blob: c1f7c0d5d608a3e80825893505820e28661b343c [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/stddef.h>
8#include <linux/errno.h>
9#include <linux/gfp.h>
10#include <linux/pagemap.h>
11#include <linux/init.h>
12#include <linux/vmalloc.h>
13#include <linux/bio.h>
14#include <linux/sysctl.h>
15#include <linux/proc_fs.h>
16#include <linux/workqueue.h>
17#include <linux/percpu.h>
18#include <linux/blkdev.h>
19#include <linux/hash.h>
20#include <linux/kthread.h>
21#include <linux/migrate.h>
22#include <linux/backing-dev.h>
23#include <linux/freezer.h>
24
25#include "xfs_format.h"
26#include "xfs_log_format.h"
27#include "xfs_trans_resv.h"
28#include "xfs_sb.h"
29#include "xfs_mount.h"
30#include "xfs_trace.h"
31#include "xfs_log.h"
32#include "xfs_errortag.h"
33#include "xfs_error.h"
34
35static kmem_zone_t *xfs_buf_zone;
36
37#define xb_to_gfp(flags) \
38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39
40/*
41 * Locking orders
42 *
43 * xfs_buf_ioacct_inc:
44 * xfs_buf_ioacct_dec:
45 * b_sema (caller holds)
46 * b_lock
47 *
48 * xfs_buf_stale:
49 * b_sema (caller holds)
50 * b_lock
51 * lru_lock
52 *
53 * xfs_buf_rele:
54 * b_lock
55 * pag_buf_lock
56 * lru_lock
57 *
58 * xfs_buftarg_wait_rele
59 * lru_lock
60 * b_lock (trylock due to inversion)
61 *
62 * xfs_buftarg_isolate
63 * lru_lock
64 * b_lock (trylock due to inversion)
65 */
66
67static inline int
68xfs_buf_is_vmapped(
69 struct xfs_buf *bp)
70{
71 /*
72 * Return true if the buffer is vmapped.
73 *
74 * b_addr is null if the buffer is not mapped, but the code is clever
75 * enough to know it doesn't have to map a single page, so the check has
76 * to be both for b_addr and bp->b_page_count > 1.
77 */
78 return bp->b_addr && bp->b_page_count > 1;
79}
80
81static inline int
82xfs_buf_vmap_len(
83 struct xfs_buf *bp)
84{
85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86}
87
88/*
89 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90 * this buffer. The count is incremented once per buffer (per hold cycle)
91 * because the corresponding decrement is deferred to buffer release. Buffers
92 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93 * tracking adds unnecessary overhead. This is used for sychronization purposes
94 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95 * in-flight buffers.
96 *
97 * Buffers that are never released (e.g., superblock, iclog buffers) must set
98 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99 * never reaches zero and unmount hangs indefinitely.
100 */
101static inline void
102xfs_buf_ioacct_inc(
103 struct xfs_buf *bp)
104{
105 if (bp->b_flags & XBF_NO_IOACCT)
106 return;
107
108 ASSERT(bp->b_flags & XBF_ASYNC);
109 spin_lock(&bp->b_lock);
110 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 percpu_counter_inc(&bp->b_target->bt_io_count);
113 }
114 spin_unlock(&bp->b_lock);
115}
116
117/*
118 * Clear the in-flight state on a buffer about to be released to the LRU or
119 * freed and unaccount from the buftarg.
120 */
121static inline void
122__xfs_buf_ioacct_dec(
123 struct xfs_buf *bp)
124{
125 lockdep_assert_held(&bp->b_lock);
126
127 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 percpu_counter_dec(&bp->b_target->bt_io_count);
130 }
131}
132
133static inline void
134xfs_buf_ioacct_dec(
135 struct xfs_buf *bp)
136{
137 spin_lock(&bp->b_lock);
138 __xfs_buf_ioacct_dec(bp);
139 spin_unlock(&bp->b_lock);
140}
141
142/*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150void
151xfs_buf_stale(
152 struct xfs_buf *bp)
153{
154 ASSERT(xfs_buf_islocked(bp));
155
156 bp->b_flags |= XBF_STALE;
157
158 /*
159 * Clear the delwri status so that a delwri queue walker will not
160 * flush this buffer to disk now that it is stale. The delwri queue has
161 * a reference to the buffer, so this is safe to do.
162 */
163 bp->b_flags &= ~_XBF_DELWRI_Q;
164
165 /*
166 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 * could reset b_flags. There is no guarantee that the buffer is
168 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 * status now to preserve accounting consistency.
