| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * inet fragments management |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version |
| 7 | * 2 of the License, or (at your option) any later version. |
| 8 | * |
| 9 | * Authors: Pavel Emelyanov <xemul@openvz.org> |
| 10 | * Started as consolidation of ipv4/ip_fragment.c, |
| 11 | * ipv6/reassembly. and ipv6 nf conntrack reassembly |
| 12 | */ |
| 13 | |
| 14 | #include <linux/list.h> |
| 15 | #include <linux/spinlock.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/timer.h> |
| 18 | #include <linux/mm.h> |
| 19 | #include <linux/random.h> |
| 20 | #include <linux/skbuff.h> |
| 21 | #include <linux/rtnetlink.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/rhashtable.h> |
| 24 | |
| 25 | #include <net/sock.h> |
| 26 | #include <net/inet_frag.h> |
| 27 | #include <net/inet_ecn.h> |
| 28 | #include <net/ip.h> |
| 29 | #include <net/ipv6.h> |
| 30 | |
| 31 | /* Use skb->cb to track consecutive/adjacent fragments coming at |
| 32 | * the end of the queue. Nodes in the rb-tree queue will |
| 33 | * contain "runs" of one or more adjacent fragments. |
| 34 | * |
| 35 | * Invariants: |
| 36 | * - next_frag is NULL at the tail of a "run"; |
| 37 | * - the head of a "run" has the sum of all fragment lengths in frag_run_len. |
| 38 | */ |
| 39 | struct ipfrag_skb_cb { |
| 40 | union { |
| 41 | struct inet_skb_parm h4; |
| 42 | struct inet6_skb_parm h6; |
| 43 | }; |
| 44 | struct sk_buff *next_frag; |
| 45 | int frag_run_len; |
| 46 | }; |
| 47 | |
| 48 | #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) |
| 49 | |
| 50 | static void fragcb_clear(struct sk_buff *skb) |
| 51 | { |
| 52 | RB_CLEAR_NODE(&skb->rbnode); |
| 53 | FRAG_CB(skb)->next_frag = NULL; |
| 54 | FRAG_CB(skb)->frag_run_len = skb->len; |
| 55 | } |
| 56 | |
| 57 | /* Append skb to the last "run". */ |
| 58 | static void fragrun_append_to_last(struct inet_frag_queue *q, |
| 59 | struct sk_buff *skb) |
| 60 | { |
| 61 | fragcb_clear(skb); |
| 62 | |
| 63 | FRAG_CB(q->last_run_head)->frag_run_len += skb->len; |
| 64 | FRAG_CB(q->fragments_tail)->next_frag = skb; |
| 65 | q->fragments_tail = skb; |
| 66 | } |
| 67 | |
| 68 | /* Create a new "run" with the skb. */ |
| 69 | static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) |
| 70 | { |
| 71 | BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); |
| 72 | fragcb_clear(skb); |
| 73 | |
| 74 | if (q->last_run_head) |
| 75 | rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, |
| 76 | &q->last_run_head->rbnode.rb_right); |
| 77 | else |
| 78 | rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); |
| 79 | rb_insert_color(&skb->rbnode, &q->rb_fragments); |
| 80 | |
| 81 | q->fragments_tail = skb; |
| 82 | q->last_run_head = skb; |
| 83 | } |
| 84 | |
| 85 | /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements |
| 86 | * Value : 0xff if frame should be dropped. |
| 87 | * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field |
| 88 | */ |
| 89 | const u8 ip_frag_ecn_table[16] = { |
| 90 | /* at least one fragment had CE, and others ECT_0 or ECT_1 */ |
| 91 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE, |
| 92 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
| 93 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
| 94 | |
| 95 | /* invalid combinations : drop frame */ |
| 96 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, |
| 97 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, |
