| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* linux/arch/arm/mach-exynos4/mct.c | 
|  | 2 | * | 
|  | 3 | * Copyright (c) 2011 Samsung Electronics Co., Ltd. | 
|  | 4 | *		http://www.samsung.com | 
|  | 5 | * | 
|  | 6 | * EXYNOS4 MCT(Multi-Core Timer) support | 
|  | 7 | * | 
|  | 8 | * This program is free software; you can redistribute it and/or modify | 
|  | 9 | * it under the terms of the GNU General Public License version 2 as | 
|  | 10 | * published by the Free Software Foundation. | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | #include <linux/sched.h> | 
|  | 14 | #include <linux/interrupt.h> | 
|  | 15 | #include <linux/irq.h> | 
|  | 16 | #include <linux/err.h> | 
|  | 17 | #include <linux/clk.h> | 
|  | 18 | #include <linux/clockchips.h> | 
|  | 19 | #include <linux/cpu.h> | 
|  | 20 | #include <linux/platform_device.h> | 
|  | 21 | #include <linux/delay.h> | 
|  | 22 | #include <linux/percpu.h> | 
|  | 23 | #include <linux/of.h> | 
|  | 24 | #include <linux/of_irq.h> | 
|  | 25 | #include <linux/of_address.h> | 
|  | 26 | #include <linux/clocksource.h> | 
|  | 27 | #include <linux/sched_clock.h> | 
|  | 28 |  | 
|  | 29 | #define EXYNOS4_MCTREG(x)		(x) | 
|  | 30 | #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100) | 
|  | 31 | #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104) | 
|  | 32 | #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110) | 
|  | 33 | #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200) | 
|  | 34 | #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204) | 
|  | 35 | #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208) | 
|  | 36 | #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240) | 
|  | 37 | #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244) | 
|  | 38 | #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248) | 
|  | 39 | #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C) | 
|  | 40 | #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300) | 
|  | 41 | #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x)) | 
|  | 42 | #define EXYNOS4_MCT_L_MASK		(0xffffff00) | 
|  | 43 |  | 
|  | 44 | #define MCT_L_TCNTB_OFFSET		(0x00) | 
|  | 45 | #define MCT_L_ICNTB_OFFSET		(0x08) | 
|  | 46 | #define MCT_L_TCON_OFFSET		(0x20) | 
|  | 47 | #define MCT_L_INT_CSTAT_OFFSET		(0x30) | 
|  | 48 | #define MCT_L_INT_ENB_OFFSET		(0x34) | 
|  | 49 | #define MCT_L_WSTAT_OFFSET		(0x40) | 
|  | 50 | #define MCT_G_TCON_START		(1 << 8) | 
|  | 51 | #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1) | 
|  | 52 | #define MCT_G_TCON_COMP0_ENABLE		(1 << 0) | 
|  | 53 | #define MCT_L_TCON_INTERVAL_MODE	(1 << 2) | 
|  | 54 | #define MCT_L_TCON_INT_START		(1 << 1) | 
|  | 55 | #define MCT_L_TCON_TIMER_START		(1 << 0) | 
|  | 56 |  | 
|  | 57 | #define TICK_BASE_CNT	1 | 
|  | 58 |  | 
|  | 59 | enum { | 
|  | 60 | MCT_INT_SPI, | 
|  | 61 | MCT_INT_PPI | 
|  | 62 | }; | 
|  | 63 |  | 
|  | 64 | enum { | 
|  | 65 | MCT_G0_IRQ, | 
|  | 66 | MCT_G1_IRQ, | 
|  | 67 | MCT_G2_IRQ, | 
|  | 68 | MCT_G3_IRQ, | 
|  | 69 | MCT_L0_IRQ, | 
|  | 70 | MCT_L1_IRQ, | 
|  | 71 | MCT_L2_IRQ, | 
|  | 72 | MCT_L3_IRQ, | 
|  | 73 | MCT_L4_IRQ, | 
|  | 74 | MCT_L5_IRQ, | 
|  | 75 | MCT_L6_IRQ, | 
|  | 76 | MCT_L7_IRQ, | 
|  | 77 | MCT_NR_IRQS, | 
|  | 78 | }; | 
|  | 79 |  | 
|  | 80 | static void __iomem *reg_base; | 
|  | 81 | static unsigned long clk_rate; | 