170 */
171 spin_lock(&bp->b_lock);
172 __xfs_buf_ioacct_dec(bp);
173
174 atomic_set(&bp->b_lru_ref, 0);
175 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 atomic_dec(&bp->b_hold);
178
179 ASSERT(atomic_read(&bp->b_hold) >= 1);
180 spin_unlock(&bp->b_lock);
181}
182
183static int
184xfs_buf_get_maps(
185 struct xfs_buf *bp,
186 int map_count)
187{
188 ASSERT(bp->b_maps == NULL);
189 bp->b_map_count = map_count;
190
191 if (map_count == 1) {
192 bp->b_maps = &bp->__b_map;
193 return 0;
194 }
195
196 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 KM_NOFS);
198 if (!bp->b_maps)
199 return -ENOMEM;
200 return 0;
201}
202
203/*
204 * Frees b_pages if it was allocated.
205 */
206static void
207xfs_buf_free_maps(
208 struct xfs_buf *bp)
209{
210 if (bp->b_maps != &bp->__b_map) {
211 kmem_free(bp->b_maps);
212 bp->b_maps = NULL;
213 }
214}
215
216struct xfs_buf *
217_xfs_buf_alloc(
218 struct xfs_buftarg *target,
219 struct xfs_buf_map *map,
220 int nmaps,
221 xfs_buf_flags_t flags)
222{
223 struct xfs_buf *bp;
224 int error;
225 int i;
226
227 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 if (unlikely(!bp))
229 return NULL;
230
231 /*
232 * We don't want certain flags to appear in b_flags unless they are
233 * specifically set by later operations on the buffer.
234 */
235 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
236
237 atomic_set(&bp->b_hold, 1);
238 atomic_set(&bp->b_lru_ref, 1);
239 init_completion(&bp->b_iowait);
240 INIT_LIST_HEAD(&bp->b_lru);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_li_list);
243 sema_init(&bp->b_sema, 0); /* held, no waiters */
244 spin_lock_init(&bp->b_lock);
245 bp->b_target = target;
246 bp->b_flags = flags;
247
248 /*
249 * Set length and io_length to the same value initially.
250 * I/O routines should use io_length, which will be the same in
251 * most cases but may be reset (e.g. XFS recovery).
252 */
253 error = xfs_buf_get_maps(bp, nmaps);
254 if (error) {
255 kmem_zone_free(xfs_buf_zone, bp);
256 return NULL;
257 }
258
259 bp->b_bn = map[0].bm_bn;
260 bp->b_length = 0;
261 for (i = 0; i < nmaps; i++) {
262 bp->b_maps[i].bm_bn = map[i].bm_bn;
263 bp->b_maps[i].bm_len = map[i].bm_len;
264 bp->b_length += map[i].bm_len;
265 }
266 bp->b_io_length = bp->b_length;
267
268 atomic_set(&bp->b_pin_count, 0);
269 init_waitqueue_head(&bp->b_waiters);
270
271 XFS_STATS_INC(target->bt_mount, xb_create);
272 trace_xfs_buf_init(bp, _RET_IP_);
273
274 return bp;
275}
276
277/*
278 * Allocate a page array capable of holding a specified number
279 * of pages, and point the page buf at it.
280 */
281STATIC int
282_xfs_buf_get_pages(
283 xfs_buf_t *bp,
284 int page_count)
285{
286 /* Make sure that we have a page list */
287 if (bp->b_pages == NULL) {
288 bp->b_page_count = page_count;
289 if (page_count <= XB_PAGES) {
290 bp->b_pages = bp->b_page_array;
291 } else {
292 bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 page_count, KM_NOFS);
294 if (bp->b_pages == NULL)
295 return -ENOMEM;
296 }
297 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 }
299 return 0;
300}
301
302/*
303 * Frees b_pages if it was allocated.
304 */
305STATIC void
306_xfs_buf_free_pages(
307 xfs_buf_t *bp)
308{
309 if (bp->b_pages != bp->b_page_array) {
310 kmem_free(bp->b_pages);
311 bp->b_pages = NULL;
312 }
313}
314
315/*
316 * Releases the specified buffer.
317 *
318 * The modification state of any associated pages is left unchanged.
319 * The buffer must not be on any hash - use xfs_buf_rele instead for
320 * hashed and refcounted buffers
321 */
322void
323xfs_buf_free(
324 xfs_buf_t *bp)
325{
326 trace_xfs_buf_free(bp, _RET_IP_);
327
328 ASSERT(list_empty(&bp->b_lru));
329
330 if (bp->b_flags & _XBF_PAGES) {
331 uint i;
332
333 if (xfs_buf_is_vmapped(bp))
334 vm_unmap_ram(bp->b_addr - bp->b_offset,
335 bp->b_page_count);
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page = bp->b_pages[i];
339
340 __free_page(page);
341 }
342 } else if (bp->b_flags & _XBF_KMEM)
343 kmem_free(bp->b_addr);
344 _xfs_buf_free_pages(bp);
345 xfs_buf_free_maps(bp);
346 kmem_zone_free(xfs_buf_zone, bp);
347}
348
349/*
350 * Allocates all the pages for buffer in question and builds it's page list.
