| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * fs/direct-io.c | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2002, Linus Torvalds. | 
 | 5 |  * | 
 | 6 |  * O_DIRECT | 
 | 7 |  * | 
 | 8 |  * 04Jul2002	Andrew Morton | 
 | 9 |  *		Initial version | 
 | 10 |  * 11Sep2002	janetinc@us.ibm.com | 
 | 11 |  * 		added readv/writev support. | 
 | 12 |  * 29Oct2002	Andrew Morton | 
 | 13 |  *		rewrote bio_add_page() support. | 
 | 14 |  * 30Oct2002	pbadari@us.ibm.com | 
 | 15 |  *		added support for non-aligned IO. | 
 | 16 |  * 06Nov2002	pbadari@us.ibm.com | 
 | 17 |  *		added asynchronous IO support. | 
 | 18 |  * 21Jul2003	nathans@sgi.com | 
 | 19 |  *		added IO completion notifier. | 
 | 20 |  */ | 
 | 21 |  | 
 | 22 | #include <linux/kernel.h> | 
 | 23 | #include <linux/module.h> | 
 | 24 | #include <linux/types.h> | 
 | 25 | #include <linux/fs.h> | 
 | 26 | #include <linux/mm.h> | 
 | 27 | #include <linux/slab.h> | 
 | 28 | #include <linux/highmem.h> | 
 | 29 | #include <linux/pagemap.h> | 
 | 30 | #include <linux/task_io_accounting_ops.h> | 
 | 31 | #include <linux/bio.h> | 
 | 32 | #include <linux/wait.h> | 
 | 33 | #include <linux/err.h> | 
 | 34 | #include <linux/blkdev.h> | 
 | 35 | #include <linux/buffer_head.h> | 
 | 36 | #include <linux/rwsem.h> | 
 | 37 | #include <linux/uio.h> | 
 | 38 | #include <linux/atomic.h> | 
 | 39 | #include <linux/prefetch.h> | 
 | 40 |  | 
 | 41 | /* | 
 | 42 |  * How many user pages to map in one call to get_user_pages().  This determines | 
 | 43 |  * the size of a structure in the slab cache | 
 | 44 |  */ | 
 | 45 | #define DIO_PAGES	64 | 
 | 46 |  | 
 | 47 | /* | 
 | 48 |  * Flags for dio_complete() | 
 | 49 |  */ | 
 | 50 | #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */ | 
 | 51 | #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */ | 
 | 52 |  | 
 | 53 | /* | 
 | 54 |  * This code generally works in units of "dio_blocks".  A dio_block is | 
 | 55 |  * somewhere between the hard sector size and the filesystem block size.  it | 
 | 56 |  * is determined on a per-invocation basis.   When talking to the filesystem | 
 | 57 |  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity | 
 | 58 |  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted | 
 | 59 |  * to bio_block quantities by shifting left by blkfactor. | 
 | 60 |  * | 
 | 61 |  * If blkfactor is zero then the user's request was aligned to the filesystem's | 
 | 62 |  * blocksize. | 
 | 63 |  */ | 
 | 64 |  | 
 | 65 | /* dio_state only used in the submission path */ | 
 | 66 |  | 
 | 67 | struct dio_submit { | 
 | 68 | 	struct bio *bio;		/* bio under assembly */ | 
 | 69 | 	unsigned blkbits;		/* doesn't change */ | 
 | 70 | 	unsigned blkfactor;		/* When we're using an alignment which | 
 | 71 | 					   is finer than the filesystem's soft | 
 | 72 | 					   blocksize, this specifies how much | 
 | 73 | 					   finer.  blkfactor=2 means 1/4-block | 
 | 74 | 					   alignment.  Does not change */ | 
 | 75 | 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has | 
 | 76 | 					   been performed at the start of a | 
 | 77 | 					   write */ | 
 | 78 | 	int pages_in_io;		/* approximate total IO pages */ | 
 | 79 | 	sector_t block_in_file;		/* Current offset into the underlying | 
 | 80 | 					   file in dio_block units. */ | 
 | 81 | 	unsigned blocks_available;	/* At block_in_file.  changes */ | 
 | 82 | 	int reap_counter;		/* rate limit reaping */ | 
 | 83 | 	sector_t final_block_in_request;/* doesn't change */ | 
 | 84 | 	int boundary;			/* prev block is at a boundary */ | 
 | 85 | 	get_block_t *get_block;		/* block mapping function */ | 
 | 86 | 	dio_submit_t *submit_io;	/* IO submition function */ | 
 | 87 |  | 
 | 88 | 	loff_t logical_offset_in_bio;	/* current first logical block in bio */ | 
 | 89 | 	sector_t final_block_in_bio;	/* current final block in bio + 1 */ | 
 | 90 | 	sector_t next_block_for_io;	/* next block to be put under IO, | 
 | 91 | 					   in dio_blocks units */ | 
 | 92 |  | 
 | 93 | 	/* | 
 | 94 | 	 * Deferred addition of a page to the dio.  These variables are | 
 | 95 | 	 * private to dio_send_cur_page(), submit_page_section() and | 
 | 96 | 	 * dio_bio_add_page(). | 
 | 97 | 	 */ | 
 | 98 | 	struct page *cur_page;		/* The page */ | 
 | 99 | 	unsigned cur_page_offset;	/* Offset into it, in bytes */ | 
 | 100 | 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */ | 
 | 101 | 	sector_t cur_page_block;	/* Where it starts */ | 
 | 102 | 	loff_t cur_page_fs_offset;	/* Offset in file */ | 
 | 103 |  | 
 | 104 | 	struct iov_iter *iter; | 
 | 105 | 	/* | 
 | 106 | 	 * Page queue.  These variables belong to dio_refill_pages() and | 
 | 107 | 	 * dio_get_page(). | 
 | 108 | 	 */ | 
 | 109 | 	unsigned head;			/* next page to process */ | 
 | 110 | 	unsigned tail;			/* last valid page + 1 */ | 
 | 111 | 	size_t from, to; | 
 | 112 | }; | 
 | 113 |  | 
 | 114 | /* dio_state communicated between submission path and end_io */ | 
 | 115 | struct dio { | 
 | 116 | 	int flags;			/* doesn't change */ | 
 | 117 | 	int op; | 
 | 118 | 	int op_flags; | 
 | 119 | 	blk_qc_t bio_cookie; | 
 | 120 | 	struct gendisk *bio_disk; | 
 | 121 | 	struct inode *inode; | 
 | 122 | 	loff_t i_size;			/* i_size when submitted */ | 
 | 123 | 	dio_iodone_t *end_io;		/* IO completion function */ | 
 | 124 |  | 
 | 125 | 	void *private;			/* copy from map_bh.b_private */ | 
 | 126 |  | 
 | 127 | 	/* BIO completion state */ | 
 | 128 | 	spinlock_t bio_lock;		/* protects BIO fields below */ | 
 | 129 | 	int page_errors;		/* errno from get_user_pages() */ | 
 | 130 | 	int is_async;			/* is IO async ? */ | 
 | 131 | 	bool defer_completion;		/* defer AIO completion to workqueue? */ | 
 | 132 | 	bool should_dirty;		/* if pages should be dirtied */ | 
 | 133 | 	int io_error;			/* IO error in completion path */ | 
 | 134 | 	unsigned long refcount;		/* direct_io_worker() and bios */ | 
 | 135 | 	struct bio *bio_list;		/* singly linked via bi_private */ | 
 | 136 | 	struct task_struct *waiter;	/* waiting task (NULL if none) */ | 
 | 137 |  | 
 | 138 | 	/* AIO related stuff */ | 
 | 139 | 	struct kiocb *iocb;		/* kiocb */ | 
 | 140 | 	ssize_t result;                 /* IO result */ | 
 | 141 |  | 
 | 142 | 	/* | 
 | 143 | 	 * pages[] (and any fields placed after it) are not zeroed out at | 
 | 144 | 	 * allocation time.  Don't add new fields after pages[] unless you | 
 | 145 | 	 * wish that they not be zeroed. | 
 | 146 | 	 */ | 
 | 147 | 	union { | 
 | 148 | 		struct page *pages[DIO_PAGES];	/* page buffer */ | 
 | 149 | 		struct work_struct complete_work;/* deferred AIO completion */ | 
 | 150 | 	}; | 
 | 151 | } ____cacheline_aligned_in_smp; | 
 | 152 |  | 
 | 153 | static struct kmem_cache *dio_cache __read_mostly; | 
 | 154 |  | 
 | 155 | /* | 
 | 156 |  * How many pages are in the queue? | 
 | 157 |  */ | 
 | 158 | static inline unsigned dio_pages_present(struct dio_submit *sdio) | 
 | 159 | { | 
 | 160 | 	return sdio->tail - sdio->head; | 
 | 161 | } | 
 | 162 |  | 
 | 163 | /* | 
 | 164 |  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time. | 
 | 165 |  */ | 
 | 166 | static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) | 
 | 167 | { | 
 | 168 | 	ssize_t ret; | 
 | 169 |  | 
 | 170 | 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, | 
 | 171 | 				&sdio->from); | 
 | 172 |  | 
