| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * This file is part of UBIFS. | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2006-2008 Nokia Corporation | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or modify it | 
 | 7 |  * under the terms of the GNU General Public License version 2 as published by | 
 | 8 |  * the Free Software Foundation. | 
 | 9 |  * | 
 | 10 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 | 11 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 | 12 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 | 13 |  * more details. | 
 | 14 |  * | 
 | 15 |  * You should have received a copy of the GNU General Public License along with | 
 | 16 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 | 17 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
 | 18 |  * | 
 | 19 |  * Authors: Adrian Hunter | 
 | 20 |  *          Artem Bityutskiy (Битюцкий Артём) | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | /* | 
 | 24 |  * This file implements functions needed to recover from unclean un-mounts. | 
 | 25 |  * When UBIFS is mounted, it checks a flag on the master node to determine if | 
 | 26 |  * an un-mount was completed successfully. If not, the process of mounting | 
 | 27 |  * incorporates additional checking and fixing of on-flash data structures. | 
 | 28 |  * UBIFS always cleans away all remnants of an unclean un-mount, so that | 
 | 29 |  * errors do not accumulate. However UBIFS defers recovery if it is mounted | 
 | 30 |  * read-only, and the flash is not modified in that case. | 
 | 31 |  * | 
 | 32 |  * The general UBIFS approach to the recovery is that it recovers from | 
 | 33 |  * corruptions which could be caused by power cuts, but it refuses to recover | 
 | 34 |  * from corruption caused by other reasons. And UBIFS tries to distinguish | 
 | 35 |  * between these 2 reasons of corruptions and silently recover in the former | 
 | 36 |  * case and loudly complain in the latter case. | 
 | 37 |  * | 
 | 38 |  * UBIFS writes only to erased LEBs, so it writes only to the flash space | 
 | 39 |  * containing only 0xFFs. UBIFS also always writes strictly from the beginning | 
 | 40 |  * of the LEB to the end. And UBIFS assumes that the underlying flash media | 
 | 41 |  * writes in @c->max_write_size bytes at a time. | 
 | 42 |  * | 
 | 43 |  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. | 
 | 44 |  * I/O unit corresponding to offset X to contain corrupted data, all the | 
 | 45 |  * following min. I/O units have to contain empty space (all 0xFFs). If this is | 
 | 46 |  * not true, the corruption cannot be the result of a power cut, and UBIFS | 
 | 47 |  * refuses to mount. | 
 | 48 |  */ | 
 | 49 |  | 
 | 50 | #include <linux/crc32.h> | 
 | 51 | #include <linux/slab.h> | 
 | 52 | #include "ubifs.h" | 
 | 53 |  | 
 | 54 | /** | 
 | 55 |  * is_empty - determine whether a buffer is empty (contains all 0xff). | 
 | 56 |  * @buf: buffer to clean | 
 | 57 |  * @len: length of buffer | 
 | 58 |  * | 
 | 59 |  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise | 
 | 60 |  * %0 is returned. | 
 | 61 |  */ | 
 | 62 | static int is_empty(void *buf, int len) | 
 | 63 | { | 
 | 64 | 	uint8_t *p = buf; | 
 | 65 | 	int i; | 
 | 66 |  | 
 | 67 | 	for (i = 0; i < len; i++) | 
 | 68 | 		if (*p++ != 0xff) | 
 | 69 | 			return 0; | 
 | 70 | 	return 1; | 
 | 71 | } | 
 | 72 |  | 
 | 73 | /** | 
 | 74 |  * first_non_ff - find offset of the first non-0xff byte. | 
 | 75 |  * @buf: buffer to search in | 
 | 76 |  * @len: length of buffer | 
 | 77 |  * | 
 | 78 |  * This function returns offset of the first non-0xff byte in @buf or %-1 if | 
 | 79 |  * the buffer contains only 0xff bytes. | 
 | 80 |  */ | 
 | 81 | static int first_non_ff(void *buf, int len) | 
 | 82 | { | 
 | 83 | 	uint8_t *p = buf; | 
 | 84 | 	int i; | 
 | 85 |  | 
 | 86 | 	for (i = 0; i < len; i++) | 
 | 87 | 		if (*p++ != 0xff) | 
 | 88 | 			return i; | 
 | 89 | 	return -1; | 
 | 90 | } | 
 | 91 |  | 
 | 92 | /** | 
 | 93 |  * get_master_node - get the last valid master node allowing for corruption. | 
 | 94 |  * @c: UBIFS file-system description object | 
 | 95 |  * @lnum: LEB number | 
 | 96 |  * @pbuf: buffer containing the LEB read, is returned here | 
 | 97 |  * @mst: master node, if found, is returned here | 
 | 98 |  * @cor: corruption, if found, is returned here | 
 | 99 |  * | 
 | 100 |  * This function allocates a buffer, reads the LEB into it, and finds and | 
 | 101 |  * returns the last valid master node allowing for one area of corruption. | 
 | 102 |  * The corrupt area, if there is one, must be consistent with the assumption | 
 | 103 |  * that it is the result of an unclean unmount while the master node was being | 
 | 104 |  * written. Under those circumstances, it is valid to use the previously written | 
 | 105 |  * master node. | 
 | 106 |  * | 
 | 107 |  * This function returns %0 on success and a negative error code on failure. | 
 | 108 |  */ | 
 | 109 | static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, | 
 | 110 | 			   struct ubifs_mst_node **mst, void **cor) | 
 | 111 | { | 
 | 112 | 	const int sz = c->mst_node_alsz; | 
 | 113 | 	int err, offs, len; | 
 | 114 | 	void *sbuf, *buf; | 
 | 115 |  | 
 | 116 | 	sbuf = vmalloc(c->leb_size); | 
 | 117 | 	if (!sbuf) | 
 | 118 | 		return -ENOMEM; | 
 | 119 |  | 
 | 120 | 	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); | 
 | 121 | 	if (err && err != -EBADMSG) | 
 | 122 | 		goto out_free; | 
 | 123 |  | 
 | 124 | 	/* Find the first position that is definitely not a node */ | 
 | 125 | 	offs = 0; | 
 | 126 | 	buf = sbuf; | 
 | 127 | 	len = c->leb_size; | 
 | 128 | 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { | 
 | 129 | 		struct ubifs_ch *ch = buf; | 
 | 130 |  | 
 | 131 | 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) | 
 | 132 | 			break; | 
 | 133 | 		offs += sz; | 
 | 134 | 		buf  += sz; | 
 | 135 | 		len  -= sz; | 
 | 136 | 	} | 
 | 137 | 	/* See if there was a valid master node before that */ | 
 | 138 | 	if (offs) { | 
 | 139 | 		int ret; | 
 | 140 |  | 
 | 141 | 		offs -= sz; | 
 | 142 | 		buf  -= sz; | 
 | 143 | 		len  += sz; | 
 | 144 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 145 | 		if (ret != SCANNED_A_NODE && offs) { | 
 | 146 | 			/* Could have been corruption so check one place back */ | 
 | 147 | 			offs -= sz; | 
 | 148 | 			buf  -= sz; | 
 | 149 | 			len  += sz; | 
 | 150 | 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 151 | 			if (ret != SCANNED_A_NODE) | 
 | 152 | 				/* | 
 | 153 | 				 * We accept only one area of corruption because | 
 | 154 | 				 * we are assuming that it was caused while | 
 | 155 | 				 * trying to write a master node. | 
 | 156 | 				 */ | 
 | 157 | 				goto out_err; | 
 | 158 | 		} | 
 | 159 | 		if (ret == SCANNED_A_NODE) { | 
 | 160 | 			struct ubifs_ch *ch = buf; | 
 | 161 |  | 
 | 162 | 			if (ch->node_type != UBIFS_MST_NODE) | 
 | 163 | 				goto out_err; | 
 | 164 | 			dbg_rcvry("found a master node at %d:%d", lnum, offs); | 
 | 165 | 			*mst = buf; | 
 | 166 | 			offs += sz; | 
 | 167 | 			buf  += sz; | 
 | 168 | 			len  -= sz; | 
 | 169 | 		} | 
 | 170 | 	} | 
 | 171 | 	/* Check for corruption */ | 
 | 172 | 	if (offs < c->leb_size) { | 
 | 173 | 		if (!is_empty(buf, min_t(int, len, sz))) { | 
 | 174 | 			*cor = buf; | 
 | 175 | 			dbg_rcvry("found corruption at %d:%d", lnum, offs); | 
 | 176 | 		} | 
 | 177 | 		offs += sz; | 
 | 178 | 		buf  += sz; | 
 | 179 | 		len  -= sz; | 
 | 180 | 	} | 
 | 181 | 	/* Check remaining empty space */ | 
 | 182 | 	if (offs < c->leb_size) | 
 | 183 | 		if (!is_empty(buf, len)) | 
 | 184 | 			goto out_err; | 
 | 185 | 	*pbuf = sbuf; | 
 | 186 | 	return 0; | 
 | 187 |  | 
 | 188 | out_err: | 
 | 189 | 	err = -EINVAL; | 
 | 190 | out_free: | 
 | 191 | 	vfree(sbuf); | 
