| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * Generic hugetlb support. | 
 | 3 |  * (C) Nadia Yvette Chambers, April 2004 | 
 | 4 |  */ | 
 | 5 | #include <linux/list.h> | 
 | 6 | #include <linux/init.h> | 
 | 7 | #include <linux/mm.h> | 
 | 8 | #include <linux/seq_file.h> | 
 | 9 | #include <linux/sysctl.h> | 
 | 10 | #include <linux/highmem.h> | 
 | 11 | #include <linux/mmu_notifier.h> | 
 | 12 | #include <linux/nodemask.h> | 
 | 13 | #include <linux/pagemap.h> | 
 | 14 | #include <linux/mempolicy.h> | 
 | 15 | #include <linux/compiler.h> | 
 | 16 | #include <linux/cpuset.h> | 
 | 17 | #include <linux/mutex.h> | 
 | 18 | #include <linux/bootmem.h> | 
 | 19 | #include <linux/sysfs.h> | 
 | 20 | #include <linux/slab.h> | 
 | 21 | #include <linux/mmdebug.h> | 
 | 22 | #include <linux/sched/signal.h> | 
 | 23 | #include <linux/rmap.h> | 
 | 24 | #include <linux/string_helpers.h> | 
 | 25 | #include <linux/swap.h> | 
 | 26 | #include <linux/swapops.h> | 
 | 27 | #include <linux/jhash.h> | 
 | 28 |  | 
 | 29 | #include <asm/page.h> | 
 | 30 | #include <asm/pgtable.h> | 
 | 31 | #include <asm/tlb.h> | 
 | 32 |  | 
 | 33 | #include <linux/io.h> | 
 | 34 | #include <linux/hugetlb.h> | 
 | 35 | #include <linux/hugetlb_cgroup.h> | 
 | 36 | #include <linux/node.h> | 
 | 37 | #include <linux/userfaultfd_k.h> | 
 | 38 | #include <linux/page_owner.h> | 
 | 39 | #include "internal.h" | 
 | 40 |  | 
 | 41 | int hugetlb_max_hstate __read_mostly; | 
 | 42 | unsigned int default_hstate_idx; | 
 | 43 | struct hstate hstates[HUGE_MAX_HSTATE]; | 
 | 44 | /* | 
 | 45 |  * Minimum page order among possible hugepage sizes, set to a proper value | 
 | 46 |  * at boot time. | 
 | 47 |  */ | 
 | 48 | static unsigned int minimum_order __read_mostly = UINT_MAX; | 
 | 49 |  | 
 | 50 | __initdata LIST_HEAD(huge_boot_pages); | 
 | 51 |  | 
 | 52 | /* for command line parsing */ | 
 | 53 | static struct hstate * __initdata parsed_hstate; | 
 | 54 | static unsigned long __initdata default_hstate_max_huge_pages; | 
 | 55 | static unsigned long __initdata default_hstate_size; | 
 | 56 | static bool __initdata parsed_valid_hugepagesz = true; | 
 | 57 |  | 
 | 58 | /* | 
 | 59 |  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, | 
 | 60 |  * free_huge_pages, and surplus_huge_pages. | 
 | 61 |  */ | 
 | 62 | DEFINE_SPINLOCK(hugetlb_lock); | 
 | 63 |  | 
 | 64 | /* | 
 | 65 |  * Serializes faults on the same logical page.  This is used to | 
 | 66 |  * prevent spurious OOMs when the hugepage pool is fully utilized. | 
 | 67 |  */ | 
 | 68 | static int num_fault_mutexes; | 
 | 69 | struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; | 
 | 70 |  | 
 | 71 | /* Forward declaration */ | 
 | 72 | static int hugetlb_acct_memory(struct hstate *h, long delta); | 
 | 73 |  | 
 | 74 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) | 
 | 75 | { | 
 | 76 | 	bool free = (spool->count == 0) && (spool->used_hpages == 0); | 
 | 77 |  | 
 | 78 | 	spin_unlock(&spool->lock); | 
 | 79 |  | 
 | 80 | 	/* If no pages are used, and no other handles to the subpool | 
 | 81 | 	 * remain, give up any reservations mased on minimum size and | 
 | 82 | 	 * free the subpool */ | 
 | 83 | 	if (free) { | 
 | 84 | 		if (spool->min_hpages != -1) | 
 | 85 | 			hugetlb_acct_memory(spool->hstate, | 
 | 86 | 						-spool->min_hpages); | 
 | 87 | 		kfree(spool); | 
 | 88 | 	} | 
 | 89 | } | 
 | 90 |  | 
 | 91 | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, | 
 | 92 | 						long min_hpages) | 
 | 93 | { | 
 | 94 | 	struct hugepage_subpool *spool; | 
 | 95 |  | 
 | 96 | 	spool = kzalloc(sizeof(*spool), GFP_KERNEL); | 
 | 97 | 	if (!spool) | 
 | 98 | 		return NULL; | 
 | 99 |  | 
 | 100 | 	spin_lock_init(&spool->lock); | 
 | 101 | 	spool->count = 1; | 
 | 102 | 	spool->max_hpages = max_hpages; | 
 | 103 | 	spool->hstate = h; | 
 | 104 | 	spool->min_hpages = min_hpages; | 
 | 105 |  | 
 | 106 | 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { | 
 | 107 | 		kfree(spool); | 
 | 108 | 		return NULL; | 
 | 109 | 	} | 
 | 110 | 	spool->rsv_hpages = min_hpages; | 
 | 111 |  | 
 | 112 | 	return spool; | 
 | 113 | } | 
 | 114 |  | 
 | 115 | void hugepage_put_subpool(struct hugepage_subpool *spool) | 
 | 116 | { | 
 | 117 | 	spin_lock(&spool->lock); | 
 | 118 | 	BUG_ON(!spool->count); | 
 | 119 | 	spool->count--; | 
 | 120 | 	unlock_or_release_subpool(spool); | 
 | 121 | } | 
 | 122 |  | 
 | 123 | /* | 
 | 124 |  * Subpool accounting for allocating and reserving pages. | 
 | 125 |  * Return -ENOMEM if there are not enough resources to satisfy the | 
 | 126 |  * the request.  Otherwise, return the number of pages by which the | 
 | 127 |  * global pools must be adjusted (upward).  The returned value may | 
 | 128 |  * only be different than the passed value (delta) in the case where | 
 | 129 |  * a subpool minimum size must be manitained. | 
 | 130 |  */ | 
 | 131 | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, | 
 | 132 | 				      long delta) | 
 | 133 | { | 
 | 134 | 	long ret = delta; | 
 | 135 |  | 
 | 136 | 	if (!spool) | 
 | 137 | 		return ret; | 
 | 138 |  | 
 | 139 | 	spin_lock(&spool->lock); | 
 | 140 |  | 
 | 141 | 	if (spool->max_hpages != -1) {		/* maximum size accounting */ | 
 | 142 | 		if ((spool->used_hpages + delta) <= spool->max_hpages) | 
 | 143 | 			spool->used_hpages += delta; | 
 | 144 | 		else { | 
 | 145 | 			ret = -ENOMEM; | 
 | 146 | 			goto unlock_ret; | 
 | 147 | 		} | 
 | 148 | 	} | 
 | 149 |  | 
 | 150 | 	/* minimum size accounting */ | 
 | 151 | 	if (spool->min_hpages != -1 && spool->rsv_hpages) { | 
 | 152 | 		if (delta > spool->rsv_hpages) { | 
 | 153 | 			/* | 
 | 154 | 			 * Asking for more reserves than those already taken on | 
 | 155 | 			 * behalf of subpool.  Return difference. | 
 | 156 | 			 */ | 
 | 157 | 			ret = delta - spool->rsv_hpages; | 
 | 158 | 			spool->rsv_hpages = 0; | 
 | 159 | 		} else { | 
 | 160 | 			ret = 0;	/* reserves already accounted for */ | 
 | 161 | 			spool->rsv_hpages -= delta; | 
 | 162 | 		} | 
 | 163 | 	} | 
 | 164 |  | 
 | 165 | unlock_ret: | 
 | 166 | 	spin_unlock(&spool->lock); | 
 | 167 | 	return ret; | 
 | 168 | } | 
 | 169 |  | 
 | 170 | /* | 
 | 171 |  * Subpool accounting for freeing and unreserving pages. | 
 | 172 |  * Return the number of global page reservations that must be dropped. | 
 | 173 |  * The return value may only be different than the passed value (delta) | 
 | 174 |  * in the case where a subpool minimum size must be maintained. | 
 | 175 |  */ | 
 | 176 | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, | 
 | 177 | 				       long delta) | 
 | 178 | { | 
 | 179 | 	long ret = delta; | 
 | 180 |  | 
 | 181 | 	if (!spool) | 
 | 182 | 		return delta; | 
 | 183 |  | 
 | 184 | 	spin_lock(&spool->lock); | 
 | 185 |  | 
 | 186 | 	if (spool->max_hpages != -1)		/* maximum size accounting */ | 
 | 187 | 		spool->used_hpages -= delta; | 
 | 188 |  | 
 | 189 | 	 /* minimum size accounting */ | 
 | 190 | 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { | 
 | 191 | 		if (spool->rsv_hpages + delta <= spool->min_hpages) | 
 | 192 | 			ret = 0; | 
 | 193 | 		else | 
 | 194 | 			ret = spool->rsv_hpages + delta - spool->min_hpages; | 
 | 195 |  | 
 | 196 | 		spool->rsv_hpages += delta; | 
 | 197 | 		if (spool->rsv_hpages > spool->min_hpages) | 
 | 198 | 			spool->rsv_hpages = spool->min_hpages; | 
 | 199 | 	} | 
 | 200 |  | 
 | 201 | 	/* | 
 | 202 | 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding | 
 | 203 | 	 * quota reference, free it now. | 
 | 204 | 	 */ | 
 | 205 | 	unlock_or_release_subpool(spool); | 
 | 206 |  | 
 | 207 | 	return ret; | 
 | 208 | } | 
 | 209 |  | 
 | 210 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | 
 | 211 | { | 
 | 212 | 	return HUGETLBFS_SB(inode->i_sb)->spool; | 
 | 213 | } | 
 | 214 |  | 
 | 215 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | 
 | 216 | { | 
 | 217 | 	return subpool_inode(file_inode(vma->vm_file)); | 
 | 218 | } | 
 | 219 |  | 
 | 220 | /* | 
 | 221 |  * Region tracking -- allows tracking of reservations and instantiated pages | 
 | 222 |  *                    across the pages in a mapping. | 
 | 223 |  * | 
 | 224 |  * The region data structures are embedded into a resv_map and protected | 
 | 225 |  * by a resv_map's lock.  The set of regions within the resv_map represent | 
 | 226 |  * reservations for huge pages, or huge pages that have already been | 
 | 227 |  * instantiated within the map.  The from and to elements are huge page | 
 | 228 |  * indicies into the associated mapping.  from indicates the starting index | 
 | 229 |  * of the region.  to represents the first index past the end of  the region. | 
 | 230 |  * | 
 | 231 |  * For example, a file region structure with from == 0 and to == 4 represents | 
 | 232 |  * four huge pages in a mapping.  It is important to note that the to element | 
 | 233 |  * represents the first element past the end of the region. This is used in | 
 | 234 |  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. | 
 | 235 |  * | 
 | 236 |  * Interval notation of the form [from, to) will be used to indicate that | 
 | 237 |  * the endpoint from is inclusive and to is exclusive. | 
 | 238 |  */ | 
 | 239 | struct file_region { | 
 | 240 | 	struct list_head link; | 
 | 241 | 	long from; | 
 | 242 | 	long to; | 
 | 243 | }; | 
 | 244 |  | 
 | 245 | /* | 
 | 246 |  * Add the huge page range represented by [f, t) to the reserve | 
 | 247 |  * map.  In the normal case, existing regions will be expanded | 
 | 248 |  * to accommodate the specified range.  Sufficient regions should | 
 | 249 |  * exist for expansion due to the previous call to region_chg | 
 | 250 |  * with the same range.  However, it is possible that region_del | 
 | 251 |  * could have been called after region_chg and modifed the map | 
 | 252 |  * in such a way that no region exists to be expanded.  In this | 
 | 253 |  * case, pull a region descriptor from the cache associated with | 
 | 254 |  * the map and use that for the new range. | 
 | 255 |  * | 
 | 256 |  * Return the number of new huge pages added to the map.  This | 
 | 257 |  * number is greater than or equal to zero. | 
 | 258 |  */ | 
 | 259 | static long region_add(struct resv_map *resv, long f, long t) | 
 | 260 | { | 
 | 261 | 	struct list_head *head = &resv->regions; | 
 | 262 | 	struct file_region *rg, *nrg, *trg; | 
 | 263 | 	long add = 0; | 
 | 264 |  | 
 | 265 | 	spin_lock(&resv->lock); | 
 | 266 | 	/* Locate the region we are either in or before. */ | 
 | 267 | 	list_for_each_entry(rg, head, link) | 
 | 268 | 		if (f <= rg->to) | 
 | 269 | 			break; | 
 | 270 |  | 
 | 271 | 	/* | 
 | 272 | 	 * If no region exists which can be expanded to include the | 
 | 273 | 	 * specified range, the list must have been modified by an | 
 | 274 | 	 * interleving call to region_del().  Pull a region descriptor | 
 | 275 | 	 * from the cache and use it for this range. | 
 | 276 | 	 */ | 
 | 277 | 	if (&rg->link == head || t < rg->from) { | 
 | 278 | 		VM_BUG_ON(resv->region_cache_count <= 0); | 
 | 279 |  | 
 | 280 | 		resv->region_cache_count--; | 
 | 281 | 		nrg = list_first_entry(&resv->region_cache, struct file_region, | 
 | 282 | 					link); | 
 | 283 | 		list_del(&nrg->link); | 
 | 284 |  | 
 | 285 | 		nrg->from = f; | 
 | 286 | 		nrg->to = t; | 
 | 287 | 		list_add(&nrg->link, rg->link.prev); | 
 | 288 |  | 
 | 289 | 		add += t - f; | 
 | 290 | 		goto out_locked; | 
 | 291 | 	} | 
 | 292 |  | 
 | 293 | 	/* Round our left edge to the current segment if it encloses us. */ | 
 | 294 | 	if (f > rg->from) | 
 | 295 | 		f = rg->from; | 
 | 296 |  | 
 | 297 | 	/* Check for and consume any regions we now overlap with. */ | 
 | 298 | 	nrg = rg; | 
 | 299 | 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
 | 300 | 		if (&rg->link == head) | 
 | 301 | 			break; | 
 | 302 | 		if (rg->from > t) | 
 | 303 | 			break; | 
 | 304 |  | 
 | 305 | 		/* If this area reaches higher then extend our area to | 
 | 306 | 		 * include it completely.  If this is not the first area | 
 | 307 | 		 * which we intend to reuse, free it. */ | 
 | 308 | 		if (rg->to > t) | 
 | 309 | 			t = rg->to; | 
 | 310 | 		if (rg != nrg) { | 
 | 311 | 			/* Decrement return value by the deleted range. | 
 | 312 | 			 * Another range will span this area so that by | 
 | 313 | 			 * end of routine add will be >= zero | 
 | 314 | 			 */ | 
 | 315 | 			add -= (rg->to - rg->from); | 
 | 316 | 			list_del(&rg->link); | 
 | 317 | 			kfree(rg); | 
 | 318 | 		} | 
 | 319 | 	} | 
 | 320 |  | 
 | 321 | 	add += (nrg->from - f);		/* Added to beginning of region */ | 
 | 322 | 	nrg->from = f; | 
 | 323 | 	add += t - nrg->to;		/* Added to end of region */ | 
 | 324 | 	nrg->to = t; | 
 | 325 |  | 
 | 326 | out_locked: | 
 | 327 | 	resv->adds_in_progress--; | 
 | 328 | 	spin_unlock(&resv->lock); | 
 | 329 | 	VM_BUG_ON(add < 0); | 
 | 330 | 	return add; | 
 | 331 | } | 
 | 332 |  | 
 | 333 | /* | 
 | 334 |  * Examine the existing reserve map and determine how many | 
 | 335 |  * huge pages in the specified range [f, t) are NOT currently | 
 | 336 |  * represented.  This routine is called before a subsequent | 
 | 337 |  * call to region_add that will actually modify the reserve | 
 | 338 |  * map to add the specified range [f, t).  region_chg does | 
 | 339 |  * not change the number of huge pages represented by the | 
 | 340 |  * map.  However, if the existing regions in the map can not | 
 | 341 |  * be expanded to represent the new range, a new file_region | 
 | 342 |  * structure is added to the map as a placeholder.  This is | 
 | 343 |  * so that the subsequent region_add call will have all the | 
 | 344 |  * regions it needs and will not fail. | 
 | 345 |  * | 
 | 346 |  * Upon entry, region_chg will also examine the cache of region descriptors | 
 | 347 |  * associated with the map.  If there are not enough descriptors cached, one | 
 | 348 |  * will be allocated for the in progress add operation. | 
 | 349 |  * | 
 | 350 |  * Returns the number of huge pages that need to be added to the existing | 
 | 351 |  * reservation map for the range [f, t).  This number is greater or equal to | 
 | 352 |  * zero.  -ENOMEM is returned if a new file_region structure or cache entry | 
 | 353 |  * is needed and can not be allocated. | 
 | 354 |  */ | 
 | 355 | static long region_chg(struct resv_map *resv, long f, long t) | 
 | 356 | { | 
 | 357 | 	struct list_head *head = &resv->regions; | 
 | 358 | 	struct file_region *rg, *nrg = NULL; | 
 | 359 | 	long chg = 0; | 
 | 360 |  | 
 | 361 | retry: | 
 | 362 | 	spin_lock(&resv->lock); | 
 | 363 | retry_locked: | 
 | 364 | 	resv->adds_in_progress++; | 
 | 365 |  | 
 | 366 | 	/* | 
 | 367 | 	 * Check for sufficient descriptors in the cache to accommodate | 
 | 368 | 	 * the number of in progress add operations. | 
 | 369 | 	 */ | 
 | 370 | 	if (resv->adds_in_progress > resv->region_cache_count) { | 
 | 371 | 		struct file_region *trg; | 
 | 372 |  | 
 | 373 | 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); | 
 | 374 | 		/* Must drop lock to allocate a new descriptor. */ | 
 | 375 | 		resv->adds_in_progress--; | 
 | 376 | 		spin_unlock(&resv->lock); | 
 | 377 |  | 
 | 378 | 		trg = kmalloc(sizeof(*trg), GFP_KERNEL); | 
 | 379 | 		if (!trg) { | 
 | 380 | 			kfree(nrg); | 
 | 381 | 			return -ENOMEM; | 
 | 382 | 		} | 
 | 383 |  | 
 | 384 | 		spin_lock(&resv->lock); | 
 | 385 | 		list_add(&trg->link, &resv->region_cache); | 
 | 386 | 		resv->region_cache_count++; | 
 | 387 | 		goto retry_locked; | 
 | 388 | 	} | 
 | 389 |  | 
 | 390 | 	/* Locate the region we are before or in. */ | 
 | 391 | 	list_for_each_entry(rg, head, link) | 
 | 392 | 		if (f <= rg->to) | 
 | 393 | 			break; | 
 | 394 |  | 
 | 395 | 	/* If we are below the current region then a new region is required. | 
 | 396 | 	 * Subtle, allocate a new region at the position but make it zero | 
 | 397 | 	 * size such that we can guarantee to record the reservation. */ | 
 | 398 | 	if (&rg->link == head || t < rg->from) { | 
 | 399 | 		if (!nrg) { | 
 | 400 | 			resv->adds_in_progress--; | 
 | 401 | 			spin_unlock(&resv->lock); | 
 | 402 | 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
 | 403 | 			if (!nrg) | 
 | 404 | 				return -ENOMEM; | 
 | 405 |  | 
 | 406 | 			nrg->from = f; | 
 | 407 | 			nrg->to   = f; | 
 | 408 | 			INIT_LIST_HEAD(&nrg->link); | 
 | 409 | 			goto retry; | 
 | 410 | 		} | 
 | 411 |  | 
 | 412 | 		list_add(&nrg->link, rg->link.prev); | 
 | 413 | 		chg = t - f; | 
 | 414 | 		goto out_nrg; | 
 | 415 | 	} | 
 | 416 |  | 
 | 417 | 	/* Round our left edge to the current segment if it encloses us. */ | 
 | 418 | 	if (f > rg->from) | 
 | 419 | 		f = rg->from; | 
 | 420 | 	chg = t - f; | 
 | 421 |  | 
 | 422 | 	/* Check for and consume any regions we now overlap with. */ | 
 | 423 | 	list_for_each_entry(rg, rg->link.prev, link) { | 
 | 424 | 		if (&rg->link == head) | 
 | 425 | 			break; | 
 | 426 | 		if (rg->from > t) | 
 | 427 | 			goto out; | 
 | 428 |  | 
 | 429 | 		/* We overlap with this area, if it extends further than | 
 | 430 | 		 * us then we must extend ourselves.  Account for its | 
 | 431 | 		 * existing reservation. */ | 
 | 432 | 		if (rg->to > t) { | 
 | 433 | 			chg += rg->to - t; | 
 | 434 | 			t = rg->to; | 
 | 435 | 		} | 
 | 436 | 		chg -= rg->to - rg->from; | 
 | 437 | 	} | 
 | 438 |  | 
 | 439 | out: | 
 | 440 | 	spin_unlock(&resv->lock); | 
 | 441 | 	/*  We already know we raced and no longer need the new region */ | 
 | 442 | 	kfree(nrg); | 
 | 443 | 	return chg; | 
 | 444 | out_nrg: | 
 | 445 | 	spin_unlock(&resv->lock); | 
 | 446 | 	return chg; | 
 | 447 | } | 
 | 448 |  | 
 | 449 | /* | 
 | 450 |  * Abort the in progress add operation.  The adds_in_progress field | 
 | 451 |  * of the resv_map keeps track of the operations in progress between | 
 | 452 |  * calls to region_chg and region_add.  Operations are sometimes | 
 | 453 |  * aborted after the call to region_chg.  In such cases, region_abort | 
 | 454 |  * is called to decrement the adds_in_progress counter. | 
 | 455 |  * | 
 | 456 |  * NOTE: The range arguments [f, t) are not needed or used in this | 
 | 457 |  * routine.  They are kept to make reading the calling code easier as | 
 | 458 |  * arguments will match the associated region_chg call. | 
 | 459 |  */ | 
 | 460 | static void region_abort(struct resv_map *resv, long f, long t) | 
 | 461 | { | 
 | 462 | 	spin_lock(&resv->lock); | 
 | 463 | 	VM_BUG_ON(!resv->region_cache_count); | 
 | 464 | 	resv->adds_in_progress--; | 
 | 465 | 	spin_unlock(&resv->lock); | 
 | 466 | } | 
 | 467 |  | 
 | 468 | /* | 
 | 469 |  * Delete the specified range [f, t) from the reserve map.  If the | 
 | 470 |  * t parameter is LONG_MAX, this indicates that ALL regions after f | 
 | 471 |  * should be deleted.  Locate the regions which intersect [f, t) | 
 | 472 |  * and either trim, delete or split the existing regions. | 
 | 473 |  * | 
 | 474 |  * Returns the number of huge pages deleted from the reserve map. | 
 | 475 |  * In the normal case, the return value is zero or more.  In the | 
 | 476 |  * case where a region must be split, a new region descriptor must | 
 | 477 |  * be allocated.  If the allocation fails, -ENOMEM will be returned. | 
 | 478 |  * NOTE: If the parameter t == LONG_MAX, then we will never split | 
 | 479 |  * a region and possibly return -ENOMEM.  Callers specifying | 
 | 480 |  * t == LONG_MAX do not need to check for -ENOMEM error. | 
 | 481 |  */ | 
 | 482 | static long region_del(struct resv_map *resv, long f, long t) | 
 | 483 | { | 
 | 484 | 	struct list_head *head = &resv->regions; | 
 | 485 | 	struct file_region *rg, *trg; | 
 | 486 | 	struct file_region *nrg = NULL; | 
 | 487 | 	long del = 0; | 
 | 488 |  | 
 | 489 | retry: | 
 | 490 | 	spin_lock(&resv->lock); | 
 | 491 | 	list_for_each_entry_safe(rg, trg, head, link) { | 
 | 492 | 		/* | 
 | 493 | 		 * Skip regions before the range to be deleted.  file_region | 
 | 494 | 		 * ranges are normally of the form [from, to).  However, there | 
 | 495 | 		 * may be a "placeholder" entry in the map which is of the form | 
 | 496 | 		 * (from, to) with from == to.  Check for placeholder entries | 
 | 497 | 		 * at the beginning of the range to be deleted. | 
 | 498 | 		 */ | 
 | 499 | 		if (rg->to <= f && (rg->to != rg->from || rg->to != f)) | 
 | 500 | 			continue; | 
 | 501 |  | 
 | 502 | 		if (rg->from >= t) | 
 | 503 | 			break; | 
 | 504 |  | 
 | 505 | 		if (f > rg->from && t < rg->to) { /* Must split region */ | 
 | 506 | 			/* | 
 | 507 | 			 * Check for an entry in the cache before dropping | 
 | 508 | 			 * lock and attempting allocation. | 
 | 509 | 			 */ | 
 | 510 | 			if (!nrg && | 
 | 511 | 			    resv->region_cache_count > resv->adds_in_progress) { | 
 | 512 | 				nrg = list_first_entry(&resv->region_cache, | 
 | 513 | 							struct file_region, | 
 | 514 | 							link); | 
 | 515 | 				list_del(&nrg->link); | 
 | 516 | 				resv->region_cache_count--; | 
 | 517 | 			} | 
 | 518 |  | 
 | 519 | 			if (!nrg) { | 
 | 520 | 				spin_unlock(&resv->lock); | 
 | 521 | 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
 | 522 | 				if (!nrg) | 
 | 523 | 					return -ENOMEM; | 
 | 524 | 				goto retry; | 
 | 525 | 			} | 
 | 526 |  | 
 | 527 | 			del += t - f; | 
 | 528 |  | 
 | 529 | 			/* New entry for end of split region */ | 
 | 530 | 			nrg->from = t; | 
 | 531 | 			nrg->to = rg->to; | 
 | 532 | 			INIT_LIST_HEAD(&nrg->link); | 
 | 533 |  | 
 | 534 | 			/* Original entry is trimmed */ | 
 | 535 | 			rg->to = f; | 
 | 536 |  | 
 | 537 | 			list_add(&nrg->link, &rg->link); | 
 | 538 | 			nrg = NULL; | 
 | 539 | 			break; | 
 | 540 | 		} | 
 | 541 |  | 
 | 542 | 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */ | 
 | 543 | 			del += rg->to - rg->from; | 
 | 544 | 			list_del(&rg->link); | 
 | 545 | 			kfree(rg); | 
 | 546 | 			continue; | 
 | 547 | 		} | 
 | 548 |  | 
 | 549 | 		if (f <= rg->from) {	/* Trim beginning of region */ | 
 | 550 | 			del += t - rg->from; | 
 | 551 | 			rg->from = t; | 
 | 552 | 		} else {		/* Trim end of region */ | 
 | 553 | 			del += rg->to - f; | 
 | 554 | 			rg->to = f; | 
 | 555 | 		} | 
 | 556 | 	} | 
 | 557 |  | 
 | 558 | 	spin_unlock(&resv->lock); | 
 | 559 | 	kfree(nrg); | 
 | 560 | 	return del; | 
 | 561 | } | 
 | 562 |  | 
 | 563 | /* | 
 | 564 |  * A rare out of memory error was encountered which prevented removal of | 
 | 565 |  * the reserve map region for a page.  The huge page itself was free'ed | 
 | 566 |  * and removed from the page cache.  This routine will adjust the subpool | 
 | 567 |  * usage count, and the global reserve count if needed.  By incrementing | 
 | 568 |  * these counts, the reserve map entry which could not be deleted will | 
 | 569 |  * appear as a "reserved" entry instead of simply dangling with incorrect | 
 | 570 |  * counts. | 
 | 571 |  */ | 
 | 572 | void hugetlb_fix_reserve_counts(struct inode *inode) | 
 | 573 | { | 
 | 574 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 575 | 	long rsv_adjust; | 
 | 576 |  | 
 | 577 | 	rsv_adjust = hugepage_subpool_get_pages(spool, 1); | 
 | 578 | 	if (rsv_adjust) { | 
 | 579 | 		struct hstate *h = hstate_inode(inode); | 
 | 580 |  | 
 | 581 | 		hugetlb_acct_memory(h, 1); | 
 | 582 | 	} | 
 | 583 | } | 
 | 584 |  | 
 | 585 | /* | 
 | 586 |  * Count and return the number of huge pages in the reserve map | 
 | 587 |  * that intersect with the range [f, t). | 
 | 588 |  */ | 
 | 589 | static long region_count(struct resv_map *resv, long f, long t) | 
 | 590 | { | 
 | 591 | 	struct list_head *head = &resv->regions; | 
 | 592 | 	struct file_region *rg; | 
 | 593 | 	long chg = 0; | 
 | 594 |  | 
 | 595 | 	spin_lock(&resv->lock); | 
 | 596 | 	/* Locate each segment we overlap with, and count that overlap. */ | 
 | 597 | 	list_for_each_entry(rg, head, link) { | 
 | 598 | 		long seg_from; | 
 | 599 | 		long seg_to; | 
 | 600 |  | 
 | 601 | 		if (rg->to <= f) | 
 | 602 | 			continue; | 
 | 603 | 		if (rg->from >= t) | 
 | 604 | 			break; | 
 | 605 |  | 
 | 606 | 		seg_from = max(rg->from, f); | 
 | 607 | 		seg_to = min(rg->to, t); | 
 | 608 |  | 
 | 609 | 		chg += seg_to - seg_from; | 
 | 610 | 	} | 
 | 611 | 	spin_unlock(&resv->lock); | 
 | 612 |  | 
 | 613 | 	return chg; | 
 | 614 | } | 
 | 615 |  | 
 | 616 | /* | 
 | 617 |  * Convert the address within this vma to the page offset within | 
 | 618 |  * the mapping, in pagecache page units; huge pages here. | 
 | 619 |  */ | 
 | 620 | static pgoff_t vma_hugecache_offset(struct hstate *h, | 
 | 621 | 			struct vm_area_struct *vma, unsigned long address) | 
 | 622 | { | 
