | 
|  | 1760 | now += min(pause - max_pause, max_pause); | 
|  | 1761 | pause = max_pause; | 
|  | 1762 | } | 
|  | 1763 |  | 
|  | 1764 | pause: | 
|  | 1765 | trace_balance_dirty_pages(wb, | 
|  | 1766 | sdtc->thresh, | 
|  | 1767 | sdtc->bg_thresh, | 
|  | 1768 | sdtc->dirty, | 
|  | 1769 | sdtc->wb_thresh, | 
|  | 1770 | sdtc->wb_dirty, | 
|  | 1771 | dirty_ratelimit, | 
|  | 1772 | task_ratelimit, | 
|  | 1773 | pages_dirtied, | 
|  | 1774 | period, | 
|  | 1775 | pause, | 
|  | 1776 | start_time); | 
|  | 1777 | __set_current_state(TASK_KILLABLE); | 
|  | 1778 | wb->dirty_sleep = now; | 
|  | 1779 | io_schedule_timeout(pause); | 
|  | 1780 |  | 
|  | 1781 | current->dirty_paused_when = now + pause; | 
|  | 1782 | current->nr_dirtied = 0; | 
|  | 1783 | current->nr_dirtied_pause = nr_dirtied_pause; | 
|  | 1784 |  | 
|  | 1785 | /* | 
|  | 1786 | * This is typically equal to (dirty < thresh) and can also | 
|  | 1787 | * keep "1000+ dd on a slow USB stick" under control. | 
|  | 1788 | */ | 
|  | 1789 | if (task_ratelimit) | 
|  | 1790 | break; | 
|  | 1791 |  | 
|  | 1792 | /* | 
|  | 1793 | * In the case of an unresponding NFS server and the NFS dirty | 
|  | 1794 | * pages exceeds dirty_thresh, give the other good wb's a pipe | 
|  | 1795 | * to go through, so that tasks on them still remain responsive. | 
|  | 1796 | * | 
|  | 1797 | * In theory 1 page is enough to keep the consumer-producer | 
|  | 1798 | * pipe going: the flusher cleans 1 page => the task dirties 1 | 
|  | 1799 | * more page. However wb_dirty has accounting errors.  So use | 
|  | 1800 | * the larger and more IO friendly wb_stat_error. | 
|  | 1801 | */ | 
|  | 1802 | if (sdtc->wb_dirty <= wb_stat_error()) | 
|  | 1803 | break; | 
|  | 1804 |  | 
|  | 1805 | if (fatal_signal_pending(current)) | 
|  | 1806 | break; | 
|  | 1807 | } | 
|  | 1808 |  | 
|  | 1809 | if (!dirty_exceeded && wb->dirty_exceeded) | 
|  | 1810 | wb->dirty_exceeded = 0; | 
|  | 1811 |  | 
|  | 1812 | if (writeback_in_progress(wb)) | 
|  | 1813 | return; | 
|  | 1814 |  | 
|  | 1815 | /* | 
|  | 1816 | * In laptop mode, we wait until hitting the higher threshold before | 
|  | 1817 | * starting background writeout, and then write out all the way down | 
|  | 1818 | * to the lower threshold.  So slow writers cause minimal disk activity. | 
|  | 1819 | * | 
|  | 1820 | * In normal mode, we start background writeout at the lower | 
|  | 1821 | * background_thresh, to keep the amount of dirty memory low. | 
|  | 1822 | */ | 
|  | 1823 | if (laptop_mode) | 
|  | 1824 | return; | 
|  | 1825 |  | 
|  | 1826 | if (nr_reclaimable > gdtc->bg_thresh) | 
|  | 1827 | wb_start_background_writeback(wb); | 
|  | 1828 | } | 
|  | 1829 |  | 
|  | 1830 | static DEFINE_PER_CPU(int, bdp_ratelimits); | 
|  | 1831 |  | 
|  | 1832 | /* | 
|  | 1833 | * Normal tasks are throttled by | 
|  | 1834 | *	loop { | 
|  | 1835 | *		dirty tsk->nr_dirtied_pause pages; | 
|  | 1836 | *		take a snap in balance_dirty_pages(); | 
|  | 1837 | *	} | 
|  | 1838 | * However there is a worst case. If every task exit immediately when dirtied | 
|  | 1839 | * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be | 
|  | 1840 | * called to throttle the page dirties. The solution is to save the not yet | 
|  | 1841 | * throttled page dirties in dirty_throttle_leaks on task exit and charge them | 
|  | 1842 | * randomly into the running tasks. This works well for the above worst case, | 
|  | 1843 | * as the new task will pick up and accumulate the old task's leaked dirty | 
|  | 1844 | * count and eventually get throttled. | 
|  | 1845 | */ | 
|  | 1846 | DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; | 
|  | 1847 |  | 
|  | 1848 | /** | 
|  | 1849 | * balance_dirty_pages_ratelimited - balance dirty memory state | 
|  | 1850 | * @mapping: address_space which was dirtied | 
|  | 1851 | * | 
|  | 1852 | * Processes which are dirtying memory should call in here once for each page | 
|  | 1853 | * which was newly dirtied.  The function will periodically check the system's | 
|  | 1854 | * dirty state and will initiate writeback if needed. | 
|  | 1855 | * | 
|  | 1856 | * On really big machines, get_writeback_state is expensive, so try to avoid | 
|  | 1857 | * calling it too often (ratelimiting).  But once we're over the dirty memory | 
|  | 1858 | * limit we decrease the ratelimiting by a lot, to prevent individual processes | 
|  | 1859 | * from overshooting the limit by (ratelimit_pages) each. | 
|  | 1860 | */ | 
|  | 1861 | void balance_dirty_pages_ratelimited(struct address_space *mapping) | 
|  | 1862 | { | 
|  | 1863 | struct inode *inode = mapping->host; | 
|  | 1864 | struct backing_dev_info *bdi = inode_to_bdi(inode); | 
|  | 1865 | struct bdi_writeback *wb = NULL; | 
|  | 1866 | int ratelimit; | 
|  | 1867 | int *p; | 
|  | 1868 |  | 
|  | 1869 | if (!bdi_cap_account_dirty(bdi)) | 
|  | 1870 | return; | 
|  | 1871 |  | 
|  | 1872 | if (inode_cgwb_enabled(inode)) | 
|  | 1873 | wb = wb_get_create_current(bdi, GFP_KERNEL); | 
|  | 1874 | if (!wb) | 
|  | 1875 | wb = &bdi->wb; | 
|  | 1876 |  | 
|  | 1877 | ratelimit = current->nr_dirtied_pause; | 
|  | 1878 | if (wb->dirty_exceeded) | 
|  | 1879 | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); | 
|  | 1880 |  | 
|  | 1881 | preempt_disable(); | 
|  | 1882 | /* | 
|  | 1883 | * This prevents one CPU to accumulate too many dirtied pages without | 
|  | 1884 | * calling into balance_dirty_pages(), which can happen when there are | 
|  | 1885 | * 1000+ tasks, all of them start dirtying pages at exactly the same | 
|  | 1886 | * time, hence all honoured too large initial task->nr_dirtied_pause. | 
|  | 1887 | */ | 
|  | 1888 | p =  this_cpu_ptr(&bdp_ratelimits); | 
|  | 1889 | if (unlikely(current->nr_dirtied >= ratelimit)) | 
|  | 1890 | *p = 0; | 
