blob: 79ebff7e78193455936e17f806c4265fb63ed371 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
136 *
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241#include <linux/utsname.h>
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/major.h>
245#include <linux/string.h>
246#include <linux/fcntl.h>
247#include <linux/slab.h>
248#include <linux/random.h>
249#include <linux/poll.h>
250#include <linux/init.h>
251#include <linux/fs.h>
252#include <linux/genhd.h>
253#include <linux/interrupt.h>
254#include <linux/mm.h>
255#include <linux/nodemask.h>
256#include <linux/spinlock.h>
257#include <linux/kthread.h>
258#include <linux/percpu.h>
259#include <linux/cryptohash.h>
260#include <linux/fips.h>
261#include <linux/ptrace.h>
262#include <linux/workqueue.h>
263#include <linux/irq.h>
264#include <linux/ratelimit.h>
265#include <linux/syscalls.h>
266#include <linux/completion.h>
267#include <linux/uuid.h>
268#include <crypto/chacha.h>
269
270#include <asm/processor.h>
271#include <linux/uaccess.h>
272#include <asm/irq.h>
273#include <asm/irq_regs.h>
274#include <asm/io.h>
275
276#define CREATE_TRACE_POINTS
277#include <trace/events/random.h>
278
279/* #define ADD_INTERRUPT_BENCH */
280
281/*
282 * Configuration information
283 */
284#define INPUT_POOL_SHIFT 12
285#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286#define OUTPUT_POOL_SHIFT 10
287#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288#define SEC_XFER_SIZE 512
289#define EXTRACT_SIZE 10
290
291
292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
294/*
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
300 */
301#define ENTROPY_SHIFT 3
302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
304/*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
308static int random_read_wakeup_bits = 64;
309
310/*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316
317/*
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
361 */
362static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366} poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
373#if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
399#endif
400};
401
402/*
403 * Static global variables
404 */
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407static struct fasync_struct *fasync;
408
409static DEFINE_SPINLOCK(random_ready_list_lock);
410static LIST_HEAD(random_ready_list);
411
412struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416};
417
418struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420};
421
422/*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430static int crng_init = 0;
431#define crng_ready() (likely(crng_init > 1))
432static int crng_init_cnt = 0;
433static unsigned long crng_global_init_time = 0;
434#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
435static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
436static void _crng_backtrack_protect(struct crng_state *crng,
437 __u8 tmp[CHACHA_BLOCK_SIZE], int used);
438static void process_random_ready_list(void);
439static void _get_random_bytes(void *buf, int nbytes);
440
441static struct ratelimit_state unseeded_warning =
442 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
443static struct ratelimit_state urandom_warning =
444 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
445
446static int ratelimit_disable __read_mostly;
447
448module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
449MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
450
451/**********************************************************************
452 *
453 * OS independent entropy store. Here are the functions which handle
454 * storing entropy in an entropy pool.
455 *
456 **********************************************************************/
457
458struct entropy_store;
459struct entropy_store {
460 /* read-only data: */
461 const struct poolinfo *poolinfo;
462 __u32 *pool;
463 const char *name;
464 struct entropy_store *pull;
465 struct work_struct push_work;
466
467 /* read-write data: */
468 unsigned long last_pulled;
469 spinlock_t lock;
470 unsigned short add_ptr;
471 unsigned short input_rotate;
472 int entropy_count;
473 int entropy_total;
474 unsigned int initialized:1;
475 unsigned int last_data_init:1;
476 __u8 last_data[EXTRACT_SIZE];
477};
478
479static ssize_t extract_entropy(struct entropy_store *r, void *buf,
480 size_t nbytes, int min, int rsvd);
481static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
482 size_t nbytes, int fips);
483
484static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
485static void push_to_pool(struct work_struct *work);
486static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
487static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
488
489static struct entropy_store input_pool = {
490 .poolinfo = &poolinfo_table[0],
491 .name = "input",
492 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
493 .pool = input_pool_data
494};
495
496static struct entropy_store blocking_pool = {
497 .poolinfo = &poolinfo_table[1],
498 .name = "blocking",
499 .pull = &input_pool,
500 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
501 .pool = blocking_pool_data,
502 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
503 push_to_pool),
504};
505
506static __u32 const twist_table[8] = {
507 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
508 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
509
510/*
511 * This function adds bytes into the entropy "pool". It does not
512 * update the entropy estimate. The caller should call
513 * credit_entropy_bits if this is appropriate.
514 *
515 * The pool is stirred with a primitive polynomial of the appropriate
516 * degree, and then twisted. We twist by three bits at a time because
517 * it's cheap to do so and helps slightly in the expected case where
518 * the entropy is concentrated in the low-order bits.
519 */
520static void _mix_pool_bytes(struct entropy_store *r, const void *in,
521 int nbytes)
522{
523 unsigned long i, tap1, tap2, tap3, tap4, tap5;
524 int input_rotate;
525 int wordmask = r->poolinfo->poolwords - 1;
526 const char *bytes = in;
527 __u32 w;
528
529 tap1 = r->poolinfo->tap1;
530 tap2 = r->poolinfo->tap2;
531 tap3 = r->poolinfo->tap3;
532 tap4 = r->poolinfo->tap4;
533 tap5 = r->poolinfo->tap5;
534
535 input_rotate = r->input_rotate;
536 i = r->add_ptr;
537
538 /* mix one byte at a time to simplify size handling and churn faster */
539 while (nbytes--) {
540 w = rol32(*bytes++, input_rotate);
541 i = (i - 1) & wordmask;
542
543 /* XOR in the various taps */
544 w ^= r->pool[i];
545 w ^= r->pool[(i + tap1) & wordmask];
546 w ^= r->pool[(i + tap2) & wordmask];
547 w ^= r->pool[(i + tap3) & wordmask];
548 w ^= r->pool[(i + tap4) & wordmask];
549 w ^= r->pool[(i + tap5) & wordmask];
550
551 /* Mix the result back in with a twist */
552 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
553
554 /*
555 * Normally, we add 7 bits of rotation to the pool.
556 * At the beginning of the pool, add an extra 7 bits
557 * rotation, so that successive passes spread the
558 * input bits across the pool evenly.
559 */
560 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
561 }
562
563 r->input_rotate = input_rotate;
564 r->add_ptr = i;
565}
566
567static void __mix_pool_bytes(struct entropy_store *r, const void *in,
568 int nbytes)
569{
570 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
571 _mix_pool_bytes(r, in, nbytes);
572}
573
574static void mix_pool_bytes(struct entropy_store *r, const void *in,
575 int nbytes)
576{
577 unsigned long flags;
578
579 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
580 spin_lock_irqsave(&r->lock, flags);
581 _mix_pool_bytes(r, in, nbytes);
582 spin_unlock_irqrestore(&r->lock, flags);
583}
584
585struct fast_pool {
586 __u32 pool[4];
587 unsigned long last;
588 unsigned short reg_idx;
589 unsigned char count;
590};
591
592/*
593 * This is a fast mixing routine used by the interrupt randomness
594 * collector. It's hardcoded for an 128 bit pool and assumes that any
595 * locks that might be needed are taken by the caller.
596 */
597static void fast_mix(struct fast_pool *f)
598{
599 __u32 a = f->pool[0], b = f->pool[1];
600 __u32 c = f->pool[2], d = f->pool[3];
601
602 a += b; c += d;
603 b = rol32(b, 6); d = rol32(d, 27);
604 d ^= a; b ^= c;
605
606 a += b; c += d;
607 b = rol32(b, 16); d = rol32(d, 14);
608 d ^= a; b ^= c;
609
610 a += b; c += d;
611 b = rol32(b, 6); d = rol32(d, 27);
612 d ^= a; b ^= c;
613
614 a += b; c += d;
615 b = rol32(b, 16); d = rol32(d, 14);
616 d ^= a; b ^= c;
617
618 f->pool[0] = a; f->pool[1] = b;
619 f->pool[2] = c; f->pool[3] = d;
620 f->count++;
621}
622
623static void process_random_ready_list(void)
624{
625 unsigned long flags;
626 struct random_ready_callback *rdy, *tmp;
627
628 spin_lock_irqsave(&random_ready_list_lock, flags);
629 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
630 struct module *owner = rdy->owner;
631
632 list_del_init(&rdy->list);
633 rdy->func(rdy);
634 module_put(owner);
635 }
636 spin_unlock_irqrestore(&random_ready_list_lock, flags);
637}
638
639/*
640 * Credit (or debit) the entropy store with n bits of entropy.