 | 173 | 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { | 
 | 174 | 		struct page *page = ZERO_PAGE(0); | 
 | 175 | 		/* | 
 | 176 | 		 * A memory fault, but the filesystem has some outstanding | 
 | 177 | 		 * mapped blocks.  We need to use those blocks up to avoid | 
 | 178 | 		 * leaking stale data in the file. | 
 | 179 | 		 */ | 
 | 180 | 		if (dio->page_errors == 0) | 
 | 181 | 			dio->page_errors = ret; | 
 | 182 | 		get_page(page); | 
 | 183 | 		dio->pages[0] = page; | 
 | 184 | 		sdio->head = 0; | 
 | 185 | 		sdio->tail = 1; | 
 | 186 | 		sdio->from = 0; | 
 | 187 | 		sdio->to = PAGE_SIZE; | 
 | 188 | 		return 0; | 
 | 189 | 	} | 
 | 190 |  | 
 | 191 | 	if (ret >= 0) { | 
 | 192 | 		iov_iter_advance(sdio->iter, ret); | 
 | 193 | 		ret += sdio->from; | 
 | 194 | 		sdio->head = 0; | 
 | 195 | 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; | 
 | 196 | 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; | 
 | 197 | 		return 0; | 
 | 198 | 	} | 
 | 199 | 	return ret;	 | 
 | 200 | } | 
 | 201 |  | 
 | 202 | /* | 
 | 203 |  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are | 
 | 204 |  * buffered inside the dio so that we can call get_user_pages() against a | 
 | 205 |  * decent number of pages, less frequently.  To provide nicer use of the | 
 | 206 |  * L1 cache. | 
 | 207 |  */ | 
 | 208 | static inline struct page *dio_get_page(struct dio *dio, | 
 | 209 | 					struct dio_submit *sdio) | 
 | 210 | { | 
 | 211 | 	if (dio_pages_present(sdio) == 0) { | 
 | 212 | 		int ret; | 
 | 213 |  | 
 | 214 | 		ret = dio_refill_pages(dio, sdio); | 
 | 215 | 		if (ret) | 
 | 216 | 			return ERR_PTR(ret); | 
 | 217 | 		BUG_ON(dio_pages_present(sdio) == 0); | 
 | 218 | 	} | 
 | 219 | 	return dio->pages[sdio->head]; | 
 | 220 | } | 
 | 221 |  | 
 | 222 | /* | 
 | 223 |  * Warn about a page cache invalidation failure during a direct io write. | 
 | 224 |  */ | 
 | 225 | void dio_warn_stale_pagecache(struct file *filp) | 
 | 226 | { | 
 | 227 | 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); | 
 | 228 | 	char pathname[128]; | 
 | 229 | 	struct inode *inode = file_inode(filp); | 
 | 230 | 	char *path; | 
 | 231 |  | 
 | 232 | 	errseq_set(&inode->i_mapping->wb_err, -EIO); | 
 | 233 | 	if (__ratelimit(&_rs)) { | 
 | 234 | 		path = file_path(filp, pathname, sizeof(pathname)); | 
 | 235 | 		if (IS_ERR(path)) | 
 | 236 | 			path = "(unknown)"; | 
 | 237 | 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n"); | 
 | 238 | 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, | 
 | 239 | 			current->comm); | 
 | 240 | 	} | 
 | 241 | } | 
 | 242 |  | 
 | 243 | /** | 
 | 244 |  * dio_complete() - called when all DIO BIO I/O has been completed | 
 | 245 |  * @offset: the byte offset in the file of the completed operation | 
 | 246 |  * | 
 | 247 |  * This drops i_dio_count, lets interested parties know that a DIO operation | 
 | 248 |  * has completed, and calculates the resulting return code for the operation. | 
 | 249 |  * | 
 | 250 |  * It lets the filesystem know if it registered an interest earlier via | 
 | 251 |  * get_block.  Pass the private field of the map buffer_head so that | 
 | 252 |  * filesystems can use it to hold additional state between get_block calls and | 
 | 253 |  * dio_complete. | 
 | 254 |  */ | 
 | 255 | static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) | 
 | 256 | { | 
 | 257 | 	loff_t offset = dio->iocb->ki_pos; | 
 | 258 | 	ssize_t transferred = 0; | 
 | 259 | 	int err; | 
 | 260 |  | 
 | 261 | 	/* | 
 | 262 | 	 * AIO submission can race with bio completion to get here while | 
 | 263 | 	 * expecting to have the last io completed by bio completion. | 
 | 264 | 	 * In that case -EIOCBQUEUED is in fact not an error we want | 
 | 265 | 	 * to preserve through this call. | 
 | 266 | 	 */ | 
 | 267 | 	if (ret == -EIOCBQUEUED) | 
 | 268 | 		ret = 0; | 
 | 269 |  | 
 | 270 | 	if (dio->result) { | 
 | 271 | 		transferred = dio->result; | 
 | 272 |  | 
 | 273 | 		/* Check for short read case */ | 
 | 274 | 		if ((dio->op == REQ_OP_READ) && | 
 | 275 | 		    ((offset + transferred) > dio->i_size)) | 
 | 276 | 			transferred = dio->i_size - offset; | 
 | 277 | 		/* ignore EFAULT if some IO has been done */ | 
 | 278 | 		if (unlikely(ret == -EFAULT) && transferred) | 
 | 279 | 			ret = 0; | 
 | 280 | 	} | 
 | 281 |  | 
 | 282 | 	if (ret == 0) | 
 | 283 | 		ret = dio->page_errors; | 
 | 284 | 	if (ret == 0) | 
 | 285 | 		ret = dio->io_error; | 
 | 286 | 	if (ret == 0) | 
 | 287 | 		ret = transferred; | 
 | 288 |  | 
 | 289 | 	if (dio->end_io) { | 
 | 290 | 		// XXX: ki_pos?? | 
 | 291 | 		err = dio->end_io(dio->iocb, offset, ret, dio->private); | 
 | 292 | 		if (err) | 
 | 293 | 			ret = err; | 
 | 294 | 	} | 
 | 295 |  | 
 | 296 | 	/* | 
 | 297 | 	 * Try again to invalidate clean pages which might have been cached by | 
 | 298 | 	 * non-direct readahead, or faulted in by get_user_pages() if the source | 
 | 299 | 	 * of the write was an mmap'ed region of the file we're writing.  Either | 
 | 300 | 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If | 
 | 301 | 	 * this invalidation fails, tough, the write still worked... | 
 | 302 | 	 * | 
 | 303 | 	 * And this page cache invalidation has to be after dio->end_io(), as | 
 | 304 | 	 * some filesystems convert unwritten extents to real allocations in | 
 | 305 | 	 * end_io() when necessary, otherwise a racing buffer read would cache | 
 | 306 | 	 * zeros from unwritten extents. | 
 | 307 | 	 */ | 
 | 308 | 	if (flags & DIO_COMPLETE_INVALIDATE && | 
 | 309 | 	    ret > 0 && dio->op == REQ_OP_WRITE && | 
 | 310 | 	    dio->inode->i_mapping->nrpages) { | 
 | 311 | 		err = invalidate_inode_pages2_range(dio->inode->i_mapping, | 
 | 312 | 					offset >> PAGE_SHIFT, | 
 | 313 | 					(offset + ret - 1) >> PAGE_SHIFT); | 
 | 314 | 		if (err) | 
 | 315 | 			dio_warn_stale_pagecache(dio->iocb->ki_filp); | 
 | 316 | 	} | 
 | 317 |  | 
 | 318 | 	inode_dio_end(dio->inode); | 
 | 319 |  | 
 | 320 | 	if (flags & DIO_COMPLETE_ASYNC) { | 
 | 321 | 		/* | 
 | 322 | 		 * generic_write_sync expects ki_pos to have been updated | 
 | 323 | 		 * already, but the submission path only does this for | 
 | 324 | 		 * synchronous I/O. | 
 | 325 | 		 */ | 
 | 326 | 		dio->iocb->ki_pos += transferred; | 
 | 327 |  | 
 | 328 | 		if (ret > 0 && dio->op == REQ_OP_WRITE) | 
 | 329 | 			ret = generic_write_sync(dio->iocb, ret); | 
 | 330 | 		dio->iocb->ki_complete(dio->iocb, ret, 0); | 
 | 331 | 	} | 
 | 332 |  | 
 | 333 | 	kmem_cache_free(dio_cache, dio); | 
 | 334 | 	return ret; | 
 | 335 | } | 
 | 336 |  | 
 | 337 | static void dio_aio_complete_work(struct work_struct *work) | 
 | 338 | { | 
 | 339 | 	struct dio *dio = container_of(work, struct dio, complete_work); | 
 | 340 |  | 
 | 341 | 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); | 
 | 342 | } | 
 | 343 |  | 
 | 344 | static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); | 
 | 345 |  | 
 | 346 | /* | 
 | 347 |  * Asynchronous IO callback.  | 
 | 348 |  */ | 
 | 349 | static void dio_bio_end_aio(struct bio *bio) | 
 | 350 | { | 
 | 351 | 	struct dio *dio = bio->bi_private; | 
 | 352 | 	unsigned long remaining; | 
 | 353 | 	unsigned long flags; | 
 | 354 | 	bool defer_completion = false; | 
 | 355 |  | 
 | 356 | 	/* cleanup the bio */ | 
 | 357 | 	dio_bio_complete(dio, bio); | 