|  | 1891 | else if (unlikely(*p >= ratelimit_pages)) { | 
|  | 1892 | *p = 0; | 
|  | 1893 | ratelimit = 0; | 
|  | 1894 | } | 
|  | 1895 | /* | 
|  | 1896 | * Pick up the dirtied pages by the exited tasks. This avoids lots of | 
|  | 1897 | * short-lived tasks (eg. gcc invocations in a kernel build) escaping | 
|  | 1898 | * the dirty throttling and livelock other long-run dirtiers. | 
|  | 1899 | */ | 
|  | 1900 | p = this_cpu_ptr(&dirty_throttle_leaks); | 
|  | 1901 | if (*p > 0 && current->nr_dirtied < ratelimit) { | 
|  | 1902 | unsigned long nr_pages_dirtied; | 
|  | 1903 | nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); | 
|  | 1904 | *p -= nr_pages_dirtied; | 
|  | 1905 | current->nr_dirtied += nr_pages_dirtied; | 
|  | 1906 | } | 
|  | 1907 | preempt_enable(); | 
|  | 1908 |  | 
|  | 1909 | if (unlikely(current->nr_dirtied >= ratelimit)) | 
|  | 1910 | balance_dirty_pages(wb, current->nr_dirtied); | 
|  | 1911 |  | 
|  | 1912 | wb_put(wb); | 
|  | 1913 | } | 
|  | 1914 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); | 
|  | 1915 |  | 
|  | 1916 | /** | 
|  | 1917 | * wb_over_bg_thresh - does @wb need to be written back? | 
|  | 1918 | * @wb: bdi_writeback of interest | 
|  | 1919 | * | 
|  | 1920 | * Determines whether background writeback should keep writing @wb or it's | 
|  | 1921 | * clean enough.  Returns %true if writeback should continue. | 
|  | 1922 | */ | 
|  | 1923 | bool wb_over_bg_thresh(struct bdi_writeback *wb) | 
|  | 1924 | { | 
|  | 1925 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; | 
|  | 1926 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; | 
|  | 1927 | struct dirty_throttle_control * const gdtc = &gdtc_stor; | 
|  | 1928 | struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? | 
|  | 1929 | &mdtc_stor : NULL; | 
|  | 1930 |  | 
|  | 1931 | /* | 
|  | 1932 | * Similar to balance_dirty_pages() but ignores pages being written | 
|  | 1933 | * as we're trying to decide whether to put more under writeback. | 
|  | 1934 | */ | 
|  | 1935 | gdtc->avail = global_dirtyable_memory(); | 
|  | 1936 | gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) + | 
|  | 1937 | global_node_page_state(NR_UNSTABLE_NFS); | 
|  | 1938 | domain_dirty_limits(gdtc); | 
|  | 1939 |  | 
|  | 1940 | if (gdtc->dirty > gdtc->bg_thresh) | 
|  | 1941 | return true; | 
|  | 1942 |  | 
|  | 1943 | if (wb_stat(wb, WB_RECLAIMABLE) > | 
|  | 1944 | wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) | 
|  | 1945 | return true; | 
|  | 1946 |  | 
|  | 1947 | if (mdtc) { | 
|  | 1948 | unsigned long filepages, headroom, writeback; | 
|  | 1949 |  | 
|  | 1950 | mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, | 
|  | 1951 | &writeback); | 
|  | 1952 | mdtc_calc_avail(mdtc, filepages, headroom); | 
|  | 1953 | domain_dirty_limits(mdtc);	/* ditto, ignore writeback */ | 
|  | 1954 |  | 
|  | 1955 | if (mdtc->dirty > mdtc->bg_thresh) | 
|  | 1956 | return true; | 
|  | 1957 |  | 
|  | 1958 | if (wb_stat(wb, WB_RECLAIMABLE) > | 
|  | 1959 | wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) | 
|  | 1960 | return true; | 
|  | 1961 | } | 
|  | 1962 |  | 
|  | 1963 | return false; | 
|  | 1964 | } | 
|  | 1965 |  | 
|  | 1966 | /* | 
|  | 1967 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs | 
|  | 1968 | */ | 
|  | 1969 | int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, | 
|  | 1970 | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | 1971 | { | 
|  | 1972 | unsigned int old_interval = dirty_writeback_interval; | 
|  | 1973 | int ret; | 
|  | 1974 |  | 
|  | 1975 | ret = proc_dointvec(table, write, buffer, length, ppos); | 
|  | 1976 |  | 
|  | 1977 | /* | 
|  | 1978 | * Writing 0 to dirty_writeback_interval will disable periodic writeback | 
|  | 1979 | * and a different non-zero value will wakeup the writeback threads. | 
|  | 1980 | * wb_wakeup_delayed() would be more appropriate, but it's a pain to | 
|  | 1981 | * iterate over all bdis and wbs. | 
|  | 1982 | * The reason we do this is to make the change take effect immediately. | 
|  | 1983 | */ | 
|  | 1984 | if (!ret && write && dirty_writeback_interval && | 
|  | 1985 | dirty_writeback_interval != old_interval) | 
|  | 1986 | wakeup_flusher_threads(WB_REASON_PERIODIC); | 
|  | 1987 |  | 
|  | 1988 | return ret; | 
|  | 1989 | } | 
|  | 1990 |  | 
|  | 1991 | #ifdef CONFIG_BLOCK | 
|  | 1992 | void laptop_mode_timer_fn(struct timer_list *t) | 
|  | 1993 | { | 
|  | 1994 | struct backing_dev_info *backing_dev_info = | 
|  | 1995 | from_timer(backing_dev_info, t, laptop_mode_wb_timer); | 
|  | 1996 |  | 
|  | 1997 | wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); | 
|  | 1998 | } | 
|  | 1999 |  | 
|  | 2000 | /* | 
|  | 2001 | * We've spun up the disk and we're in laptop mode: schedule writeback | 
|  | 2002 | * of all dirty data a few seconds from now.  If the flush is already scheduled | 
|  | 2003 | * then push it back - the user is still using the disk. | 
|  | 2004 | */ | 
|  | 2005 | void laptop_io_completion(struct backing_dev_info *info) | 
|  | 2006 | { | 
|  | 2007 | mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); | 
|  | 2008 | } | 
|  | 2009 |  | 
|  | 2010 | /* | 
|  | 2011 | * We're in laptop mode and we've just synced. The sync's writes will have | 
|  | 2012 | * caused another writeback to be scheduled by laptop_io_completion. | 
|  | 2013 | * Nothing needs to be written back anymore, so we unschedule the writeback. | 
|  | 2014 | */ | 
|  | 2015 | void laptop_sync_completion(void) | 
|  | 2016 | { | 
|  | 2017 | struct backing_dev_info *bdi; | 
|  | 2018 |  | 
|  | 2019 | rcu_read_lock(); | 
|  | 2020 |  | 
|  | 2021 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) | 
|  | 2022 | del_timer(&bdi->laptop_mode_wb_timer); | 
|  | 2023 |  | 
|  | 2024 | rcu_read_unlock(); | 
|  | 2025 | } | 