| 98 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, |
| 99 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
| 100 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, |
| 101 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, |
| 102 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
| 103 | }; |
| 104 | EXPORT_SYMBOL(ip_frag_ecn_table); |
| 105 | |
| 106 | int inet_frags_init(struct inet_frags *f) |
| 107 | { |
| 108 | f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, |
| 109 | NULL); |
| 110 | if (!f->frags_cachep) |
| 111 | return -ENOMEM; |
| 112 | |
| 113 | return 0; |
| 114 | } |
| 115 | EXPORT_SYMBOL(inet_frags_init); |
| 116 | |
| 117 | void inet_frags_fini(struct inet_frags *f) |
| 118 | { |
| 119 | /* We must wait that all inet_frag_destroy_rcu() have completed. */ |
| 120 | rcu_barrier(); |
| 121 | |
| 122 | kmem_cache_destroy(f->frags_cachep); |
| 123 | f->frags_cachep = NULL; |
| 124 | } |
| 125 | EXPORT_SYMBOL(inet_frags_fini); |
| 126 | |
| 127 | static void inet_frags_free_cb(void *ptr, void *arg) |
| 128 | { |
| 129 | struct inet_frag_queue *fq = ptr; |
| 130 | |
| 131 | /* If we can not cancel the timer, it means this frag_queue |
| 132 | * is already disappearing, we have nothing to do. |
| 133 | * Otherwise, we own a refcount until the end of this function. |
| 134 | */ |
| 135 | if (!del_timer(&fq->timer)) |
| 136 | return; |
| 137 | |
| 138 | spin_lock_bh(&fq->lock); |
| 139 | if (!(fq->flags & INET_FRAG_COMPLETE)) { |
| 140 | fq->flags |= INET_FRAG_COMPLETE; |
| 141 | refcount_dec(&fq->refcnt); |
| 142 | } |
| 143 | spin_unlock_bh(&fq->lock); |
| 144 | |
| 145 | inet_frag_put(fq); |
| 146 | } |
| 147 | |
| 148 | void inet_frags_exit_net(struct netns_frags *nf) |
| 149 | { |
| 150 | nf->high_thresh = 0; /* prevent creation of new frags */ |
| 151 | |
| 152 | rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL); |
| 153 | } |
| 154 | EXPORT_SYMBOL(inet_frags_exit_net); |
| 155 | |
| 156 | void inet_frag_kill(struct inet_frag_queue *fq) |
| 157 | { |
| 158 | if (del_timer(&fq->timer)) |
| 159 | refcount_dec(&fq->refcnt); |
| 160 | |
| 161 | if (!(fq->flags & INET_FRAG_COMPLETE)) { |
| 162 | struct netns_frags *nf = fq->net; |
| 163 | |
| 164 | fq->flags |= INET_FRAG_COMPLETE; |
| 165 | rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params); |
| 166 | refcount_dec(&fq->refcnt); |
| 167 | } |
| 168 | } |
| 169 | EXPORT_SYMBOL(inet_frag_kill); |
| 170 | |
| 171 | static void inet_frag_destroy_rcu(struct rcu_head *head) |
| 172 | { |
| 173 | struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, |
| 174 | rcu); |
| 175 | struct inet_frags *f = q->net->f; |
| 176 | |
| 177 | if (f->destructor) |
| 178 | f->destructor(q); |
| 179 | kmem_cache_free(f->frags_cachep, q); |
| 180 | } |
| 181 | |
| 182 | unsigned int inet_frag_rbtree_purge(struct rb_root *root) |
| 183 | { |
| 184 | struct rb_node *p = rb_first(root); |
| 185 | unsigned int sum = 0; |
| 186 | |
| 187 | while (p) { |
| 188 | struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); |
| 189 | |
| 190 | p = rb_next(p); |
| 191 | rb_erase(&skb->rbnode, root); |
| 192 | while (skb) { |
| 193 | struct sk_buff *next = FRAG_CB(skb)->next_frag; |
| 194 | |
| 195 | sum += skb->truesize; |
| 196 | kfree_skb(skb); |
| 197 | skb = next; |
| 198 | } |
| 199 | } |
| 200 | return sum; |
| 201 | } |
| 202 | EXPORT_SYMBOL(inet_frag_rbtree_purge); |
| 203 | |
| 204 | void inet_frag_destroy(struct inet_frag_queue *q) |
| 205 | { |
| 206 | struct sk_buff *fp; |