 | 358 |  | 
 | 359 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 360 | 	remaining = --dio->refcount; | 
 | 361 | 	if (remaining == 1 && dio->waiter) | 
 | 362 | 		wake_up_process(dio->waiter); | 
 | 363 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 364 |  | 
 | 365 | 	if (remaining == 0) { | 
 | 366 | 		/* | 
 | 367 | 		 * Defer completion when defer_completion is set or | 
 | 368 | 		 * when the inode has pages mapped and this is AIO write. | 
 | 369 | 		 * We need to invalidate those pages because there is a | 
 | 370 | 		 * chance they contain stale data in the case buffered IO | 
 | 371 | 		 * went in between AIO submission and completion into the | 
 | 372 | 		 * same region. | 
 | 373 | 		 */ | 
 | 374 | 		if (dio->result) | 
 | 375 | 			defer_completion = dio->defer_completion || | 
 | 376 | 					   (dio->op == REQ_OP_WRITE && | 
 | 377 | 					    dio->inode->i_mapping->nrpages); | 
 | 378 | 		if (defer_completion) { | 
 | 379 | 			INIT_WORK(&dio->complete_work, dio_aio_complete_work); | 
 | 380 | 			queue_work(dio->inode->i_sb->s_dio_done_wq, | 
 | 381 | 				   &dio->complete_work); | 
 | 382 | 		} else { | 
 | 383 | 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC); | 
 | 384 | 		} | 
 | 385 | 	} | 
 | 386 | } | 
 | 387 |  | 
 | 388 | /* | 
 | 389 |  * The BIO completion handler simply queues the BIO up for the process-context | 
 | 390 |  * handler. | 
 | 391 |  * | 
 | 392 |  * During I/O bi_private points at the dio.  After I/O, bi_private is used to | 
 | 393 |  * implement a singly-linked list of completed BIOs, at dio->bio_list. | 
 | 394 |  */ | 
 | 395 | static void dio_bio_end_io(struct bio *bio) | 
 | 396 | { | 
 | 397 | 	struct dio *dio = bio->bi_private; | 
 | 398 | 	unsigned long flags; | 
 | 399 |  | 
 | 400 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 401 | 	bio->bi_private = dio->bio_list; | 
 | 402 | 	dio->bio_list = bio; | 
 | 403 | 	if (--dio->refcount == 1 && dio->waiter) | 
 | 404 | 		wake_up_process(dio->waiter); | 
 | 405 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 406 | } | 
 | 407 |  | 
 | 408 | /** | 
 | 409 |  * dio_end_io - handle the end io action for the given bio | 
 | 410 |  * @bio: The direct io bio thats being completed | 
 | 411 |  * | 
 | 412 |  * This is meant to be called by any filesystem that uses their own dio_submit_t | 
 | 413 |  * so that the DIO specific endio actions are dealt with after the filesystem | 
 | 414 |  * has done it's completion work. | 
 | 415 |  */ | 
 | 416 | void dio_end_io(struct bio *bio) | 
 | 417 | { | 
 | 418 | 	struct dio *dio = bio->bi_private; | 
 | 419 |  | 
 | 420 | 	if (dio->is_async) | 
 | 421 | 		dio_bio_end_aio(bio); | 
 | 422 | 	else | 
 | 423 | 		dio_bio_end_io(bio); | 
 | 424 | } | 
 | 425 | EXPORT_SYMBOL_GPL(dio_end_io); | 
 | 426 |  | 
 | 427 | static inline void | 
 | 428 | dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, | 
 | 429 | 	      struct block_device *bdev, | 
 | 430 | 	      sector_t first_sector, int nr_vecs) | 
 | 431 | { | 
 | 432 | 	struct bio *bio; | 
 | 433 |  | 
 | 434 | 	/* | 
 | 435 | 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and | 
 | 436 | 	 * we request a valid number of vectors. | 
 | 437 | 	 */ | 
 | 438 | 	bio = bio_alloc(GFP_KERNEL, nr_vecs); | 
 | 439 |  | 
 | 440 | 	bio_set_dev(bio, bdev); | 
 | 441 | 	bio->bi_iter.bi_sector = first_sector; | 
 | 442 | 	bio_set_op_attrs(bio, dio->op, dio->op_flags); | 
 | 443 | 	if (dio->is_async) | 
 | 444 | 		bio->bi_end_io = dio_bio_end_aio; | 
 | 445 | 	else | 
 | 446 | 		bio->bi_end_io = dio_bio_end_io; | 
 | 447 |  | 
 | 448 | 	bio->bi_write_hint = dio->iocb->ki_hint; | 
 | 449 |  | 
 | 450 | 	sdio->bio = bio; | 
 | 451 | 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; | 
 | 452 | } | 
 | 453 |  | 
 | 454 | /* | 
 | 455 |  * In the AIO read case we speculatively dirty the pages before starting IO. | 
 | 456 |  * During IO completion, any of these pages which happen to have been written | 
 | 457 |  * back will be redirtied by bio_check_pages_dirty(). | 
 | 458 |  * | 
 | 459 |  * bios hold a dio reference between submit_bio and ->end_io. | 
 | 460 |  */ | 
 | 461 | static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) | 
 | 462 | { | 
 | 463 | 	struct bio *bio = sdio->bio; | 
 | 464 | 	unsigned long flags; | 
 | 465 |  | 
 | 466 | 	bio->bi_private = dio; | 
 | 467 |  | 
 | 468 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 469 | 	dio->refcount++; | 
 | 470 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 471 |  | 
 | 472 | 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) | 
 | 473 | 		bio_set_pages_dirty(bio); | 
 | 474 |  | 
 | 475 | 	dio->bio_disk = bio->bi_disk; | 
 | 476 |  | 
 | 477 | 	if (sdio->submit_io) { | 
 | 478 | 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); | 
 | 479 | 		dio->bio_cookie = BLK_QC_T_NONE; | 
 | 480 | 	} else | 
 | 481 | 		dio->bio_cookie = submit_bio(bio); | 
 | 482 |  | 
 | 483 | 	sdio->bio = NULL; | 
 | 484 | 	sdio->boundary = 0; | 
 | 485 | 	sdio->logical_offset_in_bio = 0; | 
 | 486 | } | 
 | 487 |  | 
 | 488 | /* | 
 | 489 |  * Release any resources in case of a failure | 
 | 490 |  */ | 
 | 491 | static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) | 
 | 492 | { | 
 | 493 | 	while (sdio->head < sdio->tail) | 
 | 494 | 		put_page(dio->pages[sdio->head++]); | 
 | 495 | } | 
 | 496 |  | 
 | 497 | /* | 
 | 498 |  * Wait for the next BIO to complete.  Remove it and return it.  NULL is | 
 | 499 |  * returned once all BIOs have been completed.  This must only be called once | 
 | 500 |  * all bios have been issued so that dio->refcount can only decrease.  This | 
 | 501 |  * requires that that the caller hold a reference on the dio. | 
 | 502 |  */ | 
 | 503 | static struct bio *dio_await_one(struct dio *dio) | 
 | 504 | { | 
 | 505 | 	unsigned long flags; | 
 | 506 | 	struct bio *bio = NULL; | 
 | 507 |  | 
 | 508 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 509 |  | 
 | 510 | 	/* | 
 | 511 | 	 * Wait as long as the list is empty and there are bios in flight.  bio | 
 | 512 | 	 * completion drops the count, maybe adds to the list, and wakes while | 
 | 513 | 	 * holding the bio_lock so we don't need set_current_state()'s barrier | 
 | 514 | 	 * and can call it after testing our condition. | 
 | 515 | 	 */ | 
 | 516 | 	while (dio->refcount > 1 && dio->bio_list == NULL) { | 
 | 517 | 		__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 518 | 		dio->waiter = current; | 
 | 519 | 		spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 520 | 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) || | 
 | 521 | 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie)) | 
 | 522 | 			io_schedule(); | 
 | 523 | 		/* wake up sets us TASK_RUNNING */ | 
 | 524 | 		spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 525 | 		dio->waiter = NULL; | 
 | 526 | 	} | 
 | 527 | 	if (dio->bio_list) { | 
 | 528 | 		bio = dio->bio_list; | 
 | 529 | 		dio->bio_list = bio->bi_private; | 
 | 530 | 	} | 
 | 531 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 532 | 	return bio; | 
 | 533 | } | 
 | 534 |  | 
 | 535 | /* | 
 | 536 |  * Process one completed BIO.  No locks are held. | 
 | 537 |  */ | 
 | 538 | static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) | 
 | 539 | { | 