641 * Use credit_entropy_bits_safe() if the value comes from userspace
642 * or otherwise should be checked for extreme values.
643 */
644static void credit_entropy_bits(struct entropy_store *r, int nbits)
645{
646 int entropy_count, orig;
647 const int pool_size = r->poolinfo->poolfracbits;
648 int nfrac = nbits << ENTROPY_SHIFT;
649
650 if (!nbits)
651 return;
652
653retry:
654 entropy_count = orig = READ_ONCE(r->entropy_count);
655 if (nfrac < 0) {
656 /* Debit */
657 entropy_count += nfrac;
658 } else {
659 /*
660 * Credit: we have to account for the possibility of
661 * overwriting already present entropy. Even in the
662 * ideal case of pure Shannon entropy, new contributions
663 * approach the full value asymptotically:
664 *
665 * entropy <- entropy + (pool_size - entropy) *
666 * (1 - exp(-add_entropy/pool_size))
667 *
668 * For add_entropy <= pool_size/2 then
669 * (1 - exp(-add_entropy/pool_size)) >=
670 * (add_entropy/pool_size)*0.7869...
671 * so we can approximate the exponential with
672 * 3/4*add_entropy/pool_size and still be on the
673 * safe side by adding at most pool_size/2 at a time.
674 *
675 * The use of pool_size-2 in the while statement is to
676 * prevent rounding artifacts from making the loop
677 * arbitrarily long; this limits the loop to log2(pool_size)*2
678 * turns no matter how large nbits is.
679 */
680 int pnfrac = nfrac;
681 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
682 /* The +2 corresponds to the /4 in the denominator */
683
684 do {
685 unsigned int anfrac = min(pnfrac, pool_size/2);
686 unsigned int add =
687 ((pool_size - entropy_count)*anfrac*3) >> s;
688
689 entropy_count += add;
690 pnfrac -= anfrac;
691 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
692 }
693
694 if (unlikely(entropy_count < 0)) {
695 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
696 r->name, entropy_count);
697 WARN_ON(1);
698 entropy_count = 0;
699 } else if (entropy_count > pool_size)
700 entropy_count = pool_size;
701 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
702 goto retry;
703
704 r->entropy_total += nbits;
705 if (!r->initialized && r->entropy_total > 128) {
706 r->initialized = 1;
707 r->entropy_total = 0;
708 }
709
710 trace_credit_entropy_bits(r->name, nbits,
711 entropy_count >> ENTROPY_SHIFT,
712 r->entropy_total, _RET_IP_);
713
714 if (r == &input_pool) {
715 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
716
717 if (crng_init < 2 && entropy_bits >= 128) {
718 crng_reseed(&primary_crng, r);
719 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
720 }
721
722 /* should we wake readers? */
723 if (entropy_bits >= random_read_wakeup_bits &&
724 wq_has_sleeper(&random_read_wait)) {
725 wake_up_interruptible(&random_read_wait);
726 kill_fasync(&fasync, SIGIO, POLL_IN);
727 }
728 /* If the input pool is getting full, send some
729 * entropy to the blocking pool until it is 75% full.
730 */
731 if (entropy_bits > random_write_wakeup_bits &&
732 r->initialized &&
733 r->entropy_total >= 2*random_read_wakeup_bits) {
734 struct entropy_store *other = &blocking_pool;
735
736 if (other->entropy_count <=
737 3 * other->poolinfo->poolfracbits / 4) {
738 schedule_work(&other->push_work);
739 r->entropy_total = 0;
740 }
741 }
742 }
743}
744
745static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
746{
747 const int nbits_max = r->poolinfo->poolwords * 32;
748
749 if (nbits < 0)
750 return -EINVAL;
751
752 /* Cap the value to avoid overflows */
753 nbits = min(nbits, nbits_max);
754
755 credit_entropy_bits(r, nbits);
756 return 0;
757}
758
759/*********************************************************************
760 *
761 * CRNG using CHACHA20
762 *
763 *********************************************************************/
764
765#define CRNG_RESEED_INTERVAL (300*HZ)
766
767static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
768
769#ifdef CONFIG_NUMA
770/*
771 * Hack to deal with crazy userspace progams when they are all trying
772 * to access /dev/urandom in parallel. The programs are almost
773 * certainly doing something terribly wrong, but we'll work around
774 * their brain damage.
775 */
776static struct crng_state **crng_node_pool __read_mostly;
777#endif
778
779static void invalidate_batched_entropy(void);
780static void numa_crng_init(void);
781
782static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
783static int __init parse_trust_cpu(char *arg)
784{
785 return kstrtobool(arg, &trust_cpu);
786}
787early_param("random.trust_cpu", parse_trust_cpu);
788
789static void crng_initialize(struct crng_state *crng)
790{
791 int i;
792 int arch_init = 1;
793 unsigned long rv;
794
795 memcpy(&crng->state[0], "expand 32-byte k", 16);
796 if (crng == &primary_crng)
797 _extract_entropy(&input_pool, &crng->state[4],
798 sizeof(__u32) * 12, 0);
799 else
800 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
801 for (i = 4; i < 16; i++) {
802 if (!arch_get_random_seed_long(&rv) &&
803 !arch_get_random_long(&rv)) {
804 rv = random_get_entropy();
805 arch_init = 0;
806 }
807 crng->state[i] ^= rv;
808 }
809 if (trust_cpu && arch_init && crng == &primary_crng) {
810 invalidate_batched_entropy();
811 numa_crng_init();
812 crng_init = 2;
813 pr_notice("random: crng done (trusting CPU's manufacturer)\n");
814 }
815 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
816}
817
818#ifdef CONFIG_NUMA
819static void do_numa_crng_init(struct work_struct *work)
820{
821 int i;
822 struct crng_state *crng;
823 struct crng_state **pool;
824
825 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
826 for_each_online_node(i) {
827 crng = kmalloc_node(sizeof(struct crng_state),
828 GFP_KERNEL | __GFP_NOFAIL, i);
829 spin_lock_init(&crng->lock);
830 crng_initialize(crng);
831 pool[i] = crng;
832 }
833 mb();
834 if (cmpxchg(&crng_node_pool, NULL, pool)) {
835 for_each_node(i)
836 kfree(pool[i]);
837 kfree(pool);
838 }
839}
840
841static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
842
843static void numa_crng_init(void)
844{
845 schedule_work(&numa_crng_init_work);
846}
847#else
848static void numa_crng_init(void) {}
849#endif
850
851/*
852 * crng_fast_load() can be called by code in the interrupt service
853 * path. So we can't afford to dilly-dally.
854 */
855static int crng_fast_load(const char *cp, size_t len)
856{
857 unsigned long flags;
858 char *p;
859
860 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
861 return 0;
862 if (crng_init != 0) {
863 spin_unlock_irqrestore(&primary_crng.lock, flags);
864 return 0;
865 }
866 p = (unsigned char *) &primary_crng.state[4];
867 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
868 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
869 cp++; crng_init_cnt++; len--;
870 }
871 spin_unlock_irqrestore(&primary_crng.lock, flags);
872 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
873 invalidate_batched_entropy();
874 crng_init = 1;
875 wake_up_interruptible(&crng_init_wait);
876 pr_notice("random: fast init done\n");
877 }
878 return 1;
879}
880
881/*
882 * crng_slow_load() is called by add_device_randomness, which has two
883 * attributes. (1) We can't trust the buffer passed to it is
884 * guaranteed to be unpredictable (so it might not have any entropy at
885 * all), and (2) it doesn't have the performance constraints of
886 * crng_fast_load().