|  | 2026 | #endif | 
|  | 2027 |  | 
|  | 2028 | /* | 
|  | 2029 | * If ratelimit_pages is too high then we can get into dirty-data overload | 
|  | 2030 | * if a large number of processes all perform writes at the same time. | 
|  | 2031 | * If it is too low then SMP machines will call the (expensive) | 
|  | 2032 | * get_writeback_state too often. | 
|  | 2033 | * | 
|  | 2034 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are | 
|  | 2035 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory | 
|  | 2036 | * thresholds. | 
|  | 2037 | */ | 
|  | 2038 |  | 
|  | 2039 | void writeback_set_ratelimit(void) | 
|  | 2040 | { | 
|  | 2041 | struct wb_domain *dom = &global_wb_domain; | 
|  | 2042 | unsigned long background_thresh; | 
|  | 2043 | unsigned long dirty_thresh; | 
|  | 2044 |  | 
|  | 2045 | global_dirty_limits(&background_thresh, &dirty_thresh); | 
|  | 2046 | dom->dirty_limit = dirty_thresh; | 
|  | 2047 | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); | 
|  | 2048 | if (ratelimit_pages < 16) | 
|  | 2049 | ratelimit_pages = 16; | 
|  | 2050 | } | 
|  | 2051 |  | 
|  | 2052 | static int page_writeback_cpu_online(unsigned int cpu) | 
|  | 2053 | { | 
|  | 2054 | writeback_set_ratelimit(); | 
|  | 2055 | return 0; | 
|  | 2056 | } | 
|  | 2057 |  | 
|  | 2058 | /* | 
|  | 2059 | * Called early on to tune the page writeback dirty limits. | 
|  | 2060 | * | 
|  | 2061 | * We used to scale dirty pages according to how total memory | 
|  | 2062 | * related to pages that could be allocated for buffers (by | 
|  | 2063 | * comparing nr_free_buffer_pages() to vm_total_pages. | 
|  | 2064 | * | 
|  | 2065 | * However, that was when we used "dirty_ratio" to scale with | 
|  | 2066 | * all memory, and we don't do that any more. "dirty_ratio" | 
|  | 2067 | * is now applied to total non-HIGHPAGE memory (by subtracting | 
|  | 2068 | * totalhigh_pages from vm_total_pages), and as such we can't | 
|  | 2069 | * get into the old insane situation any more where we had | 
|  | 2070 | * large amounts of dirty pages compared to a small amount of | 
|  | 2071 | * non-HIGHMEM memory. | 
|  | 2072 | * | 
|  | 2073 | * But we might still want to scale the dirty_ratio by how | 
|  | 2074 | * much memory the box has.. | 
|  | 2075 | */ | 
|  | 2076 | void __init page_writeback_init(void) | 
|  | 2077 | { | 
|  | 2078 | BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); | 
|  | 2079 |  | 
|  | 2080 | cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", | 
|  | 2081 | page_writeback_cpu_online, NULL); | 
|  | 2082 | cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, | 
|  | 2083 | page_writeback_cpu_online); | 
|  | 2084 | } | 
|  | 2085 |  | 
|  | 2086 | /** | 
|  | 2087 | * tag_pages_for_writeback - tag pages to be written by write_cache_pages | 
|  | 2088 | * @mapping: address space structure to write | 
|  | 2089 | * @start: starting page index | 
|  | 2090 | * @end: ending page index (inclusive) | 
|  | 2091 | * | 
|  | 2092 | * This function scans the page range from @start to @end (inclusive) and tags | 
|  | 2093 | * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is | 
|  | 2094 | * that write_cache_pages (or whoever calls this function) will then use | 
|  | 2095 | * TOWRITE tag to identify pages eligible for writeback.  This mechanism is | 
|  | 2096 | * used to avoid livelocking of writeback by a process steadily creating new | 
|  | 2097 | * dirty pages in the file (thus it is important for this function to be quick | 
|  | 2098 | * so that it can tag pages faster than a dirtying process can create them). | 
|  | 2099 | */ | 
|  | 2100 | /* | 
|  | 2101 | * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce the i_pages lock | 
|  | 2102 | * latency. | 
|  | 2103 | */ | 
|  | 2104 | void tag_pages_for_writeback(struct address_space *mapping, | 
|  | 2105 | pgoff_t start, pgoff_t end) | 
|  | 2106 | { | 
|  | 2107 | #define WRITEBACK_TAG_BATCH 4096 | 
|  | 2108 | unsigned long tagged = 0; | 
|  | 2109 | struct radix_tree_iter iter; | 
|  | 2110 | void **slot; | 
|  | 2111 |  | 
|  | 2112 | xa_lock_irq(&mapping->i_pages); | 
|  | 2113 | radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, | 
|  | 2114 | PAGECACHE_TAG_DIRTY) { | 
|  | 2115 | if (iter.index > end) | 
|  | 2116 | break; | 
|  | 2117 | radix_tree_iter_tag_set(&mapping->i_pages, &iter, | 
|  | 2118 | PAGECACHE_TAG_TOWRITE); | 
|  | 2119 | tagged++; | 
|  | 2120 | if ((tagged % WRITEBACK_TAG_BATCH) != 0) | 
|  | 2121 | continue; | 
|  | 2122 | slot = radix_tree_iter_resume(slot, &iter); | 
|  | 2123 | xa_unlock_irq(&mapping->i_pages); | 
|  | 2124 | cond_resched(); | 
|  | 2125 | xa_lock_irq(&mapping->i_pages); | 
|  | 2126 | } | 
|  | 2127 | xa_unlock_irq(&mapping->i_pages); | 
|  | 2128 | } | 
|  | 2129 | EXPORT_SYMBOL(tag_pages_for_writeback); | 
|  | 2130 |  | 
|  | 2131 | /** | 
|  | 2132 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 
|  | 2133 | * @mapping: address space structure to write | 
|  | 2134 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
|  | 2135 | * @writepage: function called for each page | 
|  | 2136 | * @data: data passed to writepage function | 
|  | 2137 | * | 
|  | 2138 | * If a page is already under I/O, write_cache_pages() skips it, even | 
|  | 2139 | * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
|  | 2140 | * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
|  | 2141 | * and msync() need to guarantee that all the data which was dirty at the time | 
|  | 2142 | * the call was made get new I/O started against them.  If wbc->sync_mode is | 
|  | 2143 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
|  | 2144 | * existing IO to complete. | 
|  | 2145 | * | 
|  | 2146 | * To avoid livelocks (when other process dirties new pages), we first tag | 