 | 623 | 	return ((address - vma->vm_start) >> huge_page_shift(h)) + | 
 | 624 | 			(vma->vm_pgoff >> huge_page_order(h)); | 
 | 625 | } | 
 | 626 |  | 
 | 627 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | 
 | 628 | 				     unsigned long address) | 
 | 629 | { | 
 | 630 | 	return vma_hugecache_offset(hstate_vma(vma), vma, address); | 
 | 631 | } | 
 | 632 | EXPORT_SYMBOL_GPL(linear_hugepage_index); | 
 | 633 |  | 
 | 634 | /* | 
 | 635 |  * Return the size of the pages allocated when backing a VMA. In the majority | 
 | 636 |  * cases this will be same size as used by the page table entries. | 
 | 637 |  */ | 
 | 638 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | 
 | 639 | { | 
 | 640 | 	if (vma->vm_ops && vma->vm_ops->pagesize) | 
 | 641 | 		return vma->vm_ops->pagesize(vma); | 
 | 642 | 	return PAGE_SIZE; | 
 | 643 | } | 
 | 644 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); | 
 | 645 |  | 
 | 646 | /* | 
 | 647 |  * Return the page size being used by the MMU to back a VMA. In the majority | 
 | 648 |  * of cases, the page size used by the kernel matches the MMU size. On | 
 | 649 |  * architectures where it differs, an architecture-specific 'strong' | 
 | 650 |  * version of this symbol is required. | 
 | 651 |  */ | 
 | 652 | __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
 | 653 | { | 
 | 654 | 	return vma_kernel_pagesize(vma); | 
 | 655 | } | 
 | 656 |  | 
 | 657 | /* | 
 | 658 |  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom | 
 | 659 |  * bits of the reservation map pointer, which are always clear due to | 
 | 660 |  * alignment. | 
 | 661 |  */ | 
 | 662 | #define HPAGE_RESV_OWNER    (1UL << 0) | 
 | 663 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | 
 | 664 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | 
 | 665 |  | 
 | 666 | /* | 
 | 667 |  * These helpers are used to track how many pages are reserved for | 
 | 668 |  * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | 
 | 669 |  * is guaranteed to have their future faults succeed. | 
 | 670 |  * | 
 | 671 |  * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | 
 | 672 |  * the reserve counters are updated with the hugetlb_lock held. It is safe | 
 | 673 |  * to reset the VMA at fork() time as it is not in use yet and there is no | 
 | 674 |  * chance of the global counters getting corrupted as a result of the values. | 
 | 675 |  * | 
 | 676 |  * The private mapping reservation is represented in a subtly different | 
 | 677 |  * manner to a shared mapping.  A shared mapping has a region map associated | 
 | 678 |  * with the underlying file, this region map represents the backing file | 
 | 679 |  * pages which have ever had a reservation assigned which this persists even | 
 | 680 |  * after the page is instantiated.  A private mapping has a region map | 
 | 681 |  * associated with the original mmap which is attached to all VMAs which | 
 | 682 |  * reference it, this region map represents those offsets which have consumed | 
 | 683 |  * reservation ie. where pages have been instantiated. | 
 | 684 |  */ | 
 | 685 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | 
 | 686 | { | 
 | 687 | 	return (unsigned long)vma->vm_private_data; | 
 | 688 | } | 
 | 689 |  | 
 | 690 | static void set_vma_private_data(struct vm_area_struct *vma, | 
 | 691 | 							unsigned long value) | 
 | 692 | { | 
 | 693 | 	vma->vm_private_data = (void *)value; | 
 | 694 | } | 
 | 695 |  | 
 | 696 | struct resv_map *resv_map_alloc(void) | 
 | 697 | { | 
 | 698 | 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 
 | 699 | 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); | 
 | 700 |  | 
 | 701 | 	if (!resv_map || !rg) { | 
 | 702 | 		kfree(resv_map); | 
 | 703 | 		kfree(rg); | 
 | 704 | 		return NULL; | 
 | 705 | 	} | 
 | 706 |  | 
 | 707 | 	kref_init(&resv_map->refs); | 
 | 708 | 	spin_lock_init(&resv_map->lock); | 
 | 709 | 	INIT_LIST_HEAD(&resv_map->regions); | 
 | 710 |  | 
 | 711 | 	resv_map->adds_in_progress = 0; | 
 | 712 |  | 
 | 713 | 	INIT_LIST_HEAD(&resv_map->region_cache); | 
 | 714 | 	list_add(&rg->link, &resv_map->region_cache); | 
 | 715 | 	resv_map->region_cache_count = 1; | 
 | 716 |  | 
 | 717 | 	return resv_map; | 
 | 718 | } | 
 | 719 |  | 
 | 720 | void resv_map_release(struct kref *ref) | 
 | 721 | { | 
 | 722 | 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 
 | 723 | 	struct list_head *head = &resv_map->region_cache; | 
 | 724 | 	struct file_region *rg, *trg; | 
 | 725 |  | 
 | 726 | 	/* Clear out any active regions before we release the map. */ | 
 | 727 | 	region_del(resv_map, 0, LONG_MAX); | 
 | 728 |  | 
 | 729 | 	/* ... and any entries left in the cache */ | 
 | 730 | 	list_for_each_entry_safe(rg, trg, head, link) { | 
 | 731 | 		list_del(&rg->link); | 
 | 732 | 		kfree(rg); | 
 | 733 | 	} | 
 | 734 |  | 
 | 735 | 	VM_BUG_ON(resv_map->adds_in_progress); | 
 | 736 |  | 
 | 737 | 	kfree(resv_map); | 
 | 738 | } | 
 | 739 |  | 
 | 740 | static inline struct resv_map *inode_resv_map(struct inode *inode) | 
 | 741 | { | 
 | 742 | 	return inode->i_mapping->private_data; | 
 | 743 | } | 
 | 744 |  | 
 | 745 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | 
 | 746 | { | 
 | 747 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 748 | 	if (vma->vm_flags & VM_MAYSHARE) { | 
 | 749 | 		struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 750 | 		struct inode *inode = mapping->host; | 
 | 751 |  | 
 | 752 | 		return inode_resv_map(inode); | 
 | 753 |  | 
 | 754 | 	} else { | 
 | 755 | 		return (struct resv_map *)(get_vma_private_data(vma) & | 
 | 756 | 							~HPAGE_RESV_MASK); | 
 | 757 | 	} | 
 | 758 | } | 
 | 759 |  | 
 | 760 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 
 | 761 | { | 
 | 762 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 763 | 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
 | 764 |  | 
 | 765 | 	set_vma_private_data(vma, (get_vma_private_data(vma) & | 
 | 766 | 				HPAGE_RESV_MASK) | (unsigned long)map); | 
 | 767 | } | 
 | 768 |  | 
 | 769 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | 
 | 770 | { | 
 | 771 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 772 | 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
 | 773 |  | 
 | 774 | 	set_vma_private_data(vma, get_vma_private_data(vma) | flags); | 
 | 775 | } | 
 | 776 |  | 
 | 777 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | 
 | 778 | { | 
 | 779 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 780 |  | 
 | 781 | 	return (get_vma_private_data(vma) & flag) != 0; | 
 | 782 | } | 
 | 783 |  | 
 | 784 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | 
 | 785 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | 
 | 786 | { | 
 | 787 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 788 | 	if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 789 | 		vma->vm_private_data = (void *)0; | 
 | 790 | } | 
 | 791 |  | 
 | 792 | /* Returns true if the VMA has associated reserve pages */ | 
 | 793 | static bool vma_has_reserves(struct vm_area_struct *vma, long chg) | 
 | 794 | { | 
 | 795 | 	if (vma->vm_flags & VM_NORESERVE) { | 
 | 796 | 		/* | 
 | 797 | 		 * This address is already reserved by other process(chg == 0), | 
 | 798 | 		 * so, we should decrement reserved count. Without decrementing, | 
 | 799 | 		 * reserve count remains after releasing inode, because this | 
 | 800 | 		 * allocated page will go into page cache and is regarded as | 
 | 801 | 		 * coming from reserved pool in releasing step.  Currently, we | 
 | 802 | 		 * don't have any other solution to deal with this situation | 
 | 803 | 		 * properly, so add work-around here. | 
 | 804 | 		 */ | 
 | 805 | 		if (vma->vm_flags & VM_MAYSHARE && chg == 0) | 
 | 806 | 			return true; | 
 | 807 | 		else | 
 | 808 | 			return false; | 
 | 809 | 	} | 
 | 810 |  | 
 | 811 | 	/* Shared mappings always use reserves */ | 
 | 812 | 	if (vma->vm_flags & VM_MAYSHARE) { | 
 | 813 | 		/* | 
 | 814 | 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD | 
 | 815 | 		 * be a region map for all pages.  The only situation where | 
 | 816 | 		 * there is no region map is if a hole was punched via | 
 | 817 | 		 * fallocate.  In this case, there really are no reverves to | 
 | 818 | 		 * use.  This situation is indicated if chg != 0. | 
 | 819 | 		 */ | 
 | 820 | 		if (chg) | 
 | 821 | 			return false; | 
 | 822 | 		else | 
 | 823 | 			return true; | 
 | 824 | 	} | 
 | 825 |  | 
 | 826 | 	/* | 
 | 827 | 	 * Only the process that called mmap() has reserves for | 
 | 828 | 	 * private mappings. | 
 | 829 | 	 */ | 
 | 830 | 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 831 | 		/* | 
 | 832 | 		 * Like the shared case above, a hole punch or truncate | 
 | 833 | 		 * could have been performed on the private mapping. | 
 | 834 | 		 * Examine the value of chg to determine if reserves | 
 | 835 | 		 * actually exist or were previously consumed. | 
 | 836 | 		 * Very Subtle - The value of chg comes from a previous | 
 | 837 | 		 * call to vma_needs_reserves().  The reserve map for | 
 | 838 | 		 * private mappings has different (opposite) semantics | 
 | 839 | 		 * than that of shared mappings.  vma_needs_reserves() | 
 | 840 | 		 * has already taken this difference in semantics into | 
 | 841 | 		 * account.  Therefore, the meaning of chg is the same | 
 | 842 | 		 * as in the shared case above.  Code could easily be | 
 | 843 | 		 * combined, but keeping it separate draws attention to | 
 | 844 | 		 * subtle differences. | 
 | 845 | 		 */ | 
 | 846 | 		if (chg) | 
 | 847 | 			return false; | 
 | 848 | 		else | 
 | 849 | 			return true; | 
 | 850 | 	} | 
 | 851 |  | 
 | 852 | 	return false; | 
 | 853 | } | 
 | 854 |  | 
 | 855 | static void enqueue_huge_page(struct hstate *h, struct page *page) | 
 | 856 | { | 
 | 857 | 	int nid = page_to_nid(page); | 
 | 858 | 	list_move(&page->lru, &h->hugepage_freelists[nid]); | 
 | 859 | 	h->free_huge_pages++; | 
 | 860 | 	h->free_huge_pages_node[nid]++; | 
 | 861 | } | 
 | 862 |  | 
 | 863 | static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) | 
 | 864 | { | 
 | 865 | 	struct page *page; | 
 | 866 |  | 
 | 867 | 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) | 
 | 868 | 		if (!PageHWPoison(page)) | 
 | 869 | 			break; | 
 | 870 | 	/* | 
 | 871 | 	 * if 'non-isolated free hugepage' not found on the list, | 
 | 872 | 	 * the allocation fails. | 
 | 873 | 	 */ | 
 | 874 | 	if (&h->hugepage_freelists[nid] == &page->lru) | 
 | 875 | 		return NULL; | 
 | 876 | 	list_move(&page->lru, &h->hugepage_activelist); | 
 | 877 | 	set_page_refcounted(page); | 
 | 878 | 	h->free_huge_pages--; | 
 | 879 | 	h->free_huge_pages_node[nid]--; | 
 | 880 | 	return page; | 
 | 881 | } | 
 | 882 |  | 
 | 883 | static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, | 
 | 884 | 		nodemask_t *nmask) | 
 | 885 | { | 
 | 886 | 	unsigned int cpuset_mems_cookie; | 
 | 887 | 	struct zonelist *zonelist; | 
 | 888 | 	struct zone *zone; | 
 | 889 | 	struct zoneref *z; | 
 | 890 | 	int node = -1; | 
 | 891 |  | 
 | 892 | 	zonelist = node_zonelist(nid, gfp_mask); | 
 | 893 |  | 
 | 894 | retry_cpuset: | 
 | 895 | 	cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 896 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { | 
 | 897 | 		struct page *page; | 
 | 898 |  | 
 | 899 | 		if (!cpuset_zone_allowed(zone, gfp_mask)) | 
 | 900 | 			continue; | 
 | 901 | 		/* | 
 | 902 | 		 * no need to ask again on the same node. Pool is node rather than | 
 | 903 | 		 * zone aware | 
 | 904 | 		 */ | 
 | 905 | 		if (zone_to_nid(zone) == node) | 
 | 906 | 			continue; | 
 | 907 | 		node = zone_to_nid(zone); | 
 | 908 |  | 
 | 909 | 		page = dequeue_huge_page_node_exact(h, node); | 
 | 910 | 		if (page) | 
 | 911 | 			return page; | 
 | 912 | 	} | 
 | 913 | 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) | 
 | 914 | 		goto retry_cpuset; | 
 | 915 |  | 
 | 916 | 	return NULL; | 
 | 917 | } | 
 | 918 |  | 
 | 919 | /* Movability of hugepages depends on migration support. */ | 
 | 920 | static inline gfp_t htlb_alloc_mask(struct hstate *h) | 
 | 921 | { | 
 | 922 | 	if (hugepage_migration_supported(h)) | 
 | 923 | 		return GFP_HIGHUSER_MOVABLE; | 
 | 924 | 	else | 
 | 925 | 		return GFP_HIGHUSER; | 
 | 926 | } | 
 | 927 |  | 
 | 928 | static struct page *dequeue_huge_page_vma(struct hstate *h, | 
 | 929 | 				struct vm_area_struct *vma, | 
 | 930 | 				unsigned long address, int avoid_reserve, | 
 | 931 | 				long chg) | 
 | 932 | { | 
 | 933 | 	struct page *page; | 
 | 934 | 	struct mempolicy *mpol; | 
 | 935 | 	gfp_t gfp_mask; | 
 | 936 | 	nodemask_t *nodemask; | 
 | 937 | 	int nid; | 
 | 938 |  | 
 | 939 | 	/* | 
 | 940 | 	 * A child process with MAP_PRIVATE mappings created by their parent | 
 | 941 | 	 * have no page reserves. This check ensures that reservations are | 
 | 942 | 	 * not "stolen". The child may still get SIGKILLed | 
 | 943 | 	 */ | 
 | 944 | 	if (!vma_has_reserves(vma, chg) && | 
 | 945 | 			h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 946 | 		goto err; | 
 | 947 |  | 
 | 948 | 	/* If reserves cannot be used, ensure enough pages are in the pool */ | 
 | 949 | 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 950 | 		goto err; | 
 | 951 |  | 
 | 952 | 	gfp_mask = htlb_alloc_mask(h); | 
 | 953 | 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
 | 954 | 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); | 
 | 955 | 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { | 
 | 956 | 		SetPagePrivate(page); | 
 | 957 | 		h->resv_huge_pages--; | 
 | 958 | 	} | 
 | 959 |  | 
 | 960 | 	mpol_cond_put(mpol); | 
 | 961 | 	return page; | 
 | 962 |  | 
 | 963 | err: | 
 | 964 | 	return NULL; | 
 | 965 | } | 
 | 966 |  | 
 | 967 | /* | 
 | 968 |  * common helper functions for hstate_next_node_to_{alloc|free}. | 
 | 969 |  * We may have allocated or freed a huge page based on a different | 
 | 970 |  * nodes_allowed previously, so h->next_node_to_{alloc|free} might | 
 | 971 |  * be outside of *nodes_allowed.  Ensure that we use an allowed | 
 | 972 |  * node for alloc or free. | 
 | 973 |  */ | 
 | 974 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | 
 | 975 | { | 
 | 976 | 	nid = next_node_in(nid, *nodes_allowed); | 
 | 977 | 	VM_BUG_ON(nid >= MAX_NUMNODES); | 
 | 978 |  | 
 | 979 | 	return nid; | 
 | 980 | } | 
 | 981 |  | 
 | 982 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | 
 | 983 | { | 
 | 984 | 	if (!node_isset(nid, *nodes_allowed)) | 
 | 985 | 		nid = next_node_allowed(nid, nodes_allowed); | 
 | 986 | 	return nid; | 
 | 987 | } | 
 | 988 |  | 
 | 989 | /* | 
 | 990 |  * returns the previously saved node ["this node"] from which to | 
 | 991 |  * allocate a persistent huge page for the pool and advance the | 
 | 992 |  * next node from which to allocate, handling wrap at end of node | 
 | 993 |  * mask. | 
 | 994 |  */ | 
 | 995 | static int hstate_next_node_to_alloc(struct hstate *h, | 
 | 996 | 					nodemask_t *nodes_allowed) | 
 | 997 | { | 
 | 998 | 	int nid; | 
 | 999 |  | 
 | 1000 | 	VM_BUG_ON(!nodes_allowed); | 
 | 1001 |  | 
 | 1002 | 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | 
 | 1003 | 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | 
 | 1004 |  | 
 | 1005 | 	return nid; | 
 | 1006 | } | 
 | 1007 |  | 
 | 1008 | /* | 
 | 1009 |  * helper for free_pool_huge_page() - return the previously saved | 
 | 1010 |  * node ["this node"] from which to free a huge page.  Advance the | 
 | 1011 |  * next node id whether or not we find a free huge page to free so | 
 | 1012 |  * that the next attempt to free addresses the next node. | 
 | 1013 |  */ | 
 | 1014 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | 
 | 1015 | { | 
 | 1016 | 	int nid; | 
 | 1017 |  | 
 | 1018 | 	VM_BUG_ON(!nodes_allowed); | 
 | 1019 |  | 
 | 1020 | 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | 
 | 1021 | 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | 
 | 1022 |  | 
 | 1023 | 	return nid; | 
 | 1024 | } | 
 | 1025 |  | 
 | 1026 | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\ | 
 | 1027 | 	for (nr_nodes = nodes_weight(*mask);				\ | 
 | 1028 | 		nr_nodes > 0 &&						\ | 
 | 1029 | 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\ | 
 | 1030 | 		nr_nodes--) | 
 | 1031 |  | 
 | 1032 | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\ | 
 | 1033 | 	for (nr_nodes = nodes_weight(*mask);				\ | 
 | 1034 | 		nr_nodes > 0 &&						\ | 
 | 1035 | 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\ | 
 | 1036 | 		nr_nodes--) | 
 | 1037 |  | 
 | 1038 | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE | 
 | 1039 | static void destroy_compound_gigantic_page(struct page *page, | 
 | 1040 | 					unsigned int order) | 
 | 1041 | { | 
 | 1042 | 	int i; | 
 | 1043 | 	int nr_pages = 1 << order; | 
 | 1044 | 	struct page *p = page + 1; | 
 | 1045 |  | 
 | 1046 | 	atomic_set(compound_mapcount_ptr(page), 0); | 
 | 1047 | 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
 | 1048 | 		clear_compound_head(p); | 
 | 1049 | 		set_page_refcounted(p); | 
 | 1050 | 	} | 
 | 1051 |  | 
 | 1052 | 	set_compound_order(page, 0); | 
 | 1053 | 	__ClearPageHead(page); | 
 | 1054 | } | 
 | 1055 |  | 
 | 1056 | static void free_gigantic_page(struct page *page, unsigned int order) | 
 | 1057 | { | 
 | 1058 | 	free_contig_range(page_to_pfn(page), 1 << order); | 
 | 1059 | } | 
 | 1060 |  | 
 | 1061 | static int __alloc_gigantic_page(unsigned long start_pfn, | 
 | 1062 | 				unsigned long nr_pages, gfp_t gfp_mask) | 
 | 1063 | { | 
 | 1064 | 	unsigned long end_pfn = start_pfn + nr_pages; | 
 | 1065 | 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, | 
 | 1066 | 				  gfp_mask); | 
 | 1067 | } | 
 | 1068 |  | 
 | 1069 | static bool pfn_range_valid_gigantic(struct zone *z, | 
 | 1070 | 			unsigned long start_pfn, unsigned long nr_pages) | 
 | 1071 | { | 
 | 1072 | 	unsigned long i, end_pfn = start_pfn + nr_pages; | 
 | 1073 | 	struct page *page; | 
 | 1074 |  | 
 | 1075 | 	for (i = start_pfn; i < end_pfn; i++) { | 
 | 1076 | 		page = pfn_to_online_page(i); | 
 | 1077 | 		if (!page) | 
 | 1078 | 			return false; | 
 | 1079 |  | 
 | 1080 | 		if (page_zone(page) != z) | 
 | 1081 | 			return false; | 
 | 1082 |  | 
 | 1083 | 		if (PageReserved(page)) | 
 | 1084 | 			return false; | 
 | 1085 |  | 
 | 1086 | 		if (page_count(page) > 0) | 
 | 1087 | 			return false; | 
 | 1088 |  | 
 | 1089 | 		if (PageHuge(page)) | 
 | 1090 | 			return false; | 
 | 1091 | 	} | 
 | 1092 |  | 
 | 1093 | 	return true; | 
 | 1094 | } | 
 | 1095 |  | 
 | 1096 | static bool zone_spans_last_pfn(const struct zone *zone, | 
 | 1097 | 			unsigned long start_pfn, unsigned long nr_pages) | 
 | 1098 | { | 
 | 1099 | 	unsigned long last_pfn = start_pfn + nr_pages - 1; | 
 | 1100 | 	return zone_spans_pfn(zone, last_pfn); | 
 | 1101 | } | 
 | 1102 |  | 
 | 1103 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, | 
 | 1104 | 		int nid, nodemask_t *nodemask) | 
 | 1105 | { | 
 | 1106 | 	unsigned int order = huge_page_order(h); | 
 | 1107 | 	unsigned long nr_pages = 1 << order; | 
 | 1108 | 	unsigned long ret, pfn, flags; | 
 | 1109 | 	struct zonelist *zonelist; | 
 | 1110 | 	struct zone *zone; | 
 | 1111 | 	struct zoneref *z; | 
 | 1112 |  | 
 | 1113 | 	zonelist = node_zonelist(nid, gfp_mask); | 
 | 1114 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { | 
 | 1115 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 1116 |  | 
 | 1117 | 		pfn = ALIGN(zone->zone_start_pfn, nr_pages); | 
 | 1118 | 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) { | 
 | 1119 | 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { | 
 | 1120 | 				/* | 
 | 1121 | 				 * We release the zone lock here because | 
 | 1122 | 				 * alloc_contig_range() will also lock the zone | 
 | 1123 | 				 * at some point. If there's an allocation | 
 | 1124 | 				 * spinning on this lock, it may win the race | 
 | 1125 | 				 * and cause alloc_contig_range() to fail... | 
 | 1126 | 				 */ | 
 | 1127 | 				spin_unlock_irqrestore(&zone->lock, flags); | 
 | 1128 | 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); | 
 | 1129 | 				if (!ret) | 
 | 1130 | 					return pfn_to_page(pfn); | 
 | 1131 | 				spin_lock_irqsave(&zone->lock, flags); | 
 | 1132 | 			} | 
 | 1133 | 			pfn += nr_pages; | 
 | 1134 | 		} | 
 | 1135 |  | 
 | 1136 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 1137 | 	} | 
 | 1138 |  | 
 | 1139 | 	return NULL; | 
 | 1140 | } | 
 | 1141 |  | 
 | 1142 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); | 
 | 1143 | static void prep_compound_gigantic_page(struct page *page, unsigned int order); | 
 | 1144 |  | 
 | 1145 | #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ | 
 | 1146 | static inline bool gigantic_page_supported(void) { return false; } | 
 | 1147 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, | 
 | 1148 | 		int nid, nodemask_t *nodemask) { return NULL; } | 
 | 1149 | static inline void free_gigantic_page(struct page *page, unsigned int order) { } | 
 | 1150 | static inline void destroy_compound_gigantic_page(struct page *page, | 
 | 1151 | 						unsigned int order) { } | 
 | 1152 | #endif | 
 | 1153 |  | 
 | 1154 | static void update_and_free_page(struct hstate *h, struct page *page) | 
 | 1155 | { | 
 | 1156 | 	int i; | 
 | 1157 |  | 
 | 1158 | 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) | 
 | 1159 | 		return; | 
 | 1160 |  | 
 | 1161 | 	h->nr_huge_pages--; | 
 | 1162 | 	h->nr_huge_pages_node[page_to_nid(page)]--; | 
 | 1163 | 	for (i = 0; i < pages_per_huge_page(h); i++) { | 
 | 1164 | 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | | 
 | 1165 | 				1 << PG_referenced | 1 << PG_dirty | | 
 | 1166 | 				1 << PG_active | 1 << PG_private | | 
 | 1167 | 				1 << PG_writeback); | 
 | 1168 | 	} | 
 | 1169 | 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); | 
 | 1170 | 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR); | 
 | 1171 | 	set_page_refcounted(page); | 
 | 1172 | 	if (hstate_is_gigantic(h)) { | 
 | 1173 | 		destroy_compound_gigantic_page(page, huge_page_order(h)); | 
 | 1174 | 		free_gigantic_page(page, huge_page_order(h)); | 
 | 1175 | 	} else { | 
 | 1176 | 		__free_pages(page, huge_page_order(h)); | 
 | 1177 | 	} | 
 | 1178 | } | 
 | 1179 |  | 
 | 1180 | struct hstate *size_to_hstate(unsigned long size) | 
 | 1181 | { | 
 | 1182 | 	struct hstate *h; | 
 | 1183 |  | 
 | 1184 | 	for_each_hstate(h) { | 
 | 1185 | 		if (huge_page_size(h) == size) | 
 | 1186 | 			return h; | 
 | 1187 | 	} | 
 | 1188 | 	return NULL; | 
 | 1189 | } | 
 | 1190 |  | 
 | 1191 | /* | 
 | 1192 |  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked | 
 | 1193 |  * to hstate->hugepage_activelist.) | 
 | 1194 |  * | 
 | 1195 |  * This function can be called for tail pages, but never returns true for them. | 
 | 1196 |  */ | 
 | 1197 | bool page_huge_active(struct page *page) | 
 | 1198 | { | 
 | 1199 | 	VM_BUG_ON_PAGE(!PageHuge(page), page); | 
 | 1200 | 	return PageHead(page) && PagePrivate(&page[1]); | 
 | 1201 | } | 
 | 1202 |  | 
 | 1203 | /* never called for tail page */ | 
 | 1204 | static void set_page_huge_active(struct page *page) | 
 | 1205 | { | 
 | 1206 | 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | 
 | 1207 | 	SetPagePrivate(&page[1]); | 
 | 1208 | } | 
 | 1209 |  | 
 | 1210 | static void clear_page_huge_active(struct page *page) | 
 | 1211 | { | 
 | 1212 | 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | 
 | 1213 | 	ClearPagePrivate(&page[1]); | 
 | 1214 | } | 
 | 1215 |  | 
 | 1216 | /* | 
 | 1217 |  * Internal hugetlb specific page flag. Do not use outside of the hugetlb | 
 | 1218 |  * code | 
 | 1219 |  */ | 
 | 1220 | static inline bool PageHugeTemporary(struct page *page) | 
 | 1221 | { | 
 | 1222 | 	if (!PageHuge(page)) | 
 | 1223 | 		return false; | 
 | 1224 |  | 
 | 1225 | 	return (unsigned long)page[2].mapping == -1U; | 
 | 1226 | } | 
 | 1227 |  | 
 | 1228 | static inline void SetPageHugeTemporary(struct page *page) | 
 | 1229 | { | 
 | 1230 | 	page[2].mapping = (void *)-1U; | 
 | 1231 | } | 
 | 1232 |  | 
 | 1233 | static inline void ClearPageHugeTemporary(struct page *page) | 
 | 1234 | { | 
 | 1235 | 	page[2].mapping = NULL; | 
 | 1236 | } | 
 | 1237 |  | 
 | 1238 | void free_huge_page(struct page *page) | 
 | 1239 | { | 
 | 1240 | 	/* | 
 | 1241 | 	 * Can't pass hstate in here because it is called from the | 
 | 1242 | 	 * compound page destructor. | 
 | 1243 | 	 */ | 
 | 1244 | 	struct hstate *h = page_hstate(page); | 
 | 1245 | 	int nid = page_to_nid(page); | 
 | 1246 | 	struct hugepage_subpool *spool = | 
 | 1247 | 		(struct hugepage_subpool *)page_private(page); | 