| 207 | struct netns_frags *nf; |
| 208 | unsigned int sum, sum_truesize = 0; |
| 209 | struct inet_frags *f; |
| 210 | |
| 211 | WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); |
| 212 | WARN_ON(del_timer(&q->timer) != 0); |
| 213 | |
| 214 | /* Release all fragment data. */ |
| 215 | fp = q->fragments; |
| 216 | nf = q->net; |
| 217 | f = nf->f; |
| 218 | if (fp) { |
| 219 | do { |
| 220 | struct sk_buff *xp = fp->next; |
| 221 | |
| 222 | sum_truesize += fp->truesize; |
| 223 | kfree_skb(fp); |
| 224 | fp = xp; |
| 225 | } while (fp); |
| 226 | } else { |
| 227 | sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments); |
| 228 | } |
| 229 | sum = sum_truesize + f->qsize; |
| 230 | |
| 231 | call_rcu(&q->rcu, inet_frag_destroy_rcu); |
| 232 | |
| 233 | sub_frag_mem_limit(nf, sum); |
| 234 | } |
| 235 | EXPORT_SYMBOL(inet_frag_destroy); |
| 236 | |
| 237 | static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf, |
| 238 | struct inet_frags *f, |
| 239 | void *arg) |
| 240 | { |
| 241 | struct inet_frag_queue *q; |
| 242 | |
| 243 | q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); |
| 244 | if (!q) |
| 245 | return NULL; |
| 246 | |
| 247 | q->net = nf; |
| 248 | f->constructor(q, arg); |
| 249 | add_frag_mem_limit(nf, f->qsize); |
| 250 | |
| 251 | timer_setup(&q->timer, f->frag_expire, 0); |
| 252 | spin_lock_init(&q->lock); |
| 253 | refcount_set(&q->refcnt, 3); |
| 254 | |
| 255 | return q; |
| 256 | } |
| 257 | |
| 258 | static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf, |
| 259 | void *arg, |
| 260 | struct inet_frag_queue **prev) |
| 261 | { |
| 262 | struct inet_frags *f = nf->f; |
| 263 | struct inet_frag_queue *q; |
| 264 | |
| 265 | q = inet_frag_alloc(nf, f, arg); |
| 266 | if (!q) { |
| 267 | *prev = ERR_PTR(-ENOMEM); |
| 268 | return NULL; |
| 269 | } |
| 270 | mod_timer(&q->timer, jiffies + nf->timeout); |
| 271 | |
| 272 | *prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key, |
| 273 | &q->node, f->rhash_params); |
| 274 | if (*prev) { |
| 275 | q->flags |= INET_FRAG_COMPLETE; |
| 276 | inet_frag_kill(q); |
| 277 | inet_frag_destroy(q); |
| 278 | return NULL; |
| 279 | } |
| 280 | return q; |
| 281 | } |
| 282 | |
| 283 | /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */ |
| 284 | struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key) |
| 285 | { |
| 286 | struct inet_frag_queue *fq = NULL, *prev; |
| 287 | |
| 288 | if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh) |
| 289 | return NULL; |
| 290 | |
| 291 | rcu_read_lock(); |
| 292 | |
| 293 | prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params); |
| 294 | if (!prev) |
| 295 | fq = inet_frag_create(nf, key, &prev); |
| 296 | if (prev && !IS_ERR(prev)) { |
| 297 | fq = prev; |
| 298 | if (!refcount_inc_not_zero(&fq->refcnt)) |
| 299 | fq = NULL; |
| 300 | } |
| 301 | rcu_read_unlock(); |
| 302 | return fq; |
| 303 | } |
| 304 | EXPORT_SYMBOL(inet_frag_find); |
| 305 | |
| 306 | int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, |
| 307 | int offset, int end) |
| 308 | { |
| 309 | struct sk_buff *last = q->fragments_tail; |
| 310 | |
| 311 | /* RFC5722, Section 4, amended by Errata ID : 3089 |
| 312 | * When reassembling an IPv6 datagram, if |
| 313 | * one or more its constituent fragments is determined to be an |
| 314 | * overlapping fragment, the entire datagram (and any constituent |
| 315 | * fragments) MUST be silently discarded. |
| 316 | * |