887 *
888 * So we do something more comprehensive which is guaranteed to touch
889 * all of the primary_crng's state, and which uses a LFSR with a
890 * period of 255 as part of the mixing algorithm. Finally, we do
891 * *not* advance crng_init_cnt since buffer we may get may be something
892 * like a fixed DMI table (for example), which might very well be
893 * unique to the machine, but is otherwise unvarying.
894 */
895static int crng_slow_load(const char *cp, size_t len)
896{
897 unsigned long flags;
898 static unsigned char lfsr = 1;
899 unsigned char tmp;
900 unsigned i, max = CHACHA_KEY_SIZE;
901 const char * src_buf = cp;
902 char * dest_buf = (char *) &primary_crng.state[4];
903
904 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
905 return 0;
906 if (crng_init != 0) {
907 spin_unlock_irqrestore(&primary_crng.lock, flags);
908 return 0;
909 }
910 if (len > max)
911 max = len;
912
913 for (i = 0; i < max ; i++) {
914 tmp = lfsr;
915 lfsr >>= 1;
916 if (tmp & 1)
917 lfsr ^= 0xE1;
918 tmp = dest_buf[i % CHACHA_KEY_SIZE];
919 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
920 lfsr += (tmp << 3) | (tmp >> 5);
921 }
922 spin_unlock_irqrestore(&primary_crng.lock, flags);
923 return 1;
924}
925
926static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
927{
928 unsigned long flags;
929 int i, num;
930 union {
931 __u8 block[CHACHA_BLOCK_SIZE];
932 __u32 key[8];
933 } buf;
934
935 if (r) {
936 num = extract_entropy(r, &buf, 32, 16, 0);
937 if (num == 0)
938 return;
939 } else {
940 _extract_crng(&primary_crng, buf.block);
941 _crng_backtrack_protect(&primary_crng, buf.block,
942 CHACHA_KEY_SIZE);
943 }
944 spin_lock_irqsave(&crng->lock, flags);
945 for (i = 0; i < 8; i++) {
946 unsigned long rv;
947 if (!arch_get_random_seed_long(&rv) &&
948 !arch_get_random_long(&rv))
949 rv = random_get_entropy();
950 crng->state[i+4] ^= buf.key[i] ^ rv;
951 }
952 memzero_explicit(&buf, sizeof(buf));
953 crng->init_time = jiffies;
954 spin_unlock_irqrestore(&crng->lock, flags);
955 if (crng == &primary_crng && crng_init < 2) {
956 invalidate_batched_entropy();
957 numa_crng_init();
958 crng_init = 2;
959 process_random_ready_list();
960 wake_up_interruptible(&crng_init_wait);
961 pr_notice("random: crng init done\n");
962 if (unseeded_warning.missed) {
963 pr_notice("random: %d get_random_xx warning(s) missed "
964 "due to ratelimiting\n",
965 unseeded_warning.missed);
966 unseeded_warning.missed = 0;
967 }
968 if (urandom_warning.missed) {
969 pr_notice("random: %d urandom warning(s) missed "
970 "due to ratelimiting\n",
971 urandom_warning.missed);
972 urandom_warning.missed = 0;
973 }
974 }
975}
976
977static void _extract_crng(struct crng_state *crng,
978 __u8 out[CHACHA_BLOCK_SIZE])
979{
980 unsigned long v, flags;
981
982 if (crng_ready() &&
983 (time_after(crng_global_init_time, crng->init_time) ||
984 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
985 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
986 spin_lock_irqsave(&crng->lock, flags);
987 if (arch_get_random_long(&v))
988 crng->state[14] ^= v;
989 chacha20_block(&crng->state[0], out);
990 if (crng->state[12] == 0)
991 crng->state[13]++;
992 spin_unlock_irqrestore(&crng->lock, flags);
993}
994
995static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
996{
997 struct crng_state *crng = NULL;
998
999#ifdef CONFIG_NUMA
1000 if (crng_node_pool)
1001 crng = crng_node_pool[numa_node_id()];
1002 if (crng == NULL)
1003#endif
1004 crng = &primary_crng;
1005 _extract_crng(crng, out);
1006}
1007
1008/*
1009 * Use the leftover bytes from the CRNG block output (if there is
1010 * enough) to mutate the CRNG key to provide backtracking protection.
1011 */
1012static void _crng_backtrack_protect(struct crng_state *crng,
1013 __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1014{
1015 unsigned long flags;
1016 __u32 *s, *d;
1017 int i;
1018
1019 used = round_up(used, sizeof(__u32));
1020 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1021 extract_crng(tmp);
1022 used = 0;
1023 }
1024 spin_lock_irqsave(&crng->lock, flags);
1025 s = (__u32 *) &tmp[used];
1026 d = &crng->state[4];
1027 for (i=0; i < 8; i++)
1028 *d++ ^= *s++;
1029 spin_unlock_irqrestore(&crng->lock, flags);
1030}
1031
1032static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1033{
1034 struct crng_state *crng = NULL;
1035
1036#ifdef CONFIG_NUMA
1037 if (crng_node_pool)
1038 crng = crng_node_pool[numa_node_id()];
1039 if (crng == NULL)
1040#endif
1041 crng = &primary_crng;
1042 _crng_backtrack_protect(crng, tmp, used);
1043}
1044
1045static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1046{
1047 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1048 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1049 int large_request = (nbytes > 256);
1050
1051 while (nbytes) {
1052 if (large_request && need_resched()) {
1053 if (signal_pending(current)) {
1054 if (ret == 0)
1055 ret = -ERESTARTSYS;
1056 break;
1057 }
1058 schedule();
1059 }
1060
1061 extract_crng(tmp);
1062 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1063 if (copy_to_user(buf, tmp, i)) {
1064 ret = -EFAULT;
1065 break;
1066 }
1067
1068 nbytes -= i;
1069 buf += i;
1070 ret += i;
1071 }
1072 crng_backtrack_protect(tmp, i);
1073
1074 /* Wipe data just written to memory */
1075 memzero_explicit(tmp, sizeof(tmp));
1076
1077 return ret;
1078}
1079
1080
1081/*********************************************************************
1082 *
1083 * Entropy input management
1084 *
1085 *********************************************************************/
1086
1087/* There is one of these per entropy source */
1088struct timer_rand_state {
1089 cycles_t last_time;
1090 long last_delta, last_delta2;
1091};
1092
1093#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1094
1095/*
1096 * Add device- or boot-specific data to the input pool to help
1097 * initialize it.
1098 *
1099 * None of this adds any entropy; it is meant to avoid the problem of
1100 * the entropy pool having similar initial state across largely
1101 * identical devices.
1102 */
1103void add_device_randomness(const void *buf, unsigned int size)
1104{
1105 unsigned long time = random_get_entropy() ^ jiffies;
1106 unsigned long flags;
1107
1108 if (!crng_ready() && size)
1109 crng_slow_load(buf, size);
1110
1111 trace_add_device_randomness(size, _RET_IP_);
1112 spin_lock_irqsave(&input_pool.lock, flags);
1113 _mix_pool_bytes(&input_pool, buf, size);
1114 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1115 spin_unlock_irqrestore(&input_pool.lock, flags);
1116}
1117EXPORT_SYMBOL(add_device_randomness);
1118
1119static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1120
1121/*
1122 * This function adds entropy to the entropy "pool" by using timing
1123 * delays. It uses the timer_rand_state structure to make an estimate
1124 * of how many bits of entropy this call has added to the pool.