|  | 82 | static unsigned int mct_int_type; | 
|  | 83 | static int mct_irqs[MCT_NR_IRQS]; | 
|  | 84 |  | 
|  | 85 | struct mct_clock_event_device { | 
|  | 86 | struct clock_event_device evt; | 
|  | 87 | unsigned long base; | 
|  | 88 | char name[10]; | 
|  | 89 | }; | 
|  | 90 |  | 
|  | 91 | static void exynos4_mct_write(unsigned int value, unsigned long offset) | 
|  | 92 | { | 
|  | 93 | unsigned long stat_addr; | 
|  | 94 | u32 mask; | 
|  | 95 | u32 i; | 
|  | 96 |  | 
|  | 97 | writel_relaxed(value, reg_base + offset); | 
|  | 98 |  | 
|  | 99 | if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) { | 
|  | 100 | stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET; | 
|  | 101 | switch (offset & ~EXYNOS4_MCT_L_MASK) { | 
|  | 102 | case MCT_L_TCON_OFFSET: | 
|  | 103 | mask = 1 << 3;		/* L_TCON write status */ | 
|  | 104 | break; | 
|  | 105 | case MCT_L_ICNTB_OFFSET: | 
|  | 106 | mask = 1 << 1;		/* L_ICNTB write status */ | 
|  | 107 | break; | 
|  | 108 | case MCT_L_TCNTB_OFFSET: | 
|  | 109 | mask = 1 << 0;		/* L_TCNTB write status */ | 
|  | 110 | break; | 
|  | 111 | default: | 
|  | 112 | return; | 
|  | 113 | } | 
|  | 114 | } else { | 
|  | 115 | switch (offset) { | 
|  | 116 | case EXYNOS4_MCT_G_TCON: | 
|  | 117 | stat_addr = EXYNOS4_MCT_G_WSTAT; | 
|  | 118 | mask = 1 << 16;		/* G_TCON write status */ | 
|  | 119 | break; | 
|  | 120 | case EXYNOS4_MCT_G_COMP0_L: | 
|  | 121 | stat_addr = EXYNOS4_MCT_G_WSTAT; | 
|  | 122 | mask = 1 << 0;		/* G_COMP0_L write status */ | 
|  | 123 | break; | 
|  | 124 | case EXYNOS4_MCT_G_COMP0_U: | 
|  | 125 | stat_addr = EXYNOS4_MCT_G_WSTAT; | 
|  | 126 | mask = 1 << 1;		/* G_COMP0_U write status */ | 
|  | 127 | break; | 
|  | 128 | case EXYNOS4_MCT_G_COMP0_ADD_INCR: | 
|  | 129 | stat_addr = EXYNOS4_MCT_G_WSTAT; | 
|  | 130 | mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */ | 
|  | 131 | break; | 
|  | 132 | case EXYNOS4_MCT_G_CNT_L: | 
|  | 133 | stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; | 
|  | 134 | mask = 1 << 0;		/* G_CNT_L write status */ | 
|  | 135 | break; | 
|  | 136 | case EXYNOS4_MCT_G_CNT_U: | 
|  | 137 | stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; | 
|  | 138 | mask = 1 << 1;		/* G_CNT_U write status */ | 
|  | 139 | break; | 
|  | 140 | default: | 
|  | 141 | return; | 
|  | 142 | } | 
|  | 143 | } | 
|  | 144 |  | 
|  | 145 | /* Wait maximum 1 ms until written values are applied */ | 
|  | 146 | for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) | 
|  | 147 | if (readl_relaxed(reg_base + stat_addr) & mask) { | 
|  | 148 | writel_relaxed(mask, reg_base + stat_addr); | 
|  | 149 | return; | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset); | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | /* Clocksource handling */ | 
|  | 156 | static void exynos4_mct_frc_start(void) | 
|  | 157 | { | 
|  | 158 | u32 reg; | 
|  | 159 |  | 
|  | 160 | reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); | 
|  | 161 | reg |= MCT_G_TCON_START; | 
|  | 162 | exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); | 
|  | 163 | } | 
|  | 164 |  | 
|  | 165 | /** | 
|  | 166 | * exynos4_read_count_64 - Read all 64-bits of the global counter | 
|  | 167 | * | 
|  | 168 | * This will read all 64-bits of the global counter taking care to make sure | 
|  | 169 | * that the upper and lower half match.  Note that reading the MCT can be quite | 