 | 1248 | 	bool restore_reserve; | 
 | 1249 |  | 
 | 1250 | 	set_page_private(page, 0); | 
 | 1251 | 	page->mapping = NULL; | 
 | 1252 | 	VM_BUG_ON_PAGE(page_count(page), page); | 
 | 1253 | 	VM_BUG_ON_PAGE(page_mapcount(page), page); | 
 | 1254 | 	restore_reserve = PagePrivate(page); | 
 | 1255 | 	ClearPagePrivate(page); | 
 | 1256 |  | 
 | 1257 | 	/* | 
 | 1258 | 	 * If PagePrivate() was set on page, page allocation consumed a | 
 | 1259 | 	 * reservation.  If the page was associated with a subpool, there | 
 | 1260 | 	 * would have been a page reserved in the subpool before allocation | 
 | 1261 | 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the | 
 | 1262 | 	 * reservtion, do not call hugepage_subpool_put_pages() as this will | 
 | 1263 | 	 * remove the reserved page from the subpool. | 
 | 1264 | 	 */ | 
 | 1265 | 	if (!restore_reserve) { | 
 | 1266 | 		/* | 
 | 1267 | 		 * A return code of zero implies that the subpool will be | 
 | 1268 | 		 * under its minimum size if the reservation is not restored | 
 | 1269 | 		 * after page is free.  Therefore, force restore_reserve | 
 | 1270 | 		 * operation. | 
 | 1271 | 		 */ | 
 | 1272 | 		if (hugepage_subpool_put_pages(spool, 1) == 0) | 
 | 1273 | 			restore_reserve = true; | 
 | 1274 | 	} | 
 | 1275 |  | 
 | 1276 | 	spin_lock(&hugetlb_lock); | 
 | 1277 | 	clear_page_huge_active(page); | 
 | 1278 | 	hugetlb_cgroup_uncharge_page(hstate_index(h), | 
 | 1279 | 				     pages_per_huge_page(h), page); | 
 | 1280 | 	if (restore_reserve) | 
 | 1281 | 		h->resv_huge_pages++; | 
 | 1282 |  | 
 | 1283 | 	if (PageHugeTemporary(page)) { | 
 | 1284 | 		list_del(&page->lru); | 
 | 1285 | 		ClearPageHugeTemporary(page); | 
 | 1286 | 		update_and_free_page(h, page); | 
 | 1287 | 	} else if (h->surplus_huge_pages_node[nid]) { | 
 | 1288 | 		/* remove the page from active list */ | 
 | 1289 | 		list_del(&page->lru); | 
 | 1290 | 		update_and_free_page(h, page); | 
 | 1291 | 		h->surplus_huge_pages--; | 
 | 1292 | 		h->surplus_huge_pages_node[nid]--; | 
 | 1293 | 	} else { | 
 | 1294 | 		arch_clear_hugepage_flags(page); | 
 | 1295 | 		enqueue_huge_page(h, page); | 
 | 1296 | 	} | 
 | 1297 | 	spin_unlock(&hugetlb_lock); | 
 | 1298 | } | 
 | 1299 |  | 
 | 1300 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) | 
 | 1301 | { | 
 | 1302 | 	INIT_LIST_HEAD(&page->lru); | 
 | 1303 | 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); | 
 | 1304 | 	spin_lock(&hugetlb_lock); | 
 | 1305 | 	set_hugetlb_cgroup(page, NULL); | 
 | 1306 | 	h->nr_huge_pages++; | 
 | 1307 | 	h->nr_huge_pages_node[nid]++; | 
 | 1308 | 	spin_unlock(&hugetlb_lock); | 
 | 1309 | } | 
 | 1310 |  | 
 | 1311 | static void prep_compound_gigantic_page(struct page *page, unsigned int order) | 
 | 1312 | { | 
 | 1313 | 	int i; | 
 | 1314 | 	int nr_pages = 1 << order; | 
 | 1315 | 	struct page *p = page + 1; | 
 | 1316 |  | 
 | 1317 | 	/* we rely on prep_new_huge_page to set the destructor */ | 
 | 1318 | 	set_compound_order(page, order); | 
 | 1319 | 	__ClearPageReserved(page); | 
 | 1320 | 	__SetPageHead(page); | 
 | 1321 | 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
 | 1322 | 		/* | 
 | 1323 | 		 * For gigantic hugepages allocated through bootmem at | 
 | 1324 | 		 * boot, it's safer to be consistent with the not-gigantic | 
 | 1325 | 		 * hugepages and clear the PG_reserved bit from all tail pages | 
 | 1326 | 		 * too.  Otherwse drivers using get_user_pages() to access tail | 
 | 1327 | 		 * pages may get the reference counting wrong if they see | 
 | 1328 | 		 * PG_reserved set on a tail page (despite the head page not | 
 | 1329 | 		 * having PG_reserved set).  Enforcing this consistency between | 
 | 1330 | 		 * head and tail pages allows drivers to optimize away a check | 
 | 1331 | 		 * on the head page when they need know if put_page() is needed | 
 | 1332 | 		 * after get_user_pages(). | 
 | 1333 | 		 */ | 
 | 1334 | 		__ClearPageReserved(p); | 
 | 1335 | 		set_page_count(p, 0); | 
 | 1336 | 		set_compound_head(p, page); | 
 | 1337 | 	} | 
 | 1338 | 	atomic_set(compound_mapcount_ptr(page), -1); | 
 | 1339 | } | 
 | 1340 |  | 
 | 1341 | /* | 
 | 1342 |  * PageHuge() only returns true for hugetlbfs pages, but not for normal or | 
 | 1343 |  * transparent huge pages.  See the PageTransHuge() documentation for more | 
 | 1344 |  * details. | 
 | 1345 |  */ | 
 | 1346 | int PageHuge(struct page *page) | 
 | 1347 | { | 
 | 1348 | 	if (!PageCompound(page)) | 
 | 1349 | 		return 0; | 
 | 1350 |  | 
 | 1351 | 	page = compound_head(page); | 
 | 1352 | 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR; | 
 | 1353 | } | 
 | 1354 | EXPORT_SYMBOL_GPL(PageHuge); | 
 | 1355 |  | 
 | 1356 | /* | 
 | 1357 |  * PageHeadHuge() only returns true for hugetlbfs head page, but not for | 
 | 1358 |  * normal or transparent huge pages. | 
 | 1359 |  */ | 
 | 1360 | int PageHeadHuge(struct page *page_head) | 
 | 1361 | { | 
 | 1362 | 	if (!PageHead(page_head)) | 
 | 1363 | 		return 0; | 
 | 1364 |  | 
 | 1365 | 	return get_compound_page_dtor(page_head) == free_huge_page; | 
 | 1366 | } | 
 | 1367 |  | 
 | 1368 | pgoff_t __basepage_index(struct page *page) | 
 | 1369 | { | 
 | 1370 | 	struct page *page_head = compound_head(page); | 
 | 1371 | 	pgoff_t index = page_index(page_head); | 
 | 1372 | 	unsigned long compound_idx; | 
 | 1373 |  | 
 | 1374 | 	if (!PageHuge(page_head)) | 
 | 1375 | 		return page_index(page); | 
 | 1376 |  | 
 | 1377 | 	if (compound_order(page_head) >= MAX_ORDER) | 
 | 1378 | 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | 
 | 1379 | 	else | 
 | 1380 | 		compound_idx = page - page_head; | 
 | 1381 |  | 
 | 1382 | 	return (index << compound_order(page_head)) + compound_idx; | 
 | 1383 | } | 
 | 1384 |  | 
 | 1385 | static struct page *alloc_buddy_huge_page(struct hstate *h, | 
 | 1386 | 		gfp_t gfp_mask, int nid, nodemask_t *nmask) | 
 | 1387 | { | 
 | 1388 | 	int order = huge_page_order(h); | 
 | 1389 | 	struct page *page; | 
 | 1390 |  | 
 | 1391 | 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; | 
 | 1392 | 	if (nid == NUMA_NO_NODE) | 
 | 1393 | 		nid = numa_mem_id(); | 
 | 1394 | 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); | 
 | 1395 | 	if (page) | 
 | 1396 | 		__count_vm_event(HTLB_BUDDY_PGALLOC); | 
 | 1397 | 	else | 
 | 1398 | 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
 | 1399 |  | 
 | 1400 | 	return page; | 
 | 1401 | } | 
 | 1402 |  | 
 | 1403 | /* | 
 | 1404 |  * Common helper to allocate a fresh hugetlb page. All specific allocators | 
 | 1405 |  * should use this function to get new hugetlb pages | 
 | 1406 |  */ | 
 | 1407 | static struct page *alloc_fresh_huge_page(struct hstate *h, | 
 | 1408 | 		gfp_t gfp_mask, int nid, nodemask_t *nmask) | 
 | 1409 | { | 
 | 1410 | 	struct page *page; | 
 | 1411 |  | 
 | 1412 | 	if (hstate_is_gigantic(h)) | 
 | 1413 | 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask); | 
 | 1414 | 	else | 
 | 1415 | 		page = alloc_buddy_huge_page(h, gfp_mask, | 
 | 1416 | 				nid, nmask); | 
 | 1417 | 	if (!page) | 
 | 1418 | 		return NULL; | 
 | 1419 |  | 
 | 1420 | 	if (hstate_is_gigantic(h)) | 
 | 1421 | 		prep_compound_gigantic_page(page, huge_page_order(h)); | 
 | 1422 | 	prep_new_huge_page(h, page, page_to_nid(page)); | 
 | 1423 |  | 
 | 1424 | 	return page; | 
 | 1425 | } | 
 | 1426 |  | 
 | 1427 | /* | 
 | 1428 |  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved | 
 | 1429 |  * manner. | 
 | 1430 |  */ | 
 | 1431 | static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) | 
 | 1432 | { | 
 | 1433 | 	struct page *page; | 
 | 1434 | 	int nr_nodes, node; | 
 | 1435 | 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
 | 1436 |  | 
 | 1437 | 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
 | 1438 | 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); | 
 | 1439 | 		if (page) | 
 | 1440 | 			break; | 
 | 1441 | 	} | 
 | 1442 |  | 
 | 1443 | 	if (!page) | 
 | 1444 | 		return 0; | 
 | 1445 |  | 
 | 1446 | 	put_page(page); /* free it into the hugepage allocator */ | 
 | 1447 |  | 
 | 1448 | 	return 1; | 
 | 1449 | } | 
 | 1450 |  | 
 | 1451 | /* | 
 | 1452 |  * Free huge page from pool from next node to free. | 
 | 1453 |  * Attempt to keep persistent huge pages more or less | 
 | 1454 |  * balanced over allowed nodes. | 
 | 1455 |  * Called with hugetlb_lock locked. | 
 | 1456 |  */ | 
 | 1457 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | 
 | 1458 | 							 bool acct_surplus) | 
 | 1459 | { | 
 | 1460 | 	int nr_nodes, node; | 
 | 1461 | 	int ret = 0; | 
 | 1462 |  | 
 | 1463 | 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
 | 1464 | 		/* | 
 | 1465 | 		 * If we're returning unused surplus pages, only examine | 
 | 1466 | 		 * nodes with surplus pages. | 
 | 1467 | 		 */ | 
 | 1468 | 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) && | 
 | 1469 | 		    !list_empty(&h->hugepage_freelists[node])) { | 
 | 1470 | 			struct page *page = | 
 | 1471 | 				list_entry(h->hugepage_freelists[node].next, | 
 | 1472 | 					  struct page, lru); | 
 | 1473 | 			list_del(&page->lru); | 
 | 1474 | 			h->free_huge_pages--; | 
 | 1475 | 			h->free_huge_pages_node[node]--; | 
 | 1476 | 			if (acct_surplus) { | 
 | 1477 | 				h->surplus_huge_pages--; | 
 | 1478 | 				h->surplus_huge_pages_node[node]--; | 
 | 1479 | 			} | 
 | 1480 | 			update_and_free_page(h, page); | 
 | 1481 | 			ret = 1; | 
 | 1482 | 			break; | 
 | 1483 | 		} | 
 | 1484 | 	} | 
 | 1485 |  | 
 | 1486 | 	return ret; | 
 | 1487 | } | 
 | 1488 |  | 
 | 1489 | /* | 
 | 1490 |  * Dissolve a given free hugepage into free buddy pages. This function does | 
 | 1491 |  * nothing for in-use hugepages and non-hugepages. | 
 | 1492 |  * This function returns values like below: | 
 | 1493 |  * | 
 | 1494 |  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use | 
 | 1495 |  *          (allocated or reserved.) | 
 | 1496 |  *       0: successfully dissolved free hugepages or the page is not a | 
 | 1497 |  *          hugepage (considered as already dissolved) | 
 | 1498 |  */ | 
 | 1499 | int dissolve_free_huge_page(struct page *page) | 
 | 1500 | { | 
 | 1501 | 	int rc = -EBUSY; | 
 | 1502 |  | 
 | 1503 | 	/* Not to disrupt normal path by vainly holding hugetlb_lock */ | 
 | 1504 | 	if (!PageHuge(page)) | 
 | 1505 | 		return 0; | 
 | 1506 |  | 
 | 1507 | 	spin_lock(&hugetlb_lock); | 
 | 1508 | 	if (!PageHuge(page)) { | 
 | 1509 | 		rc = 0; | 
 | 1510 | 		goto out; | 
 | 1511 | 	} | 
 | 1512 |  | 
 | 1513 | 	if (!page_count(page)) { | 
 | 1514 | 		struct page *head = compound_head(page); | 
 | 1515 | 		struct hstate *h = page_hstate(head); | 
 | 1516 | 		int nid = page_to_nid(head); | 
 | 1517 | 		if (h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 1518 | 			goto out; | 
 | 1519 | 		/* | 
 | 1520 | 		 * Move PageHWPoison flag from head page to the raw error page, | 
 | 1521 | 		 * which makes any subpages rather than the error page reusable. | 
 | 1522 | 		 */ | 
 | 1523 | 		if (PageHWPoison(head) && page != head) { | 
 | 1524 | 			SetPageHWPoison(page); | 
 | 1525 | 			ClearPageHWPoison(head); | 
 | 1526 | 		} | 
 | 1527 | 		list_del(&head->lru); | 
 | 1528 | 		h->free_huge_pages--; | 
 | 1529 | 		h->free_huge_pages_node[nid]--; | 
 | 1530 | 		h->max_huge_pages--; | 
 | 1531 | 		update_and_free_page(h, head); | 
 | 1532 | 		rc = 0; | 
 | 1533 | 	} | 
 | 1534 | out: | 
 | 1535 | 	spin_unlock(&hugetlb_lock); | 
 | 1536 | 	return rc; | 
 | 1537 | } | 
 | 1538 |  | 
 | 1539 | /* | 
 | 1540 |  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to | 
 | 1541 |  * make specified memory blocks removable from the system. | 
 | 1542 |  * Note that this will dissolve a free gigantic hugepage completely, if any | 
 | 1543 |  * part of it lies within the given range. | 
 | 1544 |  * Also note that if dissolve_free_huge_page() returns with an error, all | 
 | 1545 |  * free hugepages that were dissolved before that error are lost. | 
 | 1546 |  */ | 
 | 1547 | int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) | 
 | 1548 | { | 
 | 1549 | 	unsigned long pfn; | 
 | 1550 | 	struct page *page; | 
 | 1551 | 	int rc = 0; | 
 | 1552 |  | 
 | 1553 | 	if (!hugepages_supported()) | 
 | 1554 | 		return rc; | 
 | 1555 |  | 
 | 1556 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { | 
 | 1557 | 		page = pfn_to_page(pfn); | 
 | 1558 | 		rc = dissolve_free_huge_page(page); | 
 | 1559 | 		if (rc) | 
 | 1560 | 			break; | 
 | 1561 | 	} | 
 | 1562 |  | 
 | 1563 | 	return rc; | 
 | 1564 | } | 
 | 1565 |  | 
 | 1566 | /* | 
 | 1567 |  * Allocates a fresh surplus page from the page allocator. | 
 | 1568 |  */ | 
 | 1569 | static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, | 
 | 1570 | 		int nid, nodemask_t *nmask) | 
 | 1571 | { | 
 | 1572 | 	struct page *page = NULL; | 
 | 1573 |  | 
 | 1574 | 	if (hstate_is_gigantic(h)) | 
 | 1575 | 		return NULL; | 
 | 1576 |  | 
 | 1577 | 	spin_lock(&hugetlb_lock); | 
 | 1578 | 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) | 
 | 1579 | 		goto out_unlock; | 
 | 1580 | 	spin_unlock(&hugetlb_lock); | 
 | 1581 |  | 
 | 1582 | 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); | 
 | 1583 | 	if (!page) | 
 | 1584 | 		return NULL; | 
 | 1585 |  | 
 | 1586 | 	spin_lock(&hugetlb_lock); | 
 | 1587 | 	/* | 
 | 1588 | 	 * We could have raced with the pool size change. | 
 | 1589 | 	 * Double check that and simply deallocate the new page | 
 | 1590 | 	 * if we would end up overcommiting the surpluses. Abuse | 
 | 1591 | 	 * temporary page to workaround the nasty free_huge_page | 
 | 1592 | 	 * codeflow | 
 | 1593 | 	 */ | 
 | 1594 | 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | 
 | 1595 | 		SetPageHugeTemporary(page); | 
 | 1596 | 		spin_unlock(&hugetlb_lock); | 
 | 1597 | 		put_page(page); | 
 | 1598 | 		return NULL; | 
 | 1599 | 	} else { | 
 | 1600 | 		h->surplus_huge_pages++; | 
 | 1601 | 		h->surplus_huge_pages_node[page_to_nid(page)]++; | 
 | 1602 | 	} | 
 | 1603 |  | 
 | 1604 | out_unlock: | 
 | 1605 | 	spin_unlock(&hugetlb_lock); | 
 | 1606 |  | 
 | 1607 | 	return page; | 
 | 1608 | } | 
 | 1609 |  | 
 | 1610 | static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, | 
 | 1611 | 		int nid, nodemask_t *nmask) | 
 | 1612 | { | 
 | 1613 | 	struct page *page; | 
 | 1614 |  | 
 | 1615 | 	if (hstate_is_gigantic(h)) | 
 | 1616 | 		return NULL; | 
 | 1617 |  | 
 | 1618 | 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); | 
 | 1619 | 	if (!page) | 
 | 1620 | 		return NULL; | 
 | 1621 |  | 
 | 1622 | 	/* | 
 | 1623 | 	 * We do not account these pages as surplus because they are only | 
 | 1624 | 	 * temporary and will be released properly on the last reference | 
 | 1625 | 	 */ | 
 | 1626 | 	SetPageHugeTemporary(page); | 
 | 1627 |  | 
 | 1628 | 	return page; | 
 | 1629 | } | 
 | 1630 |  | 
 | 1631 | /* | 
 | 1632 |  * Use the VMA's mpolicy to allocate a huge page from the buddy. | 
 | 1633 |  */ | 
 | 1634 | static | 
 | 1635 | struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, | 
 | 1636 | 		struct vm_area_struct *vma, unsigned long addr) | 
 | 1637 | { | 
 | 1638 | 	struct page *page; | 
 | 1639 | 	struct mempolicy *mpol; | 
 | 1640 | 	gfp_t gfp_mask = htlb_alloc_mask(h); | 
 | 1641 | 	int nid; | 
 | 1642 | 	nodemask_t *nodemask; | 
 | 1643 |  | 
 | 1644 | 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); | 
 | 1645 | 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); | 
 | 1646 | 	mpol_cond_put(mpol); | 
 | 1647 |  | 
 | 1648 | 	return page; | 
 | 1649 | } | 
 | 1650 |  | 
 | 1651 | /* page migration callback function */ | 
 | 1652 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | 
 | 1653 | { | 
 | 1654 | 	gfp_t gfp_mask = htlb_alloc_mask(h); | 
 | 1655 | 	struct page *page = NULL; | 
 | 1656 |  | 
 | 1657 | 	if (nid != NUMA_NO_NODE) | 
 | 1658 | 		gfp_mask |= __GFP_THISNODE; | 
 | 1659 |  | 
 | 1660 | 	spin_lock(&hugetlb_lock); | 
 | 1661 | 	if (h->free_huge_pages - h->resv_huge_pages > 0) | 
 | 1662 | 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); | 
 | 1663 | 	spin_unlock(&hugetlb_lock); | 
 | 1664 |  | 
 | 1665 | 	if (!page) | 
 | 1666 | 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | 
 | 1667 |  | 
 | 1668 | 	return page; | 
 | 1669 | } | 
 | 1670 |  | 
 | 1671 | /* page migration callback function */ | 
 | 1672 | struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, | 
 | 1673 | 		nodemask_t *nmask) | 
 | 1674 | { | 
 | 1675 | 	gfp_t gfp_mask = htlb_alloc_mask(h); | 
 | 1676 |  | 
 | 1677 | 	spin_lock(&hugetlb_lock); | 
 | 1678 | 	if (h->free_huge_pages - h->resv_huge_pages > 0) { | 
 | 1679 | 		struct page *page; | 
 | 1680 |  | 
 | 1681 | 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); | 
 | 1682 | 		if (page) { | 
 | 1683 | 			spin_unlock(&hugetlb_lock); | 
 | 1684 | 			return page; | 
 | 1685 | 		} | 
 | 1686 | 	} | 
 | 1687 | 	spin_unlock(&hugetlb_lock); | 
 | 1688 |  | 
 | 1689 | 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); | 
 | 1690 | } | 
 | 1691 |  | 
 | 1692 | /* mempolicy aware migration callback */ | 
 | 1693 | struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, | 
 | 1694 | 		unsigned long address) | 
 | 1695 | { | 
 | 1696 | 	struct mempolicy *mpol; | 
 | 1697 | 	nodemask_t *nodemask; | 
 | 1698 | 	struct page *page; | 
 | 1699 | 	gfp_t gfp_mask; | 
 | 1700 | 	int node; | 
 | 1701 |  | 
 | 1702 | 	gfp_mask = htlb_alloc_mask(h); | 
 | 1703 | 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
 | 1704 | 	page = alloc_huge_page_nodemask(h, node, nodemask); | 
 | 1705 | 	mpol_cond_put(mpol); | 
 | 1706 |  | 
 | 1707 | 	return page; | 
 | 1708 | } | 
 | 1709 |  | 
 | 1710 | /* | 
 | 1711 |  * Increase the hugetlb pool such that it can accommodate a reservation | 
 | 1712 |  * of size 'delta'. | 
 | 1713 |  */ | 
 | 1714 | static int gather_surplus_pages(struct hstate *h, int delta) | 
 | 1715 | { | 
 | 1716 | 	struct list_head surplus_list; | 
 | 1717 | 	struct page *page, *tmp; | 
 | 1718 | 	int ret, i; | 
 | 1719 | 	int needed, allocated; | 
 | 1720 | 	bool alloc_ok = true; | 
 | 1721 |  | 
 | 1722 | 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages; | 
 | 1723 | 	if (needed <= 0) { | 
 | 1724 | 		h->resv_huge_pages += delta; | 
 | 1725 | 		return 0; | 
 | 1726 | 	} | 
 | 1727 |  | 
 | 1728 | 	allocated = 0; | 
 | 1729 | 	INIT_LIST_HEAD(&surplus_list); | 
 | 1730 |  | 
 | 1731 | 	ret = -ENOMEM; | 
 | 1732 | retry: | 
 | 1733 | 	spin_unlock(&hugetlb_lock); | 
 | 1734 | 	for (i = 0; i < needed; i++) { | 
 | 1735 | 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), | 
 | 1736 | 				NUMA_NO_NODE, NULL); | 
 | 1737 | 		if (!page) { | 
 | 1738 | 			alloc_ok = false; | 
 | 1739 | 			break; | 
 | 1740 | 		} | 
 | 1741 | 		list_add(&page->lru, &surplus_list); | 
 | 1742 | 		cond_resched(); | 
 | 1743 | 	} | 
 | 1744 | 	allocated += i; | 
 | 1745 |  | 
 | 1746 | 	/* | 
 | 1747 | 	 * After retaking hugetlb_lock, we need to recalculate 'needed' | 
 | 1748 | 	 * because either resv_huge_pages or free_huge_pages may have changed. | 
 | 1749 | 	 */ | 
 | 1750 | 	spin_lock(&hugetlb_lock); | 
 | 1751 | 	needed = (h->resv_huge_pages + delta) - | 
 | 1752 | 			(h->free_huge_pages + allocated); | 
 | 1753 | 	if (needed > 0) { | 
 | 1754 | 		if (alloc_ok) | 
 | 1755 | 			goto retry; | 
 | 1756 | 		/* | 
 | 1757 | 		 * We were not able to allocate enough pages to | 
 | 1758 | 		 * satisfy the entire reservation so we free what | 
 | 1759 | 		 * we've allocated so far. | 
 | 1760 | 		 */ | 
 | 1761 | 		goto free; | 
 | 1762 | 	} | 
 | 1763 | 	/* | 
 | 1764 | 	 * The surplus_list now contains _at_least_ the number of extra pages | 
 | 1765 | 	 * needed to accommodate the reservation.  Add the appropriate number | 
 | 1766 | 	 * of pages to the hugetlb pool and free the extras back to the buddy | 
 | 1767 | 	 * allocator.  Commit the entire reservation here to prevent another | 
 | 1768 | 	 * process from stealing the pages as they are added to the pool but | 
 | 1769 | 	 * before they are reserved. | 
 | 1770 | 	 */ | 
 | 1771 | 	needed += allocated; | 
 | 1772 | 	h->resv_huge_pages += delta; | 
 | 1773 | 	ret = 0; | 
 | 1774 |  | 
 | 1775 | 	/* Free the needed pages to the hugetlb pool */ | 
 | 1776 | 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
 | 1777 | 		if ((--needed) < 0) | 
 | 1778 | 			break; | 
 | 1779 | 		/* | 
 | 1780 | 		 * This page is now managed by the hugetlb allocator and has | 
 | 1781 | 		 * no users -- drop the buddy allocator's reference. | 
 | 1782 | 		 */ | 
 | 1783 | 		put_page_testzero(page); | 
 | 1784 | 		VM_BUG_ON_PAGE(page_count(page), page); | 
 | 1785 | 		enqueue_huge_page(h, page); | 
 | 1786 | 	} | 
 | 1787 | free: | 
 | 1788 | 	spin_unlock(&hugetlb_lock); | 
 | 1789 |  | 
 | 1790 | 	/* Free unnecessary surplus pages to the buddy allocator */ | 
 | 1791 | 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) | 
 | 1792 | 		put_page(page); | 
 | 1793 | 	spin_lock(&hugetlb_lock); | 
 | 1794 |  | 
 | 1795 | 	return ret; | 
 | 1796 | } | 
 | 1797 |  | 
 | 1798 | /* | 
 | 1799 |  * This routine has two main purposes: | 
 | 1800 |  * 1) Decrement the reservation count (resv_huge_pages) by the value passed | 
 | 1801 |  *    in unused_resv_pages.  This corresponds to the prior adjustments made | 
 | 1802 |  *    to the associated reservation map. | 
 | 1803 |  * 2) Free any unused surplus pages that may have been allocated to satisfy | 
 | 1804 |  *    the reservation.  As many as unused_resv_pages may be freed. | 
 | 1805 |  * | 
 | 1806 |  * Called with hugetlb_lock held.  However, the lock could be dropped (and | 
 | 1807 |  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock, | 
 | 1808 |  * we must make sure nobody else can claim pages we are in the process of | 
 | 1809 |  * freeing.  Do this by ensuring resv_huge_page always is greater than the | 
 | 1810 |  * number of huge pages we plan to free when dropping the lock. | 
 | 1811 |  */ | 
 | 1812 | static void return_unused_surplus_pages(struct hstate *h, | 
 | 1813 | 					unsigned long unused_resv_pages) | 
 | 1814 | { | 
 | 1815 | 	unsigned long nr_pages; | 
 | 1816 |  | 
 | 1817 | 	/* Cannot return gigantic pages currently */ | 
 | 1818 | 	if (hstate_is_gigantic(h)) | 
 | 1819 | 		goto out; | 
 | 1820 |  | 
 | 1821 | 	/* | 
 | 1822 | 	 * Part (or even all) of the reservation could have been backed | 
 | 1823 | 	 * by pre-allocated pages. Only free surplus pages. | 
 | 1824 | 	 */ | 
 | 1825 | 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | 
 | 1826 |  | 
 | 1827 | 	/* | 
 | 1828 | 	 * We want to release as many surplus pages as possible, spread | 
 | 1829 | 	 * evenly across all nodes with memory. Iterate across these nodes | 
 | 1830 | 	 * until we can no longer free unreserved surplus pages. This occurs | 
 | 1831 | 	 * when the nodes with surplus pages have no free pages. | 
 | 1832 | 	 * free_pool_huge_page() will balance the the freed pages across the | 
 | 1833 | 	 * on-line nodes with memory and will handle the hstate accounting. | 
 | 1834 | 	 * | 
 | 1835 | 	 * Note that we decrement resv_huge_pages as we free the pages.  If | 
 | 1836 | 	 * we drop the lock, resv_huge_pages will still be sufficiently large | 
 | 1837 | 	 * to cover subsequent pages we may free. | 
 | 1838 | 	 */ | 
 | 1839 | 	while (nr_pages--) { | 
 | 1840 | 		h->resv_huge_pages--; | 
 | 1841 | 		unused_resv_pages--; | 
 | 1842 | 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) | 
 | 1843 | 			goto out; | 
 | 1844 | 		cond_resched_lock(&hugetlb_lock); | 
 | 1845 | 	} | 
 | 1846 |  | 
 | 1847 | out: | 
 | 1848 | 	/* Fully uncommit the reservation */ | 
 | 1849 | 	h->resv_huge_pages -= unused_resv_pages; | 
 | 1850 | } | 
 | 1851 |  | 
 | 1852 |  | 
 | 1853 | /* | 
 | 1854 |  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation | 
 | 1855 |  * are used by the huge page allocation routines to manage reservations. | 
 | 1856 |  * | 
 | 1857 |  * vma_needs_reservation is called to determine if the huge page at addr | 
 | 1858 |  * within the vma has an associated reservation.  If a reservation is | 
 | 1859 |  * needed, the value 1 is returned.  The caller is then responsible for | 
 | 1860 |  * managing the global reservation and subpool usage counts.  After | 
 | 1861 |  * the huge page has been allocated, vma_commit_reservation is called | 
 | 1862 |  * to add the page to the reservation map.  If the page allocation fails, | 
 | 1863 |  * the reservation must be ended instead of committed.  vma_end_reservation | 
 | 1864 |  * is called in such cases. | 
 | 1865 |  * | 
 | 1866 |  * In the normal case, vma_commit_reservation returns the same value | 
 | 1867 |  * as the preceding vma_needs_reservation call.  The only time this | 