 | 192 | 	*mst = NULL; | 
 | 193 | 	*cor = NULL; | 
 | 194 | 	return err; | 
 | 195 | } | 
 | 196 |  | 
 | 197 | /** | 
 | 198 |  * write_rcvrd_mst_node - write recovered master node. | 
 | 199 |  * @c: UBIFS file-system description object | 
 | 200 |  * @mst: master node | 
 | 201 |  * | 
 | 202 |  * This function returns %0 on success and a negative error code on failure. | 
 | 203 |  */ | 
 | 204 | static int write_rcvrd_mst_node(struct ubifs_info *c, | 
 | 205 | 				struct ubifs_mst_node *mst) | 
 | 206 | { | 
 | 207 | 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; | 
 | 208 | 	__le32 save_flags; | 
 | 209 |  | 
 | 210 | 	dbg_rcvry("recovery"); | 
 | 211 |  | 
 | 212 | 	save_flags = mst->flags; | 
 | 213 | 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); | 
 | 214 |  | 
 | 215 | 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); | 
 | 216 | 	err = ubifs_leb_change(c, lnum, mst, sz); | 
 | 217 | 	if (err) | 
 | 218 | 		goto out; | 
 | 219 | 	err = ubifs_leb_change(c, lnum + 1, mst, sz); | 
 | 220 | 	if (err) | 
 | 221 | 		goto out; | 
 | 222 | out: | 
 | 223 | 	mst->flags = save_flags; | 
 | 224 | 	return err; | 
 | 225 | } | 
 | 226 |  | 
 | 227 | /** | 
 | 228 |  * ubifs_recover_master_node - recover the master node. | 
 | 229 |  * @c: UBIFS file-system description object | 
 | 230 |  * | 
 | 231 |  * This function recovers the master node from corruption that may occur due to | 
 | 232 |  * an unclean unmount. | 
 | 233 |  * | 
 | 234 |  * This function returns %0 on success and a negative error code on failure. | 
 | 235 |  */ | 
 | 236 | int ubifs_recover_master_node(struct ubifs_info *c) | 
 | 237 | { | 
 | 238 | 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; | 
 | 239 | 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; | 
 | 240 | 	const int sz = c->mst_node_alsz; | 
 | 241 | 	int err, offs1, offs2; | 
 | 242 |  | 
 | 243 | 	dbg_rcvry("recovery"); | 
 | 244 |  | 
 | 245 | 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); | 
 | 246 | 	if (err) | 
 | 247 | 		goto out_free; | 
 | 248 |  | 
 | 249 | 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); | 
 | 250 | 	if (err) | 
 | 251 | 		goto out_free; | 
 | 252 |  | 
 | 253 | 	if (mst1) { | 
 | 254 | 		offs1 = (void *)mst1 - buf1; | 
 | 255 | 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && | 
 | 256 | 		    (offs1 == 0 && !cor1)) { | 
 | 257 | 			/* | 
 | 258 | 			 * mst1 was written by recovery at offset 0 with no | 
 | 259 | 			 * corruption. | 
 | 260 | 			 */ | 
 | 261 | 			dbg_rcvry("recovery recovery"); | 
 | 262 | 			mst = mst1; | 
 | 263 | 		} else if (mst2) { | 
 | 264 | 			offs2 = (void *)mst2 - buf2; | 
 | 265 | 			if (offs1 == offs2) { | 
 | 266 | 				/* Same offset, so must be the same */ | 
 | 267 | 				if (memcmp((void *)mst1 + UBIFS_CH_SZ, | 
 | 268 | 					   (void *)mst2 + UBIFS_CH_SZ, | 
 | 269 | 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) | 
 | 270 | 					goto out_err; | 
 | 271 | 				mst = mst1; | 
 | 272 | 			} else if (offs2 + sz == offs1) { | 
 | 273 | 				/* 1st LEB was written, 2nd was not */ | 
 | 274 | 				if (cor1) | 
 | 275 | 					goto out_err; | 
 | 276 | 				mst = mst1; | 
 | 277 | 			} else if (offs1 == 0 && | 
 | 278 | 				   c->leb_size - offs2 - sz < sz) { | 
 | 279 | 				/* 1st LEB was unmapped and written, 2nd not */ | 
 | 280 | 				if (cor1) | 
 | 281 | 					goto out_err; | 
 | 282 | 				mst = mst1; | 
 | 283 | 			} else | 
 | 284 | 				goto out_err; | 
 | 285 | 		} else { | 
 | 286 | 			/* | 
 | 287 | 			 * 2nd LEB was unmapped and about to be written, so | 
 | 288 | 			 * there must be only one master node in the first LEB | 
 | 289 | 			 * and no corruption. | 
 | 290 | 			 */ | 
 | 291 | 			if (offs1 != 0 || cor1) | 
 | 292 | 				goto out_err; | 
 | 293 | 			mst = mst1; | 
 | 294 | 		} | 
 | 295 | 	} else { | 
 | 296 | 		if (!mst2) | 
 | 297 | 			goto out_err; | 
 | 298 | 		/* | 
 | 299 | 		 * 1st LEB was unmapped and about to be written, so there must | 
 | 300 | 		 * be no room left in 2nd LEB. | 
 | 301 | 		 */ | 
 | 302 | 		offs2 = (void *)mst2 - buf2; | 
 | 303 | 		if (offs2 + sz + sz <= c->leb_size) | 
 | 304 | 			goto out_err; | 
 | 305 | 		mst = mst2; | 
 | 306 | 	} | 
 | 307 |  | 
 | 308 | 	ubifs_msg(c, "recovered master node from LEB %d", | 
 | 309 | 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); | 
 | 310 |  | 
 | 311 | 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); | 
 | 312 |  | 
 | 313 | 	if (c->ro_mount) { | 
 | 314 | 		/* Read-only mode. Keep a copy for switching to rw mode */ | 
 | 315 | 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); | 
 | 316 | 		if (!c->rcvrd_mst_node) { | 
 | 317 | 			err = -ENOMEM; | 
 | 318 | 			goto out_free; | 
 | 319 | 		} | 
 | 320 | 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); | 
 | 321 |  | 
 | 322 | 		/* | 
 | 323 | 		 * We had to recover the master node, which means there was an | 
 | 324 | 		 * unclean reboot. However, it is possible that the master node | 
 | 325 | 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. | 
 | 326 | 		 * E.g., consider the following chain of events: | 
 | 327 | 		 * | 
 | 328 | 		 * 1. UBIFS was cleanly unmounted, so the master node is clean | 
 | 329 | 		 * 2. UBIFS is being mounted R/W and starts changing the master | 
 | 330 | 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens, | 
 | 331 | 		 *    so this LEB ends up with some amount of garbage at the | 
 | 332 | 		 *    end. | 
 | 333 | 		 * 3. UBIFS is being mounted R/O. We reach this place and | 
 | 334 | 		 *    recover the master node from the second LEB | 
 | 335 | 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media | 
 | 336 | 		 *    because we are being mounted R/O. We have to defer the | 
 | 337 | 		 *    operation. | 
 | 338 | 		 * 4. However, this master node (@c->mst_node) is marked as | 
 | 339 | 		 *    clean (since the step 1). And if we just return, the | 
 | 340 | 		 *    mount code will be confused and won't recover the master | 
 | 341 | 		 *    node when it is re-mounter R/W later. | 
 | 342 | 		 * | 
 | 343 | 		 *    Thus, to force the recovery by marking the master node as | 
 | 344 | 		 *    dirty. | 
 | 345 | 		 */ | 
 | 346 | 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 347 | 	} else { | 
 | 348 | 		/* Write the recovered master node */ | 
 | 349 | 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; | 
 | 350 | 		err = write_rcvrd_mst_node(c, c->mst_node); | 
 | 351 | 		if (err) | 
 | 352 | 			goto out_free; | 
 | 353 | 	} | 
 | 354 |  | 
 | 355 | 	vfree(buf2); | 
 | 356 | 	vfree(buf1); | 
 | 357 |  | 
 | 358 | 	return 0; | 
 | 359 |  | 
 | 360 | out_err: | 
 | 361 | 	err = -EINVAL; | 
 | 362 | out_free: | 
 | 363 | 	ubifs_err(c, "failed to recover master node"); | 
 | 364 | 	if (mst1) { | 
 | 365 | 		ubifs_err(c, "dumping first master node"); | 
 | 366 | 		ubifs_dump_node(c, mst1); | 
 | 367 | 	} | 
 | 368 | 	if (mst2) { | 
 | 369 | 		ubifs_err(c, "dumping second master node"); | 
 | 370 | 		ubifs_dump_node(c, mst2); | 
 | 371 | 	} | 
 | 372 | 	vfree(buf2); | 
 | 373 | 	vfree(buf1); | 
 | 374 | 	return err; | 
 | 375 | } | 
 | 376 |  | 
 | 377 | /** | 
 | 378 |  * ubifs_write_rcvrd_mst_node - write the recovered master node. | 
 | 379 |  * @c: UBIFS file-system description object | 
 | 380 |  * | 
 | 381 |  * This function writes the master node that was recovered during mounting in | 
 | 382 |  * read-only mode and must now be written because we are remounting rw. | 
 | 383 |  * | 
 | 384 |  * This function returns %0 on success and a negative error code on failure. | 
 | 385 |  */ | 
 | 386 | int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) | 
 | 387 | { | 
 | 388 | 	int err; | 
 | 389 |  | 
 | 390 | 	if (!c->rcvrd_mst_node) | 
 | 391 | 		return 0; | 