1125 *
1126 * The number "num" is also added to the pool - it should somehow describe
1127 * the type of event which just happened. This is currently 0-255 for
1128 * keyboard scan codes, and 256 upwards for interrupts.
1129 *
1130 */
1131static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1132{
1133 struct entropy_store *r;
1134 struct {
1135 long jiffies;
1136 unsigned cycles;
1137 unsigned num;
1138 } sample;
1139 long delta, delta2, delta3;
1140
1141 sample.jiffies = jiffies;
1142 sample.cycles = random_get_entropy();
1143 sample.num = num;
1144 r = &input_pool;
1145 mix_pool_bytes(r, &sample, sizeof(sample));
1146
1147 /*
1148 * Calculate number of bits of randomness we probably added.
1149 * We take into account the first, second and third-order deltas
1150 * in order to make our estimate.
1151 */
1152 delta = sample.jiffies - state->last_time;
1153 state->last_time = sample.jiffies;
1154
1155 delta2 = delta - state->last_delta;
1156 state->last_delta = delta;
1157
1158 delta3 = delta2 - state->last_delta2;
1159 state->last_delta2 = delta2;
1160
1161 if (delta < 0)
1162 delta = -delta;
1163 if (delta2 < 0)
1164 delta2 = -delta2;
1165 if (delta3 < 0)
1166 delta3 = -delta3;
1167 if (delta > delta2)
1168 delta = delta2;
1169 if (delta > delta3)
1170 delta = delta3;
1171
1172 /*
1173 * delta is now minimum absolute delta.
1174 * Round down by 1 bit on general principles,
1175 * and limit entropy entimate to 12 bits.
1176 */
1177 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1178}
1179
1180void add_input_randomness(unsigned int type, unsigned int code,
1181 unsigned int value)
1182{
1183 static unsigned char last_value;
1184
1185 /* ignore autorepeat and the like */
1186 if (value == last_value)
1187 return;
1188
1189 last_value = value;
1190 add_timer_randomness(&input_timer_state,
1191 (type << 4) ^ code ^ (code >> 4) ^ value);
1192 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1193}
1194EXPORT_SYMBOL_GPL(add_input_randomness);
1195
1196static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1197
1198#ifdef ADD_INTERRUPT_BENCH
1199static unsigned long avg_cycles, avg_deviation;
1200
1201#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1202#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1203
1204static void add_interrupt_bench(cycles_t start)
1205{
1206 long delta = random_get_entropy() - start;
1207
1208 /* Use a weighted moving average */
1209 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1210 avg_cycles += delta;
1211 /* And average deviation */
1212 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1213 avg_deviation += delta;
1214}
1215#else
1216#define add_interrupt_bench(x)
1217#endif
1218
1219static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1220{
1221 __u32 *ptr = (__u32 *) regs;
1222 unsigned int idx;
1223
1224 if (regs == NULL)
1225 return 0;
1226 idx = READ_ONCE(f->reg_idx);
1227 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1228 idx = 0;
1229 ptr += idx++;
1230 WRITE_ONCE(f->reg_idx, idx);
1231 return *ptr;
1232}
1233
1234void add_interrupt_randomness(int irq, int irq_flags)
1235{
1236 struct entropy_store *r;
1237 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1238 struct pt_regs *regs = get_irq_regs();
1239 unsigned long now = jiffies;
1240 cycles_t cycles = random_get_entropy();
1241 __u32 c_high, j_high;
1242 __u64 ip;
1243 unsigned long seed;
1244 int credit = 0;
1245
1246 if (cycles == 0)
1247 cycles = get_reg(fast_pool, regs);
1248 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1249 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1250 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1251 fast_pool->pool[1] ^= now ^ c_high;
1252 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1253 fast_pool->pool[2] ^= ip;
1254 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1255 get_reg(fast_pool, regs);
1256
1257 fast_mix(fast_pool);
1258 add_interrupt_bench(cycles);
1259
1260 if (unlikely(crng_init == 0)) {
1261 if ((fast_pool->count >= 64) &&
1262 crng_fast_load((char *) fast_pool->pool,
1263 sizeof(fast_pool->pool))) {
1264 fast_pool->count = 0;
1265 fast_pool->last = now;
1266 }
1267 return;
1268 }
1269
xf.lib30e4702022-12-13 23:27:27 -08001270//modify by LXF for [Bugfix][T800][API-365] in 2022/12/14 merged from GSW3.0
xjb04a4022021-11-25 15:01:52 +08001271 if ((fast_pool->count < 64) &&
xf.lib30e4702022-12-13 23:27:27 -08001272 !time_after(now, fast_pool->last + HZ) &&
1273 crng_ready())
xjb04a4022021-11-25 15:01:52 +08001274 return;
xf.lib30e4702022-12-13 23:27:27 -08001275//finish modify by LXF for [Bugfix][T800][API-365]*************************
xjb04a4022021-11-25 15:01:52 +08001276 r = &input_pool;
1277 if (!spin_trylock(&r->lock))
1278 return;
1279
1280 fast_pool->last = now;
1281 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1282
1283 /*
1284 * If we have architectural seed generator, produce a seed and
1285 * add it to the pool. For the sake of paranoia don't let the
1286 * architectural seed generator dominate the input from the
1287 * interrupt noise.
1288 */
1289 if (arch_get_random_seed_long(&seed)) {
1290 __mix_pool_bytes(r, &seed, sizeof(seed));
1291 credit = 1;
1292 }
1293 spin_unlock(&r->lock);
1294
1295 fast_pool->count = 0;
1296
1297 /* award one bit for the contents of the fast pool */
1298 credit_entropy_bits(r, credit + 1);
1299}
1300EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1301
1302#ifdef CONFIG_BLOCK
1303void add_disk_randomness(struct gendisk *disk)
1304{
1305 if (!disk || !disk->random)
1306 return;
1307 /* first major is 1, so we get >= 0x200 here */
1308 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1309 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1310}
1311EXPORT_SYMBOL_GPL(add_disk_randomness);
1312#endif
1313
1314/*********************************************************************
1315 *
1316 * Entropy extraction routines
1317 *
1318 *********************************************************************/
1319
1320/*
1321 * This utility inline function is responsible for transferring entropy
1322 * from the primary pool to the secondary extraction pool. We make
1323 * sure we pull enough for a 'catastrophic reseed'.
1324 */
1325static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1326static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1327{
1328 if (!r->pull ||
1329 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1330 r->entropy_count > r->poolinfo->poolfracbits)
1331 return;
1332
1333 _xfer_secondary_pool(r, nbytes);
1334}
1335
1336static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1337{
1338 __u32 tmp[OUTPUT_POOL_WORDS];
1339
1340 int bytes = nbytes;
1341
1342 /* pull at least as much as a wakeup */
1343 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1344 /* but never more than the buffer size */
1345 bytes = min_t(int, bytes, sizeof(tmp));
1346
1347 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1348 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1349 bytes = extract_entropy(r->pull, tmp, bytes,
1350 random_read_wakeup_bits / 8, 0);
1351 mix_pool_bytes(r, tmp, bytes);
1352 credit_entropy_bits(r, bytes*8);
1353}
1354
1355/*
1356 * Used as a workqueue function so that when the input pool is getting
1357 * full, we can "spill over" some entropy to the output pools. That
1358 * way the output pools can store some of the excess entropy instead
1359 * of letting it go to waste.
1360 */
1361static void push_to_pool(struct work_struct *work)
1362{
1363 struct entropy_store *r = container_of(work, struct entropy_store,
1364 push_work);
1365 BUG_ON(!r);
1366 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1367 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1368 r->pull->entropy_count >> ENTROPY_SHIFT);
1369}
1370
1371/*
1372 * This function decides how many bytes to actually take from the
1373 * given pool, and also debits the entropy count accordingly.