 | 1868 |  * is not the case is if a reserve map was changed between calls.  It | 
 | 1869 |  * is the responsibility of the caller to notice the difference and | 
 | 1870 |  * take appropriate action. | 
 | 1871 |  * | 
 | 1872 |  * vma_add_reservation is used in error paths where a reservation must | 
 | 1873 |  * be restored when a newly allocated huge page must be freed.  It is | 
 | 1874 |  * to be called after calling vma_needs_reservation to determine if a | 
 | 1875 |  * reservation exists. | 
 | 1876 |  */ | 
 | 1877 | enum vma_resv_mode { | 
 | 1878 | 	VMA_NEEDS_RESV, | 
 | 1879 | 	VMA_COMMIT_RESV, | 
 | 1880 | 	VMA_END_RESV, | 
 | 1881 | 	VMA_ADD_RESV, | 
 | 1882 | }; | 
 | 1883 | static long __vma_reservation_common(struct hstate *h, | 
 | 1884 | 				struct vm_area_struct *vma, unsigned long addr, | 
 | 1885 | 				enum vma_resv_mode mode) | 
 | 1886 | { | 
 | 1887 | 	struct resv_map *resv; | 
 | 1888 | 	pgoff_t idx; | 
 | 1889 | 	long ret; | 
 | 1890 |  | 
 | 1891 | 	resv = vma_resv_map(vma); | 
 | 1892 | 	if (!resv) | 
 | 1893 | 		return 1; | 
 | 1894 |  | 
 | 1895 | 	idx = vma_hugecache_offset(h, vma, addr); | 
 | 1896 | 	switch (mode) { | 
 | 1897 | 	case VMA_NEEDS_RESV: | 
 | 1898 | 		ret = region_chg(resv, idx, idx + 1); | 
 | 1899 | 		break; | 
 | 1900 | 	case VMA_COMMIT_RESV: | 
 | 1901 | 		ret = region_add(resv, idx, idx + 1); | 
 | 1902 | 		break; | 
 | 1903 | 	case VMA_END_RESV: | 
 | 1904 | 		region_abort(resv, idx, idx + 1); | 
 | 1905 | 		ret = 0; | 
 | 1906 | 		break; | 
 | 1907 | 	case VMA_ADD_RESV: | 
 | 1908 | 		if (vma->vm_flags & VM_MAYSHARE) | 
 | 1909 | 			ret = region_add(resv, idx, idx + 1); | 
 | 1910 | 		else { | 
 | 1911 | 			region_abort(resv, idx, idx + 1); | 
 | 1912 | 			ret = region_del(resv, idx, idx + 1); | 
 | 1913 | 		} | 
 | 1914 | 		break; | 
 | 1915 | 	default: | 
 | 1916 | 		BUG(); | 
 | 1917 | 	} | 
 | 1918 |  | 
 | 1919 | 	if (vma->vm_flags & VM_MAYSHARE) | 
 | 1920 | 		return ret; | 
 | 1921 | 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { | 
 | 1922 | 		/* | 
 | 1923 | 		 * In most cases, reserves always exist for private mappings. | 
 | 1924 | 		 * However, a file associated with mapping could have been | 
 | 1925 | 		 * hole punched or truncated after reserves were consumed. | 
 | 1926 | 		 * As subsequent fault on such a range will not use reserves. | 
 | 1927 | 		 * Subtle - The reserve map for private mappings has the | 
 | 1928 | 		 * opposite meaning than that of shared mappings.  If NO | 
 | 1929 | 		 * entry is in the reserve map, it means a reservation exists. | 
 | 1930 | 		 * If an entry exists in the reserve map, it means the | 
 | 1931 | 		 * reservation has already been consumed.  As a result, the | 
 | 1932 | 		 * return value of this routine is the opposite of the | 
 | 1933 | 		 * value returned from reserve map manipulation routines above. | 
 | 1934 | 		 */ | 
 | 1935 | 		if (ret) | 
 | 1936 | 			return 0; | 
 | 1937 | 		else | 
 | 1938 | 			return 1; | 
 | 1939 | 	} | 
 | 1940 | 	else | 
 | 1941 | 		return ret < 0 ? ret : 0; | 
 | 1942 | } | 
 | 1943 |  | 
 | 1944 | static long vma_needs_reservation(struct hstate *h, | 
 | 1945 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 1946 | { | 
 | 1947 | 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); | 
 | 1948 | } | 
 | 1949 |  | 
 | 1950 | static long vma_commit_reservation(struct hstate *h, | 
 | 1951 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 1952 | { | 
 | 1953 | 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); | 
 | 1954 | } | 
 | 1955 |  | 
 | 1956 | static void vma_end_reservation(struct hstate *h, | 
 | 1957 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 1958 | { | 
 | 1959 | 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); | 
 | 1960 | } | 
 | 1961 |  | 
 | 1962 | static long vma_add_reservation(struct hstate *h, | 
 | 1963 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 1964 | { | 
 | 1965 | 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); | 
 | 1966 | } | 
 | 1967 |  | 
 | 1968 | /* | 
 | 1969 |  * This routine is called to restore a reservation on error paths.  In the | 
 | 1970 |  * specific error paths, a huge page was allocated (via alloc_huge_page) | 
 | 1971 |  * and is about to be freed.  If a reservation for the page existed, | 
 | 1972 |  * alloc_huge_page would have consumed the reservation and set PagePrivate | 
 | 1973 |  * in the newly allocated page.  When the page is freed via free_huge_page, | 
 | 1974 |  * the global reservation count will be incremented if PagePrivate is set. | 
 | 1975 |  * However, free_huge_page can not adjust the reserve map.  Adjust the | 
 | 1976 |  * reserve map here to be consistent with global reserve count adjustments | 
 | 1977 |  * to be made by free_huge_page. | 
 | 1978 |  */ | 
 | 1979 | static void restore_reserve_on_error(struct hstate *h, | 
 | 1980 | 			struct vm_area_struct *vma, unsigned long address, | 
 | 1981 | 			struct page *page) | 
 | 1982 | { | 
 | 1983 | 	if (unlikely(PagePrivate(page))) { | 
 | 1984 | 		long rc = vma_needs_reservation(h, vma, address); | 
 | 1985 |  | 
 | 1986 | 		if (unlikely(rc < 0)) { | 
 | 1987 | 			/* | 
 | 1988 | 			 * Rare out of memory condition in reserve map | 
 | 1989 | 			 * manipulation.  Clear PagePrivate so that | 
 | 1990 | 			 * global reserve count will not be incremented | 
 | 1991 | 			 * by free_huge_page.  This will make it appear | 
 | 1992 | 			 * as though the reservation for this page was | 
 | 1993 | 			 * consumed.  This may prevent the task from | 
 | 1994 | 			 * faulting in the page at a later time.  This | 
 | 1995 | 			 * is better than inconsistent global huge page | 
 | 1996 | 			 * accounting of reserve counts. | 
 | 1997 | 			 */ | 
 | 1998 | 			ClearPagePrivate(page); | 
 | 1999 | 		} else if (rc) { | 
 | 2000 | 			rc = vma_add_reservation(h, vma, address); | 
 | 2001 | 			if (unlikely(rc < 0)) | 
 | 2002 | 				/* | 
 | 2003 | 				 * See above comment about rare out of | 
 | 2004 | 				 * memory condition. | 
 | 2005 | 				 */ | 
 | 2006 | 				ClearPagePrivate(page); | 
 | 2007 | 		} else | 
 | 2008 | 			vma_end_reservation(h, vma, address); | 
 | 2009 | 	} | 
 | 2010 | } | 
 | 2011 |  | 
 | 2012 | struct page *alloc_huge_page(struct vm_area_struct *vma, | 
 | 2013 | 				    unsigned long addr, int avoid_reserve) | 
 | 2014 | { | 
 | 2015 | 	struct hugepage_subpool *spool = subpool_vma(vma); | 
 | 2016 | 	struct hstate *h = hstate_vma(vma); | 
 | 2017 | 	struct page *page; | 
 | 2018 | 	long map_chg, map_commit; | 
 | 2019 | 	long gbl_chg; | 
 | 2020 | 	int ret, idx; | 
 | 2021 | 	struct hugetlb_cgroup *h_cg; | 
 | 2022 |  | 
 | 2023 | 	idx = hstate_index(h); | 
 | 2024 | 	/* | 
 | 2025 | 	 * Examine the region/reserve map to determine if the process | 
 | 2026 | 	 * has a reservation for the page to be allocated.  A return | 
 | 2027 | 	 * code of zero indicates a reservation exists (no change). | 
 | 2028 | 	 */ | 
 | 2029 | 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); | 
 | 2030 | 	if (map_chg < 0) | 
 | 2031 | 		return ERR_PTR(-ENOMEM); | 
 | 2032 |  | 
 | 2033 | 	/* | 
 | 2034 | 	 * Processes that did not create the mapping will have no | 
 | 2035 | 	 * reserves as indicated by the region/reserve map. Check | 
 | 2036 | 	 * that the allocation will not exceed the subpool limit. | 
 | 2037 | 	 * Allocations for MAP_NORESERVE mappings also need to be | 
 | 2038 | 	 * checked against any subpool limit. | 
 | 2039 | 	 */ | 
 | 2040 | 	if (map_chg || avoid_reserve) { | 
 | 2041 | 		gbl_chg = hugepage_subpool_get_pages(spool, 1); | 
 | 2042 | 		if (gbl_chg < 0) { | 
 | 2043 | 			vma_end_reservation(h, vma, addr); | 
 | 2044 | 			return ERR_PTR(-ENOSPC); | 
 | 2045 | 		} | 
 | 2046 |  | 
 | 2047 | 		/* | 
 | 2048 | 		 * Even though there was no reservation in the region/reserve | 
 | 2049 | 		 * map, there could be reservations associated with the | 
 | 2050 | 		 * subpool that can be used.  This would be indicated if the | 
 | 2051 | 		 * return value of hugepage_subpool_get_pages() is zero. | 
 | 2052 | 		 * However, if avoid_reserve is specified we still avoid even | 
 | 2053 | 		 * the subpool reservations. | 
 | 2054 | 		 */ | 
 | 2055 | 		if (avoid_reserve) | 
 | 2056 | 			gbl_chg = 1; | 
 | 2057 | 	} | 
 | 2058 |  | 
 | 2059 | 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); | 
 | 2060 | 	if (ret) | 
 | 2061 | 		goto out_subpool_put; | 
 | 2062 |  | 
 | 2063 | 	spin_lock(&hugetlb_lock); | 
 | 2064 | 	/* | 
 | 2065 | 	 * glb_chg is passed to indicate whether or not a page must be taken | 
 | 2066 | 	 * from the global free pool (global change).  gbl_chg == 0 indicates | 
 | 2067 | 	 * a reservation exists for the allocation. | 
 | 2068 | 	 */ | 
 | 2069 | 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); | 
 | 2070 | 	if (!page) { | 
 | 2071 | 		spin_unlock(&hugetlb_lock); | 
 | 2072 | 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr); | 
 | 2073 | 		if (!page) | 
 | 2074 | 			goto out_uncharge_cgroup; | 
 | 2075 | 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { | 
 | 2076 | 			SetPagePrivate(page); | 
 | 2077 | 			h->resv_huge_pages--; | 
 | 2078 | 		} | 
 | 2079 | 		spin_lock(&hugetlb_lock); | 
 | 2080 | 		list_move(&page->lru, &h->hugepage_activelist); | 
 | 2081 | 		/* Fall through */ | 
 | 2082 | 	} | 
 | 2083 | 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); | 
 | 2084 | 	spin_unlock(&hugetlb_lock); | 
 | 2085 |  | 
 | 2086 | 	set_page_private(page, (unsigned long)spool); | 
 | 2087 |  | 
 | 2088 | 	map_commit = vma_commit_reservation(h, vma, addr); | 
 | 2089 | 	if (unlikely(map_chg > map_commit)) { | 
 | 2090 | 		/* | 
 | 2091 | 		 * The page was added to the reservation map between | 
 | 2092 | 		 * vma_needs_reservation and vma_commit_reservation. | 
 | 2093 | 		 * This indicates a race with hugetlb_reserve_pages. | 
 | 2094 | 		 * Adjust for the subpool count incremented above AND | 
 | 2095 | 		 * in hugetlb_reserve_pages for the same page.  Also, | 
 | 2096 | 		 * the reservation count added in hugetlb_reserve_pages | 
 | 2097 | 		 * no longer applies. | 
 | 2098 | 		 */ | 
 | 2099 | 		long rsv_adjust; | 
 | 2100 |  | 
 | 2101 | 		rsv_adjust = hugepage_subpool_put_pages(spool, 1); | 
 | 2102 | 		hugetlb_acct_memory(h, -rsv_adjust); | 
 | 2103 | 	} | 
 | 2104 | 	return page; | 
 | 2105 |  | 
 | 2106 | out_uncharge_cgroup: | 
 | 2107 | 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); | 
 | 2108 | out_subpool_put: | 
 | 2109 | 	if (map_chg || avoid_reserve) | 
 | 2110 | 		hugepage_subpool_put_pages(spool, 1); | 
 | 2111 | 	vma_end_reservation(h, vma, addr); | 
 | 2112 | 	return ERR_PTR(-ENOSPC); | 
 | 2113 | } | 
 | 2114 |  | 
 | 2115 | int alloc_bootmem_huge_page(struct hstate *h) | 
 | 2116 | 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); | 
 | 2117 | int __alloc_bootmem_huge_page(struct hstate *h) | 
 | 2118 | { | 
 | 2119 | 	struct huge_bootmem_page *m; | 
 | 2120 | 	int nr_nodes, node; | 
 | 2121 |  | 
 | 2122 | 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { | 
 | 2123 | 		void *addr; | 
 | 2124 |  | 
 | 2125 | 		addr = memblock_virt_alloc_try_nid_raw( | 
 | 2126 | 				huge_page_size(h), huge_page_size(h), | 
 | 2127 | 				0, BOOTMEM_ALLOC_ACCESSIBLE, node); | 
 | 2128 | 		if (addr) { | 
 | 2129 | 			/* | 
 | 2130 | 			 * Use the beginning of the huge page to store the | 
 | 2131 | 			 * huge_bootmem_page struct (until gather_bootmem | 
 | 2132 | 			 * puts them into the mem_map). | 
 | 2133 | 			 */ | 
 | 2134 | 			m = addr; | 
 | 2135 | 			goto found; | 
 | 2136 | 		} | 
 | 2137 | 	} | 
 | 2138 | 	return 0; | 
 | 2139 |  | 
 | 2140 | found: | 
 | 2141 | 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); | 
 | 2142 | 	/* Put them into a private list first because mem_map is not up yet */ | 
 | 2143 | 	INIT_LIST_HEAD(&m->list); | 
 | 2144 | 	list_add(&m->list, &huge_boot_pages); | 
 | 2145 | 	m->hstate = h; | 
 | 2146 | 	return 1; | 
 | 2147 | } | 
 | 2148 |  | 
 | 2149 | static void __init prep_compound_huge_page(struct page *page, | 
 | 2150 | 		unsigned int order) | 
 | 2151 | { | 
 | 2152 | 	if (unlikely(order > (MAX_ORDER - 1))) | 
 | 2153 | 		prep_compound_gigantic_page(page, order); | 
 | 2154 | 	else | 
 | 2155 | 		prep_compound_page(page, order); | 
 | 2156 | } | 
 | 2157 |  | 
 | 2158 | /* Put bootmem huge pages into the standard lists after mem_map is up */ | 
 | 2159 | static void __init gather_bootmem_prealloc(void) | 
 | 2160 | { | 
 | 2161 | 	struct huge_bootmem_page *m; | 
 | 2162 |  | 
 | 2163 | 	list_for_each_entry(m, &huge_boot_pages, list) { | 
 | 2164 | 		struct page *page = virt_to_page(m); | 
 | 2165 | 		struct hstate *h = m->hstate; | 
 | 2166 |  | 
 | 2167 | 		WARN_ON(page_count(page) != 1); | 
 | 2168 | 		prep_compound_huge_page(page, h->order); | 
 | 2169 | 		WARN_ON(PageReserved(page)); | 
 | 2170 | 		prep_new_huge_page(h, page, page_to_nid(page)); | 
 | 2171 | 		put_page(page); /* free it into the hugepage allocator */ | 
 | 2172 |  | 
 | 2173 | 		/* | 
 | 2174 | 		 * If we had gigantic hugepages allocated at boot time, we need | 
 | 2175 | 		 * to restore the 'stolen' pages to totalram_pages in order to | 
 | 2176 | 		 * fix confusing memory reports from free(1) and another | 
 | 2177 | 		 * side-effects, like CommitLimit going negative. | 
 | 2178 | 		 */ | 
 | 2179 | 		if (hstate_is_gigantic(h)) | 
 | 2180 | 			adjust_managed_page_count(page, 1 << h->order); | 
 | 2181 | 		cond_resched(); | 
 | 2182 | 	} | 
 | 2183 | } | 
 | 2184 |  | 
 | 2185 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) | 
 | 2186 | { | 
 | 2187 | 	unsigned long i; | 
 | 2188 |  | 
 | 2189 | 	for (i = 0; i < h->max_huge_pages; ++i) { | 
 | 2190 | 		if (hstate_is_gigantic(h)) { | 
 | 2191 | 			if (!alloc_bootmem_huge_page(h)) | 
 | 2192 | 				break; | 
 | 2193 | 		} else if (!alloc_pool_huge_page(h, | 
 | 2194 | 					 &node_states[N_MEMORY])) | 
 | 2195 | 			break; | 
 | 2196 | 		cond_resched(); | 
 | 2197 | 	} | 
 | 2198 | 	if (i < h->max_huge_pages) { | 
 | 2199 | 		char buf[32]; | 
 | 2200 |  | 
 | 2201 | 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
 | 2202 | 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n", | 
 | 2203 | 			h->max_huge_pages, buf, i); | 
 | 2204 | 		h->max_huge_pages = i; | 
 | 2205 | 	} | 
 | 2206 | } | 
 | 2207 |  | 
 | 2208 | static void __init hugetlb_init_hstates(void) | 
 | 2209 | { | 
 | 2210 | 	struct hstate *h; | 
 | 2211 |  | 
 | 2212 | 	for_each_hstate(h) { | 
 | 2213 | 		if (minimum_order > huge_page_order(h)) | 
 | 2214 | 			minimum_order = huge_page_order(h); | 
 | 2215 |  | 
 | 2216 | 		/* oversize hugepages were init'ed in early boot */ | 
 | 2217 | 		if (!hstate_is_gigantic(h)) | 
 | 2218 | 			hugetlb_hstate_alloc_pages(h); | 
 | 2219 | 	} | 
 | 2220 | 	VM_BUG_ON(minimum_order == UINT_MAX); | 
 | 2221 | } | 
 | 2222 |  | 
 | 2223 | static void __init report_hugepages(void) | 
 | 2224 | { | 
 | 2225 | 	struct hstate *h; | 
 | 2226 |  | 
 | 2227 | 	for_each_hstate(h) { | 
 | 2228 | 		char buf[32]; | 
 | 2229 |  | 
 | 2230 | 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
 | 2231 | 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", | 
 | 2232 | 			buf, h->free_huge_pages); | 
 | 2233 | 	} | 
 | 2234 | } | 
 | 2235 |  | 
 | 2236 | #ifdef CONFIG_HIGHMEM | 
 | 2237 | static void try_to_free_low(struct hstate *h, unsigned long count, | 
 | 2238 | 						nodemask_t *nodes_allowed) | 
 | 2239 | { | 
 | 2240 | 	int i; | 
 | 2241 |  | 
 | 2242 | 	if (hstate_is_gigantic(h)) | 
 | 2243 | 		return; | 
 | 2244 |  | 
 | 2245 | 	for_each_node_mask(i, *nodes_allowed) { | 
 | 2246 | 		struct page *page, *next; | 
 | 2247 | 		struct list_head *freel = &h->hugepage_freelists[i]; | 
 | 2248 | 		list_for_each_entry_safe(page, next, freel, lru) { | 
 | 2249 | 			if (count >= h->nr_huge_pages) | 
 | 2250 | 				return; | 
 | 2251 | 			if (PageHighMem(page)) | 
 | 2252 | 				continue; | 
 | 2253 | 			list_del(&page->lru); | 
 | 2254 | 			update_and_free_page(h, page); | 
 | 2255 | 			h->free_huge_pages--; | 
 | 2256 | 			h->free_huge_pages_node[page_to_nid(page)]--; | 
 | 2257 | 		} | 
 | 2258 | 	} | 
 | 2259 | } | 
 | 2260 | #else | 
 | 2261 | static inline void try_to_free_low(struct hstate *h, unsigned long count, | 
 | 2262 | 						nodemask_t *nodes_allowed) | 
 | 2263 | { | 
 | 2264 | } | 
 | 2265 | #endif | 
 | 2266 |  | 
 | 2267 | /* | 
 | 2268 |  * Increment or decrement surplus_huge_pages.  Keep node-specific counters | 
 | 2269 |  * balanced by operating on them in a round-robin fashion. | 
 | 2270 |  * Returns 1 if an adjustment was made. | 
 | 2271 |  */ | 
 | 2272 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, | 
 | 2273 | 				int delta) | 
 | 2274 | { | 
 | 2275 | 	int nr_nodes, node; | 
 | 2276 |  | 
 | 2277 | 	VM_BUG_ON(delta != -1 && delta != 1); | 
 | 2278 |  | 
 | 2279 | 	if (delta < 0) { | 
 | 2280 | 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
 | 2281 | 			if (h->surplus_huge_pages_node[node]) | 
 | 2282 | 				goto found; | 
 | 2283 | 		} | 
 | 2284 | 	} else { | 
 | 2285 | 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
 | 2286 | 			if (h->surplus_huge_pages_node[node] < | 
 | 2287 | 					h->nr_huge_pages_node[node]) | 
 | 2288 | 				goto found; | 
 | 2289 | 		} | 
 | 2290 | 	} | 
 | 2291 | 	return 0; | 
 | 2292 |  | 
 | 2293 | found: | 
 | 2294 | 	h->surplus_huge_pages += delta; | 
 | 2295 | 	h->surplus_huge_pages_node[node] += delta; | 
 | 2296 | 	return 1; | 
 | 2297 | } | 
 | 2298 |  | 
 | 2299 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) | 
 | 2300 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, | 
 | 2301 | 						nodemask_t *nodes_allowed) | 
 | 2302 | { | 
 | 2303 | 	unsigned long min_count, ret; | 
 | 2304 |  | 
 | 2305 | 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) | 
 | 2306 | 		return h->max_huge_pages; | 
 | 2307 |  | 
 | 2308 | 	/* | 
 | 2309 | 	 * Increase the pool size | 
 | 2310 | 	 * First take pages out of surplus state.  Then make up the | 
 | 2311 | 	 * remaining difference by allocating fresh huge pages. | 
 | 2312 | 	 * | 
 | 2313 | 	 * We might race with alloc_surplus_huge_page() here and be unable | 
 | 2314 | 	 * to convert a surplus huge page to a normal huge page. That is | 
 | 2315 | 	 * not critical, though, it just means the overall size of the | 
 | 2316 | 	 * pool might be one hugepage larger than it needs to be, but | 
 | 2317 | 	 * within all the constraints specified by the sysctls. | 
 | 2318 | 	 */ | 
 | 2319 | 	spin_lock(&hugetlb_lock); | 
 | 2320 | 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { | 
 | 2321 | 		if (!adjust_pool_surplus(h, nodes_allowed, -1)) | 
 | 2322 | 			break; | 
 | 2323 | 	} | 
 | 2324 |  | 
 | 2325 | 	while (count > persistent_huge_pages(h)) { | 
 | 2326 | 		/* | 
 | 2327 | 		 * If this allocation races such that we no longer need the | 
 | 2328 | 		 * page, free_huge_page will handle it by freeing the page | 
 | 2329 | 		 * and reducing the surplus. | 
 | 2330 | 		 */ | 
 | 2331 | 		spin_unlock(&hugetlb_lock); | 
 | 2332 |  | 
 | 2333 | 		/* yield cpu to avoid soft lockup */ | 
 | 2334 | 		cond_resched(); | 
 | 2335 |  | 
 | 2336 | 		ret = alloc_pool_huge_page(h, nodes_allowed); | 
 | 2337 | 		spin_lock(&hugetlb_lock); | 
 | 2338 | 		if (!ret) | 
 | 2339 | 			goto out; | 
 | 2340 |  | 
 | 2341 | 		/* Bail for signals. Probably ctrl-c from user */ | 
 | 2342 | 		if (signal_pending(current)) | 
 | 2343 | 			goto out; | 
 | 2344 | 	} | 
 | 2345 |  | 
 | 2346 | 	/* | 
 | 2347 | 	 * Decrease the pool size | 
 | 2348 | 	 * First return free pages to the buddy allocator (being careful | 
 | 2349 | 	 * to keep enough around to satisfy reservations).  Then place | 
 | 2350 | 	 * pages into surplus state as needed so the pool will shrink | 
 | 2351 | 	 * to the desired size as pages become free. | 
 | 2352 | 	 * | 
 | 2353 | 	 * By placing pages into the surplus state independent of the | 
 | 2354 | 	 * overcommit value, we are allowing the surplus pool size to | 
 | 2355 | 	 * exceed overcommit. There are few sane options here. Since | 
 | 2356 | 	 * alloc_surplus_huge_page() is checking the global counter, | 
 | 2357 | 	 * though, we'll note that we're not allowed to exceed surplus | 
 | 2358 | 	 * and won't grow the pool anywhere else. Not until one of the | 
 | 2359 | 	 * sysctls are changed, or the surplus pages go out of use. | 
 | 2360 | 	 */ | 
 | 2361 | 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; | 
 | 2362 | 	min_count = max(count, min_count); | 
 | 2363 | 	try_to_free_low(h, min_count, nodes_allowed); | 
 | 2364 | 	while (min_count < persistent_huge_pages(h)) { | 
 | 2365 | 		if (!free_pool_huge_page(h, nodes_allowed, 0)) | 
 | 2366 | 			break; | 
 | 2367 | 		cond_resched_lock(&hugetlb_lock); | 
 | 2368 | 	} | 
 | 2369 | 	while (count < persistent_huge_pages(h)) { | 
 | 2370 | 		if (!adjust_pool_surplus(h, nodes_allowed, 1)) | 
 | 2371 | 			break; | 
 | 2372 | 	} | 
 | 2373 | out: | 
 | 2374 | 	ret = persistent_huge_pages(h); | 
 | 2375 | 	spin_unlock(&hugetlb_lock); | 
 | 2376 | 	return ret; | 
 | 2377 | } | 
 | 2378 |  | 
 | 2379 | #define HSTATE_ATTR_RO(_name) \ | 
 | 2380 | 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
 | 2381 |  | 
 | 2382 | #define HSTATE_ATTR(_name) \ | 
 | 2383 | 	static struct kobj_attribute _name##_attr = \ | 
 | 2384 | 		__ATTR(_name, 0644, _name##_show, _name##_store) | 
 | 2385 |  | 
 | 2386 | static struct kobject *hugepages_kobj; | 
 | 2387 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | 
 | 2388 |  | 
 | 2389 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); | 
 | 2390 |  | 
 | 2391 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | 
 | 2392 | { | 
 | 2393 | 	int i; | 
 | 2394 |  | 
 | 2395 | 	for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
 | 2396 | 		if (hstate_kobjs[i] == kobj) { | 
 | 2397 | 			if (nidp) | 
 | 2398 | 				*nidp = NUMA_NO_NODE; | 
 | 2399 | 			return &hstates[i]; | 
 | 2400 | 		} | 
 | 2401 |  | 
 | 2402 | 	return kobj_to_node_hstate(kobj, nidp); | 
 | 2403 | } | 
 | 2404 |  | 
 | 2405 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, | 
 | 2406 | 					struct kobj_attribute *attr, char *buf) | 
 | 2407 | { | 
 | 2408 | 	struct hstate *h; | 
 | 2409 | 	unsigned long nr_huge_pages; | 
 | 2410 | 	int nid; | 
 | 2411 |  | 
 | 2412 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 2413 | 	if (nid == NUMA_NO_NODE) | 
 | 2414 | 		nr_huge_pages = h->nr_huge_pages; | 
 | 2415 | 	else | 
 | 2416 | 		nr_huge_pages = h->nr_huge_pages_node[nid]; | 
 | 2417 |  | 
 | 2418 | 	return sprintf(buf, "%lu\n", nr_huge_pages); | 
 | 2419 | } | 
 | 2420 |  | 
 | 2421 | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, | 
 | 2422 | 					   struct hstate *h, int nid, | 
 | 2423 | 					   unsigned long count, size_t len) | 
 | 2424 | { | 
 | 2425 | 	int err; | 
 | 2426 | 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); | 
 | 2427 |  | 
 | 2428 | 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) { | 
 | 2429 | 		err = -EINVAL; | 
 | 2430 | 		goto out; | 
 | 2431 | 	} | 
 | 2432 |  | 
 | 2433 | 	if (nid == NUMA_NO_NODE) { | 
 | 2434 | 		/* | 
 | 2435 | 		 * global hstate attribute | 
 | 2436 | 		 */ | 
 | 2437 | 		if (!(obey_mempolicy && | 
 | 2438 | 				init_nodemask_of_mempolicy(nodes_allowed))) { | 
 | 2439 | 			NODEMASK_FREE(nodes_allowed); | 
 | 2440 | 			nodes_allowed = &node_states[N_MEMORY]; | 
 | 2441 | 		} | 
 | 2442 | 	} else if (nodes_allowed) { | 
 | 2443 | 		/* | 
 | 2444 | 		 * per node hstate attribute: adjust count to global, | 
 | 2445 | 		 * but restrict alloc/free to the specified node. | 
 | 2446 | 		 */ | 
 | 2447 | 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | 
 | 2448 | 		init_nodemask_of_node(nodes_allowed, nid); | 
 | 2449 | 	} else | 
 | 2450 | 		nodes_allowed = &node_states[N_MEMORY]; | 
 | 2451 |  | 
 | 2452 | 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); | 
 | 2453 |  | 
 | 2454 | 	if (nodes_allowed != &node_states[N_MEMORY]) | 
 | 2455 | 		NODEMASK_FREE(nodes_allowed); | 
 | 2456 |  | 
 | 2457 | 	return len; | 
 | 2458 | out: | 
 | 2459 | 	NODEMASK_FREE(nodes_allowed); | 
 | 2460 | 	return err; | 
 | 2461 | } | 
 | 2462 |  | 
 | 2463 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, | 
 | 2464 | 					 struct kobject *kobj, const char *buf, | 
 | 2465 | 					 size_t len) | 
 | 2466 | { | 
 | 2467 | 	struct hstate *h; | 
 | 2468 | 	unsigned long count; | 
 | 2469 | 	int nid; | 
 | 2470 | 	int err; | 
 | 2471 |  | 
 | 2472 | 	err = kstrtoul(buf, 10, &count); | 
 | 2473 | 	if (err) | 
 | 2474 | 		return err; | 
 | 2475 |  | 