 | 392 | 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 393 | 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 394 | 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); | 
 | 395 | 	if (err) | 
 | 396 | 		return err; | 
 | 397 | 	kfree(c->rcvrd_mst_node); | 
 | 398 | 	c->rcvrd_mst_node = NULL; | 
 | 399 | 	return 0; | 
 | 400 | } | 
 | 401 |  | 
 | 402 | /** | 
 | 403 |  * is_last_write - determine if an offset was in the last write to a LEB. | 
 | 404 |  * @c: UBIFS file-system description object | 
 | 405 |  * @buf: buffer to check | 
 | 406 |  * @offs: offset to check | 
 | 407 |  * | 
 | 408 |  * This function returns %1 if @offs was in the last write to the LEB whose data | 
 | 409 |  * is in @buf, otherwise %0 is returned. The determination is made by checking | 
 | 410 |  * for subsequent empty space starting from the next @c->max_write_size | 
 | 411 |  * boundary. | 
 | 412 |  */ | 
 | 413 | static int is_last_write(const struct ubifs_info *c, void *buf, int offs) | 
 | 414 | { | 
 | 415 | 	int empty_offs, check_len; | 
 | 416 | 	uint8_t *p; | 
 | 417 |  | 
 | 418 | 	/* | 
 | 419 | 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in | 
 | 420 | 	 * the last wbuf written. After that should be empty space. | 
 | 421 | 	 */ | 
 | 422 | 	empty_offs = ALIGN(offs + 1, c->max_write_size); | 
 | 423 | 	check_len = c->leb_size - empty_offs; | 
 | 424 | 	p = buf + empty_offs - offs; | 
 | 425 | 	return is_empty(p, check_len); | 
 | 426 | } | 
 | 427 |  | 
 | 428 | /** | 
 | 429 |  * clean_buf - clean the data from an LEB sitting in a buffer. | 
 | 430 |  * @c: UBIFS file-system description object | 
 | 431 |  * @buf: buffer to clean | 
 | 432 |  * @lnum: LEB number to clean | 
 | 433 |  * @offs: offset from which to clean | 
 | 434 |  * @len: length of buffer | 
 | 435 |  * | 
 | 436 |  * This function pads up to the next min_io_size boundary (if there is one) and | 
 | 437 |  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next | 
 | 438 |  * @c->min_io_size boundary. | 
 | 439 |  */ | 
 | 440 | static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, | 
 | 441 | 		      int *offs, int *len) | 
 | 442 | { | 
 | 443 | 	int empty_offs, pad_len; | 
 | 444 |  | 
 | 445 | 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); | 
 | 446 |  | 
 | 447 | 	ubifs_assert(c, !(*offs & 7)); | 
 | 448 | 	empty_offs = ALIGN(*offs, c->min_io_size); | 
 | 449 | 	pad_len = empty_offs - *offs; | 
 | 450 | 	ubifs_pad(c, *buf, pad_len); | 
 | 451 | 	*offs += pad_len; | 
 | 452 | 	*buf += pad_len; | 
 | 453 | 	*len -= pad_len; | 
 | 454 | 	memset(*buf, 0xff, c->leb_size - empty_offs); | 
 | 455 | } | 
 | 456 |  | 
 | 457 | /** | 
 | 458 |  * no_more_nodes - determine if there are no more nodes in a buffer. | 
 | 459 |  * @c: UBIFS file-system description object | 
 | 460 |  * @buf: buffer to check | 
 | 461 |  * @len: length of buffer | 
 | 462 |  * @lnum: LEB number of the LEB from which @buf was read | 
 | 463 |  * @offs: offset from which @buf was read | 
 | 464 |  * | 
 | 465 |  * This function ensures that the corrupted node at @offs is the last thing | 
 | 466 |  * written to a LEB. This function returns %1 if more data is not found and | 
 | 467 |  * %0 if more data is found. | 
 | 468 |  */ | 
 | 469 | static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, | 
 | 470 | 			int lnum, int offs) | 
 | 471 | { | 
 | 472 | 	struct ubifs_ch *ch = buf; | 
 | 473 | 	int skip, dlen = le32_to_cpu(ch->len); | 
 | 474 |  | 
 | 475 | 	/* Check for empty space after the corrupt node's common header */ | 
 | 476 | 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; | 
 | 477 | 	if (is_empty(buf + skip, len - skip)) | 
 | 478 | 		return 1; | 
 | 479 | 	/* | 
 | 480 | 	 * The area after the common header size is not empty, so the common | 
 | 481 | 	 * header must be intact. Check it. | 
 | 482 | 	 */ | 
 | 483 | 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { | 
 | 484 | 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); | 
 | 485 | 		return 0; | 
 | 486 | 	} | 
 | 487 | 	/* Now we know the corrupt node's length we can skip over it */ | 
 | 488 | 	skip = ALIGN(offs + dlen, c->max_write_size) - offs; | 
 | 489 | 	/* After which there should be empty space */ | 
 | 490 | 	if (is_empty(buf + skip, len - skip)) | 
 | 491 | 		return 1; | 
 | 492 | 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); | 
 | 493 | 	return 0; | 
 | 494 | } | 
 | 495 |  | 
 | 496 | /** | 
 | 497 |  * fix_unclean_leb - fix an unclean LEB. | 
 | 498 |  * @c: UBIFS file-system description object | 
 | 499 |  * @sleb: scanned LEB information | 
 | 500 |  * @start: offset where scan started | 
 | 501 |  */ | 
 | 502 | static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | 
 | 503 | 			   int start) | 
 | 504 | { | 
 | 505 | 	int lnum = sleb->lnum, endpt = start; | 
 | 506 |  | 
 | 507 | 	/* Get the end offset of the last node we are keeping */ | 
 | 508 | 	if (!list_empty(&sleb->nodes)) { | 
 | 509 | 		struct ubifs_scan_node *snod; | 
 | 510 |  | 
 | 511 | 		snod = list_entry(sleb->nodes.prev, | 
 | 512 | 				  struct ubifs_scan_node, list); | 
 | 513 | 		endpt = snod->offs + snod->len; | 
 | 514 | 	} | 
 | 515 |  | 
 | 516 | 	if (c->ro_mount && !c->remounting_rw) { | 
 | 517 | 		/* Add to recovery list */ | 
 | 518 | 		struct ubifs_unclean_leb *ucleb; | 
 | 519 |  | 
 | 520 | 		dbg_rcvry("need to fix LEB %d start %d endpt %d", | 
 | 521 | 			  lnum, start, sleb->endpt); | 
 | 522 | 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); | 
 | 523 | 		if (!ucleb) | 
 | 524 | 			return -ENOMEM; | 
 | 525 | 		ucleb->lnum = lnum; | 
 | 526 | 		ucleb->endpt = endpt; | 
 | 527 | 		list_add_tail(&ucleb->list, &c->unclean_leb_list); | 
 | 528 | 	} else { | 
 | 529 | 		/* Write the fixed LEB back to flash */ | 
 | 530 | 		int err; | 
 | 531 |  | 
 | 532 | 		dbg_rcvry("fixing LEB %d start %d endpt %d", | 
 | 533 | 			  lnum, start, sleb->endpt); | 
 | 534 | 		if (endpt == 0) { | 
 | 535 | 			err = ubifs_leb_unmap(c, lnum); | 
 | 536 | 			if (err) | 
 | 537 | 				return err; | 
 | 538 | 		} else { | 
 | 539 | 			int len = ALIGN(endpt, c->min_io_size); | 
 | 540 |  | 
 | 541 | 			if (start) { | 
 | 542 | 				err = ubifs_leb_read(c, lnum, sleb->buf, 0, | 
 | 543 | 						     start, 1); | 
 | 544 | 				if (err) | 
 | 545 | 					return err; | 
 | 546 | 			} | 
 | 547 | 			/* Pad to min_io_size */ | 
 | 548 | 			if (len > endpt) { | 
 | 549 | 				int pad_len = len - ALIGN(endpt, 8); | 
 | 550 |  | 
 | 551 | 				if (pad_len > 0) { | 
 | 552 | 					void *buf = sleb->buf + len - pad_len; | 
 | 553 |  | 
 | 554 | 					ubifs_pad(c, buf, pad_len); | 
 | 555 | 				} | 
 | 556 | 			} | 
 | 557 | 			err = ubifs_leb_change(c, lnum, sleb->buf, len); | 
 | 558 | 			if (err) | 
 | 559 | 				return err; | 
 | 560 | 		} | 
 | 561 | 	} | 
 | 562 | 	return 0; | 
 | 563 | } | 
 | 564 |  | 
 | 565 | /** | 
 | 566 |  * drop_last_group - drop the last group of nodes. | 
 | 567 |  * @sleb: scanned LEB information | 
 | 568 |  * @offs: offset of dropped nodes is returned here | 
 | 569 |  * | 
 | 570 |  * This is a helper function for 'ubifs_recover_leb()' which drops the last | 
 | 571 |  * group of nodes of the scanned LEB. | 
 | 572 |  */ | 
 | 573 | static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) | 
 | 574 | { | 
 | 575 | 	while (!list_empty(&sleb->nodes)) { | 
 | 576 | 		struct ubifs_scan_node *snod; | 
 | 577 | 		struct ubifs_ch *ch; | 
 | 578 |  | 
 | 579 | 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, | 
 | 580 | 				  list); | 
 | 581 | 		ch = snod->node; | 
 | 582 | 		if (ch->group_type != UBIFS_IN_NODE_GROUP) | 
 | 583 | 			break; | 
 | 584 |  | 
 | 585 | 		dbg_rcvry("dropping grouped node at %d:%d", | 
 | 586 | 			  sleb->lnum, snod->offs); | 
 | 587 | 		*offs = snod->offs; | 
 | 588 | 		list_del(&snod->list); | 