|  | 170 | * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half | 
|  | 171 | * only) version when possible. | 
|  | 172 | * | 
|  | 173 | * Returns the number of cycles in the global counter. | 
|  | 174 | */ | 
|  | 175 | static u64 exynos4_read_count_64(void) | 
|  | 176 | { | 
|  | 177 | unsigned int lo, hi; | 
|  | 178 | u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); | 
|  | 179 |  | 
|  | 180 | do { | 
|  | 181 | hi = hi2; | 
|  | 182 | lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); | 
|  | 183 | hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); | 
|  | 184 | } while (hi != hi2); | 
|  | 185 |  | 
|  | 186 | return ((u64)hi << 32) | lo; | 
|  | 187 | } | 
|  | 188 |  | 
|  | 189 | /** | 
|  | 190 | * exynos4_read_count_32 - Read the lower 32-bits of the global counter | 
|  | 191 | * | 
|  | 192 | * This will read just the lower 32-bits of the global counter.  This is marked | 
|  | 193 | * as notrace so it can be used by the scheduler clock. | 
|  | 194 | * | 
|  | 195 | * Returns the number of cycles in the global counter (lower 32 bits). | 
|  | 196 | */ | 
|  | 197 | static u32 notrace exynos4_read_count_32(void) | 
|  | 198 | { | 
|  | 199 | return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | static u64 exynos4_frc_read(struct clocksource *cs) | 
|  | 203 | { | 
|  | 204 | return exynos4_read_count_32(); | 
|  | 205 | } | 
|  | 206 |  | 
|  | 207 | static void exynos4_frc_resume(struct clocksource *cs) | 
|  | 208 | { | 
|  | 209 | exynos4_mct_frc_start(); | 
|  | 210 | } | 
|  | 211 |  | 
|  | 212 | static struct clocksource mct_frc = { | 
|  | 213 | .name		= "mct-frc", | 
|  | 214 | .rating		= 450,	/* use value higher than ARM arch timer */ | 
|  | 215 | .read		= exynos4_frc_read, | 
|  | 216 | .mask		= CLOCKSOURCE_MASK(32), | 
|  | 217 | .flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | 218 | .resume		= exynos4_frc_resume, | 
|  | 219 | }; | 
|  | 220 |  | 
|  | 221 | static u64 notrace exynos4_read_sched_clock(void) | 
|  | 222 | { | 
|  | 223 | return exynos4_read_count_32(); | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | #if defined(CONFIG_ARM) | 
|  | 227 | static struct delay_timer exynos4_delay_timer; | 
|  | 228 |  | 
|  | 229 | static cycles_t exynos4_read_current_timer(void) | 
|  | 230 | { | 
|  | 231 | BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32), | 
|  | 232 | "cycles_t needs to move to 32-bit for ARM64 usage"); | 
|  | 233 | return exynos4_read_count_32(); | 
|  | 234 | } | 
|  | 235 | #endif | 
|  | 236 |  | 
|  | 237 | static int __init exynos4_clocksource_init(void) | 
|  | 238 | { | 
|  | 239 | exynos4_mct_frc_start(); | 
|  | 240 |  | 
|  | 241 | #if defined(CONFIG_ARM) | 
|  | 242 | exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer; | 
|  | 243 | exynos4_delay_timer.freq = clk_rate; | 
|  | 244 | register_current_timer_delay(&exynos4_delay_timer); | 
|  | 245 | #endif | 
|  | 246 |  | 
|  | 247 | if (clocksource_register_hz(&mct_frc, clk_rate)) | 
|  | 248 | panic("%s: can't register clocksource\n", mct_frc.name); | 
|  | 249 |  | 
|  | 250 | sched_clock_register(exynos4_read_sched_clock, 32, clk_rate); | 
|  | 251 |  | 
|  | 252 | return 0; | 
|  | 253 | } | 
|  | 254 |  | 
|  | 255 | static void exynos4_mct_comp0_stop(void) | 
|  | 256 | { | 
|  | 257 | unsigned int tcon; | 
|  | 258 |  | 
|  | 259 | tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); | 