 | 2476 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 2477 | 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); | 
 | 2478 | } | 
 | 2479 |  | 
 | 2480 | static ssize_t nr_hugepages_show(struct kobject *kobj, | 
 | 2481 | 				       struct kobj_attribute *attr, char *buf) | 
 | 2482 | { | 
 | 2483 | 	return nr_hugepages_show_common(kobj, attr, buf); | 
 | 2484 | } | 
 | 2485 |  | 
 | 2486 | static ssize_t nr_hugepages_store(struct kobject *kobj, | 
 | 2487 | 	       struct kobj_attribute *attr, const char *buf, size_t len) | 
 | 2488 | { | 
 | 2489 | 	return nr_hugepages_store_common(false, kobj, buf, len); | 
 | 2490 | } | 
 | 2491 | HSTATE_ATTR(nr_hugepages); | 
 | 2492 |  | 
 | 2493 | #ifdef CONFIG_NUMA | 
 | 2494 |  | 
 | 2495 | /* | 
 | 2496 |  * hstate attribute for optionally mempolicy-based constraint on persistent | 
 | 2497 |  * huge page alloc/free. | 
 | 2498 |  */ | 
 | 2499 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | 
 | 2500 | 				       struct kobj_attribute *attr, char *buf) | 
 | 2501 | { | 
 | 2502 | 	return nr_hugepages_show_common(kobj, attr, buf); | 
 | 2503 | } | 
 | 2504 |  | 
 | 2505 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | 
 | 2506 | 	       struct kobj_attribute *attr, const char *buf, size_t len) | 
 | 2507 | { | 
 | 2508 | 	return nr_hugepages_store_common(true, kobj, buf, len); | 
 | 2509 | } | 
 | 2510 | HSTATE_ATTR(nr_hugepages_mempolicy); | 
 | 2511 | #endif | 
 | 2512 |  | 
 | 2513 |  | 
 | 2514 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | 
 | 2515 | 					struct kobj_attribute *attr, char *buf) | 
 | 2516 | { | 
 | 2517 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 2518 | 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | 
 | 2519 | } | 
 | 2520 |  | 
 | 2521 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | 
 | 2522 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | 2523 | { | 
 | 2524 | 	int err; | 
 | 2525 | 	unsigned long input; | 
 | 2526 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 2527 |  | 
 | 2528 | 	if (hstate_is_gigantic(h)) | 
 | 2529 | 		return -EINVAL; | 
 | 2530 |  | 
 | 2531 | 	err = kstrtoul(buf, 10, &input); | 
 | 2532 | 	if (err) | 
 | 2533 | 		return err; | 
 | 2534 |  | 
 | 2535 | 	spin_lock(&hugetlb_lock); | 
 | 2536 | 	h->nr_overcommit_huge_pages = input; | 
 | 2537 | 	spin_unlock(&hugetlb_lock); | 
 | 2538 |  | 
 | 2539 | 	return count; | 
 | 2540 | } | 
 | 2541 | HSTATE_ATTR(nr_overcommit_hugepages); | 
 | 2542 |  | 
 | 2543 | static ssize_t free_hugepages_show(struct kobject *kobj, | 
 | 2544 | 					struct kobj_attribute *attr, char *buf) | 
 | 2545 | { | 
 | 2546 | 	struct hstate *h; | 
 | 2547 | 	unsigned long free_huge_pages; | 
 | 2548 | 	int nid; | 
 | 2549 |  | 
 | 2550 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 2551 | 	if (nid == NUMA_NO_NODE) | 
 | 2552 | 		free_huge_pages = h->free_huge_pages; | 
 | 2553 | 	else | 
 | 2554 | 		free_huge_pages = h->free_huge_pages_node[nid]; | 
 | 2555 |  | 
 | 2556 | 	return sprintf(buf, "%lu\n", free_huge_pages); | 
 | 2557 | } | 
 | 2558 | HSTATE_ATTR_RO(free_hugepages); | 
 | 2559 |  | 
 | 2560 | static ssize_t resv_hugepages_show(struct kobject *kobj, | 
 | 2561 | 					struct kobj_attribute *attr, char *buf) | 
 | 2562 | { | 
 | 2563 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 2564 | 	return sprintf(buf, "%lu\n", h->resv_huge_pages); | 
 | 2565 | } | 
 | 2566 | HSTATE_ATTR_RO(resv_hugepages); | 
 | 2567 |  | 
 | 2568 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | 
 | 2569 | 					struct kobj_attribute *attr, char *buf) | 
 | 2570 | { | 
 | 2571 | 	struct hstate *h; | 
 | 2572 | 	unsigned long surplus_huge_pages; | 
 | 2573 | 	int nid; | 
 | 2574 |  | 
 | 2575 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 2576 | 	if (nid == NUMA_NO_NODE) | 
 | 2577 | 		surplus_huge_pages = h->surplus_huge_pages; | 
 | 2578 | 	else | 
 | 2579 | 		surplus_huge_pages = h->surplus_huge_pages_node[nid]; | 
 | 2580 |  | 
 | 2581 | 	return sprintf(buf, "%lu\n", surplus_huge_pages); | 
 | 2582 | } | 
 | 2583 | HSTATE_ATTR_RO(surplus_hugepages); | 
 | 2584 |  | 
 | 2585 | static struct attribute *hstate_attrs[] = { | 
 | 2586 | 	&nr_hugepages_attr.attr, | 
 | 2587 | 	&nr_overcommit_hugepages_attr.attr, | 
 | 2588 | 	&free_hugepages_attr.attr, | 
 | 2589 | 	&resv_hugepages_attr.attr, | 
 | 2590 | 	&surplus_hugepages_attr.attr, | 
 | 2591 | #ifdef CONFIG_NUMA | 
 | 2592 | 	&nr_hugepages_mempolicy_attr.attr, | 
 | 2593 | #endif | 
 | 2594 | 	NULL, | 
 | 2595 | }; | 
 | 2596 |  | 
 | 2597 | static const struct attribute_group hstate_attr_group = { | 
 | 2598 | 	.attrs = hstate_attrs, | 
 | 2599 | }; | 
 | 2600 |  | 
 | 2601 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, | 
 | 2602 | 				    struct kobject **hstate_kobjs, | 
 | 2603 | 				    const struct attribute_group *hstate_attr_group) | 
 | 2604 | { | 
 | 2605 | 	int retval; | 
 | 2606 | 	int hi = hstate_index(h); | 
 | 2607 |  | 
 | 2608 | 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); | 
 | 2609 | 	if (!hstate_kobjs[hi]) | 
 | 2610 | 		return -ENOMEM; | 
 | 2611 |  | 
 | 2612 | 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); | 
 | 2613 | 	if (retval) | 
 | 2614 | 		kobject_put(hstate_kobjs[hi]); | 
 | 2615 |  | 
 | 2616 | 	return retval; | 
 | 2617 | } | 
 | 2618 |  | 
 | 2619 | static void __init hugetlb_sysfs_init(void) | 
 | 2620 | { | 
 | 2621 | 	struct hstate *h; | 
 | 2622 | 	int err; | 
 | 2623 |  | 
 | 2624 | 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | 
 | 2625 | 	if (!hugepages_kobj) | 
 | 2626 | 		return; | 
 | 2627 |  | 
 | 2628 | 	for_each_hstate(h) { | 
 | 2629 | 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, | 
 | 2630 | 					 hstate_kobjs, &hstate_attr_group); | 
 | 2631 | 		if (err) | 
 | 2632 | 			pr_err("Hugetlb: Unable to add hstate %s", h->name); | 
 | 2633 | 	} | 
 | 2634 | } | 
 | 2635 |  | 
 | 2636 | #ifdef CONFIG_NUMA | 
 | 2637 |  | 
 | 2638 | /* | 
 | 2639 |  * node_hstate/s - associate per node hstate attributes, via their kobjects, | 
 | 2640 |  * with node devices in node_devices[] using a parallel array.  The array | 
 | 2641 |  * index of a node device or _hstate == node id. | 
 | 2642 |  * This is here to avoid any static dependency of the node device driver, in | 
 | 2643 |  * the base kernel, on the hugetlb module. | 
 | 2644 |  */ | 
 | 2645 | struct node_hstate { | 
 | 2646 | 	struct kobject		*hugepages_kobj; | 
 | 2647 | 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE]; | 
 | 2648 | }; | 
 | 2649 | static struct node_hstate node_hstates[MAX_NUMNODES]; | 
 | 2650 |  | 
 | 2651 | /* | 
 | 2652 |  * A subset of global hstate attributes for node devices | 
 | 2653 |  */ | 
 | 2654 | static struct attribute *per_node_hstate_attrs[] = { | 
 | 2655 | 	&nr_hugepages_attr.attr, | 
 | 2656 | 	&free_hugepages_attr.attr, | 
 | 2657 | 	&surplus_hugepages_attr.attr, | 
 | 2658 | 	NULL, | 
 | 2659 | }; | 
 | 2660 |  | 
 | 2661 | static const struct attribute_group per_node_hstate_attr_group = { | 
 | 2662 | 	.attrs = per_node_hstate_attrs, | 
 | 2663 | }; | 
 | 2664 |  | 
 | 2665 | /* | 
 | 2666 |  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. | 
 | 2667 |  * Returns node id via non-NULL nidp. | 
 | 2668 |  */ | 
 | 2669 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
 | 2670 | { | 
 | 2671 | 	int nid; | 
 | 2672 |  | 
 | 2673 | 	for (nid = 0; nid < nr_node_ids; nid++) { | 
 | 2674 | 		struct node_hstate *nhs = &node_hstates[nid]; | 
 | 2675 | 		int i; | 
 | 2676 | 		for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
 | 2677 | 			if (nhs->hstate_kobjs[i] == kobj) { | 
 | 2678 | 				if (nidp) | 
 | 2679 | 					*nidp = nid; | 
 | 2680 | 				return &hstates[i]; | 
 | 2681 | 			} | 
 | 2682 | 	} | 
 | 2683 |  | 
 | 2684 | 	BUG(); | 
 | 2685 | 	return NULL; | 
 | 2686 | } | 
 | 2687 |  | 
 | 2688 | /* | 
 | 2689 |  * Unregister hstate attributes from a single node device. | 
 | 2690 |  * No-op if no hstate attributes attached. | 
 | 2691 |  */ | 
 | 2692 | static void hugetlb_unregister_node(struct node *node) | 
 | 2693 | { | 
 | 2694 | 	struct hstate *h; | 
 | 2695 | 	struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
 | 2696 |  | 
 | 2697 | 	if (!nhs->hugepages_kobj) | 
 | 2698 | 		return;		/* no hstate attributes */ | 
 | 2699 |  | 
 | 2700 | 	for_each_hstate(h) { | 
 | 2701 | 		int idx = hstate_index(h); | 
 | 2702 | 		if (nhs->hstate_kobjs[idx]) { | 
 | 2703 | 			kobject_put(nhs->hstate_kobjs[idx]); | 
 | 2704 | 			nhs->hstate_kobjs[idx] = NULL; | 
 | 2705 | 		} | 
 | 2706 | 	} | 
 | 2707 |  | 
 | 2708 | 	kobject_put(nhs->hugepages_kobj); | 
 | 2709 | 	nhs->hugepages_kobj = NULL; | 
 | 2710 | } | 
 | 2711 |  | 
 | 2712 |  | 
 | 2713 | /* | 
 | 2714 |  * Register hstate attributes for a single node device. | 
 | 2715 |  * No-op if attributes already registered. | 
 | 2716 |  */ | 
 | 2717 | static void hugetlb_register_node(struct node *node) | 
 | 2718 | { | 
 | 2719 | 	struct hstate *h; | 
 | 2720 | 	struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
 | 2721 | 	int err; | 
 | 2722 |  | 
 | 2723 | 	if (nhs->hugepages_kobj) | 
 | 2724 | 		return;		/* already allocated */ | 
 | 2725 |  | 
 | 2726 | 	nhs->hugepages_kobj = kobject_create_and_add("hugepages", | 
 | 2727 | 							&node->dev.kobj); | 
 | 2728 | 	if (!nhs->hugepages_kobj) | 
 | 2729 | 		return; | 
 | 2730 |  | 
 | 2731 | 	for_each_hstate(h) { | 
 | 2732 | 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | 
 | 2733 | 						nhs->hstate_kobjs, | 
 | 2734 | 						&per_node_hstate_attr_group); | 
 | 2735 | 		if (err) { | 
 | 2736 | 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n", | 
 | 2737 | 				h->name, node->dev.id); | 
 | 2738 | 			hugetlb_unregister_node(node); | 
 | 2739 | 			break; | 
 | 2740 | 		} | 
 | 2741 | 	} | 
 | 2742 | } | 
 | 2743 |  | 
 | 2744 | /* | 
 | 2745 |  * hugetlb init time:  register hstate attributes for all registered node | 
 | 2746 |  * devices of nodes that have memory.  All on-line nodes should have | 
 | 2747 |  * registered their associated device by this time. | 
 | 2748 |  */ | 
 | 2749 | static void __init hugetlb_register_all_nodes(void) | 
 | 2750 | { | 
 | 2751 | 	int nid; | 
 | 2752 |  | 
 | 2753 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 2754 | 		struct node *node = node_devices[nid]; | 
 | 2755 | 		if (node->dev.id == nid) | 
 | 2756 | 			hugetlb_register_node(node); | 
 | 2757 | 	} | 
 | 2758 |  | 
 | 2759 | 	/* | 
 | 2760 | 	 * Let the node device driver know we're here so it can | 
 | 2761 | 	 * [un]register hstate attributes on node hotplug. | 
 | 2762 | 	 */ | 
 | 2763 | 	register_hugetlbfs_with_node(hugetlb_register_node, | 
 | 2764 | 				     hugetlb_unregister_node); | 
 | 2765 | } | 
 | 2766 | #else	/* !CONFIG_NUMA */ | 
 | 2767 |  | 
 | 2768 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
 | 2769 | { | 
 | 2770 | 	BUG(); | 
 | 2771 | 	if (nidp) | 
 | 2772 | 		*nidp = -1; | 
 | 2773 | 	return NULL; | 
 | 2774 | } | 
 | 2775 |  | 
 | 2776 | static void hugetlb_register_all_nodes(void) { } | 
 | 2777 |  | 
 | 2778 | #endif | 
 | 2779 |  | 
 | 2780 | static int __init hugetlb_init(void) | 
 | 2781 | { | 
 | 2782 | 	int i; | 
 | 2783 |  | 
 | 2784 | 	if (!hugepages_supported()) | 
 | 2785 | 		return 0; | 
 | 2786 |  | 
 | 2787 | 	if (!size_to_hstate(default_hstate_size)) { | 
 | 2788 | 		if (default_hstate_size != 0) { | 
 | 2789 | 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", | 
 | 2790 | 			       default_hstate_size, HPAGE_SIZE); | 
 | 2791 | 		} | 
 | 2792 |  | 
 | 2793 | 		default_hstate_size = HPAGE_SIZE; | 
 | 2794 | 		if (!size_to_hstate(default_hstate_size)) | 
 | 2795 | 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | 
 | 2796 | 	} | 
 | 2797 | 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); | 
 | 2798 | 	if (default_hstate_max_huge_pages) { | 
 | 2799 | 		if (!default_hstate.max_huge_pages) | 
 | 2800 | 			default_hstate.max_huge_pages = default_hstate_max_huge_pages; | 
 | 2801 | 	} | 
 | 2802 |  | 
 | 2803 | 	hugetlb_init_hstates(); | 
 | 2804 | 	gather_bootmem_prealloc(); | 
 | 2805 | 	report_hugepages(); | 
 | 2806 |  | 
 | 2807 | 	hugetlb_sysfs_init(); | 
 | 2808 | 	hugetlb_register_all_nodes(); | 
 | 2809 | 	hugetlb_cgroup_file_init(); | 
 | 2810 |  | 
 | 2811 | #ifdef CONFIG_SMP | 
 | 2812 | 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); | 
 | 2813 | #else | 
 | 2814 | 	num_fault_mutexes = 1; | 
 | 2815 | #endif | 
 | 2816 | 	hugetlb_fault_mutex_table = | 
 | 2817 | 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex), | 
 | 2818 | 			      GFP_KERNEL); | 
 | 2819 | 	BUG_ON(!hugetlb_fault_mutex_table); | 
 | 2820 |  | 
 | 2821 | 	for (i = 0; i < num_fault_mutexes; i++) | 
 | 2822 | 		mutex_init(&hugetlb_fault_mutex_table[i]); | 
 | 2823 | 	return 0; | 
 | 2824 | } | 
 | 2825 | subsys_initcall(hugetlb_init); | 
 | 2826 |  | 
 | 2827 | /* Should be called on processing a hugepagesz=... option */ | 
 | 2828 | void __init hugetlb_bad_size(void) | 
 | 2829 | { | 
 | 2830 | 	parsed_valid_hugepagesz = false; | 
 | 2831 | } | 
 | 2832 |  | 
 | 2833 | void __init hugetlb_add_hstate(unsigned int order) | 
 | 2834 | { | 
 | 2835 | 	struct hstate *h; | 
 | 2836 | 	unsigned long i; | 
 | 2837 |  | 
 | 2838 | 	if (size_to_hstate(PAGE_SIZE << order)) { | 
 | 2839 | 		pr_warn("hugepagesz= specified twice, ignoring\n"); | 
 | 2840 | 		return; | 
 | 2841 | 	} | 
 | 2842 | 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); | 
 | 2843 | 	BUG_ON(order == 0); | 
 | 2844 | 	h = &hstates[hugetlb_max_hstate++]; | 
 | 2845 | 	h->order = order; | 
 | 2846 | 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | 
 | 2847 | 	h->nr_huge_pages = 0; | 
 | 2848 | 	h->free_huge_pages = 0; | 
 | 2849 | 	for (i = 0; i < MAX_NUMNODES; ++i) | 
 | 2850 | 		INIT_LIST_HEAD(&h->hugepage_freelists[i]); | 
 | 2851 | 	INIT_LIST_HEAD(&h->hugepage_activelist); | 
 | 2852 | 	h->next_nid_to_alloc = first_memory_node; | 
 | 2853 | 	h->next_nid_to_free = first_memory_node; | 
 | 2854 | 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | 
 | 2855 | 					huge_page_size(h)/1024); | 
 | 2856 |  | 
 | 2857 | 	parsed_hstate = h; | 
 | 2858 | } | 
 | 2859 |  | 
 | 2860 | static int __init hugetlb_nrpages_setup(char *s) | 
 | 2861 | { | 
 | 2862 | 	unsigned long *mhp; | 
 | 2863 | 	static unsigned long *last_mhp; | 
 | 2864 |  | 
 | 2865 | 	if (!parsed_valid_hugepagesz) { | 
 | 2866 | 		pr_warn("hugepages = %s preceded by " | 
 | 2867 | 			"an unsupported hugepagesz, ignoring\n", s); | 
 | 2868 | 		parsed_valid_hugepagesz = true; | 
 | 2869 | 		return 1; | 
 | 2870 | 	} | 
 | 2871 | 	/* | 
 | 2872 | 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, | 
 | 2873 | 	 * so this hugepages= parameter goes to the "default hstate". | 
 | 2874 | 	 */ | 
 | 2875 | 	else if (!hugetlb_max_hstate) | 
 | 2876 | 		mhp = &default_hstate_max_huge_pages; | 
 | 2877 | 	else | 
 | 2878 | 		mhp = &parsed_hstate->max_huge_pages; | 
 | 2879 |  | 
 | 2880 | 	if (mhp == last_mhp) { | 
 | 2881 | 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); | 
 | 2882 | 		return 1; | 
 | 2883 | 	} | 
 | 2884 |  | 
 | 2885 | 	if (sscanf(s, "%lu", mhp) <= 0) | 
 | 2886 | 		*mhp = 0; | 
 | 2887 |  | 
 | 2888 | 	/* | 
 | 2889 | 	 * Global state is always initialized later in hugetlb_init. | 
 | 2890 | 	 * But we need to allocate >= MAX_ORDER hstates here early to still | 
 | 2891 | 	 * use the bootmem allocator. | 
 | 2892 | 	 */ | 
 | 2893 | 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) | 
 | 2894 | 		hugetlb_hstate_alloc_pages(parsed_hstate); | 
 | 2895 |  | 
 | 2896 | 	last_mhp = mhp; | 
 | 2897 |  | 
 | 2898 | 	return 1; | 
 | 2899 | } | 
 | 2900 | __setup("hugepages=", hugetlb_nrpages_setup); | 
 | 2901 |  | 
 | 2902 | static int __init hugetlb_default_setup(char *s) | 
 | 2903 | { | 
 | 2904 | 	default_hstate_size = memparse(s, &s); | 
 | 2905 | 	return 1; | 
 | 2906 | } | 
 | 2907 | __setup("default_hugepagesz=", hugetlb_default_setup); | 
 | 2908 |  | 
 | 2909 | static unsigned int cpuset_mems_nr(unsigned int *array) | 
 | 2910 | { | 
 | 2911 | 	int node; | 
 | 2912 | 	unsigned int nr = 0; | 
 | 2913 |  | 
 | 2914 | 	for_each_node_mask(node, cpuset_current_mems_allowed) | 
 | 2915 | 		nr += array[node]; | 
 | 2916 |  | 
 | 2917 | 	return nr; | 
 | 2918 | } | 
 | 2919 |  | 
 | 2920 | #ifdef CONFIG_SYSCTL | 
 | 2921 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, | 
 | 2922 | 			 struct ctl_table *table, int write, | 
 | 2923 | 			 void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2924 | { | 
 | 2925 | 	struct hstate *h = &default_hstate; | 
 | 2926 | 	unsigned long tmp = h->max_huge_pages; | 
 | 2927 | 	int ret; | 
 | 2928 |  | 
 | 2929 | 	if (!hugepages_supported()) | 
 | 2930 | 		return -EOPNOTSUPP; | 
 | 2931 |  | 
 | 2932 | 	table->data = &tmp; | 
 | 2933 | 	table->maxlen = sizeof(unsigned long); | 
 | 2934 | 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
 | 2935 | 	if (ret) | 
 | 2936 | 		goto out; | 
 | 2937 |  | 
 | 2938 | 	if (write) | 
 | 2939 | 		ret = __nr_hugepages_store_common(obey_mempolicy, h, | 
 | 2940 | 						  NUMA_NO_NODE, tmp, *length); | 
 | 2941 | out: | 
 | 2942 | 	return ret; | 
 | 2943 | } | 
 | 2944 |  | 
 | 2945 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
 | 2946 | 			  void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2947 | { | 
 | 2948 |  | 
 | 2949 | 	return hugetlb_sysctl_handler_common(false, table, write, | 
 | 2950 | 							buffer, length, ppos); | 
 | 2951 | } | 
 | 2952 |  | 
 | 2953 | #ifdef CONFIG_NUMA | 
 | 2954 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | 
 | 2955 | 			  void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2956 | { | 
 | 2957 | 	return hugetlb_sysctl_handler_common(true, table, write, | 
 | 2958 | 							buffer, length, ppos); | 
 | 2959 | } | 
 | 2960 | #endif /* CONFIG_NUMA */ | 
 | 2961 |  | 
 | 2962 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, | 
 | 2963 | 			void __user *buffer, | 
 | 2964 | 			size_t *length, loff_t *ppos) | 
 | 2965 | { | 
 | 2966 | 	struct hstate *h = &default_hstate; | 
 | 2967 | 	unsigned long tmp; | 
 | 2968 | 	int ret; | 
 | 2969 |  | 
 | 2970 | 	if (!hugepages_supported()) | 
 | 2971 | 		return -EOPNOTSUPP; | 
 | 2972 |  | 
 | 2973 | 	tmp = h->nr_overcommit_huge_pages; | 
 | 2974 |  | 
 | 2975 | 	if (write && hstate_is_gigantic(h)) | 
 | 2976 | 		return -EINVAL; | 
 | 2977 |  | 
 | 2978 | 	table->data = &tmp; | 
 | 2979 | 	table->maxlen = sizeof(unsigned long); | 
 | 2980 | 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
 | 2981 | 	if (ret) | 
 | 2982 | 		goto out; | 
 | 2983 |  | 
 | 2984 | 	if (write) { | 
 | 2985 | 		spin_lock(&hugetlb_lock); | 
 | 2986 | 		h->nr_overcommit_huge_pages = tmp; | 
 | 2987 | 		spin_unlock(&hugetlb_lock); | 
 | 2988 | 	} | 
 | 2989 | out: | 
 | 2990 | 	return ret; | 
 | 2991 | } | 
 | 2992 |  | 
 | 2993 | #endif /* CONFIG_SYSCTL */ | 
 | 2994 |  | 
 | 2995 | void hugetlb_report_meminfo(struct seq_file *m) | 
 | 2996 | { | 
 | 2997 | 	struct hstate *h; | 
 | 2998 | 	unsigned long total = 0; | 
 | 2999 |  | 
 | 3000 | 	if (!hugepages_supported()) | 
 | 3001 | 		return; | 
 | 3002 |  | 
 | 3003 | 	for_each_hstate(h) { | 
 | 3004 | 		unsigned long count = h->nr_huge_pages; | 
 | 3005 |  | 
 | 3006 | 		total += (PAGE_SIZE << huge_page_order(h)) * count; | 
 | 3007 |  | 
 | 3008 | 		if (h == &default_hstate) | 
 | 3009 | 			seq_printf(m, | 
 | 3010 | 				   "HugePages_Total:   %5lu\n" | 
 | 3011 | 				   "HugePages_Free:    %5lu\n" | 
 | 3012 | 				   "HugePages_Rsvd:    %5lu\n" | 
 | 3013 | 				   "HugePages_Surp:    %5lu\n" | 
 | 3014 | 				   "Hugepagesize:   %8lu kB\n", | 
 | 3015 | 				   count, | 
 | 3016 | 				   h->free_huge_pages, | 
 | 3017 | 				   h->resv_huge_pages, | 
 | 3018 | 				   h->surplus_huge_pages, | 
 | 3019 | 				   (PAGE_SIZE << huge_page_order(h)) / 1024); | 
 | 3020 | 	} | 
 | 3021 |  | 
 | 3022 | 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024); | 
 | 3023 | } | 
 | 3024 |  | 
 | 3025 | int hugetlb_report_node_meminfo(int nid, char *buf) | 
 | 3026 | { | 
 | 3027 | 	struct hstate *h = &default_hstate; | 
 | 3028 | 	if (!hugepages_supported()) | 
 | 3029 | 		return 0; | 
 | 3030 | 	return sprintf(buf, | 
 | 3031 | 		"Node %d HugePages_Total: %5u\n" | 
 | 3032 | 		"Node %d HugePages_Free:  %5u\n" | 
 | 3033 | 		"Node %d HugePages_Surp:  %5u\n", | 
 | 3034 | 		nid, h->nr_huge_pages_node[nid], | 
 | 3035 | 		nid, h->free_huge_pages_node[nid], | 
 | 3036 | 		nid, h->surplus_huge_pages_node[nid]); | 
 | 3037 | } | 
 | 3038 |  | 
 | 3039 | void hugetlb_show_meminfo(void) | 
 | 3040 | { | 
 | 3041 | 	struct hstate *h; | 
 | 3042 | 	int nid; | 
 | 3043 |  | 
 | 3044 | 	if (!hugepages_supported()) | 
 | 3045 | 		return; | 
 | 3046 |  | 
 | 3047 | 	for_each_node_state(nid, N_MEMORY) | 
 | 3048 | 		for_each_hstate(h) | 
 | 3049 | 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | 
 | 3050 | 				nid, | 
 | 3051 | 				h->nr_huge_pages_node[nid], | 
 | 3052 | 				h->free_huge_pages_node[nid], | 
 | 3053 | 				h->surplus_huge_pages_node[nid], | 
 | 3054 | 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | 
 | 3055 | } | 
 | 3056 |  | 
 | 3057 | void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) | 
 | 3058 | { | 
 | 3059 | 	seq_printf(m, "HugetlbPages:\t%8lu kB\n", | 
 | 3060 | 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); | 
 | 3061 | } | 
 | 3062 |  | 
 | 3063 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
 | 3064 | unsigned long hugetlb_total_pages(void) | 
 | 3065 | { | 
 | 3066 | 	struct hstate *h; | 
 | 3067 | 	unsigned long nr_total_pages = 0; | 
 | 3068 |  | 
 | 3069 | 	for_each_hstate(h) | 
 | 3070 | 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | 
 | 3071 | 	return nr_total_pages; | 
 | 3072 | } | 
 | 3073 |  | 
 | 3074 | static int hugetlb_acct_memory(struct hstate *h, long delta) | 
 | 3075 | { | 
 | 3076 | 	int ret = -ENOMEM; | 
 | 3077 |  | 
 | 3078 | 	spin_lock(&hugetlb_lock); | 
 | 3079 | 	/* | 
 | 3080 | 	 * When cpuset is configured, it breaks the strict hugetlb page | 
 | 3081 | 	 * reservation as the accounting is done on a global variable. Such | 
 | 3082 | 	 * reservation is completely rubbish in the presence of cpuset because | 
 | 3083 | 	 * the reservation is not checked against page availability for the | 
 | 3084 | 	 * current cpuset. Application can still potentially OOM'ed by kernel | 
 | 3085 | 	 * with lack of free htlb page in cpuset that the task is in. | 
 | 3086 | 	 * Attempt to enforce strict accounting with cpuset is almost | 
 | 3087 | 	 * impossible (or too ugly) because cpuset is too fluid that | 
 | 3088 | 	 * task or memory node can be dynamically moved between cpusets. | 
 | 3089 | 	 * | 
 | 3090 | 	 * The change of semantics for shared hugetlb mapping with cpuset is | 
 | 3091 | 	 * undesirable. However, in order to preserve some of the semantics, | 
 | 3092 | 	 * we fall back to check against current free page availability as | 
 | 3093 | 	 * a best attempt and hopefully to minimize the impact of changing | 
 | 3094 | 	 * semantics that cpuset has. | 
 | 3095 | 	 */ | 
 | 3096 | 	if (delta > 0) { | 
 | 3097 | 		if (gather_surplus_pages(h, delta) < 0) | 
 | 3098 | 			goto out; | 
 | 3099 |  | 
 | 3100 | 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | 
 | 3101 | 			return_unused_surplus_pages(h, delta); | 
 | 3102 | 			goto out; | 
 | 3103 | 		} | 
 | 3104 | 	} | 
 | 3105 |  | 
 | 3106 | 	ret = 0; | 
 | 3107 | 	if (delta < 0) | 
 | 3108 | 		return_unused_surplus_pages(h, (unsigned long) -delta); | 
 | 3109 |  | 
 | 3110 | out: | 
 | 3111 | 	spin_unlock(&hugetlb_lock); | 
 | 3112 | 	return ret; | 
 | 3113 | } | 
 | 3114 |  | 
 | 3115 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | 
 | 3116 | { | 
 | 3117 | 	struct resv_map *resv = vma_resv_map(vma); | 
 | 3118 |  | 
 | 3119 | 	/* | 
 | 3120 | 	 * This new VMA should share its siblings reservation map if present. | 
 | 3121 | 	 * The VMA will only ever have a valid reservation map pointer where | 
 | 3122 | 	 * it is being copied for another still existing VMA.  As that VMA | 
 | 3123 | 	 * has a reference to the reservation map it cannot disappear until | 
 | 3124 | 	 * after this open call completes.  It is therefore safe to take a | 
 | 3125 | 	 * new reference here without additional locking. | 
 | 3126 | 	 */ | 
 | 3127 | 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
 | 3128 | 		kref_get(&resv->refs); | 
 | 3129 | } | 
 | 3130 |  | 
 | 3131 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | 
 | 3132 | { | 
 | 3133 | 	struct hstate *h = hstate_vma(vma); | 