 | 589 | 		kfree(snod); | 
 | 590 | 		sleb->nodes_cnt -= 1; | 
 | 591 | 	} | 
 | 592 | } | 
 | 593 |  | 
 | 594 | /** | 
 | 595 |  * drop_last_node - drop the last node. | 
 | 596 |  * @sleb: scanned LEB information | 
 | 597 |  * @offs: offset of dropped nodes is returned here | 
 | 598 |  * | 
 | 599 |  * This is a helper function for 'ubifs_recover_leb()' which drops the last | 
 | 600 |  * node of the scanned LEB. | 
 | 601 |  */ | 
 | 602 | static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) | 
 | 603 | { | 
 | 604 | 	struct ubifs_scan_node *snod; | 
 | 605 |  | 
 | 606 | 	if (!list_empty(&sleb->nodes)) { | 
 | 607 | 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, | 
 | 608 | 				  list); | 
 | 609 |  | 
 | 610 | 		dbg_rcvry("dropping last node at %d:%d", | 
 | 611 | 			  sleb->lnum, snod->offs); | 
 | 612 | 		*offs = snod->offs; | 
 | 613 | 		list_del(&snod->list); | 
 | 614 | 		kfree(snod); | 
 | 615 | 		sleb->nodes_cnt -= 1; | 
 | 616 | 	} | 
 | 617 | } | 
 | 618 |  | 
 | 619 | /** | 
 | 620 |  * ubifs_recover_leb - scan and recover a LEB. | 
 | 621 |  * @c: UBIFS file-system description object | 
 | 622 |  * @lnum: LEB number | 
 | 623 |  * @offs: offset | 
 | 624 |  * @sbuf: LEB-sized buffer to use | 
 | 625 |  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not | 
 | 626 |  *         belong to any journal head) | 
 | 627 |  * | 
 | 628 |  * This function does a scan of a LEB, but caters for errors that might have | 
 | 629 |  * been caused by the unclean unmount from which we are attempting to recover. | 
 | 630 |  * Returns the scanned information on success and a negative error code on | 
 | 631 |  * failure. | 
 | 632 |  */ | 
 | 633 | struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, | 
 | 634 | 					 int offs, void *sbuf, int jhead) | 
 | 635 | { | 
 | 636 | 	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; | 
 | 637 | 	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; | 
 | 638 | 	struct ubifs_scan_leb *sleb; | 
 | 639 | 	void *buf = sbuf + offs; | 
 | 640 |  | 
 | 641 | 	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); | 
 | 642 |  | 
 | 643 | 	sleb = ubifs_start_scan(c, lnum, offs, sbuf); | 
 | 644 | 	if (IS_ERR(sleb)) | 
 | 645 | 		return sleb; | 
 | 646 |  | 
 | 647 | 	ubifs_assert(c, len >= 8); | 
 | 648 | 	while (len >= 8) { | 
 | 649 | 		dbg_scan("look at LEB %d:%d (%d bytes left)", | 
 | 650 | 			 lnum, offs, len); | 
 | 651 |  | 
 | 652 | 		cond_resched(); | 
 | 653 |  | 
 | 654 | 		/* | 
 | 655 | 		 * Scan quietly until there is an error from which we cannot | 
 | 656 | 		 * recover | 
 | 657 | 		 */ | 
 | 658 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 659 | 		if (ret == SCANNED_A_NODE) { | 
 | 660 | 			/* A valid node, and not a padding node */ | 
 | 661 | 			struct ubifs_ch *ch = buf; | 
 | 662 | 			int node_len; | 
 | 663 |  | 
 | 664 | 			err = ubifs_add_snod(c, sleb, buf, offs); | 
 | 665 | 			if (err) | 
 | 666 | 				goto error; | 
 | 667 | 			node_len = ALIGN(le32_to_cpu(ch->len), 8); | 
 | 668 | 			offs += node_len; | 
 | 669 | 			buf += node_len; | 
 | 670 | 			len -= node_len; | 
 | 671 | 		} else if (ret > 0) { | 
 | 672 | 			/* Padding bytes or a valid padding node */ | 
 | 673 | 			offs += ret; | 
 | 674 | 			buf += ret; | 
 | 675 | 			len -= ret; | 
 | 676 | 		} else if (ret == SCANNED_EMPTY_SPACE || | 
 | 677 | 			   ret == SCANNED_GARBAGE     || | 
 | 678 | 			   ret == SCANNED_A_BAD_PAD_NODE || | 
 | 679 | 			   ret == SCANNED_A_CORRUPT_NODE) { | 
 | 680 | 			dbg_rcvry("found corruption (%d) at %d:%d", | 
 | 681 | 				  ret, lnum, offs); | 
 | 682 | 			break; | 
 | 683 | 		} else { | 
 | 684 | 			ubifs_err(c, "unexpected return value %d", ret); | 
 | 685 | 			err = -EINVAL; | 
 | 686 | 			goto error; | 
 | 687 | 		} | 
 | 688 | 	} | 
 | 689 |  | 
 | 690 | 	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { | 
 | 691 | 		if (!is_last_write(c, buf, offs)) | 
 | 692 | 			goto corrupted_rescan; | 
 | 693 | 	} else if (ret == SCANNED_A_CORRUPT_NODE) { | 
 | 694 | 		if (!no_more_nodes(c, buf, len, lnum, offs)) | 
 | 695 | 			goto corrupted_rescan; | 
 | 696 | 	} else if (!is_empty(buf, len)) { | 
 | 697 | 		if (!is_last_write(c, buf, offs)) { | 
 | 698 | 			int corruption = first_non_ff(buf, len); | 
 | 699 |  | 
 | 700 | 			/* | 
 | 701 | 			 * See header comment for this file for more | 
 | 702 | 			 * explanations about the reasons we have this check. | 
 | 703 | 			 */ | 
 | 704 | 			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d", | 
 | 705 | 				  lnum, offs, corruption); | 
 | 706 | 			/* Make sure we dump interesting non-0xFF data */ | 
 | 707 | 			offs += corruption; | 
 | 708 | 			buf += corruption; | 
 | 709 | 			goto corrupted; | 
 | 710 | 		} | 
 | 711 | 	} | 
 | 712 |  | 
 | 713 | 	min_io_unit = round_down(offs, c->min_io_size); | 
 | 714 | 	if (grouped) | 
 | 715 | 		/* | 
 | 716 | 		 * If nodes are grouped, always drop the incomplete group at | 
 | 717 | 		 * the end. | 
 | 718 | 		 */ | 
 | 719 | 		drop_last_group(sleb, &offs); | 
 | 720 |  | 
 | 721 | 	if (jhead == GCHD) { | 
 | 722 | 		/* | 
 | 723 | 		 * If this LEB belongs to the GC head then while we are in the | 
 | 724 | 		 * middle of the same min. I/O unit keep dropping nodes. So | 
 | 725 | 		 * basically, what we want is to make sure that the last min. | 
 | 726 | 		 * I/O unit where we saw the corruption is dropped completely | 
 | 727 | 		 * with all the uncorrupted nodes which may possibly sit there. | 
 | 728 | 		 * | 
 | 729 | 		 * In other words, let's name the min. I/O unit where the | 
 | 730 | 		 * corruption starts B, and the previous min. I/O unit A. The | 
 | 731 | 		 * below code tries to deal with a situation when half of B | 
 | 732 | 		 * contains valid nodes or the end of a valid node, and the | 
 | 733 | 		 * second half of B contains corrupted data or garbage. This | 
 | 734 | 		 * means that UBIFS had been writing to B just before the power | 
 | 735 | 		 * cut happened. I do not know how realistic is this scenario | 
 | 736 | 		 * that half of the min. I/O unit had been written successfully | 
 | 737 | 		 * and the other half not, but this is possible in our 'failure | 
 | 738 | 		 * mode emulation' infrastructure at least. | 
 | 739 | 		 * | 
 | 740 | 		 * So what is the problem, why we need to drop those nodes? Why | 
 | 741 | 		 * can't we just clean-up the second half of B by putting a | 
 | 742 | 		 * padding node there? We can, and this works fine with one | 
 | 743 | 		 * exception which was reproduced with power cut emulation | 
 | 744 | 		 * testing and happens extremely rarely. | 
 | 745 | 		 * | 
 | 746 | 		 * Imagine the file-system is full, we run GC which starts | 
 | 747 | 		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is | 
 | 748 | 		 * the current GC head LEB). The @c->gc_lnum is -1, which means | 
 | 749 | 		 * that GC will retain LEB X and will try to continue. Imagine | 
 | 750 | 		 * that LEB X is currently the dirtiest LEB, and the amount of | 
 | 751 | 		 * used space in LEB Y is exactly the same as amount of free | 
 | 752 | 		 * space in LEB X. | 
 | 753 | 		 * | 
 | 754 | 		 * And a power cut happens when nodes are moved from LEB X to | 
 | 755 | 		 * LEB Y. We are here trying to recover LEB Y which is the GC | 
 | 756 | 		 * head LEB. We find the min. I/O unit B as described above. | 
 | 757 | 		 * Then we clean-up LEB Y by padding min. I/O unit. And later | 
 | 758 | 		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot | 
 | 759 | 		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X | 
 | 760 | 		 * does not match because the amount of valid nodes there does | 
 | 761 | 		 * not fit the free space in LEB Y any more! And this is | 
 | 762 | 		 * because of the padding node which we added to LEB Y. The | 
 | 763 | 		 * user-visible effect of this which I once observed and | 