1374 */
1375static size_t account(struct entropy_store *r, size_t nbytes, int min,
1376 int reserved)
1377{
1378 int entropy_count, orig, have_bytes;
1379 size_t ibytes, nfrac;
1380
1381 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1382
1383 /* Can we pull enough? */
1384retry:
1385 entropy_count = orig = READ_ONCE(r->entropy_count);
1386 ibytes = nbytes;
1387 /* never pull more than available */
1388 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1389
1390 if ((have_bytes -= reserved) < 0)
1391 have_bytes = 0;
1392 ibytes = min_t(size_t, ibytes, have_bytes);
1393 if (ibytes < min)
1394 ibytes = 0;
1395
1396 if (unlikely(entropy_count < 0)) {
1397 pr_warn("random: negative entropy count: pool %s count %d\n",
1398 r->name, entropy_count);
1399 WARN_ON(1);
1400 entropy_count = 0;
1401 }
1402 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1403 if ((size_t) entropy_count > nfrac)
1404 entropy_count -= nfrac;
1405 else
1406 entropy_count = 0;
1407
1408 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1409 goto retry;
1410
1411 trace_debit_entropy(r->name, 8 * ibytes);
1412 if (ibytes &&
1413 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1414 wake_up_interruptible(&random_write_wait);
1415 kill_fasync(&fasync, SIGIO, POLL_OUT);
1416 }
1417
1418 return ibytes;
1419}
1420
1421/*
1422 * This function does the actual extraction for extract_entropy and
1423 * extract_entropy_user.
1424 *
1425 * Note: we assume that .poolwords is a multiple of 16 words.
1426 */
1427static void extract_buf(struct entropy_store *r, __u8 *out)
1428{
1429 int i;
1430 union {
1431 __u32 w[5];
1432 unsigned long l[LONGS(20)];
1433 } hash;
1434 __u32 workspace[SHA_WORKSPACE_WORDS];
1435 unsigned long flags;
1436
1437 /*
1438 * If we have an architectural hardware random number
1439 * generator, use it for SHA's initial vector
1440 */
1441 sha_init(hash.w);
1442 for (i = 0; i < LONGS(20); i++) {
1443 unsigned long v;
1444 if (!arch_get_random_long(&v))
1445 break;
1446 hash.l[i] = v;
1447 }
1448
1449 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1450 spin_lock_irqsave(&r->lock, flags);
1451 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1452 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1453
1454 /*
1455 * We mix the hash back into the pool to prevent backtracking
1456 * attacks (where the attacker knows the state of the pool
1457 * plus the current outputs, and attempts to find previous
1458 * ouputs), unless the hash function can be inverted. By
1459 * mixing at least a SHA1 worth of hash data back, we make
1460 * brute-forcing the feedback as hard as brute-forcing the
1461 * hash.
1462 */
1463 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1464 spin_unlock_irqrestore(&r->lock, flags);
1465
1466 memzero_explicit(workspace, sizeof(workspace));
1467
1468 /*
1469 * In case the hash function has some recognizable output
1470 * pattern, we fold it in half. Thus, we always feed back
1471 * twice as much data as we output.
1472 */
1473 hash.w[0] ^= hash.w[3];
1474 hash.w[1] ^= hash.w[4];
1475 hash.w[2] ^= rol32(hash.w[2], 16);
1476
1477 memcpy(out, &hash, EXTRACT_SIZE);
1478 memzero_explicit(&hash, sizeof(hash));
1479}
1480
1481static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1482 size_t nbytes, int fips)
1483{
1484 ssize_t ret = 0, i;
1485 __u8 tmp[EXTRACT_SIZE];
1486 unsigned long flags;
1487
1488 while (nbytes) {
1489 extract_buf(r, tmp);
1490
1491 if (fips) {
1492 spin_lock_irqsave(&r->lock, flags);
1493 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1494 panic("Hardware RNG duplicated output!\n");
1495 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1496 spin_unlock_irqrestore(&r->lock, flags);
1497 }
1498 i = min_t(int, nbytes, EXTRACT_SIZE);
1499 memcpy(buf, tmp, i);
1500 nbytes -= i;
1501 buf += i;
1502 ret += i;
1503 }
1504
1505 /* Wipe data just returned from memory */
1506 memzero_explicit(tmp, sizeof(tmp));
1507
1508 return ret;
1509}
1510
1511/*
1512 * This function extracts randomness from the "entropy pool", and
1513 * returns it in a buffer.
1514 *
1515 * The min parameter specifies the minimum amount we can pull before
1516 * failing to avoid races that defeat catastrophic reseeding while the
1517 * reserved parameter indicates how much entropy we must leave in the
1518 * pool after each pull to avoid starving other readers.
1519 */
1520static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1521 size_t nbytes, int min, int reserved)
1522{
1523 __u8 tmp[EXTRACT_SIZE];
1524 unsigned long flags;
1525
1526 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1527 if (fips_enabled) {
1528 spin_lock_irqsave(&r->lock, flags);
1529 if (!r->last_data_init) {
1530 r->last_data_init = 1;
1531 spin_unlock_irqrestore(&r->lock, flags);
1532 trace_extract_entropy(r->name, EXTRACT_SIZE,
1533 ENTROPY_BITS(r), _RET_IP_);
1534 xfer_secondary_pool(r, EXTRACT_SIZE);
1535 extract_buf(r, tmp);
1536 spin_lock_irqsave(&r->lock, flags);
1537 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1538 }
1539 spin_unlock_irqrestore(&r->lock, flags);
1540 }
1541
1542 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1543 xfer_secondary_pool(r, nbytes);
1544 nbytes = account(r, nbytes, min, reserved);
1545
1546 return _extract_entropy(r, buf, nbytes, fips_enabled);
1547}
1548
1549/*
1550 * This function extracts randomness from the "entropy pool", and
1551 * returns it in a userspace buffer.
1552 */
1553static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1554 size_t nbytes)
1555{
1556 ssize_t ret = 0, i;
1557 __u8 tmp[EXTRACT_SIZE];
1558 int large_request = (nbytes > 256);
1559
1560 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1561 xfer_secondary_pool(r, nbytes);
1562 nbytes = account(r, nbytes, 0, 0);
1563
1564 while (nbytes) {
1565 if (large_request && need_resched()) {
1566 if (signal_pending(current)) {
1567 if (ret == 0)
1568 ret = -ERESTARTSYS;
1569 break;
1570 }
1571 schedule();
1572 }
1573
1574 extract_buf(r, tmp);
1575 i = min_t(int, nbytes, EXTRACT_SIZE);
1576 if (copy_to_user(buf, tmp, i)) {
1577 ret = -EFAULT;
1578 break;
1579 }
1580
1581 nbytes -= i;
1582 buf += i;
1583 ret += i;
1584 }
1585
1586 /* Wipe data just returned from memory */
1587 memzero_explicit(tmp, sizeof(tmp));
1588
1589 return ret;
1590}
1591
1592#define warn_unseeded_randomness(previous) \
1593 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1594
1595static void _warn_unseeded_randomness(const char *func_name, void *caller,
1596 void **previous)
1597{
1598#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1599 const bool print_once = false;
1600#else
1601 static bool print_once __read_mostly;
1602#endif
1603
1604 if (print_once ||
1605 crng_ready() ||
1606 (previous && (caller == READ_ONCE(*previous))))
1607 return;
1608 WRITE_ONCE(*previous, caller);
1609#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1610 print_once = true;
1611#endif
1612 if (__ratelimit(&unseeded_warning))
1613 pr_notice("random: %s called from %pS with crng_init=%d\n",
1614 func_name, caller, crng_init);
1615}
1616
1617/*
1618 * This function is the exported kernel interface. It returns some
1619 * number of good random numbers, suitable for key generation, seeding
1620 * TCP sequence numbers, etc. It does not rely on the hardware random
1621 * number generator. For random bytes direct from the hardware RNG
1622 * (when available), use get_random_bytes_arch(). In order to ensure
1623 * that the randomness provided by this function is okay, the function
1624 * wait_for_random_bytes() should be called and return 0 at least once
1625 * at any point prior.