351 */
352STATIC int
353xfs_buf_allocate_memory(
354 xfs_buf_t *bp,
355 uint flags)
356{
357 size_t size;
358 size_t nbytes, offset;
359 gfp_t gfp_mask = xb_to_gfp(flags);
360 unsigned short page_count, i;
361 xfs_off_t start, end;
362 int error;
363
364 /*
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
368 */
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
371 bp->b_addr = kmem_alloc(size, KM_NOFS);
372 if (!bp->b_addr) {
373 /* low memory - use alloc_page loop instead */
374 goto use_alloc_page;
375 }
376
377 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 /* b_addr spans two pages - use alloc_page instead */
380 kmem_free(bp->b_addr);
381 bp->b_addr = NULL;
382 goto use_alloc_page;
383 }
384 bp->b_offset = offset_in_page(bp->b_addr);
385 bp->b_pages = bp->b_page_array;
386 bp->b_pages[0] = virt_to_page(bp->b_addr);
387 bp->b_page_count = 1;
388 bp->b_flags |= _XBF_KMEM;
389 return 0;
390 }
391
392use_alloc_page:
393 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 >> PAGE_SHIFT;
396 page_count = end - start;
397 error = _xfs_buf_get_pages(bp, page_count);
398 if (unlikely(error))
399 return error;
400
401 offset = bp->b_offset;
402 bp->b_flags |= _XBF_PAGES;
403
404 for (i = 0; i < bp->b_page_count; i++) {
405 struct page *page;
406 uint retries = 0;
407retry:
408 page = alloc_page(gfp_mask);
409 if (unlikely(page == NULL)) {
410 if (flags & XBF_READ_AHEAD) {
411 bp->b_page_count = i;
412 error = -ENOMEM;
413 goto out_free_pages;
414 }
415
416 /*
417 * This could deadlock.
418 *
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
421 */
422 if (!(++retries % 100))
423 xfs_err(NULL,
424 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 current->comm, current->pid,
426 __func__, gfp_mask);
427
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 congestion_wait(BLK_RW_ASYNC, HZ/50);
430 goto retry;
431 }
432
433 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
434
435 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 size -= nbytes;
437 bp->b_pages[i] = page;
438 offset = 0;
439 }
440 return 0;
441
442out_free_pages:
443 for (i = 0; i < bp->b_page_count; i++)
444 __free_page(bp->b_pages[i]);
445 bp->b_flags &= ~_XBF_PAGES;
446 return error;
447}
448
449/*
450 * Map buffer into kernel address-space if necessary.
451 */
452STATIC int
453_xfs_buf_map_pages(
454 xfs_buf_t *bp,
455 uint flags)
456{
457 ASSERT(bp->b_flags & _XBF_PAGES);
458 if (bp->b_page_count == 1) {
459 /* A single page buffer is always mappable */
460 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 } else if (flags & XBF_UNMAPPED) {
462 bp->b_addr = NULL;
463 } else {
464 int retried = 0;
465 unsigned nofs_flag;
466
467 /*
468 * vm_map_ram() will allocate auxillary structures (e.g.
469 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 * memory reclaim re-entering the filesystem here and
473 * potentially deadlocking.
474 */
475 nofs_flag = memalloc_nofs_save();
476 do {
477 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 -1, PAGE_KERNEL);
479 if (bp->b_addr)
480 break;
481 vm_unmap_aliases();
482 } while (retried++ <= 1);
483 memalloc_nofs_restore(nofs_flag);
484
485 if (!bp->b_addr)
486 return -ENOMEM;
487 bp->b_addr += bp->b_offset;
488 }
489
490 return 0;
491}
492
493/*
494 * Finding and Reading Buffers
495 */
496static int
497_xfs_buf_obj_cmp(
498 struct rhashtable_compare_arg *arg,
499 const void *obj)
500{
501 const struct xfs_buf_map *map = arg->key;
502 const struct xfs_buf *bp = obj;
503
504 /*
505 * The key hashing in the lookup path depends on the key being the
506 * first element of the compare_arg, make sure to assert this.
507 */
508 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509
510 if (bp->b_bn != map->bm_bn)
511 return 1;
512
513 if (unlikely(bp->b_length != map->bm_len)) {
514 /*
515 * found a block number match. If the range doesn't
516 * match, the only way this is allowed is if the buffer
517 * in the cache is stale and the transaction that made
518 * it stale has not yet committed. i.e. we are
519 * reallocating a busy extent. Skip this buffer and
520 * continue searching for an exact match.