 | 764 | 		 * analysed is that we cannot mount the file-system with | 
 | 765 | 		 * -ENOSPC error. | 
 | 766 | 		 * | 
 | 767 | 		 * So obviously, to make sure that situation does not happen we | 
 | 768 | 		 * should free min. I/O unit B in LEB Y completely and the last | 
 | 769 | 		 * used min. I/O unit in LEB Y should be A. This is basically | 
 | 770 | 		 * what the below code tries to do. | 
 | 771 | 		 */ | 
 | 772 | 		while (offs > min_io_unit) | 
 | 773 | 			drop_last_node(sleb, &offs); | 
 | 774 | 	} | 
 | 775 |  | 
 | 776 | 	buf = sbuf + offs; | 
 | 777 | 	len = c->leb_size - offs; | 
 | 778 |  | 
 | 779 | 	clean_buf(c, &buf, lnum, &offs, &len); | 
 | 780 | 	ubifs_end_scan(c, sleb, lnum, offs); | 
 | 781 |  | 
 | 782 | 	err = fix_unclean_leb(c, sleb, start); | 
 | 783 | 	if (err) | 
 | 784 | 		goto error; | 
 | 785 |  | 
 | 786 | 	return sleb; | 
 | 787 |  | 
 | 788 | corrupted_rescan: | 
 | 789 | 	/* Re-scan the corrupted data with verbose messages */ | 
 | 790 | 	ubifs_err(c, "corruption %d", ret); | 
 | 791 | 	ubifs_scan_a_node(c, buf, len, lnum, offs, 0); | 
 | 792 | corrupted: | 
 | 793 | 	ubifs_scanned_corruption(c, lnum, offs, buf); | 
 | 794 | 	err = -EUCLEAN; | 
 | 795 | error: | 
 | 796 | 	ubifs_err(c, "LEB %d scanning failed", lnum); | 
 | 797 | 	ubifs_scan_destroy(sleb); | 
 | 798 | 	return ERR_PTR(err); | 
 | 799 | } | 
 | 800 |  | 
 | 801 | /** | 
 | 802 |  * get_cs_sqnum - get commit start sequence number. | 
 | 803 |  * @c: UBIFS file-system description object | 
 | 804 |  * @lnum: LEB number of commit start node | 
 | 805 |  * @offs: offset of commit start node | 
 | 806 |  * @cs_sqnum: commit start sequence number is returned here | 
 | 807 |  * | 
 | 808 |  * This function returns %0 on success and a negative error code on failure. | 
 | 809 |  */ | 
 | 810 | static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, | 
 | 811 | 			unsigned long long *cs_sqnum) | 
 | 812 | { | 
 | 813 | 	struct ubifs_cs_node *cs_node = NULL; | 
 | 814 | 	int err, ret; | 
 | 815 |  | 
 | 816 | 	dbg_rcvry("at %d:%d", lnum, offs); | 
 | 817 | 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); | 
 | 818 | 	if (!cs_node) | 
 | 819 | 		return -ENOMEM; | 
 | 820 | 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ) | 
 | 821 | 		goto out_err; | 
 | 822 | 	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, | 
 | 823 | 			     UBIFS_CS_NODE_SZ, 0); | 
 | 824 | 	if (err && err != -EBADMSG) | 
 | 825 | 		goto out_free; | 
 | 826 | 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); | 
 | 827 | 	if (ret != SCANNED_A_NODE) { | 
 | 828 | 		ubifs_err(c, "Not a valid node"); | 
 | 829 | 		goto out_err; | 
 | 830 | 	} | 
 | 831 | 	if (cs_node->ch.node_type != UBIFS_CS_NODE) { | 
 | 832 | 		ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type); | 
 | 833 | 		goto out_err; | 
 | 834 | 	} | 
 | 835 | 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { | 
 | 836 | 		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu", | 
 | 837 | 			  (unsigned long long)le64_to_cpu(cs_node->cmt_no), | 
 | 838 | 			  c->cmt_no); | 
 | 839 | 		goto out_err; | 
 | 840 | 	} | 
 | 841 | 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); | 
 | 842 | 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum); | 
 | 843 | 	kfree(cs_node); | 
 | 844 | 	return 0; | 
 | 845 |  | 
 | 846 | out_err: | 
 | 847 | 	err = -EINVAL; | 
 | 848 | out_free: | 
 | 849 | 	ubifs_err(c, "failed to get CS sqnum"); | 
 | 850 | 	kfree(cs_node); | 
 | 851 | 	return err; | 
 | 852 | } | 
 | 853 |  | 
 | 854 | /** | 
 | 855 |  * ubifs_recover_log_leb - scan and recover a log LEB. | 
 | 856 |  * @c: UBIFS file-system description object | 
 | 857 |  * @lnum: LEB number | 
 | 858 |  * @offs: offset | 
 | 859 |  * @sbuf: LEB-sized buffer to use | 
 | 860 |  * | 
 | 861 |  * This function does a scan of a LEB, but caters for errors that might have | 
 | 862 |  * been caused by unclean reboots from which we are attempting to recover | 
 | 863 |  * (assume that only the last log LEB can be corrupted by an unclean reboot). | 
 | 864 |  * | 
 | 865 |  * This function returns %0 on success and a negative error code on failure. | 
 | 866 |  */ | 
 | 867 | struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, | 
 | 868 | 					     int offs, void *sbuf) | 
 | 869 | { | 
 | 870 | 	struct ubifs_scan_leb *sleb; | 
 | 871 | 	int next_lnum; | 
 | 872 |  | 
 | 873 | 	dbg_rcvry("LEB %d", lnum); | 
 | 874 | 	next_lnum = lnum + 1; | 
 | 875 | 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) | 
 | 876 | 		next_lnum = UBIFS_LOG_LNUM; | 
 | 877 | 	if (next_lnum != c->ltail_lnum) { | 
 | 878 | 		/* | 
 | 879 | 		 * We can only recover at the end of the log, so check that the | 
 | 880 | 		 * next log LEB is empty or out of date. | 
 | 881 | 		 */ | 
 | 882 | 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); | 
 | 883 | 		if (IS_ERR(sleb)) | 
 | 884 | 			return sleb; | 
 | 885 | 		if (sleb->nodes_cnt) { | 
 | 886 | 			struct ubifs_scan_node *snod; | 
 | 887 | 			unsigned long long cs_sqnum = c->cs_sqnum; | 
 | 888 |  | 
 | 889 | 			snod = list_entry(sleb->nodes.next, | 
 | 890 | 					  struct ubifs_scan_node, list); | 
 | 891 | 			if (cs_sqnum == 0) { | 
 | 892 | 				int err; | 
 | 893 |  | 
 | 894 | 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); | 
 | 895 | 				if (err) { | 
 | 896 | 					ubifs_scan_destroy(sleb); | 
 | 897 | 					return ERR_PTR(err); | 
 | 898 | 				} | 
 | 899 | 			} | 
 | 900 | 			if (snod->sqnum > cs_sqnum) { | 
 | 901 | 				ubifs_err(c, "unrecoverable log corruption in LEB %d", | 
 | 902 | 					  lnum); | 
 | 903 | 				ubifs_scan_destroy(sleb); | 
 | 904 | 				return ERR_PTR(-EUCLEAN); | 
 | 905 | 			} | 
 | 906 | 		} | 
 | 907 | 		ubifs_scan_destroy(sleb); | 
 | 908 | 	} | 
 | 909 | 	return ubifs_recover_leb(c, lnum, offs, sbuf, -1); | 
 | 910 | } | 
 | 911 |  | 
 | 912 | /** | 
 | 913 |  * recover_head - recover a head. | 
 | 914 |  * @c: UBIFS file-system description object | 
 | 915 |  * @lnum: LEB number of head to recover | 
 | 916 |  * @offs: offset of head to recover | 
 | 917 |  * @sbuf: LEB-sized buffer to use | 
 | 918 |  * | 
 | 919 |  * This function ensures that there is no data on the flash at a head location. | 
 | 920 |  * | 
 | 921 |  * This function returns %0 on success and a negative error code on failure. | 
 | 922 |  */ | 
 | 923 | static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) | 
 | 924 | { | 
 | 925 | 	int len = c->max_write_size, err; | 
| jb.qi | 0f77d81 | 2022-11-28 23:11:03 -0800 | [diff] [blame] | 926 | 	bool forceclean = true; //jb.qi add for ubi problem on 20221129 | 
| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 927 | 	if (offs + len > c->leb_size) | 
 | 928 | 		len = c->leb_size - offs; | 
 | 929 |  | 
 | 930 | 	if (!len) | 
 | 931 | 		return 0; | 
 | 932 |  | 
 | 933 | 	/* Read at the head location and check it is empty flash */ | 
 | 934 | 	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); | 
| jb.qi | 0f77d81 | 2022-11-28 23:11:03 -0800 | [diff] [blame] | 935 | 	if (err || !is_empty(sbuf, len) || forceclean) { //jb.qi add for ubi problem on 20221129 | 
 | 936 | 		dbg_rcvry("cleaning head at %d:%d", lnum, offs); | 
| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 937 | 		if (offs == 0) | 
 | 938 | 			return ubifs_leb_unmap(c, lnum); | 
 | 939 | 		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); | 
 | 940 | 		if (err) | 
 | 941 | 			return err; | 
 | 942 | 		return ubifs_leb_change(c, lnum, sbuf, offs); | 
 | 943 | 	} | 
 | 944 |  | 
 | 945 | 	return 0; | 
 | 946 | } | 
 | 947 |  | 
 | 948 | /** | 
 | 949 |  * ubifs_recover_inl_heads - recover index and LPT heads. | 
 | 950 |  * @c: UBIFS file-system description object | 
 | 951 |  * @sbuf: LEB-sized buffer to use | 
 | 952 |  * | 