 | 540 | 	struct bio_vec *bvec; | 
 | 541 | 	unsigned i; | 
 | 542 | 	blk_status_t err = bio->bi_status; | 
 | 543 |  | 
 | 544 | 	if (err) { | 
 | 545 | 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) | 
 | 546 | 			dio->io_error = -EAGAIN; | 
 | 547 | 		else | 
 | 548 | 			dio->io_error = -EIO; | 
 | 549 | 	} | 
 | 550 |  | 
 | 551 | 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { | 
 | 552 | 		bio_check_pages_dirty(bio);	/* transfers ownership */ | 
 | 553 | 	} else { | 
 | 554 | 		bio_for_each_segment_all(bvec, bio, i) { | 
 | 555 | 			struct page *page = bvec->bv_page; | 
 | 556 |  | 
 | 557 | 			if (dio->op == REQ_OP_READ && !PageCompound(page) && | 
 | 558 | 					dio->should_dirty) | 
 | 559 | 				set_page_dirty_lock(page); | 
 | 560 | 			put_page(page); | 
 | 561 | 		} | 
 | 562 | 		bio_put(bio); | 
 | 563 | 	} | 
 | 564 | 	return err; | 
 | 565 | } | 
 | 566 |  | 
 | 567 | /* | 
 | 568 |  * Wait on and process all in-flight BIOs.  This must only be called once | 
 | 569 |  * all bios have been issued so that the refcount can only decrease. | 
 | 570 |  * This just waits for all bios to make it through dio_bio_complete.  IO | 
 | 571 |  * errors are propagated through dio->io_error and should be propagated via | 
 | 572 |  * dio_complete(). | 
 | 573 |  */ | 
 | 574 | static void dio_await_completion(struct dio *dio) | 
 | 575 | { | 
 | 576 | 	struct bio *bio; | 
 | 577 | 	do { | 
 | 578 | 		bio = dio_await_one(dio); | 
 | 579 | 		if (bio) | 
 | 580 | 			dio_bio_complete(dio, bio); | 
 | 581 | 	} while (bio); | 
 | 582 | } | 
 | 583 |  | 
 | 584 | /* | 
 | 585 |  * A really large O_DIRECT read or write can generate a lot of BIOs.  So | 
 | 586 |  * to keep the memory consumption sane we periodically reap any completed BIOs | 
 | 587 |  * during the BIO generation phase. | 
 | 588 |  * | 
 | 589 |  * This also helps to limit the peak amount of pinned userspace memory. | 
 | 590 |  */ | 
 | 591 | static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) | 
 | 592 | { | 
 | 593 | 	int ret = 0; | 
 | 594 |  | 
 | 595 | 	if (sdio->reap_counter++ >= 64) { | 
 | 596 | 		while (dio->bio_list) { | 
 | 597 | 			unsigned long flags; | 
 | 598 | 			struct bio *bio; | 
 | 599 | 			int ret2; | 
 | 600 |  | 
 | 601 | 			spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 602 | 			bio = dio->bio_list; | 
 | 603 | 			dio->bio_list = bio->bi_private; | 
 | 604 | 			spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 605 | 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); | 
 | 606 | 			if (ret == 0) | 
 | 607 | 				ret = ret2; | 
 | 608 | 		} | 
 | 609 | 		sdio->reap_counter = 0; | 
 | 610 | 	} | 
 | 611 | 	return ret; | 
 | 612 | } | 
 | 613 |  | 
 | 614 | /* | 
 | 615 |  * Create workqueue for deferred direct IO completions. We allocate the | 
 | 616 |  * workqueue when it's first needed. This avoids creating workqueue for | 
 | 617 |  * filesystems that don't need it and also allows us to create the workqueue | 
 | 618 |  * late enough so the we can include s_id in the name of the workqueue. | 
 | 619 |  */ | 
 | 620 | int sb_init_dio_done_wq(struct super_block *sb) | 
 | 621 | { | 
 | 622 | 	struct workqueue_struct *old; | 
 | 623 | 	struct workqueue_struct *wq = alloc_workqueue("dio/%s", | 
 | 624 | 						      WQ_MEM_RECLAIM, 0, | 
 | 625 | 						      sb->s_id); | 
 | 626 | 	if (!wq) | 
 | 627 | 		return -ENOMEM; | 
 | 628 | 	/* | 
 | 629 | 	 * This has to be atomic as more DIOs can race to create the workqueue | 
 | 630 | 	 */ | 
 | 631 | 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); | 
 | 632 | 	/* Someone created workqueue before us? Free ours... */ | 
 | 633 | 	if (old) | 
 | 634 | 		destroy_workqueue(wq); | 
 | 635 | 	return 0; | 
 | 636 | } | 
 | 637 |  | 
 | 638 | static int dio_set_defer_completion(struct dio *dio) | 
 | 639 | { | 
 | 640 | 	struct super_block *sb = dio->inode->i_sb; | 
 | 641 |  | 
 | 642 | 	if (dio->defer_completion) | 
 | 643 | 		return 0; | 
 | 644 | 	dio->defer_completion = true; | 
 | 645 | 	if (!sb->s_dio_done_wq) | 
 | 646 | 		return sb_init_dio_done_wq(sb); | 
 | 647 | 	return 0; | 
 | 648 | } | 
 | 649 |  | 
 | 650 | /* | 
 | 651 |  * Call into the fs to map some more disk blocks.  We record the current number | 
 | 652 |  * of available blocks at sdio->blocks_available.  These are in units of the | 
 | 653 |  * fs blocksize, i_blocksize(inode). | 
 | 654 |  * | 
 | 655 |  * The fs is allowed to map lots of blocks at once.  If it wants to do that, | 
 | 656 |  * it uses the passed inode-relative block number as the file offset, as usual. | 
 | 657 |  * | 
 | 658 |  * get_block() is passed the number of i_blkbits-sized blocks which direct_io | 
 | 659 |  * has remaining to do.  The fs should not map more than this number of blocks. | 
 | 660 |  * | 
 | 661 |  * If the fs has mapped a lot of blocks, it should populate bh->b_size to | 
 | 662 |  * indicate how much contiguous disk space has been made available at | 
 | 663 |  * bh->b_blocknr. | 
 | 664 |  * | 
 | 665 |  * If *any* of the mapped blocks are new, then the fs must set buffer_new(). | 
 | 666 |  * This isn't very efficient... | 
 | 667 |  * | 
 | 668 |  * In the case of filesystem holes: the fs may return an arbitrarily-large | 
 | 669 |  * hole by returning an appropriate value in b_size and by clearing | 
 | 670 |  * buffer_mapped().  However the direct-io code will only process holes one | 
 | 671 |  * block at a time - it will repeatedly call get_block() as it walks the hole. | 
 | 672 |  */ | 
 | 673 | static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, | 
 | 674 | 			   struct buffer_head *map_bh) | 
 | 675 | { | 
 | 676 | 	int ret; | 
 | 677 | 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */ | 
 | 678 | 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */ | 
 | 679 | 	unsigned long fs_count;	/* Number of filesystem-sized blocks */ | 
 | 680 | 	int create; | 
 | 681 | 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; | 
 | 682 | 	loff_t i_size; | 
 | 683 |  | 
 | 684 | 	/* | 
 | 685 | 	 * If there was a memory error and we've overwritten all the | 
 | 686 | 	 * mapped blocks then we can now return that memory error | 
 | 687 | 	 */ | 
 | 688 | 	ret = dio->page_errors; | 
 | 689 | 	if (ret == 0) { | 
 | 690 | 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); | 
 | 691 | 		fs_startblk = sdio->block_in_file >> sdio->blkfactor; | 
 | 692 | 		fs_endblk = (sdio->final_block_in_request - 1) >> | 
 | 693 | 					sdio->blkfactor; | 
 | 694 | 		fs_count = fs_endblk - fs_startblk + 1; | 
 | 695 |  | 
 | 696 | 		map_bh->b_state = 0; | 
 | 697 | 		map_bh->b_size = fs_count << i_blkbits; | 
 | 698 |  | 
 | 699 | 		/* | 
 | 700 | 		 * For writes that could fill holes inside i_size on a | 
 | 701 | 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only | 
 | 702 | 		 * overwrites are permitted. We will return early to the caller | 
 | 703 | 		 * once we see an unmapped buffer head returned, and the caller | 
 | 704 | 		 * will fall back to buffered I/O. | 
 | 705 | 		 * | 
 | 706 | 		 * Otherwise the decision is left to the get_blocks method, | 
 | 707 | 		 * which may decide to handle it or also return an unmapped | 
 | 708 | 		 * buffer head. | 
 | 709 | 		 */ | 
 | 710 | 		create = dio->op == REQ_OP_WRITE; | 
 | 711 | 		if (dio->flags & DIO_SKIP_HOLES) { | 