1626 */
1627static void _get_random_bytes(void *buf, int nbytes)
1628{
1629 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1630
1631 trace_get_random_bytes(nbytes, _RET_IP_);
1632
1633 while (nbytes >= CHACHA_BLOCK_SIZE) {
1634 extract_crng(buf);
1635 buf += CHACHA_BLOCK_SIZE;
1636 nbytes -= CHACHA_BLOCK_SIZE;
1637 }
1638
1639 if (nbytes > 0) {
1640 extract_crng(tmp);
1641 memcpy(buf, tmp, nbytes);
1642 crng_backtrack_protect(tmp, nbytes);
1643 } else
1644 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1645 memzero_explicit(tmp, sizeof(tmp));
1646}
1647
1648void get_random_bytes(void *buf, int nbytes)
1649{
1650 static void *previous;
1651
1652 warn_unseeded_randomness(&previous);
1653 _get_random_bytes(buf, nbytes);
1654}
1655EXPORT_SYMBOL(get_random_bytes);
1656
1657/*
1658 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1659 * cryptographically secure random numbers. This applies to: the /dev/urandom
1660 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1661 * family of functions. Using any of these functions without first calling
1662 * this function forfeits the guarantee of security.
1663 *
1664 * Returns: 0 if the urandom pool has been seeded.
1665 * -ERESTARTSYS if the function was interrupted by a signal.
1666 */
1667int wait_for_random_bytes(void)
1668{
1669 if (likely(crng_ready()))
1670 return 0;
1671 return wait_event_interruptible(crng_init_wait, crng_ready());
1672}
1673EXPORT_SYMBOL(wait_for_random_bytes);
1674
1675/*
1676 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1677 * to supply cryptographically secure random numbers. This applies to: the
1678 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1679 * ,u64,int,long} family of functions.
1680 *
1681 * Returns: true if the urandom pool has been seeded.
1682 * false if the urandom pool has not been seeded.
1683 */
1684bool rng_is_initialized(void)
1685{
1686 return crng_ready();
1687}
1688EXPORT_SYMBOL(rng_is_initialized);
1689
1690/*
1691 * Add a callback function that will be invoked when the nonblocking
1692 * pool is initialised.
1693 *
1694 * returns: 0 if callback is successfully added
1695 * -EALREADY if pool is already initialised (callback not called)
1696 * -ENOENT if module for callback is not alive
1697 */
1698int add_random_ready_callback(struct random_ready_callback *rdy)
1699{
1700 struct module *owner;
1701 unsigned long flags;
1702 int err = -EALREADY;
1703
1704 if (crng_ready())
1705 return err;
1706
1707 owner = rdy->owner;
1708 if (!try_module_get(owner))
1709 return -ENOENT;
1710
1711 spin_lock_irqsave(&random_ready_list_lock, flags);
1712 if (crng_ready())
1713 goto out;
1714
1715 owner = NULL;
1716
1717 list_add(&rdy->list, &random_ready_list);
1718 err = 0;
1719
1720out:
1721 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1722
1723 module_put(owner);
1724
1725 return err;
1726}
1727EXPORT_SYMBOL(add_random_ready_callback);
1728
1729/*
1730 * Delete a previously registered readiness callback function.
1731 */
1732void del_random_ready_callback(struct random_ready_callback *rdy)
1733{
1734 unsigned long flags;
1735 struct module *owner = NULL;
1736
1737 spin_lock_irqsave(&random_ready_list_lock, flags);
1738 if (!list_empty(&rdy->list)) {
1739 list_del_init(&rdy->list);
1740 owner = rdy->owner;
1741 }
1742 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1743
1744 module_put(owner);
1745}
1746EXPORT_SYMBOL(del_random_ready_callback);
1747
1748/*
1749 * This function will use the architecture-specific hardware random
1750 * number generator if it is available. The arch-specific hw RNG will
1751 * almost certainly be faster than what we can do in software, but it
1752 * is impossible to verify that it is implemented securely (as
1753 * opposed, to, say, the AES encryption of a sequence number using a
1754 * key known by the NSA). So it's useful if we need the speed, but
1755 * only if we're willing to trust the hardware manufacturer not to
1756 * have put in a back door.
1757 *
1758 * Return number of bytes filled in.
1759 */
1760int __must_check get_random_bytes_arch(void *buf, int nbytes)
1761{
1762 int left = nbytes;
1763 char *p = buf;
1764
1765 trace_get_random_bytes_arch(left, _RET_IP_);
1766 while (left) {
1767 unsigned long v;
1768 int chunk = min_t(int, left, sizeof(unsigned long));
1769
1770 if (!arch_get_random_long(&v))
1771 break;
1772
1773 memcpy(p, &v, chunk);
1774 p += chunk;
1775 left -= chunk;
1776 }
1777
1778 return nbytes - left;
1779}
1780EXPORT_SYMBOL(get_random_bytes_arch);
1781
1782/*
1783 * init_std_data - initialize pool with system data
1784 *
1785 * @r: pool to initialize
1786 *
1787 * This function clears the pool's entropy count and mixes some system
1788 * data into the pool to prepare it for use. The pool is not cleared
1789 * as that can only decrease the entropy in the pool.
1790 */
1791static void init_std_data(struct entropy_store *r)
1792{
1793 int i;
1794 ktime_t now = ktime_get_real();
1795 unsigned long rv;
1796
1797 r->last_pulled = jiffies;
1798 mix_pool_bytes(r, &now, sizeof(now));
1799 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1800 if (!arch_get_random_seed_long(&rv) &&
1801 !arch_get_random_long(&rv))
1802 rv = random_get_entropy();
1803 mix_pool_bytes(r, &rv, sizeof(rv));
1804 }
1805 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1806}
1807
1808/*
1809 * Note that setup_arch() may call add_device_randomness()
1810 * long before we get here. This allows seeding of the pools
1811 * with some platform dependent data very early in the boot
1812 * process. But it limits our options here. We must use
1813 * statically allocated structures that already have all
1814 * initializations complete at compile time. We should also
1815 * take care not to overwrite the precious per platform data
1816 * we were given.
1817 */
1818static int rand_initialize(void)
1819{
1820 init_std_data(&input_pool);
1821 init_std_data(&blocking_pool);
1822 crng_initialize(&primary_crng);
1823 crng_global_init_time = jiffies;
1824 if (ratelimit_disable) {
1825 urandom_warning.interval = 0;
1826 unseeded_warning.interval = 0;
1827 }
1828 return 0;
1829}
1830early_initcall(rand_initialize);
1831
1832#ifdef CONFIG_BLOCK
1833void rand_initialize_disk(struct gendisk *disk)
1834{
1835 struct timer_rand_state *state;
1836
1837 /*
1838 * If kzalloc returns null, we just won't use that entropy
1839 * source.