 | 953 |  * This function ensures that there is no data on the flash at the index and | 
 | 954 |  * LPT head locations. | 
 | 955 |  * | 
 | 956 |  * This deals with the recovery of a half-completed journal commit. UBIFS is | 
 | 957 |  * careful never to overwrite the last version of the index or the LPT. Because | 
 | 958 |  * the index and LPT are wandering trees, data from a half-completed commit will | 
 | 959 |  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are | 
 | 960 |  * assumed to be empty and will be unmapped anyway before use, or in the index | 
 | 961 |  * and LPT heads. | 
 | 962 |  * | 
 | 963 |  * This function returns %0 on success and a negative error code on failure. | 
 | 964 |  */ | 
 | 965 | int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) | 
 | 966 | { | 
 | 967 | 	int err; | 
 | 968 |  | 
 | 969 | 	ubifs_assert(c, !c->ro_mount || c->remounting_rw); | 
 | 970 |  | 
| jb.qi | 0f77d81 | 2022-11-28 23:11:03 -0800 | [diff] [blame] | 971 | 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); | 
| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 972 | 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); | 
 | 973 | 	if (err) | 
 | 974 | 		return err; | 
 | 975 |  | 
| jb.qi | 0f77d81 | 2022-11-28 23:11:03 -0800 | [diff] [blame] | 976 | 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); | 
| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 977 |  | 
 | 978 | 	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); | 
 | 979 | } | 
 | 980 |  | 
 | 981 | /** | 
 | 982 |  * clean_an_unclean_leb - read and write a LEB to remove corruption. | 
 | 983 |  * @c: UBIFS file-system description object | 
 | 984 |  * @ucleb: unclean LEB information | 
 | 985 |  * @sbuf: LEB-sized buffer to use | 
 | 986 |  * | 
 | 987 |  * This function reads a LEB up to a point pre-determined by the mount recovery, | 
 | 988 |  * checks the nodes, and writes the result back to the flash, thereby cleaning | 
 | 989 |  * off any following corruption, or non-fatal ECC errors. | 
 | 990 |  * | 
 | 991 |  * This function returns %0 on success and a negative error code on failure. | 
 | 992 |  */ | 
 | 993 | static int clean_an_unclean_leb(struct ubifs_info *c, | 
 | 994 | 				struct ubifs_unclean_leb *ucleb, void *sbuf) | 
 | 995 | { | 
 | 996 | 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; | 
 | 997 | 	void *buf = sbuf; | 
 | 998 |  | 
 | 999 | 	dbg_rcvry("LEB %d len %d", lnum, len); | 
 | 1000 |  | 
 | 1001 | 	if (len == 0) { | 
 | 1002 | 		/* Nothing to read, just unmap it */ | 
 | 1003 | 		return ubifs_leb_unmap(c, lnum); | 
 | 1004 | 	} | 
 | 1005 |  | 
 | 1006 | 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0); | 
 | 1007 | 	if (err && err != -EBADMSG) | 
 | 1008 | 		return err; | 
 | 1009 |  | 
 | 1010 | 	while (len >= 8) { | 
 | 1011 | 		int ret; | 
 | 1012 |  | 
 | 1013 | 		cond_resched(); | 
 | 1014 |  | 
 | 1015 | 		/* Scan quietly until there is an error */ | 
 | 1016 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); | 
 | 1017 |  | 
 | 1018 | 		if (ret == SCANNED_A_NODE) { | 
 | 1019 | 			/* A valid node, and not a padding node */ | 
 | 1020 | 			struct ubifs_ch *ch = buf; | 
 | 1021 | 			int node_len; | 
 | 1022 |  | 
 | 1023 | 			node_len = ALIGN(le32_to_cpu(ch->len), 8); | 
 | 1024 | 			offs += node_len; | 
 | 1025 | 			buf += node_len; | 
 | 1026 | 			len -= node_len; | 
 | 1027 | 			continue; | 
 | 1028 | 		} | 
 | 1029 |  | 
 | 1030 | 		if (ret > 0) { | 
 | 1031 | 			/* Padding bytes or a valid padding node */ | 
 | 1032 | 			offs += ret; | 
 | 1033 | 			buf += ret; | 
 | 1034 | 			len -= ret; | 
 | 1035 | 			continue; | 
 | 1036 | 		} | 
 | 1037 |  | 
 | 1038 | 		if (ret == SCANNED_EMPTY_SPACE) { | 
 | 1039 | 			ubifs_err(c, "unexpected empty space at %d:%d", | 
 | 1040 | 				  lnum, offs); | 
 | 1041 | 			return -EUCLEAN; | 
 | 1042 | 		} | 
 | 1043 |  | 
 | 1044 | 		if (quiet) { | 
 | 1045 | 			/* Redo the last scan but noisily */ | 
 | 1046 | 			quiet = 0; | 
 | 1047 | 			continue; | 
 | 1048 | 		} | 
 | 1049 |  | 
 | 1050 | 		ubifs_scanned_corruption(c, lnum, offs, buf); | 
 | 1051 | 		return -EUCLEAN; | 
 | 1052 | 	} | 
 | 1053 |  | 
 | 1054 | 	/* Pad to min_io_size */ | 
 | 1055 | 	len = ALIGN(ucleb->endpt, c->min_io_size); | 
 | 1056 | 	if (len > ucleb->endpt) { | 
 | 1057 | 		int pad_len = len - ALIGN(ucleb->endpt, 8); | 
 | 1058 |  | 
 | 1059 | 		if (pad_len > 0) { | 
 | 1060 | 			buf = c->sbuf + len - pad_len; | 
 | 1061 | 			ubifs_pad(c, buf, pad_len); | 
 | 1062 | 		} | 
 | 1063 | 	} | 
 | 1064 |  | 
 | 1065 | 	/* Write back the LEB atomically */ | 
 | 1066 | 	err = ubifs_leb_change(c, lnum, sbuf, len); | 
 | 1067 | 	if (err) | 
 | 1068 | 		return err; | 
 | 1069 |  | 
 | 1070 | 	dbg_rcvry("cleaned LEB %d", lnum); | 
 | 1071 |  | 
 | 1072 | 	return 0; | 
 | 1073 | } | 
 | 1074 |  | 
 | 1075 | /** | 
 | 1076 |  * ubifs_clean_lebs - clean LEBs recovered during read-only mount. | 
 | 1077 |  * @c: UBIFS file-system description object | 
 | 1078 |  * @sbuf: LEB-sized buffer to use | 
 | 1079 |  * | 
 | 1080 |  * This function cleans a LEB identified during recovery that needs to be | 
 | 1081 |  * written but was not because UBIFS was mounted read-only. This happens when | 
 | 1082 |  * remounting to read-write mode. | 
 | 1083 |  * | 
 | 1084 |  * This function returns %0 on success and a negative error code on failure. | 
 | 1085 |  */ | 
 | 1086 | int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) | 
 | 1087 | { | 
 | 1088 | 	dbg_rcvry("recovery"); | 
 | 1089 | 	while (!list_empty(&c->unclean_leb_list)) { | 
 | 1090 | 		struct ubifs_unclean_leb *ucleb; | 
 | 1091 | 		int err; | 
 | 1092 |  | 
 | 1093 | 		ucleb = list_entry(c->unclean_leb_list.next, | 
 | 1094 | 				   struct ubifs_unclean_leb, list); | 
 | 1095 | 		err = clean_an_unclean_leb(c, ucleb, sbuf); | 
 | 1096 | 		if (err) | 
 | 1097 | 			return err; | 
 | 1098 | 		list_del(&ucleb->list); | 
 | 1099 | 		kfree(ucleb); | 
 | 1100 | 	} | 
 | 1101 | 	return 0; | 
 | 1102 | } | 
 | 1103 |  | 
 | 1104 | /** | 
 | 1105 |  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. | 
 | 1106 |  * @c: UBIFS file-system description object | 
 | 1107 |  * | 
 | 1108 |  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty | 
 | 1109 |  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns | 
 | 1110 |  * zero in case of success and a negative error code in case of failure. | 
 | 1111 |  */ | 
 | 1112 | static int grab_empty_leb(struct ubifs_info *c) | 
 | 1113 | { | 
 | 1114 | 	int lnum, err; | 
 | 1115 |  | 
 | 1116 | 	/* | 
 | 1117 | 	 * Note, it is very important to first search for an empty LEB and then | 
 | 1118 | 	 * run the commit, not vice-versa. The reason is that there might be | 
 | 1119 | 	 * only one empty LEB at the moment, the one which has been the | 
 | 1120 | 	 * @c->gc_lnum just before the power cut happened. During the regular | 
 | 1121 | 	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no | 
 | 1122 | 	 * one but GC can grab it. But at this moment this single empty LEB is | 
 | 1123 | 	 * not marked as taken, so if we run commit - what happens? Right, the | 
 | 1124 | 	 * commit will grab it and write the index there. Remember that the | 
 | 1125 | 	 * index always expands as long as there is free space, and it only | 
 | 1126 | 	 * starts consolidating when we run out of space. | 
 | 1127 | 	 * | 
 | 1128 | 	 * IOW, if we run commit now, we might not be able to find a free LEB | 
 | 1129 | 	 * after this. | 
 | 1130 | 	 */ | 
 | 1131 | 	lnum = ubifs_find_free_leb_for_idx(c); | 
 | 1132 | 	if (lnum < 0) { | 
 | 1133 | 		ubifs_err(c, "could not find an empty LEB"); | 
 | 1134 | 		ubifs_dump_lprops(c); | 
 | 1135 | 		ubifs_dump_budg(c, &c->bi); | 
 | 1136 | 		return lnum; | 
 | 1137 | 	} | 
 | 1138 |  | 
 | 1139 | 	/* Reset the index flag */ | 