 | 3134 | 	struct resv_map *resv = vma_resv_map(vma); | 
 | 3135 | 	struct hugepage_subpool *spool = subpool_vma(vma); | 
 | 3136 | 	unsigned long reserve, start, end; | 
 | 3137 | 	long gbl_reserve; | 
 | 3138 |  | 
 | 3139 | 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
 | 3140 | 		return; | 
 | 3141 |  | 
 | 3142 | 	start = vma_hugecache_offset(h, vma, vma->vm_start); | 
 | 3143 | 	end = vma_hugecache_offset(h, vma, vma->vm_end); | 
 | 3144 |  | 
 | 3145 | 	reserve = (end - start) - region_count(resv, start, end); | 
 | 3146 |  | 
 | 3147 | 	kref_put(&resv->refs, resv_map_release); | 
 | 3148 |  | 
 | 3149 | 	if (reserve) { | 
 | 3150 | 		/* | 
 | 3151 | 		 * Decrement reserve counts.  The global reserve count may be | 
 | 3152 | 		 * adjusted if the subpool has a minimum size. | 
 | 3153 | 		 */ | 
 | 3154 | 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve); | 
 | 3155 | 		hugetlb_acct_memory(h, -gbl_reserve); | 
 | 3156 | 	} | 
 | 3157 | } | 
 | 3158 |  | 
 | 3159 | static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) | 
 | 3160 | { | 
 | 3161 | 	if (addr & ~(huge_page_mask(hstate_vma(vma)))) | 
 | 3162 | 		return -EINVAL; | 
 | 3163 | 	return 0; | 
 | 3164 | } | 
 | 3165 |  | 
 | 3166 | static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) | 
 | 3167 | { | 
 | 3168 | 	struct hstate *hstate = hstate_vma(vma); | 
 | 3169 |  | 
 | 3170 | 	return 1UL << huge_page_shift(hstate); | 
 | 3171 | } | 
 | 3172 |  | 
 | 3173 | /* | 
 | 3174 |  * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
 | 3175 |  * handle_mm_fault() to try to instantiate regular-sized pages in the | 
 | 3176 |  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
 | 3177 |  * this far. | 
 | 3178 |  */ | 
 | 3179 | static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) | 
 | 3180 | { | 
 | 3181 | 	BUG(); | 
 | 3182 | 	return 0; | 
 | 3183 | } | 
 | 3184 |  | 
 | 3185 | /* | 
 | 3186 |  * When a new function is introduced to vm_operations_struct and added | 
 | 3187 |  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. | 
 | 3188 |  * This is because under System V memory model, mappings created via | 
 | 3189 |  * shmget/shmat with "huge page" specified are backed by hugetlbfs files, | 
 | 3190 |  * their original vm_ops are overwritten with shm_vm_ops. | 
 | 3191 |  */ | 
 | 3192 | const struct vm_operations_struct hugetlb_vm_ops = { | 
 | 3193 | 	.fault = hugetlb_vm_op_fault, | 
 | 3194 | 	.open = hugetlb_vm_op_open, | 
 | 3195 | 	.close = hugetlb_vm_op_close, | 
 | 3196 | 	.split = hugetlb_vm_op_split, | 
 | 3197 | 	.pagesize = hugetlb_vm_op_pagesize, | 
 | 3198 | }; | 
 | 3199 |  | 
 | 3200 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
 | 3201 | 				int writable) | 
 | 3202 | { | 
 | 3203 | 	pte_t entry; | 
 | 3204 |  | 
 | 3205 | 	if (writable) { | 
 | 3206 | 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, | 
 | 3207 | 					 vma->vm_page_prot))); | 
 | 3208 | 	} else { | 
 | 3209 | 		entry = huge_pte_wrprotect(mk_huge_pte(page, | 
 | 3210 | 					   vma->vm_page_prot)); | 
 | 3211 | 	} | 
 | 3212 | 	entry = pte_mkyoung(entry); | 
 | 3213 | 	entry = pte_mkhuge(entry); | 
 | 3214 | 	entry = arch_make_huge_pte(entry, vma, page, writable); | 
 | 3215 |  | 
 | 3216 | 	return entry; | 
 | 3217 | } | 
 | 3218 |  | 
 | 3219 | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
 | 3220 | 				   unsigned long address, pte_t *ptep) | 
 | 3221 | { | 
 | 3222 | 	pte_t entry; | 
 | 3223 |  | 
 | 3224 | 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); | 
 | 3225 | 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) | 
 | 3226 | 		update_mmu_cache(vma, address, ptep); | 
 | 3227 | } | 
 | 3228 |  | 
 | 3229 | bool is_hugetlb_entry_migration(pte_t pte) | 
 | 3230 | { | 
 | 3231 | 	swp_entry_t swp; | 
 | 3232 |  | 
 | 3233 | 	if (huge_pte_none(pte) || pte_present(pte)) | 
 | 3234 | 		return false; | 
 | 3235 | 	swp = pte_to_swp_entry(pte); | 
 | 3236 | 	if (non_swap_entry(swp) && is_migration_entry(swp)) | 
 | 3237 | 		return true; | 
 | 3238 | 	else | 
 | 3239 | 		return false; | 
 | 3240 | } | 
 | 3241 |  | 
 | 3242 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | 
 | 3243 | { | 
 | 3244 | 	swp_entry_t swp; | 
 | 3245 |  | 
 | 3246 | 	if (huge_pte_none(pte) || pte_present(pte)) | 
 | 3247 | 		return 0; | 
 | 3248 | 	swp = pte_to_swp_entry(pte); | 
 | 3249 | 	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) | 
 | 3250 | 		return 1; | 
 | 3251 | 	else | 
 | 3252 | 		return 0; | 
 | 3253 | } | 
 | 3254 |  | 
 | 3255 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
 | 3256 | 			    struct vm_area_struct *vma) | 
 | 3257 | { | 
 | 3258 | 	pte_t *src_pte, *dst_pte, entry, dst_entry; | 
 | 3259 | 	struct page *ptepage; | 
 | 3260 | 	unsigned long addr; | 
 | 3261 | 	int cow; | 
 | 3262 | 	struct hstate *h = hstate_vma(vma); | 
 | 3263 | 	unsigned long sz = huge_page_size(h); | 
 | 3264 | 	unsigned long mmun_start;	/* For mmu_notifiers */ | 
 | 3265 | 	unsigned long mmun_end;		/* For mmu_notifiers */ | 
 | 3266 | 	int ret = 0; | 
 | 3267 |  | 
 | 3268 | 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
 | 3269 |  | 
 | 3270 | 	mmun_start = vma->vm_start; | 
 | 3271 | 	mmun_end = vma->vm_end; | 
 | 3272 | 	if (cow) | 
 | 3273 | 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); | 
 | 3274 |  | 
 | 3275 | 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { | 
 | 3276 | 		spinlock_t *src_ptl, *dst_ptl; | 
 | 3277 | 		src_pte = huge_pte_offset(src, addr, sz); | 
 | 3278 | 		if (!src_pte) | 
 | 3279 | 			continue; | 
 | 3280 | 		dst_pte = huge_pte_alloc(dst, addr, sz); | 
 | 3281 | 		if (!dst_pte) { | 
 | 3282 | 			ret = -ENOMEM; | 
 | 3283 | 			break; | 
 | 3284 | 		} | 
 | 3285 |  | 
 | 3286 | 		/* | 
 | 3287 | 		 * If the pagetables are shared don't copy or take references. | 
 | 3288 | 		 * dst_pte == src_pte is the common case of src/dest sharing. | 
 | 3289 | 		 * | 
 | 3290 | 		 * However, src could have 'unshared' and dst shares with | 
 | 3291 | 		 * another vma.  If dst_pte !none, this implies sharing. | 
 | 3292 | 		 * Check here before taking page table lock, and once again | 
 | 3293 | 		 * after taking the lock below. | 
 | 3294 | 		 */ | 
 | 3295 | 		dst_entry = huge_ptep_get(dst_pte); | 
 | 3296 | 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) | 
 | 3297 | 			continue; | 
 | 3298 |  | 
 | 3299 | 		dst_ptl = huge_pte_lock(h, dst, dst_pte); | 
 | 3300 | 		src_ptl = huge_pte_lockptr(h, src, src_pte); | 
 | 3301 | 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
 | 3302 | 		entry = huge_ptep_get(src_pte); | 
 | 3303 | 		dst_entry = huge_ptep_get(dst_pte); | 
 | 3304 | 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { | 
 | 3305 | 			/* | 
 | 3306 | 			 * Skip if src entry none.  Also, skip in the | 
 | 3307 | 			 * unlikely case dst entry !none as this implies | 
 | 3308 | 			 * sharing with another vma. | 
 | 3309 | 			 */ | 
 | 3310 | 			; | 
 | 3311 | 		} else if (unlikely(is_hugetlb_entry_migration(entry) || | 
 | 3312 | 				    is_hugetlb_entry_hwpoisoned(entry))) { | 
 | 3313 | 			swp_entry_t swp_entry = pte_to_swp_entry(entry); | 
 | 3314 |  | 
 | 3315 | 			if (is_write_migration_entry(swp_entry) && cow) { | 
 | 3316 | 				/* | 
 | 3317 | 				 * COW mappings require pages in both | 
 | 3318 | 				 * parent and child to be set to read. | 
 | 3319 | 				 */ | 
 | 3320 | 				make_migration_entry_read(&swp_entry); | 
 | 3321 | 				entry = swp_entry_to_pte(swp_entry); | 
 | 3322 | 				set_huge_swap_pte_at(src, addr, src_pte, | 
 | 3323 | 						     entry, sz); | 
 | 3324 | 			} | 
 | 3325 | 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); | 
 | 3326 | 		} else { | 
 | 3327 | 			if (cow) { | 
 | 3328 | 				/* | 
 | 3329 | 				 * No need to notify as we are downgrading page | 
 | 3330 | 				 * table protection not changing it to point | 
 | 3331 | 				 * to a new page. | 
 | 3332 | 				 * | 
 | 3333 | 				 * See Documentation/vm/mmu_notifier.rst | 
 | 3334 | 				 */ | 
 | 3335 | 				huge_ptep_set_wrprotect(src, addr, src_pte); | 
 | 3336 | 			} | 
 | 3337 | 			entry = huge_ptep_get(src_pte); | 
 | 3338 | 			ptepage = pte_page(entry); | 
 | 3339 | 			get_page(ptepage); | 
 | 3340 | 			page_dup_rmap(ptepage, true); | 
 | 3341 | 			set_huge_pte_at(dst, addr, dst_pte, entry); | 
 | 3342 | 			hugetlb_count_add(pages_per_huge_page(h), dst); | 
 | 3343 | 		} | 
 | 3344 | 		spin_unlock(src_ptl); | 
 | 3345 | 		spin_unlock(dst_ptl); | 
 | 3346 | 	} | 
 | 3347 |  | 
 | 3348 | 	if (cow) | 
 | 3349 | 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); | 
 | 3350 |  | 
 | 3351 | 	return ret; | 
 | 3352 | } | 
 | 3353 |  | 
 | 3354 | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
 | 3355 | 			    unsigned long start, unsigned long end, | 
 | 3356 | 			    struct page *ref_page) | 
 | 3357 | { | 
 | 3358 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 3359 | 	unsigned long address; | 
 | 3360 | 	pte_t *ptep; | 
 | 3361 | 	pte_t pte; | 
 | 3362 | 	spinlock_t *ptl; | 
 | 3363 | 	struct page *page; | 
 | 3364 | 	struct hstate *h = hstate_vma(vma); | 
 | 3365 | 	unsigned long sz = huge_page_size(h); | 
 | 3366 | 	unsigned long mmun_start = start;	/* For mmu_notifiers */ | 
 | 3367 | 	unsigned long mmun_end   = end;		/* For mmu_notifiers */ | 
 | 3368 |  | 
 | 3369 | 	WARN_ON(!is_vm_hugetlb_page(vma)); | 
 | 3370 | 	BUG_ON(start & ~huge_page_mask(h)); | 
 | 3371 | 	BUG_ON(end & ~huge_page_mask(h)); | 
 | 3372 |  | 
 | 3373 | 	/* | 
 | 3374 | 	 * This is a hugetlb vma, all the pte entries should point | 
 | 3375 | 	 * to huge page. | 
 | 3376 | 	 */ | 
 | 3377 | 	tlb_remove_check_page_size_change(tlb, sz); | 
 | 3378 | 	tlb_start_vma(tlb, vma); | 
 | 3379 |  | 
 | 3380 | 	/* | 
 | 3381 | 	 * If sharing possible, alert mmu notifiers of worst case. | 
 | 3382 | 	 */ | 
 | 3383 | 	adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end); | 
 | 3384 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 | 3385 | 	address = start; | 
 | 3386 | 	for (; address < end; address += sz) { | 
 | 3387 | 		ptep = huge_pte_offset(mm, address, sz); | 
 | 3388 | 		if (!ptep) | 
 | 3389 | 			continue; | 
 | 3390 |  | 
 | 3391 | 		ptl = huge_pte_lock(h, mm, ptep); | 
 | 3392 | 		if (huge_pmd_unshare(mm, &address, ptep)) { | 
 | 3393 | 			spin_unlock(ptl); | 
 | 3394 | 			/* | 
 | 3395 | 			 * We just unmapped a page of PMDs by clearing a PUD. | 
 | 3396 | 			 * The caller's TLB flush range should cover this area. | 
 | 3397 | 			 */ | 
 | 3398 | 			continue; | 
 | 3399 | 		} | 
 | 3400 |  | 
 | 3401 | 		pte = huge_ptep_get(ptep); | 
 | 3402 | 		if (huge_pte_none(pte)) { | 
 | 3403 | 			spin_unlock(ptl); | 
 | 3404 | 			continue; | 
 | 3405 | 		} | 
 | 3406 |  | 
 | 3407 | 		/* | 
 | 3408 | 		 * Migrating hugepage or HWPoisoned hugepage is already | 
 | 3409 | 		 * unmapped and its refcount is dropped, so just clear pte here. | 
 | 3410 | 		 */ | 
 | 3411 | 		if (unlikely(!pte_present(pte))) { | 
 | 3412 | 			huge_pte_clear(mm, address, ptep, sz); | 
 | 3413 | 			spin_unlock(ptl); | 
 | 3414 | 			continue; | 
 | 3415 | 		} | 
 | 3416 |  | 
 | 3417 | 		page = pte_page(pte); | 
 | 3418 | 		/* | 
 | 3419 | 		 * If a reference page is supplied, it is because a specific | 
 | 3420 | 		 * page is being unmapped, not a range. Ensure the page we | 
 | 3421 | 		 * are about to unmap is the actual page of interest. | 
 | 3422 | 		 */ | 
 | 3423 | 		if (ref_page) { | 
 | 3424 | 			if (page != ref_page) { | 
 | 3425 | 				spin_unlock(ptl); | 
 | 3426 | 				continue; | 
 | 3427 | 			} | 
 | 3428 | 			/* | 
 | 3429 | 			 * Mark the VMA as having unmapped its page so that | 
 | 3430 | 			 * future faults in this VMA will fail rather than | 
 | 3431 | 			 * looking like data was lost | 
 | 3432 | 			 */ | 
 | 3433 | 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | 
 | 3434 | 		} | 
 | 3435 |  | 
 | 3436 | 		pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 3437 | 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address); | 
 | 3438 | 		if (huge_pte_dirty(pte)) | 
 | 3439 | 			set_page_dirty(page); | 
 | 3440 |  | 
 | 3441 | 		hugetlb_count_sub(pages_per_huge_page(h), mm); | 
 | 3442 | 		page_remove_rmap(page, true); | 
 | 3443 |  | 
 | 3444 | 		spin_unlock(ptl); | 
 | 3445 | 		tlb_remove_page_size(tlb, page, huge_page_size(h)); | 
 | 3446 | 		/* | 
 | 3447 | 		 * Bail out after unmapping reference page if supplied | 
 | 3448 | 		 */ | 
 | 3449 | 		if (ref_page) | 
 | 3450 | 			break; | 
 | 3451 | 	} | 
 | 3452 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 | 3453 | 	tlb_end_vma(tlb, vma); | 
 | 3454 | } | 
 | 3455 |  | 
 | 3456 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, | 
 | 3457 | 			  struct vm_area_struct *vma, unsigned long start, | 
 | 3458 | 			  unsigned long end, struct page *ref_page) | 
 | 3459 | { | 
 | 3460 | 	__unmap_hugepage_range(tlb, vma, start, end, ref_page); | 
 | 3461 |  | 
 | 3462 | 	/* | 
 | 3463 | 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable | 
 | 3464 | 	 * test will fail on a vma being torn down, and not grab a page table | 
 | 3465 | 	 * on its way out.  We're lucky that the flag has such an appropriate | 
 | 3466 | 	 * name, and can in fact be safely cleared here. We could clear it | 
 | 3467 | 	 * before the __unmap_hugepage_range above, but all that's necessary | 
 | 3468 | 	 * is to clear it before releasing the i_mmap_rwsem. This works | 
 | 3469 | 	 * because in the context this is called, the VMA is about to be | 
 | 3470 | 	 * destroyed and the i_mmap_rwsem is held. | 
 | 3471 | 	 */ | 
 | 3472 | 	vma->vm_flags &= ~VM_MAYSHARE; | 
 | 3473 | } | 
 | 3474 |  | 
 | 3475 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
 | 3476 | 			  unsigned long end, struct page *ref_page) | 
 | 3477 | { | 
 | 3478 | 	struct mm_struct *mm; | 
 | 3479 | 	struct mmu_gather tlb; | 
 | 3480 | 	unsigned long tlb_start = start; | 
 | 3481 | 	unsigned long tlb_end = end; | 
 | 3482 |  | 
 | 3483 | 	/* | 
 | 3484 | 	 * If shared PMDs were possibly used within this vma range, adjust | 
 | 3485 | 	 * start/end for worst case tlb flushing. | 
 | 3486 | 	 * Note that we can not be sure if PMDs are shared until we try to | 
 | 3487 | 	 * unmap pages.  However, we want to make sure TLB flushing covers | 
 | 3488 | 	 * the largest possible range. | 
 | 3489 | 	 */ | 
 | 3490 | 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); | 
 | 3491 |  | 
 | 3492 | 	mm = vma->vm_mm; | 
 | 3493 |  | 
 | 3494 | 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); | 
 | 3495 | 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page); | 
 | 3496 | 	tlb_finish_mmu(&tlb, tlb_start, tlb_end); | 
 | 3497 | } | 
 | 3498 |  | 
 | 3499 | /* | 
 | 3500 |  * This is called when the original mapper is failing to COW a MAP_PRIVATE | 
 | 3501 |  * mappping it owns the reserve page for. The intention is to unmap the page | 
 | 3502 |  * from other VMAs and let the children be SIGKILLed if they are faulting the | 
 | 3503 |  * same region. | 
 | 3504 |  */ | 
 | 3505 | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 3506 | 			      struct page *page, unsigned long address) | 
 | 3507 | { | 
 | 3508 | 	struct hstate *h = hstate_vma(vma); | 
 | 3509 | 	struct vm_area_struct *iter_vma; | 
 | 3510 | 	struct address_space *mapping; | 
 | 3511 | 	pgoff_t pgoff; | 
 | 3512 |  | 
 | 3513 | 	/* | 
 | 3514 | 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation | 
 | 3515 | 	 * from page cache lookup which is in HPAGE_SIZE units. | 
 | 3516 | 	 */ | 
 | 3517 | 	address = address & huge_page_mask(h); | 
 | 3518 | 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + | 
 | 3519 | 			vma->vm_pgoff; | 
 | 3520 | 	mapping = vma->vm_file->f_mapping; | 
 | 3521 |  | 
 | 3522 | 	/* | 
 | 3523 | 	 * Take the mapping lock for the duration of the table walk. As | 
 | 3524 | 	 * this mapping should be shared between all the VMAs, | 
 | 3525 | 	 * __unmap_hugepage_range() is called as the lock is already held | 
 | 3526 | 	 */ | 
 | 3527 | 	i_mmap_lock_write(mapping); | 
 | 3528 | 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { | 
 | 3529 | 		/* Do not unmap the current VMA */ | 
 | 3530 | 		if (iter_vma == vma) | 
 | 3531 | 			continue; | 
 | 3532 |  | 
 | 3533 | 		/* | 
 | 3534 | 		 * Shared VMAs have their own reserves and do not affect | 
 | 3535 | 		 * MAP_PRIVATE accounting but it is possible that a shared | 
 | 3536 | 		 * VMA is using the same page so check and skip such VMAs. | 
 | 3537 | 		 */ | 
 | 3538 | 		if (iter_vma->vm_flags & VM_MAYSHARE) | 
 | 3539 | 			continue; | 
 | 3540 |  | 
 | 3541 | 		/* | 
 | 3542 | 		 * Unmap the page from other VMAs without their own reserves. | 
 | 3543 | 		 * They get marked to be SIGKILLed if they fault in these | 
 | 3544 | 		 * areas. This is because a future no-page fault on this VMA | 
 | 3545 | 		 * could insert a zeroed page instead of the data existing | 
 | 3546 | 		 * from the time of fork. This would look like data corruption | 
 | 3547 | 		 */ | 
 | 3548 | 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | 
 | 3549 | 			unmap_hugepage_range(iter_vma, address, | 
 | 3550 | 					     address + huge_page_size(h), page); | 
 | 3551 | 	} | 
 | 3552 | 	i_mmap_unlock_write(mapping); | 
 | 3553 | } | 
 | 3554 |  | 
 | 3555 | /* | 
 | 3556 |  * Hugetlb_cow() should be called with page lock of the original hugepage held. | 
 | 3557 |  * Called with hugetlb_instantiation_mutex held and pte_page locked so we | 
 | 3558 |  * cannot race with other handlers or page migration. | 
 | 3559 |  * Keep the pte_same checks anyway to make transition from the mutex easier. | 
 | 3560 |  */ | 
 | 3561 | static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 3562 | 		       unsigned long address, pte_t *ptep, | 
 | 3563 | 		       struct page *pagecache_page, spinlock_t *ptl) | 
 | 3564 | { | 
 | 3565 | 	pte_t pte; | 
 | 3566 | 	struct hstate *h = hstate_vma(vma); | 
 | 3567 | 	struct page *old_page, *new_page; | 
 | 3568 | 	int outside_reserve = 0; | 
 | 3569 | 	vm_fault_t ret = 0; | 
 | 3570 | 	unsigned long mmun_start;	/* For mmu_notifiers */ | 
 | 3571 | 	unsigned long mmun_end;		/* For mmu_notifiers */ | 
 | 3572 | 	unsigned long haddr = address & huge_page_mask(h); | 
 | 3573 |  | 
 | 3574 | 	pte = huge_ptep_get(ptep); | 
 | 3575 | 	old_page = pte_page(pte); | 
 | 3576 |  | 
 | 3577 | retry_avoidcopy: | 
 | 3578 | 	/* If no-one else is actually using this page, avoid the copy | 
 | 3579 | 	 * and just make the page writable */ | 
 | 3580 | 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { | 
 | 3581 | 		page_move_anon_rmap(old_page, vma); | 
 | 3582 | 		set_huge_ptep_writable(vma, haddr, ptep); | 
 | 3583 | 		return 0; | 
 | 3584 | 	} | 
 | 3585 |  | 
 | 3586 | 	/* | 
 | 3587 | 	 * If the process that created a MAP_PRIVATE mapping is about to | 
 | 3588 | 	 * perform a COW due to a shared page count, attempt to satisfy | 
 | 3589 | 	 * the allocation without using the existing reserves. The pagecache | 
 | 3590 | 	 * page is used to determine if the reserve at this address was | 
 | 3591 | 	 * consumed or not. If reserves were used, a partial faulted mapping | 
 | 3592 | 	 * at the time of fork() could consume its reserves on COW instead | 
 | 3593 | 	 * of the full address range. | 
 | 3594 | 	 */ | 
 | 3595 | 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | 
 | 3596 | 			old_page != pagecache_page) | 
 | 3597 | 		outside_reserve = 1; | 
 | 3598 |  | 
 | 3599 | 	get_page(old_page); | 
 | 3600 |  | 
 | 3601 | 	/* | 
 | 3602 | 	 * Drop page table lock as buddy allocator may be called. It will | 
 | 3603 | 	 * be acquired again before returning to the caller, as expected. | 
 | 3604 | 	 */ | 
 | 3605 | 	spin_unlock(ptl); | 
 | 3606 | 	new_page = alloc_huge_page(vma, haddr, outside_reserve); | 
 | 3607 |  | 
 | 3608 | 	if (IS_ERR(new_page)) { | 
 | 3609 | 		/* | 
 | 3610 | 		 * If a process owning a MAP_PRIVATE mapping fails to COW, | 
 | 3611 | 		 * it is due to references held by a child and an insufficient | 
 | 3612 | 		 * huge page pool. To guarantee the original mappers | 
 | 3613 | 		 * reliability, unmap the page from child processes. The child | 
 | 3614 | 		 * may get SIGKILLed if it later faults. | 
 | 3615 | 		 */ | 
 | 3616 | 		if (outside_reserve) { | 
 | 3617 | 			put_page(old_page); | 
 | 3618 | 			BUG_ON(huge_pte_none(pte)); | 
 | 3619 | 			unmap_ref_private(mm, vma, old_page, haddr); | 
 | 3620 | 			BUG_ON(huge_pte_none(pte)); | 
 | 3621 | 			spin_lock(ptl); | 
 | 3622 | 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); | 
 | 3623 | 			if (likely(ptep && | 
 | 3624 | 				   pte_same(huge_ptep_get(ptep), pte))) | 
 | 3625 | 				goto retry_avoidcopy; | 
 | 3626 | 			/* | 
 | 3627 | 			 * race occurs while re-acquiring page table | 
 | 3628 | 			 * lock, and our job is done. | 
 | 3629 | 			 */ | 
 | 3630 | 			return 0; | 
 | 3631 | 		} | 
 | 3632 |  | 
 | 3633 | 		ret = vmf_error(PTR_ERR(new_page)); | 
 | 3634 | 		goto out_release_old; | 
 | 3635 | 	} | 
 | 3636 |  | 
 | 3637 | 	/* | 
 | 3638 | 	 * When the original hugepage is shared one, it does not have | 
 | 3639 | 	 * anon_vma prepared. | 
 | 3640 | 	 */ | 
 | 3641 | 	if (unlikely(anon_vma_prepare(vma))) { | 
 | 3642 | 		ret = VM_FAULT_OOM; | 
 | 3643 | 		goto out_release_all; | 
 | 3644 | 	} | 
 | 3645 |  | 
 | 3646 | 	copy_user_huge_page(new_page, old_page, address, vma, | 
 | 3647 | 			    pages_per_huge_page(h)); | 
 | 3648 | 	__SetPageUptodate(new_page); | 
 | 3649 |  | 
 | 3650 | 	mmun_start = haddr; | 
 | 3651 | 	mmun_end = mmun_start + huge_page_size(h); | 
 | 3652 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 | 3653 |  | 
 | 3654 | 	/* | 
 | 3655 | 	 * Retake the page table lock to check for racing updates | 
 | 3656 | 	 * before the page tables are altered | 
 | 3657 | 	 */ | 
 | 3658 | 	spin_lock(ptl); | 
 | 3659 | 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); | 
 | 3660 | 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { | 
 | 3661 | 		ClearPagePrivate(new_page); | 
 | 3662 |  | 
 | 3663 | 		/* Break COW */ | 
 | 3664 | 		huge_ptep_clear_flush(vma, haddr, ptep); | 
 | 3665 | 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); | 
 | 3666 | 		set_huge_pte_at(mm, haddr, ptep, | 
 | 3667 | 				make_huge_pte(vma, new_page, 1)); | 
 | 3668 | 		page_remove_rmap(old_page, true); | 
 | 3669 | 		hugepage_add_new_anon_rmap(new_page, vma, haddr); | 
 | 3670 | 		set_page_huge_active(new_page); | 
 | 3671 | 		/* Make the old page be freed below */ | 
 | 3672 | 		new_page = old_page; | 
 | 3673 | 	} | 
 | 3674 | 	spin_unlock(ptl); | 
 | 3675 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 | 3676 | out_release_all: | 
 | 3677 | 	restore_reserve_on_error(h, vma, haddr, new_page); | 
 | 3678 | 	put_page(new_page); | 
 | 3679 | out_release_old: | 
 | 3680 | 	put_page(old_page); | 
 | 3681 |  | 
 | 3682 | 	spin_lock(ptl); /* Caller expects lock to be held */ | 
 | 3683 | 	return ret; | 
 | 3684 | } | 
 | 3685 |  | 
 | 3686 | /* Return the pagecache page at a given address within a VMA */ | 
 | 3687 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | 
 | 3688 | 			struct vm_area_struct *vma, unsigned long address) | 
 | 3689 | { | 
 | 3690 | 	struct address_space *mapping; | 
 | 3691 | 	pgoff_t idx; | 
 | 3692 |  | 
 | 3693 | 	mapping = vma->vm_file->f_mapping; | 
 | 3694 | 	idx = vma_hugecache_offset(h, vma, address); | 
 | 3695 |  | 
 | 3696 | 	return find_lock_page(mapping, idx); | 
 | 3697 | } | 
 | 3698 |  | 
 | 3699 | /* | 
 | 3700 |  * Return whether there is a pagecache page to back given address within VMA. | 
 | 3701 |  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | 
 | 3702 |  */ | 
 | 3703 | static bool hugetlbfs_pagecache_present(struct hstate *h, | 
 | 3704 | 			struct vm_area_struct *vma, unsigned long address) | 
 | 3705 | { | 
 | 3706 | 	struct address_space *mapping; | 
 | 3707 | 	pgoff_t idx; | 
 | 3708 | 	struct page *page; | 
 | 3709 |  | 
 | 3710 | 	mapping = vma->vm_file->f_mapping; | 
 | 3711 | 	idx = vma_hugecache_offset(h, vma, address); | 
 | 3712 |  | 
 | 3713 | 	page = find_get_page(mapping, idx); | 
 | 3714 | 	if (page) | 
 | 3715 | 		put_page(page); | 
 | 3716 | 	return page != NULL; | 
 | 3717 | } | 
 | 3718 |  | 
 | 3719 | int huge_add_to_page_cache(struct page *page, struct address_space *mapping, | 
 | 3720 | 			   pgoff_t idx) | 
 | 3721 | { | 
 | 3722 | 	struct inode *inode = mapping->host; | 
 | 3723 | 	struct hstate *h = hstate_inode(inode); | 
 | 3724 | 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | 
 | 3725 |  | 
 | 3726 | 	if (err) | 
 | 3727 | 		return err; | 
 | 3728 | 	ClearPagePrivate(page); | 
 | 3729 |  | 
 | 3730 | 	/* | 