|  | 260 | tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); | 
|  | 261 |  | 
|  | 262 | exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); | 
|  | 263 | exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles) | 
|  | 267 | { | 
|  | 268 | unsigned int tcon; | 
|  | 269 | u64 comp_cycle; | 
|  | 270 |  | 
|  | 271 | tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); | 
|  | 272 |  | 
|  | 273 | if (periodic) { | 
|  | 274 | tcon |= MCT_G_TCON_COMP0_AUTO_INC; | 
|  | 275 | exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); | 
|  | 276 | } | 
|  | 277 |  | 
|  | 278 | comp_cycle = exynos4_read_count_64() + cycles; | 
|  | 279 | exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); | 
|  | 280 | exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); | 
|  | 281 |  | 
|  | 282 | exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); | 
|  | 283 |  | 
|  | 284 | tcon |= MCT_G_TCON_COMP0_ENABLE; | 
|  | 285 | exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | static int exynos4_comp_set_next_event(unsigned long cycles, | 
|  | 289 | struct clock_event_device *evt) | 
|  | 290 | { | 
|  | 291 | exynos4_mct_comp0_start(false, cycles); | 
|  | 292 |  | 
|  | 293 | return 0; | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | static int mct_set_state_shutdown(struct clock_event_device *evt) | 
|  | 297 | { | 
|  | 298 | exynos4_mct_comp0_stop(); | 
|  | 299 | return 0; | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | static int mct_set_state_periodic(struct clock_event_device *evt) | 
|  | 303 | { | 
|  | 304 | unsigned long cycles_per_jiffy; | 
|  | 305 |  | 
|  | 306 | cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) | 
|  | 307 | >> evt->shift); | 
|  | 308 | exynos4_mct_comp0_stop(); | 
|  | 309 | exynos4_mct_comp0_start(true, cycles_per_jiffy); | 
|  | 310 | return 0; | 
|  | 311 | } | 
|  | 312 |  | 
|  | 313 | static struct clock_event_device mct_comp_device = { | 
|  | 314 | .name			= "mct-comp", | 
|  | 315 | .features		= CLOCK_EVT_FEAT_PERIODIC | | 
|  | 316 | CLOCK_EVT_FEAT_ONESHOT, | 
|  | 317 | .rating			= 250, | 
|  | 318 | .set_next_event		= exynos4_comp_set_next_event, | 
|  | 319 | .set_state_periodic	= mct_set_state_periodic, | 
|  | 320 | .set_state_shutdown	= mct_set_state_shutdown, | 
|  | 321 | .set_state_oneshot	= mct_set_state_shutdown, | 
|  | 322 | .set_state_oneshot_stopped = mct_set_state_shutdown, | 
|  | 323 | .tick_resume		= mct_set_state_shutdown, | 
|  | 324 | }; | 
|  | 325 |  | 
|  | 326 | static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) | 
|  | 327 | { | 
|  | 328 | struct clock_event_device *evt = dev_id; | 
|  | 329 |  | 
|  | 330 | exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); | 
|  | 331 |  | 
|  | 332 | evt->event_handler(evt); | 
|  | 333 |  | 
|  | 334 | return IRQ_HANDLED; | 
|  | 335 | } | 
|  | 336 |  | 
|  | 337 | static struct irqaction mct_comp_event_irq = { | 
|  | 338 | .name		= "mct_comp_irq", | 
|  | 339 | .flags		= IRQF_TIMER | IRQF_IRQPOLL, | 
|  | 340 | .handler	= exynos4_mct_comp_isr, | 
|  | 341 | .dev_id		= &mct_comp_device, | 
|  | 342 | }; | 
|  | 343 |  | 
|  | 344 | static int exynos4_clockevent_init(void) | 
|  | 345 | { | 
|  | 346 | mct_comp_device.cpumask = cpumask_of(0); | 
|  | 347 | clockevents_config_and_register(&mct_comp_device, clk_rate, | 
|  | 348 | 0xf, 0xffffffff); | 