 | 1140 | 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, | 
 | 1141 | 				  LPROPS_INDEX, 0); | 
 | 1142 | 	if (err) | 
 | 1143 | 		return err; | 
 | 1144 |  | 
 | 1145 | 	c->gc_lnum = lnum; | 
 | 1146 | 	dbg_rcvry("found empty LEB %d, run commit", lnum); | 
 | 1147 |  | 
 | 1148 | 	return ubifs_run_commit(c); | 
 | 1149 | } | 
 | 1150 |  | 
 | 1151 | /** | 
 | 1152 |  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. | 
 | 1153 |  * @c: UBIFS file-system description object | 
 | 1154 |  * | 
 | 1155 |  * Out-of-place garbage collection requires always one empty LEB with which to | 
 | 1156 |  * start garbage collection. The LEB number is recorded in c->gc_lnum and is | 
 | 1157 |  * written to the master node on unmounting. In the case of an unclean unmount | 
 | 1158 |  * the value of gc_lnum recorded in the master node is out of date and cannot | 
 | 1159 |  * be used. Instead, recovery must allocate an empty LEB for this purpose. | 
 | 1160 |  * However, there may not be enough empty space, in which case it must be | 
 | 1161 |  * possible to GC the dirtiest LEB into the GC head LEB. | 
 | 1162 |  * | 
 | 1163 |  * This function also runs the commit which causes the TNC updates from | 
 | 1164 |  * size-recovery and orphans to be written to the flash. That is important to | 
 | 1165 |  * ensure correct replay order for subsequent mounts. | 
 | 1166 |  * | 
 | 1167 |  * This function returns %0 on success and a negative error code on failure. | 
 | 1168 |  */ | 
 | 1169 | int ubifs_rcvry_gc_commit(struct ubifs_info *c) | 
 | 1170 | { | 
 | 1171 | 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
 | 1172 | 	struct ubifs_lprops lp; | 
 | 1173 | 	int err; | 
 | 1174 |  | 
 | 1175 | 	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); | 
 | 1176 |  | 
 | 1177 | 	c->gc_lnum = -1; | 
 | 1178 | 	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) | 
 | 1179 | 		return grab_empty_leb(c); | 
 | 1180 |  | 
 | 1181 | 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); | 
 | 1182 | 	if (err) { | 
 | 1183 | 		if (err != -ENOSPC) | 
 | 1184 | 			return err; | 
 | 1185 |  | 
 | 1186 | 		dbg_rcvry("could not find a dirty LEB"); | 
 | 1187 | 		return grab_empty_leb(c); | 
 | 1188 | 	} | 
 | 1189 |  | 
 | 1190 | 	ubifs_assert(c, !(lp.flags & LPROPS_INDEX)); | 
 | 1191 | 	ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs); | 
 | 1192 |  | 
 | 1193 | 	/* | 
 | 1194 | 	 * We run the commit before garbage collection otherwise subsequent | 
 | 1195 | 	 * mounts will see the GC and orphan deletion in a different order. | 
 | 1196 | 	 */ | 
 | 1197 | 	dbg_rcvry("committing"); | 
 | 1198 | 	err = ubifs_run_commit(c); | 
 | 1199 | 	if (err) | 
 | 1200 | 		return err; | 
 | 1201 |  | 
 | 1202 | 	dbg_rcvry("GC'ing LEB %d", lp.lnum); | 
 | 1203 | 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
 | 1204 | 	err = ubifs_garbage_collect_leb(c, &lp); | 
 | 1205 | 	if (err >= 0) { | 
 | 1206 | 		int err2 = ubifs_wbuf_sync_nolock(wbuf); | 
 | 1207 |  | 
 | 1208 | 		if (err2) | 
 | 1209 | 			err = err2; | 
 | 1210 | 	} | 
 | 1211 | 	mutex_unlock(&wbuf->io_mutex); | 
 | 1212 | 	if (err < 0) { | 
 | 1213 | 		ubifs_err(c, "GC failed, error %d", err); | 
 | 1214 | 		if (err == -EAGAIN) | 
 | 1215 | 			err = -EINVAL; | 
 | 1216 | 		return err; | 
 | 1217 | 	} | 
 | 1218 |  | 
 | 1219 | 	ubifs_assert(c, err == LEB_RETAINED); | 
 | 1220 | 	if (err != LEB_RETAINED) | 
 | 1221 | 		return -EINVAL; | 
 | 1222 |  | 
 | 1223 | 	err = ubifs_leb_unmap(c, c->gc_lnum); | 
 | 1224 | 	if (err) | 
 | 1225 | 		return err; | 
 | 1226 |  | 
 | 1227 | 	dbg_rcvry("allocated LEB %d for GC", lp.lnum); | 
 | 1228 | 	return 0; | 
 | 1229 | } | 
 | 1230 |  | 
 | 1231 | /** | 
 | 1232 |  * struct size_entry - inode size information for recovery. | 
 | 1233 |  * @rb: link in the RB-tree of sizes | 
 | 1234 |  * @inum: inode number | 
 | 1235 |  * @i_size: size on inode | 
 | 1236 |  * @d_size: maximum size based on data nodes | 
 | 1237 |  * @exists: indicates whether the inode exists | 
 | 1238 |  * @inode: inode if pinned in memory awaiting rw mode to fix it | 
 | 1239 |  */ | 
 | 1240 | struct size_entry { | 
 | 1241 | 	struct rb_node rb; | 
 | 1242 | 	ino_t inum; | 
 | 1243 | 	loff_t i_size; | 
 | 1244 | 	loff_t d_size; | 
 | 1245 | 	int exists; | 
 | 1246 | 	struct inode *inode; | 
 | 1247 | }; | 
 | 1248 |  | 
 | 1249 | /** | 
 | 1250 |  * add_ino - add an entry to the size tree. | 
 | 1251 |  * @c: UBIFS file-system description object | 
 | 1252 |  * @inum: inode number | 
 | 1253 |  * @i_size: size on inode | 
 | 1254 |  * @d_size: maximum size based on data nodes | 
 | 1255 |  * @exists: indicates whether the inode exists | 
 | 1256 |  */ | 
 | 1257 | static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, | 
 | 1258 | 		   loff_t d_size, int exists) | 
 | 1259 | { | 
 | 1260 | 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; | 
 | 1261 | 	struct size_entry *e; | 
 | 1262 |  | 
 | 1263 | 	while (*p) { | 
 | 1264 | 		parent = *p; | 
 | 1265 | 		e = rb_entry(parent, struct size_entry, rb); | 
 | 1266 | 		if (inum < e->inum) | 
 | 1267 | 			p = &(*p)->rb_left; | 
 | 1268 | 		else | 
 | 1269 | 			p = &(*p)->rb_right; | 
 | 1270 | 	} | 
 | 1271 |  | 
 | 1272 | 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); | 
 | 1273 | 	if (!e) | 
 | 1274 | 		return -ENOMEM; | 
 | 1275 |  | 
 | 1276 | 	e->inum = inum; | 
 | 1277 | 	e->i_size = i_size; | 
 | 1278 | 	e->d_size = d_size; | 
 | 1279 | 	e->exists = exists; | 
 | 1280 |  | 
 | 1281 | 	rb_link_node(&e->rb, parent, p); | 
 | 1282 | 	rb_insert_color(&e->rb, &c->size_tree); | 
 | 1283 |  | 
 | 1284 | 	return 0; | 
 | 1285 | } | 
 | 1286 |  | 
 | 1287 | /** | 
 | 1288 |  * find_ino - find an entry on the size tree. | 
 | 1289 |  * @c: UBIFS file-system description object | 
 | 1290 |  * @inum: inode number | 
 | 1291 |  */ | 
 | 1292 | static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) | 
 | 1293 | { | 
 | 1294 | 	struct rb_node *p = c->size_tree.rb_node; | 
 | 1295 | 	struct size_entry *e; | 
 | 1296 |  | 
 | 1297 | 	while (p) { | 
 | 1298 | 		e = rb_entry(p, struct size_entry, rb); | 
 | 1299 | 		if (inum < e->inum) | 
 | 1300 | 			p = p->rb_left; | 
 | 1301 | 		else if (inum > e->inum) | 
 | 1302 | 			p = p->rb_right; | 
 | 1303 | 		else | 
 | 1304 | 			return e; | 
 | 1305 | 	} | 
 | 1306 | 	return NULL; | 
 | 1307 | } | 
 | 1308 |  | 
 | 1309 | /** | 
 | 1310 |  * remove_ino - remove an entry from the size tree. | 
 | 1311 |  * @c: UBIFS file-system description object | 
 | 1312 |  * @inum: inode number | 
 | 1313 |  */ | 
 | 1314 | static void remove_ino(struct ubifs_info *c, ino_t inum) | 
 | 1315 | { | 
 | 1316 | 	struct size_entry *e = find_ino(c, inum); | 
 | 1317 |  | 
 | 1318 | 	if (!e) | 
 | 1319 | 		return; | 
 | 1320 | 	rb_erase(&e->rb, &c->size_tree); | 
 | 1321 | 	kfree(e); | 
 | 1322 | } | 
 | 1323 |  | 
 | 1324 | /** | 
 | 1325 |  * ubifs_destroy_size_tree - free resources related to the size tree. | 
 | 1326 |  * @c: UBIFS file-system description object | 
 | 1327 |  */ | 
 | 1328 | void ubifs_destroy_size_tree(struct ubifs_info *c) | 
 | 1329 | { | 
 | 1330 | 	struct size_entry *e, *n; | 
 | 1331 |  | 
 | 1332 | 	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) { | 
 | 1333 | 		iput(e->inode); | 
 | 1334 | 		kfree(e); | 
 | 1335 | 	} | 
 | 1336 |  | 
 | 1337 | 	c->size_tree = RB_ROOT; | 
 | 1338 | } | 
 | 1339 |  | 
 | 1340 | /** | 
 | 1341 |  * ubifs_recover_size_accum - accumulate inode sizes for recovery. | 
 | 1342 |  * @c: UBIFS file-system description object | 
 | 1343 |  * @key: node key | 
 | 1344 |  * @deletion: node is for a deletion | 
 | 1345 |  * @new_size: inode size | 
 | 1346 |  * | 
 | 1347 |  * This function has two purposes: | 
 | 1348 |  *     1) to ensure there are no data nodes that fall outside the inode size | 