 | 3731 | 	 * set page dirty so that it will not be removed from cache/file | 
 | 3732 | 	 * by non-hugetlbfs specific code paths. | 
 | 3733 | 	 */ | 
 | 3734 | 	set_page_dirty(page); | 
 | 3735 |  | 
 | 3736 | 	spin_lock(&inode->i_lock); | 
 | 3737 | 	inode->i_blocks += blocks_per_huge_page(h); | 
 | 3738 | 	spin_unlock(&inode->i_lock); | 
 | 3739 | 	return 0; | 
 | 3740 | } | 
 | 3741 |  | 
 | 3742 | static vm_fault_t hugetlb_no_page(struct mm_struct *mm, | 
 | 3743 | 			struct vm_area_struct *vma, | 
 | 3744 | 			struct address_space *mapping, pgoff_t idx, | 
 | 3745 | 			unsigned long address, pte_t *ptep, unsigned int flags) | 
 | 3746 | { | 
 | 3747 | 	struct hstate *h = hstate_vma(vma); | 
 | 3748 | 	vm_fault_t ret = VM_FAULT_SIGBUS; | 
 | 3749 | 	int anon_rmap = 0; | 
 | 3750 | 	unsigned long size; | 
 | 3751 | 	struct page *page; | 
 | 3752 | 	pte_t new_pte; | 
 | 3753 | 	spinlock_t *ptl; | 
 | 3754 | 	unsigned long haddr = address & huge_page_mask(h); | 
 | 3755 | 	bool new_page = false; | 
 | 3756 |  | 
 | 3757 | 	/* | 
 | 3758 | 	 * Currently, we are forced to kill the process in the event the | 
 | 3759 | 	 * original mapper has unmapped pages from the child due to a failed | 
 | 3760 | 	 * COW. Warn that such a situation has occurred as it may not be obvious | 
 | 3761 | 	 */ | 
 | 3762 | 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | 
 | 3763 | 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", | 
 | 3764 | 			   current->pid); | 
 | 3765 | 		return ret; | 
 | 3766 | 	} | 
 | 3767 |  | 
 | 3768 | 	/* | 
 | 3769 | 	 * Use page lock to guard against racing truncation | 
 | 3770 | 	 * before we get page_table_lock. | 
 | 3771 | 	 */ | 
 | 3772 | retry: | 
 | 3773 | 	page = find_lock_page(mapping, idx); | 
 | 3774 | 	if (!page) { | 
 | 3775 | 		size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 3776 | 		if (idx >= size) | 
 | 3777 | 			goto out; | 
 | 3778 |  | 
 | 3779 | 		/* | 
 | 3780 | 		 * Check for page in userfault range | 
 | 3781 | 		 */ | 
 | 3782 | 		if (userfaultfd_missing(vma)) { | 
 | 3783 | 			u32 hash; | 
 | 3784 | 			struct vm_fault vmf = { | 
 | 3785 | 				.vma = vma, | 
 | 3786 | 				.address = haddr, | 
 | 3787 | 				.flags = flags, | 
 | 3788 | 				/* | 
 | 3789 | 				 * Hard to debug if it ends up being | 
 | 3790 | 				 * used by a callee that assumes | 
 | 3791 | 				 * something about the other | 
 | 3792 | 				 * uninitialized fields... same as in | 
 | 3793 | 				 * memory.c | 
 | 3794 | 				 */ | 
 | 3795 | 			}; | 
 | 3796 |  | 
 | 3797 | 			/* | 
 | 3798 | 			 * hugetlb_fault_mutex must be dropped before | 
 | 3799 | 			 * handling userfault.  Reacquire after handling | 
 | 3800 | 			 * fault to make calling code simpler. | 
 | 3801 | 			 */ | 
 | 3802 | 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); | 
 | 3803 | 			mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
 | 3804 | 			ret = handle_userfault(&vmf, VM_UFFD_MISSING); | 
 | 3805 | 			mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
 | 3806 | 			goto out; | 
 | 3807 | 		} | 
 | 3808 |  | 
 | 3809 | 		page = alloc_huge_page(vma, haddr, 0); | 
 | 3810 | 		if (IS_ERR(page)) { | 
 | 3811 | 			ret = vmf_error(PTR_ERR(page)); | 
 | 3812 | 			goto out; | 
 | 3813 | 		} | 
 | 3814 | 		clear_huge_page(page, address, pages_per_huge_page(h)); | 
 | 3815 | 		__SetPageUptodate(page); | 
 | 3816 | 		new_page = true; | 
 | 3817 |  | 
 | 3818 | 		if (vma->vm_flags & VM_MAYSHARE) { | 
 | 3819 | 			int err = huge_add_to_page_cache(page, mapping, idx); | 
 | 3820 | 			if (err) { | 
 | 3821 | 				put_page(page); | 
 | 3822 | 				if (err == -EEXIST) | 
 | 3823 | 					goto retry; | 
 | 3824 | 				goto out; | 
 | 3825 | 			} | 
 | 3826 | 		} else { | 
 | 3827 | 			lock_page(page); | 
 | 3828 | 			if (unlikely(anon_vma_prepare(vma))) { | 
 | 3829 | 				ret = VM_FAULT_OOM; | 
 | 3830 | 				goto backout_unlocked; | 
 | 3831 | 			} | 
 | 3832 | 			anon_rmap = 1; | 
 | 3833 | 		} | 
 | 3834 | 	} else { | 
 | 3835 | 		/* | 
 | 3836 | 		 * If memory error occurs between mmap() and fault, some process | 
 | 3837 | 		 * don't have hwpoisoned swap entry for errored virtual address. | 
 | 3838 | 		 * So we need to block hugepage fault by PG_hwpoison bit check. | 
 | 3839 | 		 */ | 
 | 3840 | 		if (unlikely(PageHWPoison(page))) { | 
 | 3841 | 			ret = VM_FAULT_HWPOISON | | 
 | 3842 | 				VM_FAULT_SET_HINDEX(hstate_index(h)); | 
 | 3843 | 			goto backout_unlocked; | 
 | 3844 | 		} | 
 | 3845 | 	} | 
 | 3846 |  | 
 | 3847 | 	/* | 
 | 3848 | 	 * If we are going to COW a private mapping later, we examine the | 
 | 3849 | 	 * pending reservations for this page now. This will ensure that | 
 | 3850 | 	 * any allocations necessary to record that reservation occur outside | 
 | 3851 | 	 * the spinlock. | 
 | 3852 | 	 */ | 
 | 3853 | 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
 | 3854 | 		if (vma_needs_reservation(h, vma, haddr) < 0) { | 
 | 3855 | 			ret = VM_FAULT_OOM; | 
 | 3856 | 			goto backout_unlocked; | 
 | 3857 | 		} | 
 | 3858 | 		/* Just decrements count, does not deallocate */ | 
 | 3859 | 		vma_end_reservation(h, vma, haddr); | 
 | 3860 | 	} | 
 | 3861 |  | 
 | 3862 | 	ptl = huge_pte_lock(h, mm, ptep); | 
 | 3863 | 	size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 3864 | 	if (idx >= size) | 
 | 3865 | 		goto backout; | 
 | 3866 |  | 
 | 3867 | 	ret = 0; | 
 | 3868 | 	if (!huge_pte_none(huge_ptep_get(ptep))) | 
 | 3869 | 		goto backout; | 
 | 3870 |  | 
 | 3871 | 	if (anon_rmap) { | 
 | 3872 | 		ClearPagePrivate(page); | 
 | 3873 | 		hugepage_add_new_anon_rmap(page, vma, haddr); | 
 | 3874 | 	} else | 
 | 3875 | 		page_dup_rmap(page, true); | 
 | 3876 | 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | 
 | 3877 | 				&& (vma->vm_flags & VM_SHARED))); | 
 | 3878 | 	set_huge_pte_at(mm, haddr, ptep, new_pte); | 
 | 3879 |  | 
 | 3880 | 	hugetlb_count_add(pages_per_huge_page(h), mm); | 
 | 3881 | 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
 | 3882 | 		/* Optimization, do the COW without a second fault */ | 
 | 3883 | 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); | 
 | 3884 | 	} | 
 | 3885 |  | 
 | 3886 | 	spin_unlock(ptl); | 
 | 3887 |  | 
 | 3888 | 	/* | 
 | 3889 | 	 * Only make newly allocated pages active.  Existing pages found | 
 | 3890 | 	 * in the pagecache could be !page_huge_active() if they have been | 
 | 3891 | 	 * isolated for migration. | 
 | 3892 | 	 */ | 
 | 3893 | 	if (new_page) | 
 | 3894 | 		set_page_huge_active(page); | 
 | 3895 |  | 
 | 3896 | 	unlock_page(page); | 
 | 3897 | out: | 
 | 3898 | 	return ret; | 
 | 3899 |  | 
 | 3900 | backout: | 
 | 3901 | 	spin_unlock(ptl); | 
 | 3902 | backout_unlocked: | 
 | 3903 | 	unlock_page(page); | 
 | 3904 | 	restore_reserve_on_error(h, vma, haddr, page); | 
 | 3905 | 	put_page(page); | 
 | 3906 | 	goto out; | 
 | 3907 | } | 
 | 3908 |  | 
 | 3909 | #ifdef CONFIG_SMP | 
 | 3910 | u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, | 
 | 3911 | 			    pgoff_t idx, unsigned long address) | 
 | 3912 | { | 
 | 3913 | 	unsigned long key[2]; | 
 | 3914 | 	u32 hash; | 
 | 3915 |  | 
 | 3916 | 	key[0] = (unsigned long) mapping; | 
 | 3917 | 	key[1] = idx; | 
 | 3918 |  | 
 | 3919 | 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); | 
 | 3920 |  | 
 | 3921 | 	return hash & (num_fault_mutexes - 1); | 
 | 3922 | } | 
 | 3923 | #else | 
 | 3924 | /* | 
 | 3925 |  * For uniprocesor systems we always use a single mutex, so just | 
 | 3926 |  * return 0 and avoid the hashing overhead. | 
 | 3927 |  */ | 
 | 3928 | u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, | 
 | 3929 | 			    pgoff_t idx, unsigned long address) | 
 | 3930 | { | 
 | 3931 | 	return 0; | 
 | 3932 | } | 
 | 3933 | #endif | 
 | 3934 |  | 
 | 3935 | vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 3936 | 			unsigned long address, unsigned int flags) | 
 | 3937 | { | 
 | 3938 | 	pte_t *ptep, entry; | 
 | 3939 | 	spinlock_t *ptl; | 
 | 3940 | 	vm_fault_t ret; | 
 | 3941 | 	u32 hash; | 
 | 3942 | 	pgoff_t idx; | 
 | 3943 | 	struct page *page = NULL; | 
 | 3944 | 	struct page *pagecache_page = NULL; | 
 | 3945 | 	struct hstate *h = hstate_vma(vma); | 
 | 3946 | 	struct address_space *mapping; | 
 | 3947 | 	int need_wait_lock = 0; | 
 | 3948 | 	unsigned long haddr = address & huge_page_mask(h); | 
 | 3949 |  | 
 | 3950 | 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); | 
 | 3951 | 	if (ptep) { | 
 | 3952 | 		entry = huge_ptep_get(ptep); | 
 | 3953 | 		if (unlikely(is_hugetlb_entry_migration(entry))) { | 
 | 3954 | 			migration_entry_wait_huge(vma, mm, ptep); | 
 | 3955 | 			return 0; | 
 | 3956 | 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 
 | 3957 | 			return VM_FAULT_HWPOISON_LARGE | | 
 | 3958 | 				VM_FAULT_SET_HINDEX(hstate_index(h)); | 
 | 3959 | 	} else { | 
 | 3960 | 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); | 
 | 3961 | 		if (!ptep) | 
 | 3962 | 			return VM_FAULT_OOM; | 
 | 3963 | 	} | 
 | 3964 |  | 
 | 3965 | 	mapping = vma->vm_file->f_mapping; | 
 | 3966 | 	idx = vma_hugecache_offset(h, vma, haddr); | 
 | 3967 |  | 
 | 3968 | 	/* | 
 | 3969 | 	 * Serialize hugepage allocation and instantiation, so that we don't | 
 | 3970 | 	 * get spurious allocation failures if two CPUs race to instantiate | 
 | 3971 | 	 * the same page in the page cache. | 
 | 3972 | 	 */ | 
 | 3973 | 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); | 
 | 3974 | 	mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
 | 3975 |  | 
 | 3976 | 	entry = huge_ptep_get(ptep); | 
 | 3977 | 	if (huge_pte_none(entry)) { | 
 | 3978 | 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); | 
 | 3979 | 		goto out_mutex; | 
 | 3980 | 	} | 
 | 3981 |  | 
 | 3982 | 	ret = 0; | 
 | 3983 |  | 
 | 3984 | 	/* | 
 | 3985 | 	 * entry could be a migration/hwpoison entry at this point, so this | 
 | 3986 | 	 * check prevents the kernel from going below assuming that we have | 
 | 3987 | 	 * a active hugepage in pagecache. This goto expects the 2nd page fault, | 
 | 3988 | 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly | 
 | 3989 | 	 * handle it. | 
 | 3990 | 	 */ | 
 | 3991 | 	if (!pte_present(entry)) | 
 | 3992 | 		goto out_mutex; | 
 | 3993 |  | 
 | 3994 | 	/* | 
 | 3995 | 	 * If we are going to COW the mapping later, we examine the pending | 
 | 3996 | 	 * reservations for this page now. This will ensure that any | 
 | 3997 | 	 * allocations necessary to record that reservation occur outside the | 
 | 3998 | 	 * spinlock. For private mappings, we also lookup the pagecache | 
 | 3999 | 	 * page now as it is used to determine if a reservation has been | 
 | 4000 | 	 * consumed. | 
 | 4001 | 	 */ | 
 | 4002 | 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { | 
 | 4003 | 		if (vma_needs_reservation(h, vma, haddr) < 0) { | 
 | 4004 | 			ret = VM_FAULT_OOM; | 
 | 4005 | 			goto out_mutex; | 
 | 4006 | 		} | 
 | 4007 | 		/* Just decrements count, does not deallocate */ | 
 | 4008 | 		vma_end_reservation(h, vma, haddr); | 
 | 4009 |  | 
 | 4010 | 		if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 4011 | 			pagecache_page = hugetlbfs_pagecache_page(h, | 
 | 4012 | 								vma, haddr); | 
 | 4013 | 	} | 
 | 4014 |  | 
 | 4015 | 	ptl = huge_pte_lock(h, mm, ptep); | 
 | 4016 |  | 
 | 4017 | 	/* Check for a racing update before calling hugetlb_cow */ | 
 | 4018 | 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 
 | 4019 | 		goto out_ptl; | 
 | 4020 |  | 
 | 4021 | 	/* | 
 | 4022 | 	 * hugetlb_cow() requires page locks of pte_page(entry) and | 
 | 4023 | 	 * pagecache_page, so here we need take the former one | 
 | 4024 | 	 * when page != pagecache_page or !pagecache_page. | 
 | 4025 | 	 */ | 
 | 4026 | 	page = pte_page(entry); | 
 | 4027 | 	if (page != pagecache_page) | 
 | 4028 | 		if (!trylock_page(page)) { | 
 | 4029 | 			need_wait_lock = 1; | 
 | 4030 | 			goto out_ptl; | 
 | 4031 | 		} | 
 | 4032 |  | 
 | 4033 | 	get_page(page); | 
 | 4034 |  | 
 | 4035 | 	if (flags & FAULT_FLAG_WRITE) { | 
 | 4036 | 		if (!huge_pte_write(entry)) { | 
 | 4037 | 			ret = hugetlb_cow(mm, vma, address, ptep, | 
 | 4038 | 					  pagecache_page, ptl); | 
 | 4039 | 			goto out_put_page; | 
 | 4040 | 		} | 
 | 4041 | 		entry = huge_pte_mkdirty(entry); | 
 | 4042 | 	} | 
 | 4043 | 	entry = pte_mkyoung(entry); | 
 | 4044 | 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, | 
 | 4045 | 						flags & FAULT_FLAG_WRITE)) | 
 | 4046 | 		update_mmu_cache(vma, haddr, ptep); | 
 | 4047 | out_put_page: | 
 | 4048 | 	if (page != pagecache_page) | 
 | 4049 | 		unlock_page(page); | 
 | 4050 | 	put_page(page); | 
 | 4051 | out_ptl: | 
 | 4052 | 	spin_unlock(ptl); | 
 | 4053 |  | 
 | 4054 | 	if (pagecache_page) { | 
 | 4055 | 		unlock_page(pagecache_page); | 
 | 4056 | 		put_page(pagecache_page); | 
 | 4057 | 	} | 
 | 4058 | out_mutex: | 
 | 4059 | 	mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
 | 4060 | 	/* | 
 | 4061 | 	 * Generally it's safe to hold refcount during waiting page lock. But | 
 | 4062 | 	 * here we just wait to defer the next page fault to avoid busy loop and | 
 | 4063 | 	 * the page is not used after unlocked before returning from the current | 
 | 4064 | 	 * page fault. So we are safe from accessing freed page, even if we wait | 
 | 4065 | 	 * here without taking refcount. | 
 | 4066 | 	 */ | 
 | 4067 | 	if (need_wait_lock) | 
 | 4068 | 		wait_on_page_locked(page); | 
 | 4069 | 	return ret; | 
 | 4070 | } | 
 | 4071 |  | 
 | 4072 | /* | 
 | 4073 |  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with | 
 | 4074 |  * modifications for huge pages. | 
 | 4075 |  */ | 
 | 4076 | int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, | 
 | 4077 | 			    pte_t *dst_pte, | 
 | 4078 | 			    struct vm_area_struct *dst_vma, | 
 | 4079 | 			    unsigned long dst_addr, | 
 | 4080 | 			    unsigned long src_addr, | 
 | 4081 | 			    struct page **pagep) | 
 | 4082 | { | 
 | 4083 | 	struct address_space *mapping; | 
 | 4084 | 	pgoff_t idx; | 
 | 4085 | 	unsigned long size; | 
 | 4086 | 	int vm_shared = dst_vma->vm_flags & VM_SHARED; | 
 | 4087 | 	struct hstate *h = hstate_vma(dst_vma); | 
 | 4088 | 	pte_t _dst_pte; | 
 | 4089 | 	spinlock_t *ptl; | 
 | 4090 | 	int ret; | 
 | 4091 | 	struct page *page; | 
 | 4092 |  | 
 | 4093 | 	if (!*pagep) { | 
 | 4094 | 		ret = -ENOMEM; | 
 | 4095 | 		page = alloc_huge_page(dst_vma, dst_addr, 0); | 
 | 4096 | 		if (IS_ERR(page)) | 
 | 4097 | 			goto out; | 
 | 4098 |  | 
 | 4099 | 		ret = copy_huge_page_from_user(page, | 
 | 4100 | 						(const void __user *) src_addr, | 
 | 4101 | 						pages_per_huge_page(h), false); | 
 | 4102 |  | 
 | 4103 | 		/* fallback to copy_from_user outside mmap_sem */ | 
 | 4104 | 		if (unlikely(ret)) { | 
 | 4105 | 			ret = -ENOENT; | 
 | 4106 | 			*pagep = page; | 
 | 4107 | 			/* don't free the page */ | 
 | 4108 | 			goto out; | 
 | 4109 | 		} | 
 | 4110 | 	} else { | 
 | 4111 | 		page = *pagep; | 
 | 4112 | 		*pagep = NULL; | 
 | 4113 | 	} | 
 | 4114 |  | 
 | 4115 | 	/* | 
 | 4116 | 	 * The memory barrier inside __SetPageUptodate makes sure that | 
 | 4117 | 	 * preceding stores to the page contents become visible before | 
 | 4118 | 	 * the set_pte_at() write. | 
 | 4119 | 	 */ | 
 | 4120 | 	__SetPageUptodate(page); | 
 | 4121 |  | 
 | 4122 | 	mapping = dst_vma->vm_file->f_mapping; | 
 | 4123 | 	idx = vma_hugecache_offset(h, dst_vma, dst_addr); | 
 | 4124 |  | 
 | 4125 | 	/* | 
 | 4126 | 	 * If shared, add to page cache | 
 | 4127 | 	 */ | 
 | 4128 | 	if (vm_shared) { | 
 | 4129 | 		size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 4130 | 		ret = -EFAULT; | 
 | 4131 | 		if (idx >= size) | 
 | 4132 | 			goto out_release_nounlock; | 
 | 4133 |  | 
 | 4134 | 		/* | 
 | 4135 | 		 * Serialization between remove_inode_hugepages() and | 
 | 4136 | 		 * huge_add_to_page_cache() below happens through the | 
 | 4137 | 		 * hugetlb_fault_mutex_table that here must be hold by | 
 | 4138 | 		 * the caller. | 
 | 4139 | 		 */ | 
 | 4140 | 		ret = huge_add_to_page_cache(page, mapping, idx); | 
 | 4141 | 		if (ret) | 
 | 4142 | 			goto out_release_nounlock; | 
 | 4143 | 	} | 
 | 4144 |  | 
 | 4145 | 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte); | 
 | 4146 | 	spin_lock(ptl); | 
 | 4147 |  | 
 | 4148 | 	/* | 
 | 4149 | 	 * Recheck the i_size after holding PT lock to make sure not | 
 | 4150 | 	 * to leave any page mapped (as page_mapped()) beyond the end | 
 | 4151 | 	 * of the i_size (remove_inode_hugepages() is strict about | 
 | 4152 | 	 * enforcing that). If we bail out here, we'll also leave a | 
 | 4153 | 	 * page in the radix tree in the vm_shared case beyond the end | 
 | 4154 | 	 * of the i_size, but remove_inode_hugepages() will take care | 
 | 4155 | 	 * of it as soon as we drop the hugetlb_fault_mutex_table. | 
 | 4156 | 	 */ | 
 | 4157 | 	size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 4158 | 	ret = -EFAULT; | 
 | 4159 | 	if (idx >= size) | 
 | 4160 | 		goto out_release_unlock; | 
 | 4161 |  | 
 | 4162 | 	ret = -EEXIST; | 
 | 4163 | 	if (!huge_pte_none(huge_ptep_get(dst_pte))) | 
 | 4164 | 		goto out_release_unlock; | 
 | 4165 |  | 
 | 4166 | 	if (vm_shared) { | 
 | 4167 | 		page_dup_rmap(page, true); | 
 | 4168 | 	} else { | 
 | 4169 | 		ClearPagePrivate(page); | 
 | 4170 | 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); | 
 | 4171 | 	} | 
 | 4172 |  | 
 | 4173 | 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); | 
 | 4174 | 	if (dst_vma->vm_flags & VM_WRITE) | 
 | 4175 | 		_dst_pte = huge_pte_mkdirty(_dst_pte); | 
 | 4176 | 	_dst_pte = pte_mkyoung(_dst_pte); | 
 | 4177 |  | 
 | 4178 | 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); | 
 | 4179 |  | 
 | 4180 | 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, | 
 | 4181 | 					dst_vma->vm_flags & VM_WRITE); | 
 | 4182 | 	hugetlb_count_add(pages_per_huge_page(h), dst_mm); | 
 | 4183 |  | 
 | 4184 | 	/* No need to invalidate - it was non-present before */ | 
 | 4185 | 	update_mmu_cache(dst_vma, dst_addr, dst_pte); | 
 | 4186 |  | 
 | 4187 | 	spin_unlock(ptl); | 
 | 4188 | 	set_page_huge_active(page); | 
 | 4189 | 	if (vm_shared) | 
 | 4190 | 		unlock_page(page); | 
 | 4191 | 	ret = 0; | 
 | 4192 | out: | 
 | 4193 | 	return ret; | 
 | 4194 | out_release_unlock: | 
 | 4195 | 	spin_unlock(ptl); | 
 | 4196 | 	if (vm_shared) | 
 | 4197 | 		unlock_page(page); | 
 | 4198 | out_release_nounlock: | 
 | 4199 | 	put_page(page); | 
 | 4200 | 	goto out; | 
 | 4201 | } | 
 | 4202 |  | 
 | 4203 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 4204 | 			 struct page **pages, struct vm_area_struct **vmas, | 
 | 4205 | 			 unsigned long *position, unsigned long *nr_pages, | 
 | 4206 | 			 long i, unsigned int flags, int *nonblocking) | 
 | 4207 | { | 
 | 4208 | 	unsigned long pfn_offset; | 
 | 4209 | 	unsigned long vaddr = *position; | 
 | 4210 | 	unsigned long remainder = *nr_pages; | 
 | 4211 | 	struct hstate *h = hstate_vma(vma); | 
 | 4212 | 	int err = -EFAULT; | 
 | 4213 |  | 
 | 4214 | 	while (vaddr < vma->vm_end && remainder) { | 
 | 4215 | 		pte_t *pte; | 
 | 4216 | 		spinlock_t *ptl = NULL; | 
 | 4217 | 		int absent; | 
 | 4218 | 		struct page *page; | 
 | 4219 |  | 
 | 4220 | 		/* | 
 | 4221 | 		 * If we have a pending SIGKILL, don't keep faulting pages and | 
 | 4222 | 		 * potentially allocating memory. | 
 | 4223 | 		 */ | 
 | 4224 | 		if (unlikely(fatal_signal_pending(current))) { | 
 | 4225 | 			remainder = 0; | 
 | 4226 | 			break; | 
 | 4227 | 		} | 
 | 4228 |  | 
 | 4229 | 		/* | 
 | 4230 | 		 * Some archs (sparc64, sh*) have multiple pte_ts to | 
 | 4231 | 		 * each hugepage.  We have to make sure we get the | 
 | 4232 | 		 * first, for the page indexing below to work. | 
 | 4233 | 		 * | 
 | 4234 | 		 * Note that page table lock is not held when pte is null. | 
 | 4235 | 		 */ | 
 | 4236 | 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), | 
 | 4237 | 				      huge_page_size(h)); | 
 | 4238 | 		if (pte) | 
 | 4239 | 			ptl = huge_pte_lock(h, mm, pte); | 
 | 4240 | 		absent = !pte || huge_pte_none(huge_ptep_get(pte)); | 
 | 4241 |  | 
 | 4242 | 		/* | 
 | 4243 | 		 * When coredumping, it suits get_dump_page if we just return | 
 | 4244 | 		 * an error where there's an empty slot with no huge pagecache | 
 | 4245 | 		 * to back it.  This way, we avoid allocating a hugepage, and | 
 | 4246 | 		 * the sparse dumpfile avoids allocating disk blocks, but its | 
 | 4247 | 		 * huge holes still show up with zeroes where they need to be. | 
 | 4248 | 		 */ | 
 | 4249 | 		if (absent && (flags & FOLL_DUMP) && | 
 | 4250 | 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) { | 
 | 4251 | 			if (pte) | 
 | 4252 | 				spin_unlock(ptl); | 
 | 4253 | 			remainder = 0; | 
 | 4254 | 			break; | 
 | 4255 | 		} | 
 | 4256 |  | 
 | 4257 | 		/* | 
 | 4258 | 		 * We need call hugetlb_fault for both hugepages under migration | 
 | 4259 | 		 * (in which case hugetlb_fault waits for the migration,) and | 
 | 4260 | 		 * hwpoisoned hugepages (in which case we need to prevent the | 
 | 4261 | 		 * caller from accessing to them.) In order to do this, we use | 
 | 4262 | 		 * here is_swap_pte instead of is_hugetlb_entry_migration and | 
 | 4263 | 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers | 
 | 4264 | 		 * both cases, and because we can't follow correct pages | 
 | 4265 | 		 * directly from any kind of swap entries. | 
 | 4266 | 		 */ | 
 | 4267 | 		if (absent || is_swap_pte(huge_ptep_get(pte)) || | 
 | 4268 | 		    ((flags & FOLL_WRITE) && | 
 | 4269 | 		      !huge_pte_write(huge_ptep_get(pte)))) { | 
 | 4270 | 			vm_fault_t ret; | 
 | 4271 | 			unsigned int fault_flags = 0; | 
 | 4272 |  | 
 | 4273 | 			if (pte) | 
 | 4274 | 				spin_unlock(ptl); | 
 | 4275 | 			if (flags & FOLL_WRITE) | 
 | 4276 | 				fault_flags |= FAULT_FLAG_WRITE; | 
 | 4277 | 			if (nonblocking) | 
 | 4278 | 				fault_flags |= FAULT_FLAG_ALLOW_RETRY; | 
 | 4279 | 			if (flags & FOLL_NOWAIT) | 
 | 4280 | 				fault_flags |= FAULT_FLAG_ALLOW_RETRY | | 
 | 4281 | 					FAULT_FLAG_RETRY_NOWAIT; | 
 | 4282 | 			if (flags & FOLL_TRIED) { | 
 | 4283 | 				VM_WARN_ON_ONCE(fault_flags & | 
 | 4284 | 						FAULT_FLAG_ALLOW_RETRY); | 
 | 4285 | 				fault_flags |= FAULT_FLAG_TRIED; | 
 | 4286 | 			} | 
 | 4287 | 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags); | 
 | 4288 | 			if (ret & VM_FAULT_ERROR) { | 
 | 4289 | 				err = vm_fault_to_errno(ret, flags); | 
 | 4290 | 				remainder = 0; | 
 | 4291 | 				break; | 
 | 4292 | 			} | 
 | 4293 | 			if (ret & VM_FAULT_RETRY) { | 
 | 4294 | 				if (nonblocking && | 
 | 4295 | 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) | 
 | 4296 | 					*nonblocking = 0; | 
 | 4297 | 				*nr_pages = 0; | 
 | 4298 | 				/* | 
 | 4299 | 				 * VM_FAULT_RETRY must not return an | 
 | 4300 | 				 * error, it will return zero | 
 | 4301 | 				 * instead. | 
 | 4302 | 				 * | 
 | 4303 | 				 * No need to update "position" as the | 
 | 4304 | 				 * caller will not check it after | 
 | 4305 | 				 * *nr_pages is set to 0. | 
 | 4306 | 				 */ | 
 | 4307 | 				return i; | 
 | 4308 | 			} | 
 | 4309 | 			continue; | 
 | 4310 | 		} | 
 | 4311 |  | 
 | 4312 | 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; | 
 | 4313 | 		page = pte_page(huge_ptep_get(pte)); | 
 | 4314 |  | 
 | 4315 | 		/* | 
 | 4316 | 		 * Instead of doing 'try_get_page()' below in the same_page | 
 | 4317 | 		 * loop, just check the count once here. | 
 | 4318 | 		 */ | 
 | 4319 | 		if (unlikely(page_count(page) <= 0)) { | 
 | 4320 | 			if (pages) { | 
 | 4321 | 				spin_unlock(ptl); | 
 | 4322 | 				remainder = 0; | 
 | 4323 | 				err = -ENOMEM; | 
 | 4324 | 				break; | 
 | 4325 | 			} | 
 | 4326 | 		} | 
 | 4327 | same_page: | 
 | 4328 | 		if (pages) { | 
 | 4329 | 			pages[i] = mem_map_offset(page, pfn_offset); | 
 | 4330 | 			get_page(pages[i]); | 
 | 4331 | 		} | 
 | 4332 |  | 
 | 4333 | 		if (vmas) | 
 | 4334 | 			vmas[i] = vma; | 
 | 4335 |  | 
 | 4336 | 		vaddr += PAGE_SIZE; | 
 | 4337 | 		++pfn_offset; | 
 | 4338 | 		--remainder; | 
 | 4339 | 		++i; | 
 | 4340 | 		if (vaddr < vma->vm_end && remainder && | 
 | 4341 | 				pfn_offset < pages_per_huge_page(h)) { | 
 | 4342 | 			/* | 
 | 4343 | 			 * We use pfn_offset to avoid touching the pageframes | 
 | 4344 | 			 * of this compound page. | 
 | 4345 | 			 */ | 
 | 4346 | 			goto same_page; | 
 | 4347 | 		} | 
 | 4348 | 		spin_unlock(ptl); | 
 | 4349 | 	} | 
 | 4350 | 	*nr_pages = remainder; | 
 | 4351 | 	/* | 
 | 4352 | 	 * setting position is actually required only if remainder is | 
 | 4353 | 	 * not zero but it's faster not to add a "if (remainder)" | 
 | 4354 | 	 * branch. | 
 | 4355 | 	 */ | 
 | 4356 | 	*position = vaddr; | 