| 317 | * Duplicates, however, should be ignored (i.e. skb dropped, but the |
| 318 | * queue/fragments kept for later reassembly). |
| 319 | */ |
| 320 | if (!last) |
| 321 | fragrun_create(q, skb); /* First fragment. */ |
| 322 | else if (last->ip_defrag_offset + last->len < end) { |
| 323 | /* This is the common case: skb goes to the end. */ |
| 324 | /* Detect and discard overlaps. */ |
| 325 | if (offset < last->ip_defrag_offset + last->len) |
| 326 | return IPFRAG_OVERLAP; |
| 327 | if (offset == last->ip_defrag_offset + last->len) |
| 328 | fragrun_append_to_last(q, skb); |
| 329 | else |
| 330 | fragrun_create(q, skb); |
| 331 | } else { |
| 332 | /* Binary search. Note that skb can become the first fragment, |
| 333 | * but not the last (covered above). |
| 334 | */ |
| 335 | struct rb_node **rbn, *parent; |
| 336 | |
| 337 | rbn = &q->rb_fragments.rb_node; |
| 338 | do { |
| 339 | struct sk_buff *curr; |
| 340 | int curr_run_end; |
| 341 | |
| 342 | parent = *rbn; |
| 343 | curr = rb_to_skb(parent); |
| 344 | curr_run_end = curr->ip_defrag_offset + |
| 345 | FRAG_CB(curr)->frag_run_len; |
| 346 | if (end <= curr->ip_defrag_offset) |
| 347 | rbn = &parent->rb_left; |
| 348 | else if (offset >= curr_run_end) |
| 349 | rbn = &parent->rb_right; |
| 350 | else if (offset >= curr->ip_defrag_offset && |
| 351 | end <= curr_run_end) |
| 352 | return IPFRAG_DUP; |
| 353 | else |
| 354 | return IPFRAG_OVERLAP; |
| 355 | } while (*rbn); |
| 356 | /* Here we have parent properly set, and rbn pointing to |
| 357 | * one of its NULL left/right children. Insert skb. |
| 358 | */ |
| 359 | fragcb_clear(skb); |
| 360 | rb_link_node(&skb->rbnode, parent, rbn); |
| 361 | rb_insert_color(&skb->rbnode, &q->rb_fragments); |
| 362 | } |
| 363 | |
| 364 | skb->ip_defrag_offset = offset; |
| 365 | |
| 366 | return IPFRAG_OK; |
| 367 | } |
| 368 | EXPORT_SYMBOL(inet_frag_queue_insert); |
| 369 | |
| 370 | void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, |
| 371 | struct sk_buff *parent) |
| 372 | { |
| 373 | struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); |
| 374 | struct sk_buff **nextp; |
| 375 | int delta; |
| 376 | |
| 377 | if (head != skb) { |
| 378 | fp = skb_clone(skb, GFP_ATOMIC); |
| 379 | if (!fp) |
| 380 | return NULL; |
| 381 | FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; |
| 382 | if (RB_EMPTY_NODE(&skb->rbnode)) |
| 383 | FRAG_CB(parent)->next_frag = fp; |
| 384 | else |
| 385 | rb_replace_node(&skb->rbnode, &fp->rbnode, |
| 386 | &q->rb_fragments); |
| 387 | if (q->fragments_tail == skb) |
| 388 | q->fragments_tail = fp; |
| 389 | skb_morph(skb, head); |
| 390 | FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; |
| 391 | rb_replace_node(&head->rbnode, &skb->rbnode, |
| 392 | &q->rb_fragments); |
| 393 | consume_skb(head); |
| 394 | head = skb; |
| 395 | } |
| 396 | WARN_ON(head->ip_defrag_offset != 0); |
| 397 | |
| 398 | delta = -head->truesize; |
| 399 | |
| 400 | /* Head of list must not be cloned. */ |
| 401 | if (skb_unclone(head, GFP_ATOMIC)) |
| 402 | return NULL; |
| 403 | |
| 404 | delta += head->truesize; |
| 405 | if (delta) |
| 406 | add_frag_mem_limit(q->net, delta); |
| 407 | |
| 408 | /* If the first fragment is fragmented itself, we split |
| 409 | * it to two chunks: the first with data and paged part |
| 410 | * and the second, holding only fragments. |
| 411 | */ |
| 412 | if (skb_has_frag_list(head)) { |
| 413 | struct sk_buff *clone; |
| 414 | int i, plen = 0; |
| 415 | |