1840 */
1841 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1842 if (state) {
1843 state->last_time = INITIAL_JIFFIES;
1844 disk->random = state;
1845 }
1846}
1847#endif
1848
1849static ssize_t
1850_random_read(int nonblock, char __user *buf, size_t nbytes)
1851{
1852 ssize_t n;
1853
1854 if (nbytes == 0)
1855 return 0;
1856
1857 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1858 while (1) {
1859 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1860 if (n < 0)
1861 return n;
1862 trace_random_read(n*8, (nbytes-n)*8,
1863 ENTROPY_BITS(&blocking_pool),
1864 ENTROPY_BITS(&input_pool));
1865 if (n > 0)
1866 return n;
1867
1868 /* Pool is (near) empty. Maybe wait and retry. */
1869 if (nonblock)
1870 return -EAGAIN;
1871
1872 wait_event_interruptible(random_read_wait,
1873 ENTROPY_BITS(&input_pool) >=
1874 random_read_wakeup_bits);
1875 if (signal_pending(current))
1876 return -ERESTARTSYS;
1877 }
1878}
1879
1880static ssize_t
1881random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1882{
1883 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1884}
1885
1886static ssize_t
1887urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1888{
1889 unsigned long flags;
1890 static int maxwarn = 10;
1891 int ret;
1892
1893 if (!crng_ready() && maxwarn > 0) {
1894 maxwarn--;
1895 if (__ratelimit(&urandom_warning))
1896 printk(KERN_NOTICE "random: %s: uninitialized "
1897 "urandom read (%zd bytes read)\n",
1898 current->comm, nbytes);
1899 spin_lock_irqsave(&primary_crng.lock, flags);
1900 crng_init_cnt = 0;
1901 spin_unlock_irqrestore(&primary_crng.lock, flags);
1902 }
1903 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1904 ret = extract_crng_user(buf, nbytes);
1905 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1906 return ret;
1907}
1908
1909static __poll_t
1910random_poll(struct file *file, poll_table * wait)
1911{
1912 __poll_t mask;
1913
1914 poll_wait(file, &random_read_wait, wait);
1915 poll_wait(file, &random_write_wait, wait);
1916 mask = 0;
1917 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1918 mask |= EPOLLIN | EPOLLRDNORM;
1919 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1920 mask |= EPOLLOUT | EPOLLWRNORM;
1921 return mask;
1922}
1923
1924static int
1925write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1926{
1927 size_t bytes;
1928 __u32 t, buf[16];
1929 const char __user *p = buffer;
1930
1931 while (count > 0) {
1932 int b, i = 0;
1933
1934 bytes = min(count, sizeof(buf));
1935 if (copy_from_user(&buf, p, bytes))
1936 return -EFAULT;
1937
1938 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1939 if (!arch_get_random_int(&t))
1940 break;
1941 buf[i] ^= t;
1942 }
1943
1944 count -= bytes;
1945 p += bytes;
1946
1947 mix_pool_bytes(r, buf, bytes);
1948 cond_resched();
1949 }
1950
1951 return 0;
1952}
1953
1954static ssize_t random_write(struct file *file, const char __user *buffer,
1955 size_t count, loff_t *ppos)
1956{
1957 size_t ret;
1958
1959 ret = write_pool(&input_pool, buffer, count);
1960 if (ret)
1961 return ret;
1962
1963 return (ssize_t)count;
1964}
1965
1966static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1967{
1968 int size, ent_count;
1969 int __user *p = (int __user *)arg;
1970 int retval;
1971
1972 switch (cmd) {
1973 case RNDGETENTCNT:
1974 /* inherently racy, no point locking */
1975 ent_count = ENTROPY_BITS(&input_pool);
1976 if (put_user(ent_count, p))
1977 return -EFAULT;
1978 return 0;
1979 case RNDADDTOENTCNT:
1980 if (!capable(CAP_SYS_ADMIN))
1981 return -EPERM;
1982 if (get_user(ent_count, p))
1983 return -EFAULT;
1984 return credit_entropy_bits_safe(&input_pool, ent_count);
1985 case RNDADDENTROPY:
1986 if (!capable(CAP_SYS_ADMIN))
1987 return -EPERM;
1988 if (get_user(ent_count, p++))
1989 return -EFAULT;
1990 if (ent_count < 0)
1991 return -EINVAL;
1992 if (get_user(size, p++))
1993 return -EFAULT;
1994 retval = write_pool(&input_pool, (const char __user *)p,
1995 size);
1996 if (retval < 0)
1997 return retval;
1998 return credit_entropy_bits_safe(&input_pool, ent_count);
1999 case RNDZAPENTCNT:
2000 case RNDCLEARPOOL:
2001 /*
2002 * Clear the entropy pool counters. We no longer clear
2003 * the entropy pool, as that's silly.
2004 */
2005 if (!capable(CAP_SYS_ADMIN))
2006 return -EPERM;
2007 input_pool.entropy_count = 0;
2008 blocking_pool.entropy_count = 0;
2009 return 0;
2010 case RNDRESEEDCRNG:
2011 if (!capable(CAP_SYS_ADMIN))
2012 return -EPERM;
2013 if (crng_init < 2)
2014 return -ENODATA;
2015 crng_reseed(&primary_crng, NULL);
2016 crng_global_init_time = jiffies - 1;
2017 return 0;
2018 default:
2019 return -EINVAL;
2020 }
2021}
2022
2023static int random_fasync(int fd, struct file *filp, int on)
2024{
2025 return fasync_helper(fd, filp, on, &fasync);
2026}
2027
2028const struct file_operations random_fops = {
2029 .read = random_read,
2030 .write = random_write,
2031 .poll = random_poll,
2032 .unlocked_ioctl = random_ioctl,
2033 .fasync = random_fasync,
2034 .llseek = noop_llseek,
2035};
2036
2037const struct file_operations urandom_fops = {
2038 .read = urandom_read,
2039 .write = random_write,
2040 .unlocked_ioctl = random_ioctl,
2041 .fasync = random_fasync,
2042 .llseek = noop_llseek,
2043};
2044
2045SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2046 unsigned int, flags)
2047{
2048 int ret;
2049
2050 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2051 return -EINVAL;
2052
2053 if (count > INT_MAX)
2054 count = INT_MAX;
2055
2056 if (flags & GRND_RANDOM)
2057 return _random_read(flags & GRND_NONBLOCK, buf, count);
2058
2059 if (!crng_ready()) {
2060 if (flags & GRND_NONBLOCK)
2061 return -EAGAIN;
2062 ret = wait_for_random_bytes();
2063 if (unlikely(ret))
2064 return ret;
2065 }
2066 return urandom_read(NULL, buf, count, NULL);
2067}
2068
2069/********************************************************************
2070 *
2071 * Sysctl interface
2072 *
2073 ********************************************************************/
2074
2075#ifdef CONFIG_SYSCTL
2076
2077#include <linux/sysctl.h>
2078
2079static int min_read_thresh = 8, min_write_thresh;
2080static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2081static int max_write_thresh = INPUT_POOL_WORDS * 32;
2082static int random_min_urandom_seed = 60;
2083static char sysctl_bootid[16];
2084
2085/*
2086 * This function is used to return both the bootid UUID, and random
2087 * UUID. The difference is in whether table->data is NULL; if it is,
2088 * then a new UUID is generated and returned to the user.
2089 *
2090 * If the user accesses this via the proc interface, the UUID will be
2091 * returned as an ASCII string in the standard UUID format; if via the
2092 * sysctl system call, as 16 bytes of binary data.