|  | 2147 | * pages which should be written back with TOWRITE tag and only then start | 
|  | 2148 | * writing them. For data-integrity sync we have to be careful so that we do | 
|  | 2149 | * not miss some pages (e.g., because some other process has cleared TOWRITE | 
|  | 2150 | * tag we set). The rule we follow is that TOWRITE tag can be cleared only | 
|  | 2151 | * by the process clearing the DIRTY tag (and submitting the page for IO). | 
|  | 2152 | * | 
|  | 2153 | * To avoid deadlocks between range_cyclic writeback and callers that hold | 
|  | 2154 | * pages in PageWriteback to aggregate IO until write_cache_pages() returns, | 
|  | 2155 | * we do not loop back to the start of the file. Doing so causes a page | 
|  | 2156 | * lock/page writeback access order inversion - we should only ever lock | 
|  | 2157 | * multiple pages in ascending page->index order, and looping back to the start | 
|  | 2158 | * of the file violates that rule and causes deadlocks. | 
|  | 2159 | */ | 
|  | 2160 | int write_cache_pages(struct address_space *mapping, | 
|  | 2161 | struct writeback_control *wbc, writepage_t writepage, | 
|  | 2162 | void *data) | 
|  | 2163 | { | 
|  | 2164 | int ret = 0; | 
|  | 2165 | int done = 0; | 
|  | 2166 | int error; | 
|  | 2167 | struct pagevec pvec; | 
|  | 2168 | int nr_pages; | 
|  | 2169 | pgoff_t uninitialized_var(writeback_index); | 
|  | 2170 | pgoff_t index; | 
|  | 2171 | pgoff_t end;		/* Inclusive */ | 
|  | 2172 | pgoff_t done_index; | 
|  | 2173 | int range_whole = 0; | 
|  | 2174 | int tag; | 
|  | 2175 |  | 
|  | 2176 | pagevec_init(&pvec); | 
|  | 2177 | if (wbc->range_cyclic) { | 
|  | 2178 | writeback_index = mapping->writeback_index; /* prev offset */ | 
|  | 2179 | index = writeback_index; | 
|  | 2180 | end = -1; | 
|  | 2181 | } else { | 
|  | 2182 | index = wbc->range_start >> PAGE_SHIFT; | 
|  | 2183 | end = wbc->range_end >> PAGE_SHIFT; | 
|  | 2184 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
|  | 2185 | range_whole = 1; | 
|  | 2186 | } | 
|  | 2187 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | 2188 | tag = PAGECACHE_TAG_TOWRITE; | 
|  | 2189 | else | 
|  | 2190 | tag = PAGECACHE_TAG_DIRTY; | 
|  | 2191 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | 2192 | tag_pages_for_writeback(mapping, index, end); | 
|  | 2193 | done_index = index; | 
|  | 2194 | while (!done && (index <= end)) { | 
|  | 2195 | int i; | 
|  | 2196 |  | 
|  | 2197 | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, | 
|  | 2198 | tag); | 
|  | 2199 | if (nr_pages == 0) | 
|  | 2200 | break; | 
|  | 2201 |  | 
|  | 2202 | for (i = 0; i < nr_pages; i++) { | 
|  | 2203 | struct page *page = pvec.pages[i]; | 
|  | 2204 |  | 
|  | 2205 | done_index = page->index; | 
|  | 2206 |  | 
|  | 2207 | lock_page(page); | 
|  | 2208 |  | 
|  | 2209 | /* | 
|  | 2210 | * Page truncated or invalidated. We can freely skip it | 
|  | 2211 | * then, even for data integrity operations: the page | 
|  | 2212 | * has disappeared concurrently, so there could be no | 
|  | 2213 | * real expectation of this data interity operation | 
|  | 2214 | * even if there is now a new, dirty page at the same | 
|  | 2215 | * pagecache address. | 
|  | 2216 | */ | 
|  | 2217 | if (unlikely(page->mapping != mapping)) { | 
|  | 2218 | continue_unlock: | 
|  | 2219 | unlock_page(page); | 
|  | 2220 | continue; | 
|  | 2221 | } | 
|  | 2222 |  | 
|  | 2223 | if (!PageDirty(page)) { | 
|  | 2224 | /* someone wrote it for us */ | 
|  | 2225 | goto continue_unlock; | 
|  | 2226 | } | 
|  | 2227 |  | 
|  | 2228 | if (PageWriteback(page)) { | 
|  | 2229 | if (wbc->sync_mode != WB_SYNC_NONE) | 
|  | 2230 | wait_on_page_writeback(page); | 
|  | 2231 | else | 
|  | 2232 | goto continue_unlock; | 
|  | 2233 | } | 
|  | 2234 |  | 
|  | 2235 | BUG_ON(PageWriteback(page)); | 
|  | 2236 | if (!clear_page_dirty_for_io(page)) | 
|  | 2237 | goto continue_unlock; | 
|  | 2238 |  | 
|  | 2239 | trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); | 
|  | 2240 | error = (*writepage)(page, wbc, data); | 
|  | 2241 | if (unlikely(error)) { | 
|  | 2242 | /* | 
|  | 2243 | * Handle errors according to the type of | 
|  | 2244 | * writeback. There's no need to continue for | 
|  | 2245 | * background writeback. Just push done_index | 
|  | 2246 | * past this page so media errors won't choke | 
|  | 2247 | * writeout for the entire file. For integrity | 
|  | 2248 | * writeback, we must process the entire dirty | 
|  | 2249 | * set regardless of errors because the fs may | 
|  | 2250 | * still have state to clear for each page. In | 
|  | 2251 | * that case we continue processing and return | 
|  | 2252 | * the first error. | 
|  | 2253 | */ | 
|  | 2254 | if (error == AOP_WRITEPAGE_ACTIVATE) { | 
|  | 2255 | unlock_page(page); | 
|  | 2256 | error = 0; | 
|  | 2257 | } else if (wbc->sync_mode != WB_SYNC_ALL) { | 
|  | 2258 | ret = error; | 
|  | 2259 | done_index = page->index + 1; | 
|  | 2260 | done = 1; | 
|  | 2261 | break; | 
|  | 2262 | } | 
|  | 2263 | if (!ret) | 
|  | 2264 | ret = error; | 
|  | 2265 | } | 
|  | 2266 |  | 
|  | 2267 | /* | 
|  | 2268 | * We stop writing back only if we are not doing | 
|  | 2269 | * integrity sync. In case of integrity sync we have to | 
|  | 2270 | * keep going until we have written all the pages | 
|  | 2271 | * we tagged for writeback prior to entering this loop. | 
|  | 2272 | */ | 
|  | 2273 | if (--wbc->nr_to_write <= 0 && | 
|  | 2274 | wbc->sync_mode == WB_SYNC_NONE) { | 
|  | 2275 | done = 1; | 
|  | 2276 | break; | 
|  | 2277 | } | 
|  | 2278 | } | 
|  | 2279 | pagevec_release(&pvec); | 
|  | 2280 | cond_resched(); | 
|  | 2281 | } | 
|  | 2282 |  | 
|  | 2283 | /* | 
|  | 2284 | * If we hit the last page and there is more work to be done: wrap | 
|  | 2285 | * back the index back to the start of the file for the next | 