|  | 349 | setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq); | 
|  | 350 |  | 
|  | 351 | return 0; | 
|  | 352 | } | 
|  | 353 |  | 
|  | 354 | static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick); | 
|  | 355 |  | 
|  | 356 | /* Clock event handling */ | 
|  | 357 | static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) | 
|  | 358 | { | 
|  | 359 | unsigned long tmp; | 
|  | 360 | unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; | 
|  | 361 | unsigned long offset = mevt->base + MCT_L_TCON_OFFSET; | 
|  | 362 |  | 
|  | 363 | tmp = readl_relaxed(reg_base + offset); | 
|  | 364 | if (tmp & mask) { | 
|  | 365 | tmp &= ~mask; | 
|  | 366 | exynos4_mct_write(tmp, offset); | 
|  | 367 | } | 
|  | 368 | } | 
|  | 369 |  | 
|  | 370 | static void exynos4_mct_tick_start(unsigned long cycles, | 
|  | 371 | struct mct_clock_event_device *mevt) | 
|  | 372 | { | 
|  | 373 | unsigned long tmp; | 
|  | 374 |  | 
|  | 375 | exynos4_mct_tick_stop(mevt); | 
|  | 376 |  | 
|  | 377 | tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */ | 
|  | 378 |  | 
|  | 379 | /* update interrupt count buffer */ | 
|  | 380 | exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); | 
|  | 381 |  | 
|  | 382 | /* enable MCT tick interrupt */ | 
|  | 383 | exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); | 
|  | 384 |  | 
|  | 385 | tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET); | 
|  | 386 | tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | | 
|  | 387 | MCT_L_TCON_INTERVAL_MODE; | 
|  | 388 | exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt) | 
|  | 392 | { | 
|  | 393 | /* Clear the MCT tick interrupt */ | 
|  | 394 | if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) | 
|  | 395 | exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | static int exynos4_tick_set_next_event(unsigned long cycles, | 
|  | 399 | struct clock_event_device *evt) | 
|  | 400 | { | 
|  | 401 | struct mct_clock_event_device *mevt; | 
|  | 402 |  | 
|  | 403 | mevt = container_of(evt, struct mct_clock_event_device, evt); | 
|  | 404 | exynos4_mct_tick_start(cycles, mevt); | 
|  | 405 | return 0; | 
|  | 406 | } | 
|  | 407 |  | 
|  | 408 | static int set_state_shutdown(struct clock_event_device *evt) | 
|  | 409 | { | 
|  | 410 | struct mct_clock_event_device *mevt; | 
|  | 411 |  | 
|  | 412 | mevt = container_of(evt, struct mct_clock_event_device, evt); | 
|  | 413 | exynos4_mct_tick_stop(mevt); | 
|  | 414 | exynos4_mct_tick_clear(mevt); | 
|  | 415 | return 0; | 
|  | 416 | } | 
|  | 417 |  | 
|  | 418 | static int set_state_periodic(struct clock_event_device *evt) | 
|  | 419 | { | 
|  | 420 | struct mct_clock_event_device *mevt; | 
|  | 421 | unsigned long cycles_per_jiffy; | 
|  | 422 |  | 
|  | 423 | mevt = container_of(evt, struct mct_clock_event_device, evt); | 
|  | 424 | cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) | 
|  | 425 | >> evt->shift); | 
|  | 426 | exynos4_mct_tick_stop(mevt); | 
|  | 427 | exynos4_mct_tick_start(cycles_per_jiffy, mevt); | 
|  | 428 | return 0; | 
|  | 429 | } | 
|  | 430 |  | 
|  | 431 | static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) | 
|  | 432 | { | 
|  | 433 | struct mct_clock_event_device *mevt = dev_id; | 
|  | 434 | struct clock_event_device *evt = &mevt->evt; | 
|  | 435 |  | 
|  | 436 | /* | 
|  | 437 | * This is for supporting oneshot mode. | 