 | 712 | 			i_size = i_size_read(dio->inode); | 
 | 713 | 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) | 
 | 714 | 				create = 0; | 
 | 715 | 		} | 
 | 716 |  | 
 | 717 | 		ret = (*sdio->get_block)(dio->inode, fs_startblk, | 
 | 718 | 						map_bh, create); | 
 | 719 |  | 
 | 720 | 		/* Store for completion */ | 
 | 721 | 		dio->private = map_bh->b_private; | 
 | 722 |  | 
 | 723 | 		if (ret == 0 && buffer_defer_completion(map_bh)) | 
 | 724 | 			ret = dio_set_defer_completion(dio); | 
 | 725 | 	} | 
 | 726 | 	return ret; | 
 | 727 | } | 
 | 728 |  | 
 | 729 | /* | 
 | 730 |  * There is no bio.  Make one now. | 
 | 731 |  */ | 
 | 732 | static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, | 
 | 733 | 		sector_t start_sector, struct buffer_head *map_bh) | 
 | 734 | { | 
 | 735 | 	sector_t sector; | 
 | 736 | 	int ret, nr_pages; | 
 | 737 |  | 
 | 738 | 	ret = dio_bio_reap(dio, sdio); | 
 | 739 | 	if (ret) | 
 | 740 | 		goto out; | 
 | 741 | 	sector = start_sector << (sdio->blkbits - 9); | 
 | 742 | 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); | 
 | 743 | 	BUG_ON(nr_pages <= 0); | 
 | 744 | 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); | 
 | 745 | 	sdio->boundary = 0; | 
 | 746 | out: | 
 | 747 | 	return ret; | 
 | 748 | } | 
 | 749 |  | 
 | 750 | /* | 
 | 751 |  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If | 
 | 752 |  * that was successful then update final_block_in_bio and take a ref against | 
 | 753 |  * the just-added page. | 
 | 754 |  * | 
 | 755 |  * Return zero on success.  Non-zero means the caller needs to start a new BIO. | 
 | 756 |  */ | 
 | 757 | static inline int dio_bio_add_page(struct dio_submit *sdio) | 
 | 758 | { | 
 | 759 | 	int ret; | 
 | 760 |  | 
 | 761 | 	ret = bio_add_page(sdio->bio, sdio->cur_page, | 
 | 762 | 			sdio->cur_page_len, sdio->cur_page_offset); | 
 | 763 | 	if (ret == sdio->cur_page_len) { | 
 | 764 | 		/* | 
 | 765 | 		 * Decrement count only, if we are done with this page | 
 | 766 | 		 */ | 
 | 767 | 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) | 
 | 768 | 			sdio->pages_in_io--; | 
 | 769 | 		get_page(sdio->cur_page); | 
 | 770 | 		sdio->final_block_in_bio = sdio->cur_page_block + | 
 | 771 | 			(sdio->cur_page_len >> sdio->blkbits); | 
 | 772 | 		ret = 0; | 
 | 773 | 	} else { | 
 | 774 | 		ret = 1; | 
 | 775 | 	} | 
 | 776 | 	return ret; | 
 | 777 | } | 
 | 778 | 		 | 
 | 779 | /* | 
 | 780 |  * Put cur_page under IO.  The section of cur_page which is described by | 
 | 781 |  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page | 
 | 782 |  * starts on-disk at cur_page_block. | 
 | 783 |  * | 
 | 784 |  * We take a ref against the page here (on behalf of its presence in the bio). | 
 | 785 |  * | 
 | 786 |  * The caller of this function is responsible for removing cur_page from the | 
 | 787 |  * dio, and for dropping the refcount which came from that presence. | 
 | 788 |  */ | 
 | 789 | static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, | 
 | 790 | 		struct buffer_head *map_bh) | 
 | 791 | { | 
 | 792 | 	int ret = 0; | 
 | 793 |  | 
 | 794 | 	if (sdio->bio) { | 
 | 795 | 		loff_t cur_offset = sdio->cur_page_fs_offset; | 
 | 796 | 		loff_t bio_next_offset = sdio->logical_offset_in_bio + | 
 | 797 | 			sdio->bio->bi_iter.bi_size; | 
 | 798 |  | 
 | 799 | 		/* | 
 | 800 | 		 * See whether this new request is contiguous with the old. | 
 | 801 | 		 * | 
 | 802 | 		 * Btrfs cannot handle having logically non-contiguous requests | 
 | 803 | 		 * submitted.  For example if you have | 
 | 804 | 		 * | 
 | 805 | 		 * Logical:  [0-4095][HOLE][8192-12287] | 
 | 806 | 		 * Physical: [0-4095]      [4096-8191] | 
 | 807 | 		 * | 
 | 808 | 		 * We cannot submit those pages together as one BIO.  So if our | 
 | 809 | 		 * current logical offset in the file does not equal what would | 
 | 810 | 		 * be the next logical offset in the bio, submit the bio we | 
 | 811 | 		 * have. | 
 | 812 | 		 */ | 
 | 813 | 		if (sdio->final_block_in_bio != sdio->cur_page_block || | 
 | 814 | 		    cur_offset != bio_next_offset) | 
 | 815 | 			dio_bio_submit(dio, sdio); | 
 | 816 | 	} | 
 | 817 |  | 
 | 818 | 	if (sdio->bio == NULL) { | 
 | 819 | 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); | 
 | 820 | 		if (ret) | 
 | 821 | 			goto out; | 
 | 822 | 	} | 
 | 823 |  | 
 | 824 | 	if (dio_bio_add_page(sdio) != 0) { | 
 | 825 | 		dio_bio_submit(dio, sdio); | 
 | 826 | 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); | 
 | 827 | 		if (ret == 0) { | 
 | 828 | 			ret = dio_bio_add_page(sdio); | 
 | 829 | 			BUG_ON(ret != 0); | 
 | 830 | 		} | 
 | 831 | 	} | 
 | 832 | out: | 
 | 833 | 	return ret; | 
 | 834 | } | 
 | 835 |  | 
 | 836 | /* | 
 | 837 |  * An autonomous function to put a chunk of a page under deferred IO. | 
 | 838 |  * | 
 | 839 |  * The caller doesn't actually know (or care) whether this piece of page is in | 
 | 840 |  * a BIO, or is under IO or whatever.  We just take care of all possible  | 
 | 841 |  * situations here.  The separation between the logic of do_direct_IO() and | 
 | 842 |  * that of submit_page_section() is important for clarity.  Please don't break. | 
 | 843 |  * | 
 | 844 |  * The chunk of page starts on-disk at blocknr. | 
 | 845 |  * | 
 | 846 |  * We perform deferred IO, by recording the last-submitted page inside our | 
 | 847 |  * private part of the dio structure.  If possible, we just expand the IO | 
 | 848 |  * across that page here. | 
 | 849 |  * | 
 | 850 |  * If that doesn't work out then we put the old page into the bio and add this | 
 | 851 |  * page to the dio instead. | 
 | 852 |  */ | 
 | 853 | static inline int | 
 | 854 | submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, | 
 | 855 | 		    unsigned offset, unsigned len, sector_t blocknr, | 
 | 856 | 		    struct buffer_head *map_bh) | 
 | 857 | { | 
 | 858 | 	int ret = 0; | 
 | 859 |  | 
 | 860 | 	if (dio->op == REQ_OP_WRITE) { | 
 | 861 | 		/* | 
 | 862 | 		 * Read accounting is performed in submit_bio() | 
 | 863 | 		 */ | 
 | 864 | 		task_io_account_write(len); | 
 | 865 | 	} | 
 | 866 |  | 
 | 867 | 	/* | 
 | 868 | 	 * Can we just grow the current page's presence in the dio? | 
 | 869 | 	 */ | 
 | 870 | 	if (sdio->cur_page == page && | 
 | 871 | 	    sdio->cur_page_offset + sdio->cur_page_len == offset && | 
 | 872 | 	    sdio->cur_page_block + | 
 | 873 | 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) { | 
 | 874 | 		sdio->cur_page_len += len; | 
 | 875 | 		goto out; | 
 | 876 | 	} | 
 | 877 |  | 
 | 878 | 	/* | 
 | 879 | 	 * If there's a deferred page already there then send it. | 
 | 880 | 	 */ | 
 | 881 | 	if (sdio->cur_page) { | 
 | 882 | 		ret = dio_send_cur_page(dio, sdio, map_bh); | 
 | 883 | 		put_page(sdio->cur_page); | 
 | 884 | 		sdio->cur_page = NULL; | 
 | 885 | 		if (ret) | 
 | 886 | 			return ret; | 
 | 887 | 	} | 
 | 888 |  | 
 | 889 | 	get_page(page);		/* It is in dio */ | 
 | 890 | 	sdio->cur_page = page; | 
 | 891 | 	sdio->cur_page_offset = offset; | 
 | 892 | 	sdio->cur_page_len = len; | 
 | 893 | 	sdio->cur_page_block = blocknr; | 
 | 894 | 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; | 
 | 895 | out: | 
 | 896 | 	/* | 
 | 897 | 	 * If sdio->boundary then we want to schedule the IO now to | 
 | 898 | 	 * avoid metadata seeks. | 
 | 899 | 	 */ | 