|  | 2286 | * time we are called. | 
|  | 2287 | */ | 
|  | 2288 | if (wbc->range_cyclic && !done) | 
|  | 2289 | done_index = 0; | 
|  | 2290 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 
|  | 2291 | mapping->writeback_index = done_index; | 
|  | 2292 |  | 
|  | 2293 | return ret; | 
|  | 2294 | } | 
|  | 2295 | EXPORT_SYMBOL(write_cache_pages); | 
|  | 2296 |  | 
|  | 2297 | /* | 
|  | 2298 | * Function used by generic_writepages to call the real writepage | 
|  | 2299 | * function and set the mapping flags on error | 
|  | 2300 | */ | 
|  | 2301 | static int __writepage(struct page *page, struct writeback_control *wbc, | 
|  | 2302 | void *data) | 
|  | 2303 | { | 
|  | 2304 | struct address_space *mapping = data; | 
|  | 2305 | int ret = mapping->a_ops->writepage(page, wbc); | 
|  | 2306 | mapping_set_error(mapping, ret); | 
|  | 2307 | return ret; | 
|  | 2308 | } | 
|  | 2309 |  | 
|  | 2310 | /** | 
|  | 2311 | * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. | 
|  | 2312 | * @mapping: address space structure to write | 
|  | 2313 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
|  | 2314 | * | 
|  | 2315 | * This is a library function, which implements the writepages() | 
|  | 2316 | * address_space_operation. | 
|  | 2317 | */ | 
|  | 2318 | int generic_writepages(struct address_space *mapping, | 
|  | 2319 | struct writeback_control *wbc) | 
|  | 2320 | { | 
|  | 2321 | struct blk_plug plug; | 
|  | 2322 | int ret; | 
|  | 2323 |  | 
|  | 2324 | /* deal with chardevs and other special file */ | 
|  | 2325 | if (!mapping->a_ops->writepage) | 
|  | 2326 | return 0; | 
|  | 2327 |  | 
|  | 2328 | blk_start_plug(&plug); | 
|  | 2329 | ret = write_cache_pages(mapping, wbc, __writepage, mapping); | 
|  | 2330 | blk_finish_plug(&plug); | 
|  | 2331 | return ret; | 
|  | 2332 | } | 
|  | 2333 |  | 
|  | 2334 | EXPORT_SYMBOL(generic_writepages); | 
|  | 2335 |  | 
|  | 2336 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) | 
|  | 2337 | { | 
|  | 2338 | int ret; | 
|  | 2339 |  | 
|  | 2340 | if (wbc->nr_to_write <= 0) | 
|  | 2341 | return 0; | 
|  | 2342 | while (1) { | 
|  | 2343 | if (mapping->a_ops->writepages) | 
|  | 2344 | ret = mapping->a_ops->writepages(mapping, wbc); | 
|  | 2345 | else | 
|  | 2346 | ret = generic_writepages(mapping, wbc); | 
|  | 2347 | if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) | 
|  | 2348 | break; | 
|  | 2349 | cond_resched(); | 
|  | 2350 | congestion_wait(BLK_RW_ASYNC, HZ/50); | 
|  | 2351 | } | 
|  | 2352 | return ret; | 
|  | 2353 | } | 
|  | 2354 |  | 
|  | 2355 | /** | 
|  | 2356 | * write_one_page - write out a single page and wait on I/O | 
|  | 2357 | * @page: the page to write | 
|  | 2358 | * | 
|  | 2359 | * The page must be locked by the caller and will be unlocked upon return. | 
|  | 2360 | * | 
|  | 2361 | * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this | 
|  | 2362 | * function returns. | 
|  | 2363 | */ | 
|  | 2364 | int write_one_page(struct page *page) | 
|  | 2365 | { | 
|  | 2366 | struct address_space *mapping = page->mapping; | 
|  | 2367 | int ret = 0; | 
|  | 2368 | struct writeback_control wbc = { | 
|  | 2369 | .sync_mode = WB_SYNC_ALL, | 
|  | 2370 | .nr_to_write = 1, | 
|  | 2371 | }; | 
|  | 2372 |  | 
|  | 2373 | BUG_ON(!PageLocked(page)); | 
|  | 2374 |  | 
|  | 2375 | wait_on_page_writeback(page); | 
|  | 2376 |  | 
|  | 2377 | if (clear_page_dirty_for_io(page)) { | 
|  | 2378 | get_page(page); | 
|  | 2379 | ret = mapping->a_ops->writepage(page, &wbc); | 
|  | 2380 | if (ret == 0) | 
|  | 2381 | wait_on_page_writeback(page); | 
|  | 2382 | put_page(page); | 
|  | 2383 | } else { | 
|  | 2384 | unlock_page(page); | 
|  | 2385 | } | 
|  | 2386 |  | 
|  | 2387 | if (!ret) | 
|  | 2388 | ret = filemap_check_errors(mapping); | 
|  | 2389 | return ret; | 
|  | 2390 | } | 
|  | 2391 | EXPORT_SYMBOL(write_one_page); | 
|  | 2392 |  | 
|  | 2393 | /* | 
|  | 2394 | * For address_spaces which do not use buffers nor write back. | 
|  | 2395 | */ | 
|  | 2396 | int __set_page_dirty_no_writeback(struct page *page) | 
|  | 2397 | { | 
|  | 2398 | if (!PageDirty(page)) | 
|  | 2399 | return !TestSetPageDirty(page); | 
|  | 2400 | return 0; | 
|  | 2401 | } | 
|  | 2402 |  | 
|  | 2403 | /* | 
|  | 2404 | * Helper function for set_page_dirty family. | 
|  | 2405 | * | 
|  | 2406 | * Caller must hold lock_page_memcg(). | 
|  | 2407 | * | 
|  | 2408 | * NOTE: This relies on being atomic wrt interrupts. | 
|  | 2409 | */ | 
|  | 2410 | void account_page_dirtied(struct page *page, struct address_space *mapping) | 
|  | 2411 | { | 
|  | 2412 | struct inode *inode = mapping->host; | 
|  | 2413 |  | 
|  | 2414 | trace_writeback_dirty_page(page, mapping); | 
|  | 2415 |  | 
|  | 2416 | if (mapping_cap_account_dirty(mapping)) { | 
|  | 2417 | struct bdi_writeback *wb; | 
|  | 2418 |  | 
|  | 2419 | inode_attach_wb(inode, page); | 
|  | 2420 | wb = inode_to_wb(inode); | 
|  | 2421 |  | 
|  | 2422 | __inc_lruvec_page_state(page, NR_FILE_DIRTY); | 
|  | 2423 | __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); | 
|  | 2424 | __inc_node_page_state(page, NR_DIRTIED); | 
|  | 2425 | inc_wb_stat(wb, WB_RECLAIMABLE); | 
|  | 2426 | inc_wb_stat(wb, WB_DIRTIED); | 
|  | 2427 | task_io_account_write(PAGE_SIZE); | 
|  | 2428 | current->nr_dirtied++; | 
|  | 2429 | this_cpu_inc(bdp_ratelimits); | 
|  | 2430 | } | 
|  | 2431 | } | 
|  | 2432 | EXPORT_SYMBOL(account_page_dirtied); | 
|  | 2433 |  | 
|  | 2434 | /* | 
|  | 2435 | * Helper function for deaccounting dirty page without writeback. | 
|  | 2436 | * | 
|  | 2437 | * Caller must hold lock_page_memcg(). | 
|  | 2438 | */ | 
|  | 2439 | void account_page_cleaned(struct page *page, struct address_space *mapping, | 
|  | 2440 | struct bdi_writeback *wb) | 
|  | 2441 | { | 