| 416 | clone = alloc_skb(0, GFP_ATOMIC); |
| 417 | if (!clone) |
| 418 | return NULL; |
| 419 | skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; |
| 420 | skb_frag_list_init(head); |
| 421 | for (i = 0; i < skb_shinfo(head)->nr_frags; i++) |
| 422 | plen += skb_frag_size(&skb_shinfo(head)->frags[i]); |
| 423 | clone->data_len = head->data_len - plen; |
| 424 | clone->len = clone->data_len; |
| 425 | head->truesize += clone->truesize; |
| 426 | clone->csum = 0; |
| 427 | clone->ip_summed = head->ip_summed; |
| 428 | add_frag_mem_limit(q->net, clone->truesize); |
| 429 | skb_shinfo(head)->frag_list = clone; |
| 430 | nextp = &clone->next; |
| 431 | } else { |
| 432 | nextp = &skb_shinfo(head)->frag_list; |
| 433 | } |
| 434 | |
| 435 | return nextp; |
| 436 | } |
| 437 | EXPORT_SYMBOL(inet_frag_reasm_prepare); |
| 438 | |
| 439 | void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, |
| 440 | void *reasm_data) |
| 441 | { |
| 442 | struct sk_buff **nextp = (struct sk_buff **)reasm_data; |
| 443 | struct rb_node *rbn; |
| 444 | struct sk_buff *fp; |
| 445 | |
| 446 | skb_push(head, head->data - skb_network_header(head)); |
| 447 | |
| 448 | /* Traverse the tree in order, to build frag_list. */ |
| 449 | fp = FRAG_CB(head)->next_frag; |
| 450 | rbn = rb_next(&head->rbnode); |
| 451 | rb_erase(&head->rbnode, &q->rb_fragments); |
| 452 | while (rbn || fp) { |
| 453 | /* fp points to the next sk_buff in the current run; |
| 454 | * rbn points to the next run. |
| 455 | */ |
| 456 | /* Go through the current run. */ |
| 457 | while (fp) { |
| 458 | *nextp = fp; |
| 459 | nextp = &fp->next; |
| 460 | fp->prev = NULL; |
| 461 | memset(&fp->rbnode, 0, sizeof(fp->rbnode)); |
| 462 | fp->sk = NULL; |
| 463 | head->data_len += fp->len; |
| 464 | head->len += fp->len; |
| 465 | if (head->ip_summed != fp->ip_summed) |
| 466 | head->ip_summed = CHECKSUM_NONE; |
| 467 | else if (head->ip_summed == CHECKSUM_COMPLETE) |
| 468 | head->csum = csum_add(head->csum, fp->csum); |
| 469 | head->truesize += fp->truesize; |
| 470 | fp = FRAG_CB(fp)->next_frag; |
| 471 | } |
| 472 | /* Move to the next run. */ |
| 473 | if (rbn) { |
| 474 | struct rb_node *rbnext = rb_next(rbn); |
| 475 | |
| 476 | fp = rb_to_skb(rbn); |
| 477 | rb_erase(rbn, &q->rb_fragments); |
| 478 | rbn = rbnext; |
| 479 | } |
| 480 | } |
| 481 | sub_frag_mem_limit(q->net, head->truesize); |
| 482 | |
| 483 | *nextp = NULL; |
| 484 | skb_mark_not_on_list(head); |
| 485 | head->prev = NULL; |
| 486 | head->tstamp = q->stamp; |
| 487 | } |
| 488 | EXPORT_SYMBOL(inet_frag_reasm_finish); |
| 489 | |
| 490 | struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) |
| 491 | { |
| 492 | struct sk_buff *head; |
| 493 | |
| 494 | if (q->fragments) { |
| 495 | head = q->fragments; |
| 496 | q->fragments = head->next; |
| 497 | } else { |
| 498 | struct sk_buff *skb; |
| 499 | |
| 500 | head = skb_rb_first(&q->rb_fragments); |
| 501 | if (!head) |
| 502 | return NULL; |
| 503 | skb = FRAG_CB(head)->next_frag; |
| 504 | if (skb) |
| 505 | rb_replace_node(&head->rbnode, &skb->rbnode, |
| 506 | &q->rb_fragments); |
| 507 | else |
| 508 | rb_erase(&head->rbnode, &q->rb_fragments); |
| 509 | memset(&head->rbnode, 0, sizeof(head->rbnode)); |
| 510 | barrier(); |
| 511 | } |
| 512 | if (head == q->fragments_tail) |
| 513 | q->fragments_tail = NULL; |
| 514 | |
| 515 | sub_frag_mem_limit(q->net, head->truesize); |
| 516 | |
| 517 | return head; |
| 518 | } |
| 519 | EXPORT_SYMBOL(inet_frag_pull_head); |