 | 900 | 	if (sdio->boundary) { | 
 | 901 | 		ret = dio_send_cur_page(dio, sdio, map_bh); | 
 | 902 | 		if (sdio->bio) | 
 | 903 | 			dio_bio_submit(dio, sdio); | 
 | 904 | 		put_page(sdio->cur_page); | 
 | 905 | 		sdio->cur_page = NULL; | 
 | 906 | 	} | 
 | 907 | 	return ret; | 
 | 908 | } | 
 | 909 |  | 
 | 910 | /* | 
 | 911 |  * If we are not writing the entire block and get_block() allocated | 
 | 912 |  * the block for us, we need to fill-in the unused portion of the | 
 | 913 |  * block with zeros. This happens only if user-buffer, fileoffset or | 
 | 914 |  * io length is not filesystem block-size multiple. | 
 | 915 |  * | 
 | 916 |  * `end' is zero if we're doing the start of the IO, 1 at the end of the | 
 | 917 |  * IO. | 
 | 918 |  */ | 
 | 919 | static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, | 
 | 920 | 		int end, struct buffer_head *map_bh) | 
 | 921 | { | 
 | 922 | 	unsigned dio_blocks_per_fs_block; | 
 | 923 | 	unsigned this_chunk_blocks;	/* In dio_blocks */ | 
 | 924 | 	unsigned this_chunk_bytes; | 
 | 925 | 	struct page *page; | 
 | 926 |  | 
 | 927 | 	sdio->start_zero_done = 1; | 
 | 928 | 	if (!sdio->blkfactor || !buffer_new(map_bh)) | 
 | 929 | 		return; | 
 | 930 |  | 
 | 931 | 	dio_blocks_per_fs_block = 1 << sdio->blkfactor; | 
 | 932 | 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); | 
 | 933 |  | 
 | 934 | 	if (!this_chunk_blocks) | 
 | 935 | 		return; | 
 | 936 |  | 
 | 937 | 	/* | 
 | 938 | 	 * We need to zero out part of an fs block.  It is either at the | 
 | 939 | 	 * beginning or the end of the fs block. | 
 | 940 | 	 */ | 
 | 941 | 	if (end)  | 
 | 942 | 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; | 
 | 943 |  | 
 | 944 | 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits; | 
 | 945 |  | 
 | 946 | 	page = ZERO_PAGE(0); | 
 | 947 | 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, | 
 | 948 | 				sdio->next_block_for_io, map_bh)) | 
 | 949 | 		return; | 
 | 950 |  | 
 | 951 | 	sdio->next_block_for_io += this_chunk_blocks; | 
 | 952 | } | 
 | 953 |  | 
 | 954 | /* | 
 | 955 |  * Walk the user pages, and the file, mapping blocks to disk and generating | 
 | 956 |  * a sequence of (page,offset,len,block) mappings.  These mappings are injected | 
 | 957 |  * into submit_page_section(), which takes care of the next stage of submission | 
 | 958 |  * | 
 | 959 |  * Direct IO against a blockdev is different from a file.  Because we can | 
 | 960 |  * happily perform page-sized but 512-byte aligned IOs.  It is important that | 
 | 961 |  * blockdev IO be able to have fine alignment and large sizes. | 
 | 962 |  * | 
 | 963 |  * So what we do is to permit the ->get_block function to populate bh.b_size | 
 | 964 |  * with the size of IO which is permitted at this offset and this i_blkbits. | 
 | 965 |  * | 
 | 966 |  * For best results, the blockdev should be set up with 512-byte i_blkbits and | 
 | 967 |  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives | 
 | 968 |  * fine alignment but still allows this function to work in PAGE_SIZE units. | 
 | 969 |  */ | 
 | 970 | static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, | 
 | 971 | 			struct buffer_head *map_bh) | 
 | 972 | { | 
 | 973 | 	const unsigned blkbits = sdio->blkbits; | 
 | 974 | 	const unsigned i_blkbits = blkbits + sdio->blkfactor; | 
 | 975 | 	int ret = 0; | 
 | 976 |  | 
 | 977 | 	while (sdio->block_in_file < sdio->final_block_in_request) { | 
 | 978 | 		struct page *page; | 
 | 979 | 		size_t from, to; | 
 | 980 |  | 
 | 981 | 		page = dio_get_page(dio, sdio); | 
 | 982 | 		if (IS_ERR(page)) { | 
 | 983 | 			ret = PTR_ERR(page); | 
 | 984 | 			goto out; | 
 | 985 | 		} | 
 | 986 | 		from = sdio->head ? 0 : sdio->from; | 
 | 987 | 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; | 
 | 988 | 		sdio->head++; | 
 | 989 |  | 
 | 990 | 		while (from < to) { | 
 | 991 | 			unsigned this_chunk_bytes;	/* # of bytes mapped */ | 
 | 992 | 			unsigned this_chunk_blocks;	/* # of blocks */ | 
 | 993 | 			unsigned u; | 
 | 994 |  | 
 | 995 | 			if (sdio->blocks_available == 0) { | 
 | 996 | 				/* | 
 | 997 | 				 * Need to go and map some more disk | 
 | 998 | 				 */ | 
 | 999 | 				unsigned long blkmask; | 
 | 1000 | 				unsigned long dio_remainder; | 
 | 1001 |  | 
 | 1002 | 				ret = get_more_blocks(dio, sdio, map_bh); | 
 | 1003 | 				if (ret) { | 
 | 1004 | 					put_page(page); | 
 | 1005 | 					goto out; | 
 | 1006 | 				} | 
 | 1007 | 				if (!buffer_mapped(map_bh)) | 
 | 1008 | 					goto do_holes; | 
 | 1009 |  | 
 | 1010 | 				sdio->blocks_available = | 
 | 1011 | 						map_bh->b_size >> blkbits; | 
 | 1012 | 				sdio->next_block_for_io = | 
 | 1013 | 					map_bh->b_blocknr << sdio->blkfactor; | 
 | 1014 | 				if (buffer_new(map_bh)) { | 
 | 1015 | 					clean_bdev_aliases( | 
 | 1016 | 						map_bh->b_bdev, | 
 | 1017 | 						map_bh->b_blocknr, | 
 | 1018 | 						map_bh->b_size >> i_blkbits); | 
 | 1019 | 				} | 
 | 1020 |  | 
 | 1021 | 				if (!sdio->blkfactor) | 
 | 1022 | 					goto do_holes; | 
 | 1023 |  | 
 | 1024 | 				blkmask = (1 << sdio->blkfactor) - 1; | 
 | 1025 | 				dio_remainder = (sdio->block_in_file & blkmask); | 
 | 1026 |  | 
 | 1027 | 				/* | 
 | 1028 | 				 * If we are at the start of IO and that IO | 
 | 1029 | 				 * starts partway into a fs-block, | 
 | 1030 | 				 * dio_remainder will be non-zero.  If the IO | 
 | 1031 | 				 * is a read then we can simply advance the IO | 
 | 1032 | 				 * cursor to the first block which is to be | 
 | 1033 | 				 * read.  But if the IO is a write and the | 
 | 1034 | 				 * block was newly allocated we cannot do that; | 
 | 1035 | 				 * the start of the fs block must be zeroed out | 
 | 1036 | 				 * on-disk | 
 | 1037 | 				 */ | 
 | 1038 | 				if (!buffer_new(map_bh)) | 
 | 1039 | 					sdio->next_block_for_io += dio_remainder; | 
 | 1040 | 				sdio->blocks_available -= dio_remainder; | 
 | 1041 | 			} | 
 | 1042 | do_holes: | 
 | 1043 | 			/* Handle holes */ | 
 | 1044 | 			if (!buffer_mapped(map_bh)) { | 
 | 1045 | 				loff_t i_size_aligned; | 
 | 1046 |  | 
 | 1047 | 				/* AKPM: eargh, -ENOTBLK is a hack */ | 
 | 1048 | 				if (dio->op == REQ_OP_WRITE) { | 
 | 1049 | 					put_page(page); | 
 | 1050 | 					return -ENOTBLK; | 
 | 1051 | 				} | 
 | 1052 |  | 
 | 1053 | 				/* | 
 | 1054 | 				 * Be sure to account for a partial block as the | 
 | 1055 | 				 * last block in the file | 
 | 1056 | 				 */ | 
 | 1057 | 				i_size_aligned = ALIGN(i_size_read(dio->inode), | 
 | 1058 | 							1 << blkbits); | 
 | 1059 | 				if (sdio->block_in_file >= | 
 | 1060 | 						i_size_aligned >> blkbits) { | 
 | 1061 | 					/* We hit eof */ | 
 | 1062 | 					put_page(page); | 
 | 1063 | 					goto out; | 
 | 1064 | 				} | 
 | 1065 | 				zero_user(page, from, 1 << blkbits); | 
 | 1066 | 				sdio->block_in_file++; | 
 | 1067 | 				from += 1 << blkbits; | 
 | 1068 | 				dio->result += 1 << blkbits; | 
 | 1069 | 				goto next_block; | 
 | 1070 | 			} | 
 | 1071 |  | 
 | 1072 | 			/* | 
 | 1073 | 			 * If we're performing IO which has an alignment which | 
 | 1074 | 			 * is finer than the underlying fs, go check to see if | 
 | 1075 | 			 * we must zero out the start of this block. | 
 | 1076 | 			 */ | 
 | 1077 | 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) | 
 | 1078 | 				dio_zero_block(dio, sdio, 0, map_bh); | 