|  | 2442 | if (mapping_cap_account_dirty(mapping)) { | 
|  | 2443 | dec_lruvec_page_state(page, NR_FILE_DIRTY); | 
|  | 2444 | dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); | 
|  | 2445 | dec_wb_stat(wb, WB_RECLAIMABLE); | 
|  | 2446 | task_io_account_cancelled_write(PAGE_SIZE); | 
|  | 2447 | } | 
|  | 2448 | } | 
|  | 2449 |  | 
|  | 2450 | /* | 
|  | 2451 | * For address_spaces which do not use buffers.  Just tag the page as dirty in | 
|  | 2452 | * its radix tree. | 
|  | 2453 | * | 
|  | 2454 | * This is also used when a single buffer is being dirtied: we want to set the | 
|  | 2455 | * page dirty in that case, but not all the buffers.  This is a "bottom-up" | 
|  | 2456 | * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. | 
|  | 2457 | * | 
|  | 2458 | * The caller must ensure this doesn't race with truncation.  Most will simply | 
|  | 2459 | * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and | 
|  | 2460 | * the pte lock held, which also locks out truncation. | 
|  | 2461 | */ | 
|  | 2462 | int __set_page_dirty_nobuffers(struct page *page) | 
|  | 2463 | { | 
|  | 2464 | lock_page_memcg(page); | 
|  | 2465 | if (!TestSetPageDirty(page)) { | 
|  | 2466 | struct address_space *mapping = page_mapping(page); | 
|  | 2467 | unsigned long flags; | 
|  | 2468 |  | 
|  | 2469 | if (!mapping) { | 
|  | 2470 | unlock_page_memcg(page); | 
|  | 2471 | return 1; | 
|  | 2472 | } | 
|  | 2473 |  | 
|  | 2474 | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | 2475 | BUG_ON(page_mapping(page) != mapping); | 
|  | 2476 | WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); | 
|  | 2477 | account_page_dirtied(page, mapping); | 
|  | 2478 | radix_tree_tag_set(&mapping->i_pages, page_index(page), | 
|  | 2479 | PAGECACHE_TAG_DIRTY); | 
|  | 2480 | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | 2481 | unlock_page_memcg(page); | 
|  | 2482 |  | 
|  | 2483 | if (mapping->host) { | 
|  | 2484 | /* !PageAnon && !swapper_space */ | 
|  | 2485 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
|  | 2486 | } | 
|  | 2487 | return 1; | 
|  | 2488 | } | 
|  | 2489 | unlock_page_memcg(page); | 
|  | 2490 | return 0; | 
|  | 2491 | } | 
|  | 2492 | EXPORT_SYMBOL(__set_page_dirty_nobuffers); | 
|  | 2493 |  | 
|  | 2494 | /* | 
|  | 2495 | * Call this whenever redirtying a page, to de-account the dirty counters | 
|  | 2496 | * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written | 
|  | 2497 | * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to | 
|  | 2498 | * systematic errors in balanced_dirty_ratelimit and the dirty pages position | 
|  | 2499 | * control. | 
|  | 2500 | */ | 
|  | 2501 | void account_page_redirty(struct page *page) | 
|  | 2502 | { | 
|  | 2503 | struct address_space *mapping = page->mapping; | 
|  | 2504 |  | 
|  | 2505 | if (mapping && mapping_cap_account_dirty(mapping)) { | 
|  | 2506 | struct inode *inode = mapping->host; | 
|  | 2507 | struct bdi_writeback *wb; | 
|  | 2508 | struct wb_lock_cookie cookie = {}; | 
|  | 2509 |  | 
|  | 2510 | wb = unlocked_inode_to_wb_begin(inode, &cookie); | 
|  | 2511 | current->nr_dirtied--; | 
|  | 2512 | dec_node_page_state(page, NR_DIRTIED); | 
|  | 2513 | dec_wb_stat(wb, WB_DIRTIED); | 
|  | 2514 | unlocked_inode_to_wb_end(inode, &cookie); | 
|  | 2515 | } | 
|  | 2516 | } | 
|  | 2517 | EXPORT_SYMBOL(account_page_redirty); | 
|  | 2518 |  | 
|  | 2519 | /* | 
|  | 2520 | * When a writepage implementation decides that it doesn't want to write this | 
|  | 2521 | * page for some reason, it should redirty the locked page via | 
|  | 2522 | * redirty_page_for_writepage() and it should then unlock the page and return 0 | 
|  | 2523 | */ | 
|  | 2524 | int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) | 
|  | 2525 | { | 
|  | 2526 | int ret; | 
|  | 2527 |  | 
|  | 2528 | wbc->pages_skipped++; | 
|  | 2529 | ret = __set_page_dirty_nobuffers(page); | 
|  | 2530 | account_page_redirty(page); | 
|  | 2531 | return ret; | 
|  | 2532 | } | 
|  | 2533 | EXPORT_SYMBOL(redirty_page_for_writepage); | 
|  | 2534 |  | 
|  | 2535 | /* | 
|  | 2536 | * Dirty a page. | 
|  | 2537 | * | 
|  | 2538 | * For pages with a mapping this should be done under the page lock | 
|  | 2539 | * for the benefit of asynchronous memory errors who prefer a consistent | 
|  | 2540 | * dirty state. This rule can be broken in some special cases, | 
|  | 2541 | * but should be better not to. | 
|  | 2542 | * | 
|  | 2543 | * If the mapping doesn't provide a set_page_dirty a_op, then | 
|  | 2544 | * just fall through and assume that it wants buffer_heads. | 
|  | 2545 | */ | 
|  | 2546 | int set_page_dirty(struct page *page) | 
|  | 2547 | { | 
|  | 2548 | struct address_space *mapping = page_mapping(page); | 
|  | 2549 |  | 
|  | 2550 | page = compound_head(page); | 
|  | 2551 | if (likely(mapping)) { | 
|  | 2552 | int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; | 
|  | 2553 | /* | 
|  | 2554 | * readahead/lru_deactivate_page could remain | 
|  | 2555 | * PG_readahead/PG_reclaim due to race with end_page_writeback | 
|  | 2556 | * About readahead, if the page is written, the flags would be | 
|  | 2557 | * reset. So no problem. | 
|  | 2558 | * About lru_deactivate_page, if the page is redirty, the flag | 
|  | 2559 | * will be reset. So no problem. but if the page is used by readahead | 
|  | 2560 | * it will confuse readahead and make it restart the size rampup | 
|  | 2561 | * process. But it's a trivial problem. | 
|  | 2562 | */ | 
|  | 2563 | if (PageReclaim(page)) | 
|  | 2564 | ClearPageReclaim(page); | 
|  | 2565 | #ifdef CONFIG_BLOCK | 
|  | 2566 | if (!spd) | 
|  | 2567 | spd = __set_page_dirty_buffers; | 
|  | 2568 | #endif | 
|  | 2569 | return (*spd)(page); | 
|  | 2570 | } | 
|  | 2571 | if (!PageDirty(page)) { | 
|  | 2572 | if (!TestSetPageDirty(page)) | 