 | 4357 |  | 
 | 4358 | 	return i ? i : err; | 
 | 4359 | } | 
 | 4360 |  | 
 | 4361 | #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE | 
 | 4362 | /* | 
 | 4363 |  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can | 
 | 4364 |  * implement this. | 
 | 4365 |  */ | 
 | 4366 | #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end) | 
 | 4367 | #endif | 
 | 4368 |  | 
 | 4369 | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, | 
 | 4370 | 		unsigned long address, unsigned long end, pgprot_t newprot) | 
 | 4371 | { | 
 | 4372 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 4373 | 	unsigned long start = address; | 
 | 4374 | 	pte_t *ptep; | 
 | 4375 | 	pte_t pte; | 
 | 4376 | 	struct hstate *h = hstate_vma(vma); | 
 | 4377 | 	unsigned long pages = 0; | 
 | 4378 | 	unsigned long f_start = start; | 
 | 4379 | 	unsigned long f_end = end; | 
 | 4380 | 	bool shared_pmd = false; | 
 | 4381 |  | 
 | 4382 | 	/* | 
 | 4383 | 	 * In the case of shared PMDs, the area to flush could be beyond | 
 | 4384 | 	 * start/end.  Set f_start/f_end to cover the maximum possible | 
 | 4385 | 	 * range if PMD sharing is possible. | 
 | 4386 | 	 */ | 
 | 4387 | 	adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end); | 
 | 4388 |  | 
 | 4389 | 	BUG_ON(address >= end); | 
 | 4390 | 	flush_cache_range(vma, f_start, f_end); | 
 | 4391 |  | 
 | 4392 | 	mmu_notifier_invalidate_range_start(mm, f_start, f_end); | 
 | 4393 | 	i_mmap_lock_write(vma->vm_file->f_mapping); | 
 | 4394 | 	for (; address < end; address += huge_page_size(h)) { | 
 | 4395 | 		spinlock_t *ptl; | 
 | 4396 | 		ptep = huge_pte_offset(mm, address, huge_page_size(h)); | 
 | 4397 | 		if (!ptep) | 
 | 4398 | 			continue; | 
 | 4399 | 		ptl = huge_pte_lock(h, mm, ptep); | 
 | 4400 | 		if (huge_pmd_unshare(mm, &address, ptep)) { | 
 | 4401 | 			pages++; | 
 | 4402 | 			spin_unlock(ptl); | 
 | 4403 | 			shared_pmd = true; | 
 | 4404 | 			continue; | 
 | 4405 | 		} | 
 | 4406 | 		pte = huge_ptep_get(ptep); | 
 | 4407 | 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { | 
 | 4408 | 			spin_unlock(ptl); | 
 | 4409 | 			continue; | 
 | 4410 | 		} | 
 | 4411 | 		if (unlikely(is_hugetlb_entry_migration(pte))) { | 
 | 4412 | 			swp_entry_t entry = pte_to_swp_entry(pte); | 
 | 4413 |  | 
 | 4414 | 			if (is_write_migration_entry(entry)) { | 
 | 4415 | 				pte_t newpte; | 
 | 4416 |  | 
 | 4417 | 				make_migration_entry_read(&entry); | 
 | 4418 | 				newpte = swp_entry_to_pte(entry); | 
 | 4419 | 				set_huge_swap_pte_at(mm, address, ptep, | 
 | 4420 | 						     newpte, huge_page_size(h)); | 
 | 4421 | 				pages++; | 
 | 4422 | 			} | 
 | 4423 | 			spin_unlock(ptl); | 
 | 4424 | 			continue; | 
 | 4425 | 		} | 
 | 4426 | 		if (!huge_pte_none(pte)) { | 
 | 4427 | 			pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 4428 | 			pte = pte_mkhuge(huge_pte_modify(pte, newprot)); | 
 | 4429 | 			pte = arch_make_huge_pte(pte, vma, NULL, 0); | 
 | 4430 | 			set_huge_pte_at(mm, address, ptep, pte); | 
 | 4431 | 			pages++; | 
 | 4432 | 		} | 
 | 4433 | 		spin_unlock(ptl); | 
 | 4434 | 	} | 
 | 4435 | 	/* | 
 | 4436 | 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare | 
 | 4437 | 	 * may have cleared our pud entry and done put_page on the page table: | 
 | 4438 | 	 * once we release i_mmap_rwsem, another task can do the final put_page | 
 | 4439 | 	 * and that page table be reused and filled with junk.  If we actually | 
 | 4440 | 	 * did unshare a page of pmds, flush the range corresponding to the pud. | 
 | 4441 | 	 */ | 
 | 4442 | 	if (shared_pmd) | 
 | 4443 | 		flush_hugetlb_tlb_range(vma, f_start, f_end); | 
 | 4444 | 	else | 
 | 4445 | 		flush_hugetlb_tlb_range(vma, start, end); | 
 | 4446 | 	/* | 
 | 4447 | 	 * No need to call mmu_notifier_invalidate_range() we are downgrading | 
 | 4448 | 	 * page table protection not changing it to point to a new page. | 
 | 4449 | 	 * | 
 | 4450 | 	 * See Documentation/vm/mmu_notifier.rst | 
 | 4451 | 	 */ | 
 | 4452 | 	i_mmap_unlock_write(vma->vm_file->f_mapping); | 
 | 4453 | 	mmu_notifier_invalidate_range_end(mm, f_start, f_end); | 
 | 4454 |  | 
 | 4455 | 	return pages << h->order; | 
 | 4456 | } | 
 | 4457 |  | 
 | 4458 | int hugetlb_reserve_pages(struct inode *inode, | 
 | 4459 | 					long from, long to, | 
 | 4460 | 					struct vm_area_struct *vma, | 
 | 4461 | 					vm_flags_t vm_flags) | 
 | 4462 | { | 
 | 4463 | 	long ret, chg; | 
 | 4464 | 	struct hstate *h = hstate_inode(inode); | 
 | 4465 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 4466 | 	struct resv_map *resv_map; | 
 | 4467 | 	long gbl_reserve; | 
 | 4468 |  | 
 | 4469 | 	/* This should never happen */ | 
 | 4470 | 	if (from > to) { | 
 | 4471 | 		VM_WARN(1, "%s called with a negative range\n", __func__); | 
 | 4472 | 		return -EINVAL; | 
 | 4473 | 	} | 
 | 4474 |  | 
 | 4475 | 	/* | 
 | 4476 | 	 * Only apply hugepage reservation if asked. At fault time, an | 
 | 4477 | 	 * attempt will be made for VM_NORESERVE to allocate a page | 
 | 4478 | 	 * without using reserves | 
 | 4479 | 	 */ | 
 | 4480 | 	if (vm_flags & VM_NORESERVE) | 
 | 4481 | 		return 0; | 
 | 4482 |  | 
 | 4483 | 	/* | 
 | 4484 | 	 * Shared mappings base their reservation on the number of pages that | 
 | 4485 | 	 * are already allocated on behalf of the file. Private mappings need | 
 | 4486 | 	 * to reserve the full area even if read-only as mprotect() may be | 
 | 4487 | 	 * called to make the mapping read-write. Assume !vma is a shm mapping | 
 | 4488 | 	 */ | 
 | 4489 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
 | 4490 | 		resv_map = inode_resv_map(inode); | 
 | 4491 |  | 
 | 4492 | 		chg = region_chg(resv_map, from, to); | 
 | 4493 |  | 
 | 4494 | 	} else { | 
 | 4495 | 		resv_map = resv_map_alloc(); | 
 | 4496 | 		if (!resv_map) | 
 | 4497 | 			return -ENOMEM; | 
 | 4498 |  | 
 | 4499 | 		chg = to - from; | 
 | 4500 |  | 
 | 4501 | 		set_vma_resv_map(vma, resv_map); | 
 | 4502 | 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | 
 | 4503 | 	} | 
 | 4504 |  | 
 | 4505 | 	if (chg < 0) { | 
 | 4506 | 		ret = chg; | 
 | 4507 | 		goto out_err; | 
 | 4508 | 	} | 
 | 4509 |  | 
 | 4510 | 	/* | 
 | 4511 | 	 * There must be enough pages in the subpool for the mapping. If | 
 | 4512 | 	 * the subpool has a minimum size, there may be some global | 
 | 4513 | 	 * reservations already in place (gbl_reserve). | 
 | 4514 | 	 */ | 
 | 4515 | 	gbl_reserve = hugepage_subpool_get_pages(spool, chg); | 
 | 4516 | 	if (gbl_reserve < 0) { | 
 | 4517 | 		ret = -ENOSPC; | 
 | 4518 | 		goto out_err; | 
 | 4519 | 	} | 
 | 4520 |  | 
 | 4521 | 	/* | 
 | 4522 | 	 * Check enough hugepages are available for the reservation. | 
 | 4523 | 	 * Hand the pages back to the subpool if there are not | 
 | 4524 | 	 */ | 
 | 4525 | 	ret = hugetlb_acct_memory(h, gbl_reserve); | 
 | 4526 | 	if (ret < 0) { | 
 | 4527 | 		/* put back original number of pages, chg */ | 
 | 4528 | 		(void)hugepage_subpool_put_pages(spool, chg); | 
 | 4529 | 		goto out_err; | 
 | 4530 | 	} | 
 | 4531 |  | 
 | 4532 | 	/* | 
 | 4533 | 	 * Account for the reservations made. Shared mappings record regions | 
 | 4534 | 	 * that have reservations as they are shared by multiple VMAs. | 
 | 4535 | 	 * When the last VMA disappears, the region map says how much | 
 | 4536 | 	 * the reservation was and the page cache tells how much of | 
 | 4537 | 	 * the reservation was consumed. Private mappings are per-VMA and | 
 | 4538 | 	 * only the consumed reservations are tracked. When the VMA | 
 | 4539 | 	 * disappears, the original reservation is the VMA size and the | 
 | 4540 | 	 * consumed reservations are stored in the map. Hence, nothing | 
 | 4541 | 	 * else has to be done for private mappings here | 
 | 4542 | 	 */ | 
 | 4543 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
 | 4544 | 		long add = region_add(resv_map, from, to); | 
 | 4545 |  | 
 | 4546 | 		if (unlikely(chg > add)) { | 
 | 4547 | 			/* | 
 | 4548 | 			 * pages in this range were added to the reserve | 
 | 4549 | 			 * map between region_chg and region_add.  This | 
 | 4550 | 			 * indicates a race with alloc_huge_page.  Adjust | 
 | 4551 | 			 * the subpool and reserve counts modified above | 
 | 4552 | 			 * based on the difference. | 
 | 4553 | 			 */ | 
 | 4554 | 			long rsv_adjust; | 
 | 4555 |  | 
 | 4556 | 			rsv_adjust = hugepage_subpool_put_pages(spool, | 
 | 4557 | 								chg - add); | 
 | 4558 | 			hugetlb_acct_memory(h, -rsv_adjust); | 
 | 4559 | 		} | 
 | 4560 | 	} | 
 | 4561 | 	return 0; | 
 | 4562 | out_err: | 
 | 4563 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) | 
 | 4564 | 		/* Don't call region_abort if region_chg failed */ | 
 | 4565 | 		if (chg >= 0) | 
 | 4566 | 			region_abort(resv_map, from, to); | 
 | 4567 | 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
 | 4568 | 		kref_put(&resv_map->refs, resv_map_release); | 
 | 4569 | 	return ret; | 
 | 4570 | } | 
 | 4571 |  | 
 | 4572 | long hugetlb_unreserve_pages(struct inode *inode, long start, long end, | 
 | 4573 | 								long freed) | 
 | 4574 | { | 
 | 4575 | 	struct hstate *h = hstate_inode(inode); | 
 | 4576 | 	struct resv_map *resv_map = inode_resv_map(inode); | 
 | 4577 | 	long chg = 0; | 
 | 4578 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 4579 | 	long gbl_reserve; | 
 | 4580 |  | 
 | 4581 | 	if (resv_map) { | 
 | 4582 | 		chg = region_del(resv_map, start, end); | 
 | 4583 | 		/* | 
 | 4584 | 		 * region_del() can fail in the rare case where a region | 
 | 4585 | 		 * must be split and another region descriptor can not be | 
 | 4586 | 		 * allocated.  If end == LONG_MAX, it will not fail. | 
 | 4587 | 		 */ | 
 | 4588 | 		if (chg < 0) | 
 | 4589 | 			return chg; | 
 | 4590 | 	} | 
 | 4591 |  | 
 | 4592 | 	spin_lock(&inode->i_lock); | 
 | 4593 | 	inode->i_blocks -= (blocks_per_huge_page(h) * freed); | 
 | 4594 | 	spin_unlock(&inode->i_lock); | 
 | 4595 |  | 
 | 4596 | 	/* | 
 | 4597 | 	 * If the subpool has a minimum size, the number of global | 
 | 4598 | 	 * reservations to be released may be adjusted. | 
 | 4599 | 	 */ | 
 | 4600 | 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); | 
 | 4601 | 	hugetlb_acct_memory(h, -gbl_reserve); | 
 | 4602 |  | 
 | 4603 | 	return 0; | 
 | 4604 | } | 
 | 4605 |  | 
 | 4606 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE | 
 | 4607 | static unsigned long page_table_shareable(struct vm_area_struct *svma, | 
 | 4608 | 				struct vm_area_struct *vma, | 
 | 4609 | 				unsigned long addr, pgoff_t idx) | 
 | 4610 | { | 
 | 4611 | 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | 
 | 4612 | 				svma->vm_start; | 
 | 4613 | 	unsigned long sbase = saddr & PUD_MASK; | 
 | 4614 | 	unsigned long s_end = sbase + PUD_SIZE; | 
 | 4615 |  | 
 | 4616 | 	/* Allow segments to share if only one is marked locked */ | 
 | 4617 | 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
 | 4618 | 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
 | 4619 |  | 
 | 4620 | 	/* | 
 | 4621 | 	 * match the virtual addresses, permission and the alignment of the | 
 | 4622 | 	 * page table page. | 
 | 4623 | 	 */ | 
 | 4624 | 	if (pmd_index(addr) != pmd_index(saddr) || | 
 | 4625 | 	    vm_flags != svm_flags || | 
 | 4626 | 	    sbase < svma->vm_start || svma->vm_end < s_end) | 
 | 4627 | 		return 0; | 
 | 4628 |  | 
 | 4629 | 	return saddr; | 
 | 4630 | } | 
 | 4631 |  | 
 | 4632 | static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) | 
 | 4633 | { | 
 | 4634 | 	unsigned long base = addr & PUD_MASK; | 
 | 4635 | 	unsigned long end = base + PUD_SIZE; | 
 | 4636 |  | 
 | 4637 | 	/* | 
 | 4638 | 	 * check on proper vm_flags and page table alignment | 
 | 4639 | 	 */ | 
 | 4640 | 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) | 
 | 4641 | 		return true; | 
 | 4642 | 	return false; | 
 | 4643 | } | 
 | 4644 |  | 
 | 4645 | /* | 
 | 4646 |  * Determine if start,end range within vma could be mapped by shared pmd. | 
 | 4647 |  * If yes, adjust start and end to cover range associated with possible | 
 | 4648 |  * shared pmd mappings. | 
 | 4649 |  */ | 
 | 4650 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | 
 | 4651 | 				unsigned long *start, unsigned long *end) | 
 | 4652 | { | 
 | 4653 | 	unsigned long check_addr = *start; | 
 | 4654 |  | 
 | 4655 | 	if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 4656 | 		return; | 
 | 4657 |  | 
 | 4658 | 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { | 
 | 4659 | 		unsigned long a_start = check_addr & PUD_MASK; | 
 | 4660 | 		unsigned long a_end = a_start + PUD_SIZE; | 
 | 4661 |  | 
 | 4662 | 		/* | 
 | 4663 | 		 * If sharing is possible, adjust start/end if necessary. | 
 | 4664 | 		 */ | 
 | 4665 | 		if (range_in_vma(vma, a_start, a_end)) { | 
 | 4666 | 			if (a_start < *start) | 
 | 4667 | 				*start = a_start; | 
 | 4668 | 			if (a_end > *end) | 
 | 4669 | 				*end = a_end; | 
 | 4670 | 		} | 
 | 4671 | 	} | 
 | 4672 | } | 
 | 4673 |  | 
 | 4674 | /* | 
 | 4675 |  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | 
 | 4676 |  * and returns the corresponding pte. While this is not necessary for the | 
 | 4677 |  * !shared pmd case because we can allocate the pmd later as well, it makes the | 
 | 4678 |  * code much cleaner. pmd allocation is essential for the shared case because | 
 | 4679 |  * pud has to be populated inside the same i_mmap_rwsem section - otherwise | 
 | 4680 |  * racing tasks could either miss the sharing (see huge_pte_offset) or select a | 
 | 4681 |  * bad pmd for sharing. | 
 | 4682 |  */ | 
 | 4683 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | 
 | 4684 | { | 
 | 4685 | 	struct vm_area_struct *vma = find_vma(mm, addr); | 
 | 4686 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 4687 | 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | 
 | 4688 | 			vma->vm_pgoff; | 
 | 4689 | 	struct vm_area_struct *svma; | 
 | 4690 | 	unsigned long saddr; | 
 | 4691 | 	pte_t *spte = NULL; | 
 | 4692 | 	pte_t *pte; | 
 | 4693 | 	spinlock_t *ptl; | 
 | 4694 |  | 
 | 4695 | 	if (!vma_shareable(vma, addr)) | 
 | 4696 | 		return (pte_t *)pmd_alloc(mm, pud, addr); | 
 | 4697 |  | 
 | 4698 | 	i_mmap_lock_write(mapping); | 
 | 4699 | 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { | 
 | 4700 | 		if (svma == vma) | 
 | 4701 | 			continue; | 
 | 4702 |  | 
 | 4703 | 		saddr = page_table_shareable(svma, vma, addr, idx); | 
 | 4704 | 		if (saddr) { | 
 | 4705 | 			spte = huge_pte_offset(svma->vm_mm, saddr, | 
 | 4706 | 					       vma_mmu_pagesize(svma)); | 
 | 4707 | 			if (spte) { | 
 | 4708 | 				get_page(virt_to_page(spte)); | 
 | 4709 | 				break; | 
 | 4710 | 			} | 
 | 4711 | 		} | 
 | 4712 | 	} | 
 | 4713 |  | 
 | 4714 | 	if (!spte) | 
 | 4715 | 		goto out; | 
 | 4716 |  | 
 | 4717 | 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte); | 
 | 4718 | 	if (pud_none(*pud)) { | 
 | 4719 | 		pud_populate(mm, pud, | 
 | 4720 | 				(pmd_t *)((unsigned long)spte & PAGE_MASK)); | 
 | 4721 | 		mm_inc_nr_pmds(mm); | 
 | 4722 | 	} else { | 
 | 4723 | 		put_page(virt_to_page(spte)); | 
 | 4724 | 	} | 
 | 4725 | 	spin_unlock(ptl); | 
 | 4726 | out: | 
 | 4727 | 	pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
 | 4728 | 	i_mmap_unlock_write(mapping); | 
 | 4729 | 	return pte; | 
 | 4730 | } | 
 | 4731 |  | 
 | 4732 | /* | 
 | 4733 |  * unmap huge page backed by shared pte. | 
 | 4734 |  * | 
 | 4735 |  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared | 
 | 4736 |  * indicated by page_count > 1, unmap is achieved by clearing pud and | 
 | 4737 |  * decrementing the ref count. If count == 1, the pte page is not shared. | 
 | 4738 |  * | 
 | 4739 |  * called with page table lock held. | 
 | 4740 |  * | 
 | 4741 |  * returns: 1 successfully unmapped a shared pte page | 
 | 4742 |  *	    0 the underlying pte page is not shared, or it is the last user | 
 | 4743 |  */ | 
 | 4744 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
 | 4745 | { | 
 | 4746 | 	pgd_t *pgd = pgd_offset(mm, *addr); | 
 | 4747 | 	p4d_t *p4d = p4d_offset(pgd, *addr); | 
 | 4748 | 	pud_t *pud = pud_offset(p4d, *addr); | 
 | 4749 |  | 
 | 4750 | 	BUG_ON(page_count(virt_to_page(ptep)) == 0); | 
 | 4751 | 	if (page_count(virt_to_page(ptep)) == 1) | 
 | 4752 | 		return 0; | 
 | 4753 |  | 
 | 4754 | 	pud_clear(pud); | 
 | 4755 | 	put_page(virt_to_page(ptep)); | 
 | 4756 | 	mm_dec_nr_pmds(mm); | 
 | 4757 | 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; | 
 | 4758 | 	return 1; | 
 | 4759 | } | 
 | 4760 | #define want_pmd_share()	(1) | 
 | 4761 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | 
 | 4762 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | 
 | 4763 | { | 
 | 4764 | 	return NULL; | 
 | 4765 | } | 
 | 4766 |  | 
 | 4767 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
 | 4768 | { | 
 | 4769 | 	return 0; | 
 | 4770 | } | 
 | 4771 |  | 
 | 4772 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | 
 | 4773 | 				unsigned long *start, unsigned long *end) | 
 | 4774 | { | 
 | 4775 | } | 
 | 4776 | #define want_pmd_share()	(0) | 
 | 4777 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | 
 | 4778 |  | 
 | 4779 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB | 
 | 4780 | pte_t *huge_pte_alloc(struct mm_struct *mm, | 
 | 4781 | 			unsigned long addr, unsigned long sz) | 
 | 4782 | { | 
 | 4783 | 	pgd_t *pgd; | 
 | 4784 | 	p4d_t *p4d; | 
 | 4785 | 	pud_t *pud; | 
 | 4786 | 	pte_t *pte = NULL; | 
 | 4787 |  | 
 | 4788 | 	pgd = pgd_offset(mm, addr); | 
 | 4789 | 	p4d = p4d_alloc(mm, pgd, addr); | 
 | 4790 | 	if (!p4d) | 
 | 4791 | 		return NULL; | 
 | 4792 | 	pud = pud_alloc(mm, p4d, addr); | 
 | 4793 | 	if (pud) { | 
 | 4794 | 		if (sz == PUD_SIZE) { | 
 | 4795 | 			pte = (pte_t *)pud; | 
 | 4796 | 		} else { | 
 | 4797 | 			BUG_ON(sz != PMD_SIZE); | 
 | 4798 | 			if (want_pmd_share() && pud_none(*pud)) | 
 | 4799 | 				pte = huge_pmd_share(mm, addr, pud); | 
 | 4800 | 			else | 
 | 4801 | 				pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
 | 4802 | 		} | 
 | 4803 | 	} | 
 | 4804 | 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); | 
 | 4805 |  | 
 | 4806 | 	return pte; | 
 | 4807 | } | 
 | 4808 |  | 
 | 4809 | /* | 
 | 4810 |  * huge_pte_offset() - Walk the page table to resolve the hugepage | 
 | 4811 |  * entry at address @addr | 
 | 4812 |  * | 
 | 4813 |  * Return: Pointer to page table or swap entry (PUD or PMD) for | 
 | 4814 |  * address @addr, or NULL if a p*d_none() entry is encountered and the | 
 | 4815 |  * size @sz doesn't match the hugepage size at this level of the page | 
 | 4816 |  * table. | 
 | 4817 |  */ | 
 | 4818 | pte_t *huge_pte_offset(struct mm_struct *mm, | 
 | 4819 | 		       unsigned long addr, unsigned long sz) | 
 | 4820 | { | 
 | 4821 | 	pgd_t *pgd; | 
 | 4822 | 	p4d_t *p4d; | 
 | 4823 | 	pud_t *pud; | 
 | 4824 | 	pmd_t *pmd; | 
 | 4825 |  | 
 | 4826 | 	pgd = pgd_offset(mm, addr); | 
 | 4827 | 	if (!pgd_present(*pgd)) | 
 | 4828 | 		return NULL; | 
 | 4829 | 	p4d = p4d_offset(pgd, addr); | 
 | 4830 | 	if (!p4d_present(*p4d)) | 
 | 4831 | 		return NULL; | 
 | 4832 |  | 
 | 4833 | 	pud = pud_offset(p4d, addr); | 
 | 4834 | 	if (sz != PUD_SIZE && pud_none(*pud)) | 
 | 4835 | 		return NULL; | 
 | 4836 | 	/* hugepage or swap? */ | 
 | 4837 | 	if (pud_huge(*pud) || !pud_present(*pud)) | 
 | 4838 | 		return (pte_t *)pud; | 
 | 4839 |  | 
 | 4840 | 	pmd = pmd_offset(pud, addr); | 
 | 4841 | 	if (sz != PMD_SIZE && pmd_none(*pmd)) | 
 | 4842 | 		return NULL; | 
 | 4843 | 	/* hugepage or swap? */ | 
 | 4844 | 	if (pmd_huge(*pmd) || !pmd_present(*pmd)) | 
 | 4845 | 		return (pte_t *)pmd; | 
 | 4846 |  | 
 | 4847 | 	return NULL; | 
 | 4848 | } | 
 | 4849 |  | 
 | 4850 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ | 
 | 4851 |  | 
 | 4852 | /* | 
 | 4853 |  * These functions are overwritable if your architecture needs its own | 
 | 4854 |  * behavior. | 
 | 4855 |  */ | 
 | 4856 | struct page * __weak | 
 | 4857 | follow_huge_addr(struct mm_struct *mm, unsigned long address, | 
 | 4858 | 			      int write) | 
 | 4859 | { | 
 | 4860 | 	return ERR_PTR(-EINVAL); | 
 | 4861 | } | 
 | 4862 |  | 
 | 4863 | struct page * __weak | 
 | 4864 | follow_huge_pd(struct vm_area_struct *vma, | 
 | 4865 | 	       unsigned long address, hugepd_t hpd, int flags, int pdshift) | 
 | 4866 | { | 
 | 4867 | 	WARN(1, "hugepd follow called with no support for hugepage directory format\n"); | 
 | 4868 | 	return NULL; | 
 | 4869 | } | 
 | 4870 |  | 
 | 4871 | struct page * __weak | 
 | 4872 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
 | 4873 | 		pmd_t *pmd, int flags) | 
 | 4874 | { | 
 | 4875 | 	struct page *page = NULL; | 
 | 4876 | 	spinlock_t *ptl; | 
 | 4877 | 	pte_t pte; | 
 | 4878 | retry: | 
 | 4879 | 	ptl = pmd_lockptr(mm, pmd); | 
 | 4880 | 	spin_lock(ptl); | 
 | 4881 | 	/* | 
 | 4882 | 	 * make sure that the address range covered by this pmd is not | 
 | 4883 | 	 * unmapped from other threads. | 
 | 4884 | 	 */ | 
 | 4885 | 	if (!pmd_huge(*pmd)) | 
 | 4886 | 		goto out; | 
 | 4887 | 	pte = huge_ptep_get((pte_t *)pmd); | 
 | 4888 | 	if (pte_present(pte)) { | 
 | 4889 | 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 4890 | 		if (flags & FOLL_GET) | 
 | 4891 | 			get_page(page); | 
 | 4892 | 	} else { | 
 | 4893 | 		if (is_hugetlb_entry_migration(pte)) { | 
 | 4894 | 			spin_unlock(ptl); | 
 | 4895 | 			__migration_entry_wait(mm, (pte_t *)pmd, ptl); | 
 | 4896 | 			goto retry; | 
 | 4897 | 		} | 
 | 4898 | 		/* | 
 | 4899 | 		 * hwpoisoned entry is treated as no_page_table in | 
 | 4900 | 		 * follow_page_mask(). | 
 | 4901 | 		 */ | 
 | 4902 | 	} | 
 | 4903 | out: | 
 | 4904 | 	spin_unlock(ptl); | 
 | 4905 | 	return page; | 
 | 4906 | } | 
 | 4907 |  | 
 | 4908 | struct page * __weak | 
 | 4909 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | 
 | 4910 | 		pud_t *pud, int flags) | 
 | 4911 | { | 
 | 4912 | 	if (flags & FOLL_GET) | 
 | 4913 | 		return NULL; | 
 | 4914 |  | 
 | 4915 | 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); | 
 | 4916 | } | 
 | 4917 |  | 
 | 4918 | struct page * __weak | 
 | 4919 | follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) | 
 | 4920 | { | 
 | 4921 | 	if (flags & FOLL_GET) | 
 | 4922 | 		return NULL; | 
 | 4923 |  | 
 | 4924 | 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); | 
 | 4925 | } | 
 | 4926 |  | 
 | 4927 | bool isolate_huge_page(struct page *page, struct list_head *list) | 
 | 4928 | { | 
 | 4929 | 	bool ret = true; | 
 | 4930 |  | 
 | 4931 | 	VM_BUG_ON_PAGE(!PageHead(page), page); | 
 | 4932 | 	spin_lock(&hugetlb_lock); | 
 | 4933 | 	if (!page_huge_active(page) || !get_page_unless_zero(page)) { | 
 | 4934 | 		ret = false; | 
 | 4935 | 		goto unlock; | 
 | 4936 | 	} | 
 | 4937 | 	clear_page_huge_active(page); | 
 | 4938 | 	list_move_tail(&page->lru, list); | 
 | 4939 | unlock: | 
 | 4940 | 	spin_unlock(&hugetlb_lock); | 
 | 4941 | 	return ret; | 
 | 4942 | } | 
 | 4943 |  | 
 | 4944 | void putback_active_hugepage(struct page *page) | 
 | 4945 | { | 
 | 4946 | 	VM_BUG_ON_PAGE(!PageHead(page), page); | 
 | 4947 | 	spin_lock(&hugetlb_lock); | 
 | 4948 | 	set_page_huge_active(page); | 
 | 4949 | 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); | 
 | 4950 | 	spin_unlock(&hugetlb_lock); | 
 | 4951 | 	put_page(page); | 
 | 4952 | } | 
 | 4953 |  | 
 | 4954 | void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) | 
 | 4955 | { | 
 | 4956 | 	struct hstate *h = page_hstate(oldpage); | 
 | 4957 |  | 
 | 4958 | 	hugetlb_cgroup_migrate(oldpage, newpage); | 
 | 4959 | 	set_page_owner_migrate_reason(newpage, reason); | 
 | 4960 |  | 
 | 4961 | 	/* | 
 | 4962 | 	 * transfer temporary state of the new huge page. This is | 
 | 4963 | 	 * reverse to other transitions because the newpage is going to | 
 | 4964 | 	 * be final while the old one will be freed so it takes over | 
 | 4965 | 	 * the temporary status. | 
 | 4966 | 	 * | 
 | 4967 | 	 * Also note that we have to transfer the per-node surplus state | 
 | 4968 | 	 * here as well otherwise the global surplus count will not match | 
 | 4969 | 	 * the per-node's. | 
 | 4970 | 	 */ | 
 | 4971 | 	if (PageHugeTemporary(newpage)) { | 
 | 4972 | 		int old_nid = page_to_nid(oldpage); | 
 | 4973 | 		int new_nid = page_to_nid(newpage); | 
 | 4974 |  | 
 | 4975 | 		SetPageHugeTemporary(oldpage); | 
 | 4976 | 		ClearPageHugeTemporary(newpage); | 
 | 4977 |  | 
 | 4978 | 		spin_lock(&hugetlb_lock); | 
 | 4979 | 		if (h->surplus_huge_pages_node[old_nid]) { | 
 | 4980 | 			h->surplus_huge_pages_node[old_nid]--; | 
 | 4981 | 			h->surplus_huge_pages_node[new_nid]++; | 
 | 4982 | 		} | 
 | 4983 | 		spin_unlock(&hugetlb_lock); | 
 | 4984 | 	} | 
 | 4985 | } |