|  | 438 | * Mct would generate interrupt periodically | 
|  | 439 | * without explicit stopping. | 
|  | 440 | */ | 
|  | 441 | if (!clockevent_state_periodic(&mevt->evt)) | 
|  | 442 | exynos4_mct_tick_stop(mevt); | 
|  | 443 |  | 
|  | 444 | exynos4_mct_tick_clear(mevt); | 
|  | 445 |  | 
|  | 446 | evt->event_handler(evt); | 
|  | 447 |  | 
|  | 448 | return IRQ_HANDLED; | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | static int exynos4_mct_starting_cpu(unsigned int cpu) | 
|  | 452 | { | 
|  | 453 | struct mct_clock_event_device *mevt = | 
|  | 454 | per_cpu_ptr(&percpu_mct_tick, cpu); | 
|  | 455 | struct clock_event_device *evt = &mevt->evt; | 
|  | 456 |  | 
|  | 457 | mevt->base = EXYNOS4_MCT_L_BASE(cpu); | 
|  | 458 | snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu); | 
|  | 459 |  | 
|  | 460 | evt->name = mevt->name; | 
|  | 461 | evt->cpumask = cpumask_of(cpu); | 
|  | 462 | evt->set_next_event = exynos4_tick_set_next_event; | 
|  | 463 | evt->set_state_periodic = set_state_periodic; | 
|  | 464 | evt->set_state_shutdown = set_state_shutdown; | 
|  | 465 | evt->set_state_oneshot = set_state_shutdown; | 
|  | 466 | evt->set_state_oneshot_stopped = set_state_shutdown; | 
|  | 467 | evt->tick_resume = set_state_shutdown; | 
|  | 468 | evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; | 
|  | 469 | evt->rating = 500;	/* use value higher than ARM arch timer */ | 
|  | 470 |  | 
|  | 471 | exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET); | 
|  | 472 |  | 
|  | 473 | if (mct_int_type == MCT_INT_SPI) { | 
|  | 474 |  | 
|  | 475 | if (evt->irq == -1) | 
|  | 476 | return -EIO; | 
|  | 477 |  | 
|  | 478 | irq_force_affinity(evt->irq, cpumask_of(cpu)); | 
|  | 479 | enable_irq(evt->irq); | 
|  | 480 | } else { | 
|  | 481 | enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0); | 
|  | 482 | } | 
|  | 483 | clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1), | 
|  | 484 | 0xf, 0x7fffffff); | 
|  | 485 |  | 
|  | 486 | return 0; | 
|  | 487 | } | 
|  | 488 |  | 
|  | 489 | static int exynos4_mct_dying_cpu(unsigned int cpu) | 
|  | 490 | { | 
|  | 491 | struct mct_clock_event_device *mevt = | 
|  | 492 | per_cpu_ptr(&percpu_mct_tick, cpu); | 
|  | 493 | struct clock_event_device *evt = &mevt->evt; | 
|  | 494 |  | 
|  | 495 | evt->set_state_shutdown(evt); | 
|  | 496 | if (mct_int_type == MCT_INT_SPI) { | 
|  | 497 | if (evt->irq != -1) | 
|  | 498 | disable_irq_nosync(evt->irq); | 
|  | 499 | exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); | 
|  | 500 | } else { | 
|  | 501 | disable_percpu_irq(mct_irqs[MCT_L0_IRQ]); | 
|  | 502 | } | 
|  | 503 | return 0; | 
|  | 504 | } | 
|  | 505 |  | 
|  | 506 | static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base) | 
|  | 507 | { | 
|  | 508 | int err, cpu; | 
|  | 509 | struct clk *mct_clk, *tick_clk; | 
|  | 510 |  | 
|  | 511 | tick_clk = np ? of_clk_get_by_name(np, "fin_pll") : | 
|  | 512 | clk_get(NULL, "fin_pll"); | 
|  | 513 | if (IS_ERR(tick_clk)) | 
|  | 514 | panic("%s: unable to determine tick clock rate\n", __func__); | 
|  | 515 | clk_rate = clk_get_rate(tick_clk); | 
|  | 516 |  | 
|  | 517 | mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct"); | 
|  | 518 | if (IS_ERR(mct_clk)) | 
|  | 519 | panic("%s: unable to retrieve mct clock instance\n", __func__); | 
|  | 520 | clk_prepare_enable(mct_clk); | 
|  | 521 |  | 