|  | 2573 | return 1; | 
|  | 2574 | } | 
|  | 2575 | return 0; | 
|  | 2576 | } | 
|  | 2577 | EXPORT_SYMBOL(set_page_dirty); | 
|  | 2578 |  | 
|  | 2579 | /* | 
|  | 2580 | * set_page_dirty() is racy if the caller has no reference against | 
|  | 2581 | * page->mapping->host, and if the page is unlocked.  This is because another | 
|  | 2582 | * CPU could truncate the page off the mapping and then free the mapping. | 
|  | 2583 | * | 
|  | 2584 | * Usually, the page _is_ locked, or the caller is a user-space process which | 
|  | 2585 | * holds a reference on the inode by having an open file. | 
|  | 2586 | * | 
|  | 2587 | * In other cases, the page should be locked before running set_page_dirty(). | 
|  | 2588 | */ | 
|  | 2589 | int set_page_dirty_lock(struct page *page) | 
|  | 2590 | { | 
|  | 2591 | int ret; | 
|  | 2592 |  | 
|  | 2593 | lock_page(page); | 
|  | 2594 | ret = set_page_dirty(page); | 
|  | 2595 | unlock_page(page); | 
|  | 2596 | return ret; | 
|  | 2597 | } | 
|  | 2598 | EXPORT_SYMBOL(set_page_dirty_lock); | 
|  | 2599 |  | 
|  | 2600 | /* | 
|  | 2601 | * This cancels just the dirty bit on the kernel page itself, it does NOT | 
|  | 2602 | * actually remove dirty bits on any mmap's that may be around. It also | 
|  | 2603 | * leaves the page tagged dirty, so any sync activity will still find it on | 
|  | 2604 | * the dirty lists, and in particular, clear_page_dirty_for_io() will still | 
|  | 2605 | * look at the dirty bits in the VM. | 
|  | 2606 | * | 
|  | 2607 | * Doing this should *normally* only ever be done when a page is truncated, | 
|  | 2608 | * and is not actually mapped anywhere at all. However, fs/buffer.c does | 
|  | 2609 | * this when it notices that somebody has cleaned out all the buffers on a | 
|  | 2610 | * page without actually doing it through the VM. Can you say "ext3 is | 
|  | 2611 | * horribly ugly"? Thought you could. | 
|  | 2612 | */ | 
|  | 2613 | void __cancel_dirty_page(struct page *page) | 
|  | 2614 | { | 
|  | 2615 | struct address_space *mapping = page_mapping(page); | 
|  | 2616 |  | 
|  | 2617 | if (mapping_cap_account_dirty(mapping)) { | 
|  | 2618 | struct inode *inode = mapping->host; | 
|  | 2619 | struct bdi_writeback *wb; | 
|  | 2620 | struct wb_lock_cookie cookie = {}; | 
|  | 2621 |  | 
|  | 2622 | lock_page_memcg(page); | 
|  | 2623 | wb = unlocked_inode_to_wb_begin(inode, &cookie); | 
|  | 2624 |  | 
|  | 2625 | if (TestClearPageDirty(page)) | 
|  | 2626 | account_page_cleaned(page, mapping, wb); | 
|  | 2627 |  | 
|  | 2628 | unlocked_inode_to_wb_end(inode, &cookie); | 
|  | 2629 | unlock_page_memcg(page); | 
|  | 2630 | } else { | 
|  | 2631 | ClearPageDirty(page); | 
|  | 2632 | } | 
|  | 2633 | } | 
|  | 2634 | EXPORT_SYMBOL(__cancel_dirty_page); | 
|  | 2635 |  | 
|  | 2636 | /* | 
|  | 2637 | * Clear a page's dirty flag, while caring for dirty memory accounting. | 
|  | 2638 | * Returns true if the page was previously dirty. | 
|  | 2639 | * | 
|  | 2640 | * This is for preparing to put the page under writeout.  We leave the page | 
|  | 2641 | * tagged as dirty in the radix tree so that a concurrent write-for-sync | 
|  | 2642 | * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage | 
|  | 2643 | * implementation will run either set_page_writeback() or set_page_dirty(), | 
|  | 2644 | * at which stage we bring the page's dirty flag and radix-tree dirty tag | 
|  | 2645 | * back into sync. | 
|  | 2646 | * | 
|  | 2647 | * This incoherency between the page's dirty flag and radix-tree tag is | 
|  | 2648 | * unfortunate, but it only exists while the page is locked. | 
|  | 2649 | */ | 
|  | 2650 | int clear_page_dirty_for_io(struct page *page) | 
|  | 2651 | { | 
|  | 2652 | struct address_space *mapping = page_mapping(page); | 
|  | 2653 | int ret = 0; | 
|  | 2654 |  | 
|  | 2655 | BUG_ON(!PageLocked(page)); | 
|  | 2656 |  | 
|  | 2657 | if (mapping && mapping_cap_account_dirty(mapping)) { | 
|  | 2658 | struct inode *inode = mapping->host; | 
|  | 2659 | struct bdi_writeback *wb; | 
|  | 2660 | struct wb_lock_cookie cookie = {}; | 
|  | 2661 |  | 
|  | 2662 | /* | 
|  | 2663 | * Yes, Virginia, this is indeed insane. | 
|  | 2664 | * | 
|  | 2665 | * We use this sequence to make sure that | 
|  | 2666 | *  (a) we account for dirty stats properly | 
|  | 2667 | *  (b) we tell the low-level filesystem to | 
|  | 2668 | *      mark the whole page dirty if it was | 
|  | 2669 | *      dirty in a pagetable. Only to then | 
|  | 2670 | *  (c) clean the page again and return 1 to | 
|  | 2671 | *      cause the writeback. | 
|  | 2672 | * | 
|  | 2673 | * This way we avoid all nasty races with the | 
|  | 2674 | * dirty bit in multiple places and clearing | 
|  | 2675 | * them concurrently from different threads. | 
|  | 2676 | * | 
|  | 2677 | * Note! Normally the "set_page_dirty(page)" | 
|  | 2678 | * has no effect on the actual dirty bit - since | 
|  | 2679 | * that will already usually be set. But we | 
|  | 2680 | * need the side effects, and it can help us | 
|  | 2681 | * avoid races. | 
|  | 2682 | * | 
|  | 2683 | * We basically use the page "master dirty bit" | 
|  | 2684 | * as a serialization point for all the different | 
|  | 2685 | * threads doing their things. | 
|  | 2686 | */ | 
|  | 2687 | if (page_mkclean(page)) | 
|  | 2688 | set_page_dirty(page); | 
|  | 2689 | /* | 
|  | 2690 | * We carefully synchronise fault handlers against | 
|  | 2691 | * installing a dirty pte and marking the page dirty | 
|  | 2692 | * at this point.  We do this by having them hold the | 
|  | 2693 | * page lock while dirtying the page, and pages are | 
|  | 2694 | * always locked coming in here, so we get the desired | 
|  | 2695 | * exclusion. | 
|  | 2696 | */ | 
|  | 2697 | wb = unlocked_inode_to_wb_begin(inode, &cookie); | 