 | 1079 |  | 
 | 1080 | 			/* | 
 | 1081 | 			 * Work out, in this_chunk_blocks, how much disk we | 
 | 1082 | 			 * can add to this page | 
 | 1083 | 			 */ | 
 | 1084 | 			this_chunk_blocks = sdio->blocks_available; | 
 | 1085 | 			u = (to - from) >> blkbits; | 
 | 1086 | 			if (this_chunk_blocks > u) | 
 | 1087 | 				this_chunk_blocks = u; | 
 | 1088 | 			u = sdio->final_block_in_request - sdio->block_in_file; | 
 | 1089 | 			if (this_chunk_blocks > u) | 
 | 1090 | 				this_chunk_blocks = u; | 
 | 1091 | 			this_chunk_bytes = this_chunk_blocks << blkbits; | 
 | 1092 | 			BUG_ON(this_chunk_bytes == 0); | 
 | 1093 |  | 
 | 1094 | 			if (this_chunk_blocks == sdio->blocks_available) | 
 | 1095 | 				sdio->boundary = buffer_boundary(map_bh); | 
 | 1096 | 			ret = submit_page_section(dio, sdio, page, | 
 | 1097 | 						  from, | 
 | 1098 | 						  this_chunk_bytes, | 
 | 1099 | 						  sdio->next_block_for_io, | 
 | 1100 | 						  map_bh); | 
 | 1101 | 			if (ret) { | 
 | 1102 | 				put_page(page); | 
 | 1103 | 				goto out; | 
 | 1104 | 			} | 
 | 1105 | 			sdio->next_block_for_io += this_chunk_blocks; | 
 | 1106 |  | 
 | 1107 | 			sdio->block_in_file += this_chunk_blocks; | 
 | 1108 | 			from += this_chunk_bytes; | 
 | 1109 | 			dio->result += this_chunk_bytes; | 
 | 1110 | 			sdio->blocks_available -= this_chunk_blocks; | 
 | 1111 | next_block: | 
 | 1112 | 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request); | 
 | 1113 | 			if (sdio->block_in_file == sdio->final_block_in_request) | 
 | 1114 | 				break; | 
 | 1115 | 		} | 
 | 1116 |  | 
 | 1117 | 		/* Drop the ref which was taken in get_user_pages() */ | 
 | 1118 | 		put_page(page); | 
 | 1119 | 	} | 
 | 1120 | out: | 
 | 1121 | 	return ret; | 
 | 1122 | } | 
 | 1123 |  | 
 | 1124 | static inline int drop_refcount(struct dio *dio) | 
 | 1125 | { | 
 | 1126 | 	int ret2; | 
 | 1127 | 	unsigned long flags; | 
 | 1128 |  | 
 | 1129 | 	/* | 
 | 1130 | 	 * Sync will always be dropping the final ref and completing the | 
 | 1131 | 	 * operation.  AIO can if it was a broken operation described above or | 
 | 1132 | 	 * in fact if all the bios race to complete before we get here.  In | 
 | 1133 | 	 * that case dio_complete() translates the EIOCBQUEUED into the proper | 
 | 1134 | 	 * return code that the caller will hand to ->complete(). | 
 | 1135 | 	 * | 
 | 1136 | 	 * This is managed by the bio_lock instead of being an atomic_t so that | 
 | 1137 | 	 * completion paths can drop their ref and use the remaining count to | 
 | 1138 | 	 * decide to wake the submission path atomically. | 
 | 1139 | 	 */ | 
 | 1140 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 1141 | 	ret2 = --dio->refcount; | 
 | 1142 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 1143 | 	return ret2; | 
 | 1144 | } | 
 | 1145 |  | 
 | 1146 | /* | 
 | 1147 |  * This is a library function for use by filesystem drivers. | 
 | 1148 |  * | 
 | 1149 |  * The locking rules are governed by the flags parameter: | 
 | 1150 |  *  - if the flags value contains DIO_LOCKING we use a fancy locking | 
 | 1151 |  *    scheme for dumb filesystems. | 
 | 1152 |  *    For writes this function is called under i_mutex and returns with | 
 | 1153 |  *    i_mutex held, for reads, i_mutex is not held on entry, but it is | 
 | 1154 |  *    taken and dropped again before returning. | 
 | 1155 |  *  - if the flags value does NOT contain DIO_LOCKING we don't use any | 
 | 1156 |  *    internal locking but rather rely on the filesystem to synchronize | 
 | 1157 |  *    direct I/O reads/writes versus each other and truncate. | 
 | 1158 |  * | 
 | 1159 |  * To help with locking against truncate we incremented the i_dio_count | 
 | 1160 |  * counter before starting direct I/O, and decrement it once we are done. | 
 | 1161 |  * Truncate can wait for it to reach zero to provide exclusion.  It is | 
 | 1162 |  * expected that filesystem provide exclusion between new direct I/O | 
 | 1163 |  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex, | 
 | 1164 |  * but other filesystems need to take care of this on their own. | 
 | 1165 |  * | 
 | 1166 |  * NOTE: if you pass "sdio" to anything by pointer make sure that function | 
 | 1167 |  * is always inlined. Otherwise gcc is unable to split the structure into | 
 | 1168 |  * individual fields and will generate much worse code. This is important | 
 | 1169 |  * for the whole file. | 
 | 1170 |  */ | 
 | 1171 | static inline ssize_t | 
 | 1172 | do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, | 
 | 1173 | 		      struct block_device *bdev, struct iov_iter *iter, | 
 | 1174 | 		      get_block_t get_block, dio_iodone_t end_io, | 
 | 1175 | 		      dio_submit_t submit_io, int flags) | 
 | 1176 | { | 
 | 1177 | 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits); | 
 | 1178 | 	unsigned blkbits = i_blkbits; | 
 | 1179 | 	unsigned blocksize_mask = (1 << blkbits) - 1; | 
 | 1180 | 	ssize_t retval = -EINVAL; | 
 | 1181 | 	const size_t count = iov_iter_count(iter); | 
 | 1182 | 	loff_t offset = iocb->ki_pos; | 
 | 1183 | 	const loff_t end = offset + count; | 
 | 1184 | 	struct dio *dio; | 
 | 1185 | 	struct dio_submit sdio = { 0, }; | 
 | 1186 | 	struct buffer_head map_bh = { 0, }; | 
 | 1187 | 	struct blk_plug plug; | 
 | 1188 | 	unsigned long align = offset | iov_iter_alignment(iter); | 
 | 1189 |  | 
 | 1190 | 	/* | 
 | 1191 | 	 * Avoid references to bdev if not absolutely needed to give | 
 | 1192 | 	 * the early prefetch in the caller enough time. | 
 | 1193 | 	 */ | 
 | 1194 |  | 
 | 1195 | 	if (align & blocksize_mask) { | 
 | 1196 | 		if (bdev) | 
 | 1197 | 			blkbits = blksize_bits(bdev_logical_block_size(bdev)); | 
 | 1198 | 		blocksize_mask = (1 << blkbits) - 1; | 
 | 1199 | 		if (align & blocksize_mask) | 
 | 1200 | 			goto out; | 
 | 1201 | 	} | 
 | 1202 |  | 
 | 1203 | 	/* watch out for a 0 len io from a tricksy fs */ | 
 | 1204 | 	if (iov_iter_rw(iter) == READ && !count) | 
 | 1205 | 		return 0; | 
 | 1206 |  | 
 | 1207 | 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); | 
 | 1208 | 	retval = -ENOMEM; | 
 | 1209 | 	if (!dio) | 
 | 1210 | 		goto out; | 
 | 1211 | 	/* | 
 | 1212 | 	 * Believe it or not, zeroing out the page array caused a .5% | 
 | 1213 | 	 * performance regression in a database benchmark.  So, we take | 
 | 1214 | 	 * care to only zero out what's needed. | 
 | 1215 | 	 */ | 
 | 1216 | 	memset(dio, 0, offsetof(struct dio, pages)); | 
 | 1217 |  | 
 | 1218 | 	dio->flags = flags; | 
 | 1219 | 	if (dio->flags & DIO_LOCKING) { | 
 | 1220 | 		if (iov_iter_rw(iter) == READ) { | 
 | 1221 | 			struct address_space *mapping = | 
 | 1222 | 					iocb->ki_filp->f_mapping; | 
 | 1223 |  | 
 | 1224 | 			/* will be released by direct_io_worker */ | 
 | 1225 | 			inode_lock(inode); | 
 | 1226 |  | 
 | 1227 | 			retval = filemap_write_and_wait_range(mapping, offset, | 
 | 1228 | 							      end - 1); | 
 | 1229 | 			if (retval) { | 
 | 1230 | 				inode_unlock(inode); | 
 | 1231 | 				kmem_cache_free(dio_cache, dio); | 
 | 1232 | 				goto out; | 
 | 1233 | 			} | 
 | 1234 | 		} | 
 | 1235 | 	} | 
 | 1236 |  | 
 | 1237 | 	/* Once we sampled i_size check for reads beyond EOF */ | 
 | 1238 | 	dio->i_size = i_size_read(inode); | 
 | 1239 | 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { | 