2093 */
2094static int proc_do_uuid(struct ctl_table *table, int write,
2095 void __user *buffer, size_t *lenp, loff_t *ppos)
2096{
2097 struct ctl_table fake_table;
2098 unsigned char buf[64], tmp_uuid[16], *uuid;
2099
2100 uuid = table->data;
2101 if (!uuid) {
2102 uuid = tmp_uuid;
2103 generate_random_uuid(uuid);
2104 } else {
2105 static DEFINE_SPINLOCK(bootid_spinlock);
2106
2107 spin_lock(&bootid_spinlock);
2108 if (!uuid[8])
2109 generate_random_uuid(uuid);
2110 spin_unlock(&bootid_spinlock);
2111 }
2112
2113 sprintf(buf, "%pU", uuid);
2114
2115 fake_table.data = buf;
2116 fake_table.maxlen = sizeof(buf);
2117
2118 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2119}
2120
2121/*
2122 * Return entropy available scaled to integral bits
2123 */
2124static int proc_do_entropy(struct ctl_table *table, int write,
2125 void __user *buffer, size_t *lenp, loff_t *ppos)
2126{
2127 struct ctl_table fake_table;
2128 int entropy_count;
2129
2130 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2131
2132 fake_table.data = &entropy_count;
2133 fake_table.maxlen = sizeof(entropy_count);
2134
2135 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2136}
2137
2138static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2139extern struct ctl_table random_table[];
2140struct ctl_table random_table[] = {
2141 {
2142 .procname = "poolsize",
2143 .data = &sysctl_poolsize,
2144 .maxlen = sizeof(int),
2145 .mode = 0444,
2146 .proc_handler = proc_dointvec,
2147 },
2148 {
2149 .procname = "entropy_avail",
2150 .maxlen = sizeof(int),
2151 .mode = 0444,
2152 .proc_handler = proc_do_entropy,
2153 .data = &input_pool.entropy_count,
2154 },
2155 {
2156 .procname = "read_wakeup_threshold",
2157 .data = &random_read_wakeup_bits,
2158 .maxlen = sizeof(int),
2159 .mode = 0644,
2160 .proc_handler = proc_dointvec_minmax,
2161 .extra1 = &min_read_thresh,
2162 .extra2 = &max_read_thresh,
2163 },
2164 {
2165 .procname = "write_wakeup_threshold",
2166 .data = &random_write_wakeup_bits,
2167 .maxlen = sizeof(int),
2168 .mode = 0644,
2169 .proc_handler = proc_dointvec_minmax,
2170 .extra1 = &min_write_thresh,
2171 .extra2 = &max_write_thresh,
2172 },
2173 {
2174 .procname = "urandom_min_reseed_secs",
2175 .data = &random_min_urandom_seed,
2176 .maxlen = sizeof(int),
2177 .mode = 0644,
2178 .proc_handler = proc_dointvec,
2179 },
2180 {
2181 .procname = "boot_id",
2182 .data = &sysctl_bootid,
2183 .maxlen = 16,
2184 .mode = 0444,
2185 .proc_handler = proc_do_uuid,
2186 },
2187 {
2188 .procname = "uuid",
2189 .maxlen = 16,
2190 .mode = 0444,
2191 .proc_handler = proc_do_uuid,
2192 },
2193#ifdef ADD_INTERRUPT_BENCH
2194 {
2195 .procname = "add_interrupt_avg_cycles",
2196 .data = &avg_cycles,
2197 .maxlen = sizeof(avg_cycles),
2198 .mode = 0444,
2199 .proc_handler = proc_doulongvec_minmax,
2200 },
2201 {
2202 .procname = "add_interrupt_avg_deviation",
2203 .data = &avg_deviation,
2204 .maxlen = sizeof(avg_deviation),
2205 .mode = 0444,
2206 .proc_handler = proc_doulongvec_minmax,
2207 },
2208#endif
2209 { }
2210};
2211#endif /* CONFIG_SYSCTL */
2212
2213struct batched_entropy {
2214 union {
2215 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2216 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2217 };
2218 unsigned int position;
2219 spinlock_t batch_lock;
2220};
2221
2222/*
2223 * Get a random word for internal kernel use only. The quality of the random
2224 * number is either as good as RDRAND or as good as /dev/urandom, with the
2225 * goal of being quite fast and not depleting entropy. In order to ensure
2226 * that the randomness provided by this function is okay, the function
2227 * wait_for_random_bytes() should be called and return 0 at least once
2228 * at any point prior.
2229 */
2230static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2231 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2232};
2233
2234u64 get_random_u64(void)
2235{
2236 u64 ret;
2237 unsigned long flags;
2238 struct batched_entropy *batch;
2239 static void *previous;
2240
2241#if BITS_PER_LONG == 64
2242 if (arch_get_random_long((unsigned long *)&ret))
2243 return ret;
2244#else
2245 if (arch_get_random_long((unsigned long *)&ret) &&
2246 arch_get_random_long((unsigned long *)&ret + 1))
2247 return ret;
2248#endif
2249
2250 warn_unseeded_randomness(&previous);
2251
2252 batch = raw_cpu_ptr(&batched_entropy_u64);
2253 spin_lock_irqsave(&batch->batch_lock, flags);
2254 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2255 extract_crng((u8 *)batch->entropy_u64);
2256 batch->position = 0;
2257 }
2258 ret = batch->entropy_u64[batch->position++];
2259 spin_unlock_irqrestore(&batch->batch_lock, flags);
2260 return ret;
2261}
2262EXPORT_SYMBOL(get_random_u64);
2263
2264static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2265 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2266};
2267u32 get_random_u32(void)
2268{
2269 u32 ret;
2270 unsigned long flags;
2271 struct batched_entropy *batch;
2272 static void *previous;
2273
2274 if (arch_get_random_int(&ret))
2275 return ret;
2276
2277 warn_unseeded_randomness(&previous);
2278
2279 batch = raw_cpu_ptr(&batched_entropy_u32);
2280 spin_lock_irqsave(&batch->batch_lock, flags);
2281 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2282 extract_crng((u8 *)batch->entropy_u32);
2283 batch->position = 0;
2284 }
2285 ret = batch->entropy_u32[batch->position++];
2286 spin_unlock_irqrestore(&batch->batch_lock, flags);
2287 return ret;
2288}
2289EXPORT_SYMBOL(get_random_u32);
2290
2291/* It's important to invalidate all potential batched entropy that might
2292 * be stored before the crng is initialized, which we can do lazily by
2293 * simply resetting the counter to zero so that it's re-extracted on the
2294 * next usage. */
2295static void invalidate_batched_entropy(void)
2296{
2297 int cpu;
2298 unsigned long flags;
2299
2300 for_each_possible_cpu (cpu) {
2301 struct batched_entropy *batched_entropy;
2302
2303 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2304 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2305 batched_entropy->position = 0;
2306 spin_unlock(&batched_entropy->batch_lock);
2307
2308 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2309 spin_lock(&batched_entropy->batch_lock);
2310 batched_entropy->position = 0;
2311 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2312 }
2313}
2314
2315/**
2316 * randomize_page - Generate a random, page aligned address
2317 * @start: The smallest acceptable address the caller will take.
2318 * @range: The size of the area, starting at @start, within which the
2319 * random address must fall.
2320 *
2321 * If @start + @range would overflow, @range is capped.
2322 *
2323 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2324 * @start was already page aligned. We now align it regardless.
2325 *
2326 * Return: A page aligned address within [start, start + range). On error,
2327 * @start is returned.
2328 */
2329unsigned long
2330randomize_page(unsigned long start, unsigned long range)
2331{
2332 if (!PAGE_ALIGNED(start)) {
2333 range -= PAGE_ALIGN(start) - start;
2334 start = PAGE_ALIGN(start);
2335 }
2336
2337 if (start > ULONG_MAX - range)
2338 range = ULONG_MAX - start;
2339
2340 range >>= PAGE_SHIFT;
2341
2342 if (range == 0)
2343 return start;
2344
2345 return start + (get_random_long() % range << PAGE_SHIFT);
2346}
2347
2348/* Interface for in-kernel drivers of true hardware RNGs.
2349 * Those devices may produce endless random bits and will be throttled
2350 * when our pool is full.
2351 */
2352void add_hwgenerator_randomness(const char *buffer, size_t count,
2353 size_t entropy)
2354{
2355 struct entropy_store *poolp = &input_pool;
2356
2357 if (unlikely(crng_init == 0)) {
2358 crng_fast_load(buffer, count);
2359 return;
2360 }
2361
2362 /* Suspend writing if we're above the trickle threshold.
2363 * We'll be woken up again once below random_write_wakeup_thresh,
2364 * or when the calling thread is about to terminate.
2365 */
2366 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2367 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2368 mix_pool_bytes(poolp, buffer, count);
2369 credit_entropy_bits(poolp, entropy);
2370}
2371EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);