 | 1349 |  *     2) to ensure there are no data nodes for inodes that do not exist | 
 | 1350 |  * To accomplish those purposes, a rb-tree is constructed containing an entry | 
 | 1351 |  * for each inode number in the journal that has not been deleted, and recording | 
 | 1352 |  * the size from the inode node, the maximum size of any data node (also altered | 
 | 1353 |  * by truncations) and a flag indicating a inode number for which no inode node | 
 | 1354 |  * was present in the journal. | 
 | 1355 |  * | 
 | 1356 |  * Note that there is still the possibility that there are data nodes that have | 
 | 1357 |  * been committed that are beyond the inode size, however the only way to find | 
 | 1358 |  * them would be to scan the entire index. Alternatively, some provision could | 
 | 1359 |  * be made to record the size of inodes at the start of commit, which would seem | 
 | 1360 |  * very cumbersome for a scenario that is quite unlikely and the only negative | 
 | 1361 |  * consequence of which is wasted space. | 
 | 1362 |  * | 
 | 1363 |  * This functions returns %0 on success and a negative error code on failure. | 
 | 1364 |  */ | 
 | 1365 | int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, | 
 | 1366 | 			     int deletion, loff_t new_size) | 
 | 1367 | { | 
 | 1368 | 	ino_t inum = key_inum(c, key); | 
 | 1369 | 	struct size_entry *e; | 
 | 1370 | 	int err; | 
 | 1371 |  | 
 | 1372 | 	switch (key_type(c, key)) { | 
 | 1373 | 	case UBIFS_INO_KEY: | 
 | 1374 | 		if (deletion) | 
 | 1375 | 			remove_ino(c, inum); | 
 | 1376 | 		else { | 
 | 1377 | 			e = find_ino(c, inum); | 
 | 1378 | 			if (e) { | 
 | 1379 | 				e->i_size = new_size; | 
 | 1380 | 				e->exists = 1; | 
 | 1381 | 			} else { | 
 | 1382 | 				err = add_ino(c, inum, new_size, 0, 1); | 
 | 1383 | 				if (err) | 
 | 1384 | 					return err; | 
 | 1385 | 			} | 
 | 1386 | 		} | 
 | 1387 | 		break; | 
 | 1388 | 	case UBIFS_DATA_KEY: | 
 | 1389 | 		e = find_ino(c, inum); | 
 | 1390 | 		if (e) { | 
 | 1391 | 			if (new_size > e->d_size) | 
 | 1392 | 				e->d_size = new_size; | 
 | 1393 | 		} else { | 
 | 1394 | 			err = add_ino(c, inum, 0, new_size, 0); | 
 | 1395 | 			if (err) | 
 | 1396 | 				return err; | 
 | 1397 | 		} | 
 | 1398 | 		break; | 
 | 1399 | 	case UBIFS_TRUN_KEY: | 
 | 1400 | 		e = find_ino(c, inum); | 
 | 1401 | 		if (e) | 
 | 1402 | 			e->d_size = new_size; | 
 | 1403 | 		break; | 
 | 1404 | 	} | 
 | 1405 | 	return 0; | 
 | 1406 | } | 
 | 1407 |  | 
 | 1408 | /** | 
 | 1409 |  * fix_size_in_place - fix inode size in place on flash. | 
 | 1410 |  * @c: UBIFS file-system description object | 
 | 1411 |  * @e: inode size information for recovery | 
 | 1412 |  */ | 
 | 1413 | static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) | 
 | 1414 | { | 
 | 1415 | 	struct ubifs_ino_node *ino = c->sbuf; | 
 | 1416 | 	unsigned char *p; | 
 | 1417 | 	union ubifs_key key; | 
 | 1418 | 	int err, lnum, offs, len; | 
 | 1419 | 	loff_t i_size; | 
 | 1420 | 	uint32_t crc; | 
 | 1421 |  | 
 | 1422 | 	/* Locate the inode node LEB number and offset */ | 
 | 1423 | 	ino_key_init(c, &key, e->inum); | 
 | 1424 | 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); | 
 | 1425 | 	if (err) | 
 | 1426 | 		goto out; | 
 | 1427 | 	/* | 
 | 1428 | 	 * If the size recorded on the inode node is greater than the size that | 
 | 1429 | 	 * was calculated from nodes in the journal then don't change the inode. | 
 | 1430 | 	 */ | 
 | 1431 | 	i_size = le64_to_cpu(ino->size); | 
 | 1432 | 	if (i_size >= e->d_size) | 
 | 1433 | 		return 0; | 
 | 1434 | 	/* Read the LEB */ | 
 | 1435 | 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); | 
 | 1436 | 	if (err) | 
 | 1437 | 		goto out; | 
 | 1438 | 	/* Change the size field and recalculate the CRC */ | 
 | 1439 | 	ino = c->sbuf + offs; | 
 | 1440 | 	ino->size = cpu_to_le64(e->d_size); | 
 | 1441 | 	len = le32_to_cpu(ino->ch.len); | 
 | 1442 | 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); | 
 | 1443 | 	ino->ch.crc = cpu_to_le32(crc); | 
 | 1444 | 	/* Work out where data in the LEB ends and free space begins */ | 
 | 1445 | 	p = c->sbuf; | 
 | 1446 | 	len = c->leb_size - 1; | 
 | 1447 | 	while (p[len] == 0xff) | 
 | 1448 | 		len -= 1; | 
 | 1449 | 	len = ALIGN(len + 1, c->min_io_size); | 
 | 1450 | 	/* Atomically write the fixed LEB back again */ | 
 | 1451 | 	err = ubifs_leb_change(c, lnum, c->sbuf, len); | 
 | 1452 | 	if (err) | 
 | 1453 | 		goto out; | 
 | 1454 | 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", | 
 | 1455 | 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size); | 
 | 1456 | 	return 0; | 
 | 1457 |  | 
 | 1458 | out: | 
 | 1459 | 	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d", | 
 | 1460 | 		   (unsigned long)e->inum, e->i_size, e->d_size, err); | 
 | 1461 | 	return err; | 
 | 1462 | } | 
 | 1463 |  | 
 | 1464 | /** | 
 | 1465 |  * ubifs_recover_size - recover inode size. | 
 | 1466 |  * @c: UBIFS file-system description object | 
 | 1467 |  * | 
 | 1468 |  * This function attempts to fix inode size discrepancies identified by the | 
 | 1469 |  * 'ubifs_recover_size_accum()' function. | 
 | 1470 |  * | 
 | 1471 |  * This functions returns %0 on success and a negative error code on failure. | 
 | 1472 |  */ | 
 | 1473 | int ubifs_recover_size(struct ubifs_info *c) | 
 | 1474 | { | 
 | 1475 | 	struct rb_node *this = rb_first(&c->size_tree); | 
 | 1476 |  | 
 | 1477 | 	while (this) { | 
 | 1478 | 		struct size_entry *e; | 
 | 1479 | 		int err; | 
 | 1480 |  | 
 | 1481 | 		e = rb_entry(this, struct size_entry, rb); | 
 | 1482 | 		if (!e->exists) { | 
 | 1483 | 			union ubifs_key key; | 
 | 1484 |  | 
 | 1485 | 			ino_key_init(c, &key, e->inum); | 
 | 1486 | 			err = ubifs_tnc_lookup(c, &key, c->sbuf); | 
 | 1487 | 			if (err && err != -ENOENT) | 
 | 1488 | 				return err; | 
 | 1489 | 			if (err == -ENOENT) { | 
 | 1490 | 				/* Remove data nodes that have no inode */ | 
 | 1491 | 				dbg_rcvry("removing ino %lu", | 
 | 1492 | 					  (unsigned long)e->inum); | 
 | 1493 | 				err = ubifs_tnc_remove_ino(c, e->inum); | 
 | 1494 | 				if (err) | 
 | 1495 | 					return err; | 
 | 1496 | 			} else { | 
 | 1497 | 				struct ubifs_ino_node *ino = c->sbuf; | 
 | 1498 |  | 
 | 1499 | 				e->exists = 1; | 
 | 1500 | 				e->i_size = le64_to_cpu(ino->size); | 
 | 1501 | 			} | 
 | 1502 | 		} | 
 | 1503 |  | 
 | 1504 | 		if (e->exists && e->i_size < e->d_size) { | 
 | 1505 | 			if (c->ro_mount) { | 
 | 1506 | 				/* Fix the inode size and pin it in memory */ | 
 | 1507 | 				struct inode *inode; | 
 | 1508 | 				struct ubifs_inode *ui; | 
 | 1509 |  | 
 | 1510 | 				ubifs_assert(c, !e->inode); | 
 | 1511 |  | 
 | 1512 | 				inode = ubifs_iget(c->vfs_sb, e->inum); | 
 | 1513 | 				if (IS_ERR(inode)) | 
 | 1514 | 					return PTR_ERR(inode); | 
 | 1515 |  | 
 | 1516 | 				ui = ubifs_inode(inode); | 
 | 1517 | 				if (inode->i_size < e->d_size) { | 
 | 1518 | 					dbg_rcvry("ino %lu size %lld -> %lld", | 
 | 1519 | 						  (unsigned long)e->inum, | 
 | 1520 | 						  inode->i_size, e->d_size); | 
 | 1521 | 					inode->i_size = e->d_size; | 
 | 1522 | 					ui->ui_size = e->d_size; | 
 | 1523 | 					ui->synced_i_size = e->d_size; | 
 | 1524 | 					e->inode = inode; | 
 | 1525 | 					this = rb_next(this); | 
 | 1526 | 					continue; | 
 | 1527 | 				} | 
 | 1528 | 				iput(inode); | 
 | 1529 | 			} else { | 
 | 1530 | 				/* Fix the size in place */ | 
 | 1531 | 				err = fix_size_in_place(c, e); | 
 | 1532 | 				if (err) | 
 | 1533 | 					return err; | 
 | 1534 | 				iput(e->inode); | 
 | 1535 | 			} | 
 | 1536 | 		} | 
 | 1537 |  | 
 | 1538 | 		this = rb_next(this); | 
 | 1539 | 		rb_erase(&e->rb, &c->size_tree); | 
 | 1540 | 		kfree(e); | 
 | 1541 | 	} | 
 | 1542 |  | 
 | 1543 | 	return 0; | 
 | 1544 | } |