|  | 2698 | if (TestClearPageDirty(page)) { | 
|  | 2699 | dec_lruvec_page_state(page, NR_FILE_DIRTY); | 
|  | 2700 | dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); | 
|  | 2701 | dec_wb_stat(wb, WB_RECLAIMABLE); | 
|  | 2702 | ret = 1; | 
|  | 2703 | } | 
|  | 2704 | unlocked_inode_to_wb_end(inode, &cookie); | 
|  | 2705 | return ret; | 
|  | 2706 | } | 
|  | 2707 | return TestClearPageDirty(page); | 
|  | 2708 | } | 
|  | 2709 | EXPORT_SYMBOL(clear_page_dirty_for_io); | 
|  | 2710 |  | 
|  | 2711 | int test_clear_page_writeback(struct page *page) | 
|  | 2712 | { | 
|  | 2713 | struct address_space *mapping = page_mapping(page); | 
|  | 2714 | struct mem_cgroup *memcg; | 
|  | 2715 | struct lruvec *lruvec; | 
|  | 2716 | int ret; | 
|  | 2717 |  | 
|  | 2718 | memcg = lock_page_memcg(page); | 
|  | 2719 | lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); | 
|  | 2720 | if (mapping && mapping_use_writeback_tags(mapping)) { | 
|  | 2721 | struct inode *inode = mapping->host; | 
|  | 2722 | struct backing_dev_info *bdi = inode_to_bdi(inode); | 
|  | 2723 | unsigned long flags; | 
|  | 2724 |  | 
|  | 2725 | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | 2726 | ret = TestClearPageWriteback(page); | 
|  | 2727 | if (ret) { | 
|  | 2728 | radix_tree_tag_clear(&mapping->i_pages, page_index(page), | 
|  | 2729 | PAGECACHE_TAG_WRITEBACK); | 
|  | 2730 | if (bdi_cap_account_writeback(bdi)) { | 
|  | 2731 | struct bdi_writeback *wb = inode_to_wb(inode); | 
|  | 2732 |  | 
|  | 2733 | dec_wb_stat(wb, WB_WRITEBACK); | 
|  | 2734 | __wb_writeout_inc(wb); | 
|  | 2735 | } | 
|  | 2736 | } | 
|  | 2737 |  | 
|  | 2738 | if (mapping->host && !mapping_tagged(mapping, | 
|  | 2739 | PAGECACHE_TAG_WRITEBACK)) | 
|  | 2740 | sb_clear_inode_writeback(mapping->host); | 
|  | 2741 |  | 
|  | 2742 | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | 2743 | } else { | 
|  | 2744 | ret = TestClearPageWriteback(page); | 
|  | 2745 | } | 
|  | 2746 | /* | 
|  | 2747 | * NOTE: Page might be free now! Writeback doesn't hold a page | 
|  | 2748 | * reference on its own, it relies on truncation to wait for | 
|  | 2749 | * the clearing of PG_writeback. The below can only access | 
|  | 2750 | * page state that is static across allocation cycles. | 
|  | 2751 | */ | 
|  | 2752 | if (ret) { | 
|  | 2753 | dec_lruvec_state(lruvec, NR_WRITEBACK); | 
|  | 2754 | dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); | 
|  | 2755 | inc_node_page_state(page, NR_WRITTEN); | 
|  | 2756 | } | 
|  | 2757 | __unlock_page_memcg(memcg); | 
|  | 2758 | return ret; | 
|  | 2759 | } | 
|  | 2760 |  | 
|  | 2761 | int __test_set_page_writeback(struct page *page, bool keep_write) | 
|  | 2762 | { | 
|  | 2763 | struct address_space *mapping = page_mapping(page); | 
|  | 2764 | int ret; | 
|  | 2765 |  | 
|  | 2766 | lock_page_memcg(page); | 
|  | 2767 | if (mapping && mapping_use_writeback_tags(mapping)) { | 
|  | 2768 | struct inode *inode = mapping->host; | 
|  | 2769 | struct backing_dev_info *bdi = inode_to_bdi(inode); | 
|  | 2770 | unsigned long flags; | 
|  | 2771 |  | 
|  | 2772 | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | 2773 | ret = TestSetPageWriteback(page); | 
|  | 2774 | if (!ret) { | 
|  | 2775 | bool on_wblist; | 
|  | 2776 |  | 
|  | 2777 | on_wblist = mapping_tagged(mapping, | 
|  | 2778 | PAGECACHE_TAG_WRITEBACK); | 
|  | 2779 |  | 
|  | 2780 | radix_tree_tag_set(&mapping->i_pages, page_index(page), | 
|  | 2781 | PAGECACHE_TAG_WRITEBACK); | 
|  | 2782 | if (bdi_cap_account_writeback(bdi)) | 
|  | 2783 | inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); | 
|  | 2784 |  | 
|  | 2785 | /* | 
|  | 2786 | * We can come through here when swapping anonymous | 
|  | 2787 | * pages, so we don't necessarily have an inode to track | 
|  | 2788 | * for sync. | 
|  | 2789 | */ | 
|  | 2790 | if (mapping->host && !on_wblist) | 
|  | 2791 | sb_mark_inode_writeback(mapping->host); | 
|  | 2792 | } | 
|  | 2793 | if (!PageDirty(page)) | 
|  | 2794 | radix_tree_tag_clear(&mapping->i_pages, page_index(page), | 
|  | 2795 | PAGECACHE_TAG_DIRTY); | 
|  | 2796 | if (!keep_write) | 
|  | 2797 | radix_tree_tag_clear(&mapping->i_pages, page_index(page), | 
|  | 2798 | PAGECACHE_TAG_TOWRITE); | 
|  | 2799 | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | 2800 | } else { | 
|  | 2801 | ret = TestSetPageWriteback(page); | 
|  | 2802 | } | 
|  | 2803 | if (!ret) { | 
|  | 2804 | inc_lruvec_page_state(page, NR_WRITEBACK); | 
|  | 2805 | inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); | 
|  | 2806 | } | 
|  | 2807 | unlock_page_memcg(page); | 
|  | 2808 | return ret; | 
|  | 2809 |  | 
|  | 2810 | } | 
|  | 2811 | EXPORT_SYMBOL(__test_set_page_writeback); | 
|  | 2812 |  | 
|  | 2813 | /* | 
|  | 2814 | * Return true if any of the pages in the mapping are marked with the | 
|  | 2815 | * passed tag. | 
|  | 2816 | */ | 
|  | 2817 | int mapping_tagged(struct address_space *mapping, int tag) | 
|  | 2818 | { | 
|  | 2819 | return radix_tree_tagged(&mapping->i_pages, tag); | 
|  | 2820 | } | 
|  | 2821 | EXPORT_SYMBOL(mapping_tagged); | 
|  | 2822 |  | 
|  | 2823 | /** | 
|  | 2824 | * wait_for_stable_page() - wait for writeback to finish, if necessary. | 
|  | 2825 | * @page:	The page to wait on. | 
|  | 2826 | * | 
|  | 2827 | * This function determines if the given page is related to a backing device | 
|  | 2828 | * that requires page contents to be held stable during writeback.  If so, then | 
|  | 2829 | * it will wait for any pending writeback to complete. | 
|  | 2830 | */ | 
|  | 2831 | void wait_for_stable_page(struct page *page) | 
|  | 2832 | { | 
|  | 2833 | if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) | 
|  | 2834 | wait_on_page_writeback(page); | 
|  | 2835 | } | 
|  | 2836 | EXPORT_SYMBOL_GPL(wait_for_stable_page); |