 | 1240 | 		if (dio->flags & DIO_LOCKING) | 
 | 1241 | 			inode_unlock(inode); | 
 | 1242 | 		kmem_cache_free(dio_cache, dio); | 
 | 1243 | 		retval = 0; | 
 | 1244 | 		goto out; | 
 | 1245 | 	} | 
 | 1246 |  | 
 | 1247 | 	/* | 
 | 1248 | 	 * For file extending writes updating i_size before data writeouts | 
 | 1249 | 	 * complete can expose uninitialized blocks in dumb filesystems. | 
 | 1250 | 	 * In that case we need to wait for I/O completion even if asked | 
 | 1251 | 	 * for an asynchronous write. | 
 | 1252 | 	 */ | 
 | 1253 | 	if (is_sync_kiocb(iocb)) | 
 | 1254 | 		dio->is_async = false; | 
 | 1255 | 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) | 
 | 1256 | 		dio->is_async = false; | 
 | 1257 | 	else | 
 | 1258 | 		dio->is_async = true; | 
 | 1259 |  | 
 | 1260 | 	dio->inode = inode; | 
 | 1261 | 	if (iov_iter_rw(iter) == WRITE) { | 
 | 1262 | 		dio->op = REQ_OP_WRITE; | 
 | 1263 | 		dio->op_flags = REQ_SYNC | REQ_IDLE; | 
 | 1264 | 		if (iocb->ki_flags & IOCB_NOWAIT) | 
 | 1265 | 			dio->op_flags |= REQ_NOWAIT; | 
 | 1266 | 	} else { | 
 | 1267 | 		dio->op = REQ_OP_READ; | 
 | 1268 | 	} | 
 | 1269 |  | 
 | 1270 | 	/* | 
 | 1271 | 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue | 
 | 1272 | 	 * so that we can call ->fsync. | 
 | 1273 | 	 */ | 
 | 1274 | 	if (dio->is_async && iov_iter_rw(iter) == WRITE) { | 
 | 1275 | 		retval = 0; | 
 | 1276 | 		if (iocb->ki_flags & IOCB_DSYNC) | 
 | 1277 | 			retval = dio_set_defer_completion(dio); | 
 | 1278 | 		else if (!dio->inode->i_sb->s_dio_done_wq) { | 
 | 1279 | 			/* | 
 | 1280 | 			 * In case of AIO write racing with buffered read we | 
 | 1281 | 			 * need to defer completion. We can't decide this now, | 
 | 1282 | 			 * however the workqueue needs to be initialized here. | 
 | 1283 | 			 */ | 
 | 1284 | 			retval = sb_init_dio_done_wq(dio->inode->i_sb); | 
 | 1285 | 		} | 
 | 1286 | 		if (retval) { | 
 | 1287 | 			/* | 
 | 1288 | 			 * We grab i_mutex only for reads so we don't have | 
 | 1289 | 			 * to release it here | 
 | 1290 | 			 */ | 
 | 1291 | 			kmem_cache_free(dio_cache, dio); | 
 | 1292 | 			goto out; | 
 | 1293 | 		} | 
 | 1294 | 	} | 
 | 1295 |  | 
 | 1296 | 	/* | 
 | 1297 | 	 * Will be decremented at I/O completion time. | 
 | 1298 | 	 */ | 
 | 1299 | 	inode_dio_begin(inode); | 
 | 1300 |  | 
 | 1301 | 	retval = 0; | 
 | 1302 | 	sdio.blkbits = blkbits; | 
 | 1303 | 	sdio.blkfactor = i_blkbits - blkbits; | 
 | 1304 | 	sdio.block_in_file = offset >> blkbits; | 
 | 1305 |  | 
 | 1306 | 	sdio.get_block = get_block; | 
 | 1307 | 	dio->end_io = end_io; | 
 | 1308 | 	sdio.submit_io = submit_io; | 
 | 1309 | 	sdio.final_block_in_bio = -1; | 
 | 1310 | 	sdio.next_block_for_io = -1; | 
 | 1311 |  | 
 | 1312 | 	dio->iocb = iocb; | 
 | 1313 |  | 
 | 1314 | 	spin_lock_init(&dio->bio_lock); | 
 | 1315 | 	dio->refcount = 1; | 
 | 1316 |  | 
 | 1317 | 	dio->should_dirty = (iter->type == ITER_IOVEC); | 
 | 1318 | 	sdio.iter = iter; | 
 | 1319 | 	sdio.final_block_in_request = end >> blkbits; | 
 | 1320 |  | 
 | 1321 | 	/* | 
 | 1322 | 	 * In case of non-aligned buffers, we may need 2 more | 
 | 1323 | 	 * pages since we need to zero out first and last block. | 
 | 1324 | 	 */ | 
 | 1325 | 	if (unlikely(sdio.blkfactor)) | 
 | 1326 | 		sdio.pages_in_io = 2; | 
 | 1327 |  | 
 | 1328 | 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); | 
 | 1329 |  | 
 | 1330 | 	blk_start_plug(&plug); | 
 | 1331 |  | 
 | 1332 | 	retval = do_direct_IO(dio, &sdio, &map_bh); | 
 | 1333 | 	if (retval) | 
 | 1334 | 		dio_cleanup(dio, &sdio); | 
 | 1335 |  | 
 | 1336 | 	if (retval == -ENOTBLK) { | 
 | 1337 | 		/* | 
 | 1338 | 		 * The remaining part of the request will be | 
 | 1339 | 		 * be handled by buffered I/O when we return | 
 | 1340 | 		 */ | 
 | 1341 | 		retval = 0; | 
 | 1342 | 	} | 
 | 1343 | 	/* | 
 | 1344 | 	 * There may be some unwritten disk at the end of a part-written | 
 | 1345 | 	 * fs-block-sized block.  Go zero that now. | 
 | 1346 | 	 */ | 
 | 1347 | 	dio_zero_block(dio, &sdio, 1, &map_bh); | 
 | 1348 |  | 
 | 1349 | 	if (sdio.cur_page) { | 
 | 1350 | 		ssize_t ret2; | 
 | 1351 |  | 
 | 1352 | 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh); | 
 | 1353 | 		if (retval == 0) | 
 | 1354 | 			retval = ret2; | 
 | 1355 | 		put_page(sdio.cur_page); | 
 | 1356 | 		sdio.cur_page = NULL; | 
 | 1357 | 	} | 
 | 1358 | 	if (sdio.bio) | 
 | 1359 | 		dio_bio_submit(dio, &sdio); | 
 | 1360 |  | 
 | 1361 | 	blk_finish_plug(&plug); | 
 | 1362 |  | 
 | 1363 | 	/* | 
 | 1364 | 	 * It is possible that, we return short IO due to end of file. | 
 | 1365 | 	 * In that case, we need to release all the pages we got hold on. | 
 | 1366 | 	 */ | 
 | 1367 | 	dio_cleanup(dio, &sdio); | 
 | 1368 |  | 
 | 1369 | 	/* | 
 | 1370 | 	 * All block lookups have been performed. For READ requests | 
 | 1371 | 	 * we can let i_mutex go now that its achieved its purpose | 
 | 1372 | 	 * of protecting us from looking up uninitialized blocks. | 
 | 1373 | 	 */ | 
 | 1374 | 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) | 
 | 1375 | 		inode_unlock(dio->inode); | 
 | 1376 |  | 
 | 1377 | 	/* | 
 | 1378 | 	 * The only time we want to leave bios in flight is when a successful | 
 | 1379 | 	 * partial aio read or full aio write have been setup.  In that case | 
 | 1380 | 	 * bio completion will call aio_complete.  The only time it's safe to | 
 | 1381 | 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. | 
 | 1382 | 	 * This had *better* be the only place that raises -EIOCBQUEUED. | 
 | 1383 | 	 */ | 
 | 1384 | 	BUG_ON(retval == -EIOCBQUEUED); | 
 | 1385 | 	if (dio->is_async && retval == 0 && dio->result && | 
 | 1386 | 	    (iov_iter_rw(iter) == READ || dio->result == count)) | 
 | 1387 | 		retval = -EIOCBQUEUED; | 
 | 1388 | 	else | 
 | 1389 | 		dio_await_completion(dio); | 
 | 1390 |  | 
 | 1391 | 	if (drop_refcount(dio) == 0) { | 
 | 1392 | 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); | 
 | 1393 | 	} else | 
 | 1394 | 		BUG_ON(retval != -EIOCBQUEUED); | 
 | 1395 |  | 
 | 1396 | out: | 
 | 1397 | 	return retval; | 
 | 1398 | } | 
 | 1399 |  | 
 | 1400 | ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, | 
 | 1401 | 			     struct block_device *bdev, struct iov_iter *iter, | 
 | 1402 | 			     get_block_t get_block, | 
 | 1403 | 			     dio_iodone_t end_io, dio_submit_t submit_io, | 
 | 1404 | 			     int flags) | 
 | 1405 | { | 
 | 1406 | 	/* | 
 | 1407 | 	 * The block device state is needed in the end to finally | 
 | 1408 | 	 * submit everything.  Since it's likely to be cache cold | 
 | 1409 | 	 * prefetch it here as first thing to hide some of the | 
 | 1410 | 	 * latency. | 
 | 1411 | 	 * | 
 | 1412 | 	 * Attempt to prefetch the pieces we likely need later. | 
 | 1413 | 	 */ | 
 | 1414 | 	prefetch(&bdev->bd_disk->part_tbl); | 
 | 1415 | 	prefetch(bdev->bd_queue); | 
 | 1416 | 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); | 
 | 1417 |  | 
 | 1418 | 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, | 
 | 1419 | 				     end_io, submit_io, flags); | 
 | 1420 | } | 
 | 1421 |  | 
 | 1422 | EXPORT_SYMBOL(__blockdev_direct_IO); | 
 | 1423 |  | 
 | 1424 | static __init int dio_init(void) | 
 | 1425 | { | 
 | 1426 | 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC); | 
 | 1427 | 	return 0; | 
 | 1428 | } | 
 | 1429 | module_init(dio_init) |