|  | 522 | reg_base = base; | 
|  | 523 | if (!reg_base) | 
|  | 524 | panic("%s: unable to ioremap mct address space\n", __func__); | 
|  | 525 |  | 
|  | 526 | if (mct_int_type == MCT_INT_PPI) { | 
|  | 527 |  | 
|  | 528 | err = request_percpu_irq(mct_irqs[MCT_L0_IRQ], | 
|  | 529 | exynos4_mct_tick_isr, "MCT", | 
|  | 530 | &percpu_mct_tick); | 
|  | 531 | WARN(err, "MCT: can't request IRQ %d (%d)\n", | 
|  | 532 | mct_irqs[MCT_L0_IRQ], err); | 
|  | 533 | } else { | 
|  | 534 | for_each_possible_cpu(cpu) { | 
|  | 535 | int mct_irq = mct_irqs[MCT_L0_IRQ + cpu]; | 
|  | 536 | struct mct_clock_event_device *pcpu_mevt = | 
|  | 537 | per_cpu_ptr(&percpu_mct_tick, cpu); | 
|  | 538 |  | 
|  | 539 | pcpu_mevt->evt.irq = -1; | 
|  | 540 |  | 
|  | 541 | irq_set_status_flags(mct_irq, IRQ_NOAUTOEN); | 
|  | 542 | if (request_irq(mct_irq, | 
|  | 543 | exynos4_mct_tick_isr, | 
|  | 544 | IRQF_TIMER | IRQF_NOBALANCING, | 
|  | 545 | pcpu_mevt->name, pcpu_mevt)) { | 
|  | 546 | pr_err("exynos-mct: cannot register IRQ (cpu%d)\n", | 
|  | 547 | cpu); | 
|  | 548 |  | 
|  | 549 | continue; | 
|  | 550 | } | 
|  | 551 | pcpu_mevt->evt.irq = mct_irq; | 
|  | 552 | } | 
|  | 553 | } | 
|  | 554 |  | 
|  | 555 | /* Install hotplug callbacks which configure the timer on this CPU */ | 
|  | 556 | err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING, | 
|  | 557 | "clockevents/exynos4/mct_timer:starting", | 
|  | 558 | exynos4_mct_starting_cpu, | 
|  | 559 | exynos4_mct_dying_cpu); | 
|  | 560 | if (err) | 
|  | 561 | goto out_irq; | 
|  | 562 |  | 
|  | 563 | return 0; | 
|  | 564 |  | 
|  | 565 | out_irq: | 
|  | 566 | free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick); | 
|  | 567 | return err; | 
|  | 568 | } | 
|  | 569 |  | 
|  | 570 | static int __init mct_init_dt(struct device_node *np, unsigned int int_type) | 
|  | 571 | { | 
|  | 572 | u32 nr_irqs, i; | 
|  | 573 | int ret; | 
|  | 574 |  | 
|  | 575 | mct_int_type = int_type; | 
|  | 576 |  | 
|  | 577 | /* This driver uses only one global timer interrupt */ | 
|  | 578 | mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ); | 
|  | 579 |  | 
|  | 580 | /* | 
|  | 581 | * Find out the number of local irqs specified. The local | 
|  | 582 | * timer irqs are specified after the four global timer | 
|  | 583 | * irqs are specified. | 
|  | 584 | */ | 
|  | 585 | #ifdef CONFIG_OF | 
|  | 586 | nr_irqs = of_irq_count(np); | 
|  | 587 | #else | 
|  | 588 | nr_irqs = 0; | 
|  | 589 | #endif | 
|  | 590 | for (i = MCT_L0_IRQ; i < nr_irqs; i++) | 
|  | 591 | mct_irqs[i] = irq_of_parse_and_map(np, i); | 
|  | 592 |  | 
|  | 593 | ret = exynos4_timer_resources(np, of_iomap(np, 0)); | 
|  | 594 | if (ret) | 
|  | 595 | return ret; | 
|  | 596 |  | 
|  | 597 | ret = exynos4_clocksource_init(); | 
|  | 598 | if (ret) | 
|  | 599 | return ret; | 
|  | 600 |  | 
|  | 601 | return exynos4_clockevent_init(); | 
|  | 602 | } | 
|  | 603 |  | 
|  | 604 |  | 
|  | 605 | static int __init mct_init_spi(struct device_node *np) | 
|  | 606 | { | 
|  | 607 | return mct_init_dt(np, MCT_INT_SPI); | 
|  | 608 | } | 
|  | 609 |  | 
|  | 610 | static int __init mct_init_ppi(struct device_node *np) | 
|  | 611 | { | 
|  | 612 | return mct_init_dt(np, MCT_INT_PPI); | 
|  | 613 | } | 
|  | 614 | TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi); | 
|  | 615 | TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi); |