521 */
522 ASSERT(bp->b_flags & XBF_STALE);
523 return 1;
524 }
525 return 0;
526}
527
528static const struct rhashtable_params xfs_buf_hash_params = {
529 .min_size = 32, /* empty AGs have minimal footprint */
530 .nelem_hint = 16,
531 .key_len = sizeof(xfs_daddr_t),
532 .key_offset = offsetof(struct xfs_buf, b_bn),
533 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
534 .automatic_shrinking = true,
535 .obj_cmpfn = _xfs_buf_obj_cmp,
536};
537
538int
539xfs_buf_hash_init(
540 struct xfs_perag *pag)
541{
542 spin_lock_init(&pag->pag_buf_lock);
543 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544}
545
546void
547xfs_buf_hash_destroy(
548 struct xfs_perag *pag)
549{
550 rhashtable_destroy(&pag->pag_buf_hash);
551}
552
553/*
554 * Look up a buffer in the buffer cache and return it referenced and locked
555 * in @found_bp.
556 *
557 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558 * cache.
559 *
560 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561 * -EAGAIN if we fail to lock it.
562 *
563 * Return values are:
564 * -EFSCORRUPTED if have been supplied with an invalid address
565 * -EAGAIN on trylock failure
566 * -ENOENT if we fail to find a match and @new_bp was NULL
567 * 0, with @found_bp:
568 * - @new_bp if we inserted it into the cache
569 * - the buffer we found and locked.
570 */
571static int
572xfs_buf_find(
573 struct xfs_buftarg *btp,
574 struct xfs_buf_map *map,
575 int nmaps,
576 xfs_buf_flags_t flags,
577 struct xfs_buf *new_bp,
578 struct xfs_buf **found_bp)
579{
580 struct xfs_perag *pag;
581 xfs_buf_t *bp;
582 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
583 xfs_daddr_t eofs;
584 int i;
585
586 *found_bp = NULL;
587
588 for (i = 0; i < nmaps; i++)
589 cmap.bm_len += map[i].bm_len;
590
591 /* Check for IOs smaller than the sector size / not sector aligned */
592 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
594
595 /*
596 * Corrupted block numbers can get through to here, unfortunately, so we
597 * have to check that the buffer falls within the filesystem bounds.
598 */
599 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 xfs_alert(btp->bt_mount,
602 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 __func__, cmap.bm_bn, eofs);
604 WARN_ON(1);
605 return -EFSCORRUPTED;
606 }
607
608 pag = xfs_perag_get(btp->bt_mount,
609 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610
611 spin_lock(&pag->pag_buf_lock);
612 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 xfs_buf_hash_params);
614 if (bp) {
615 atomic_inc(&bp->b_hold);
616 goto found;
617 }
618
619 /* No match found */
620 if (!new_bp) {
621 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624 return -ENOENT;
625 }
626
627 /* the buffer keeps the perag reference until it is freed */
628 new_bp->b_pag = pag;
629 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 xfs_buf_hash_params);
631 spin_unlock(&pag->pag_buf_lock);
632 *found_bp = new_bp;
633 return 0;
634
635found:
636 spin_unlock(&pag->pag_buf_lock);
637 xfs_perag_put(pag);
638
639 if (!xfs_buf_trylock(bp)) {
640 if (flags & XBF_TRYLOCK) {
641 xfs_buf_rele(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 return -EAGAIN;
644 }
645 xfs_buf_lock(bp);
646 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
647 }
648
649 /*
650 * if the buffer is stale, clear all the external state associated with
651 * it. We need to keep flags such as how we allocated the buffer memory
652 * intact here.
653 */
654 if (bp->b_flags & XBF_STALE) {
655 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 ASSERT(bp->b_iodone == NULL);
657 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 bp->b_ops = NULL;
659 }
660
661 trace_xfs_buf_find(bp, flags, _RET_IP_);
662 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 *found_bp = bp;
664 return 0;
665}
666
667struct xfs_buf *
668xfs_buf_incore(
669 struct xfs_buftarg *target,
670 xfs_daddr_t blkno,
671 size_t numblks,
672 xfs_buf_flags_t flags)
673{
674 struct xfs_buf *bp;
675 int error;
676 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677
678 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 if (error)
680 return NULL;
681 return bp;
682}
683
684/*
685 * Assembles a buffer covering the specified range. The code is optimised for
686 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687 * more hits than misses.
688 */
689struct xfs_buf *
690xfs_buf_get_map(
691 struct xfs_buftarg *target,
692 struct xfs_buf_map *map,
693 int nmaps,
694 xfs_buf_flags_t flags)
695{
696 struct xfs_buf *bp;
697 struct xfs_buf *new_bp;
698 int error = 0;
699
700 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701
702 switch (error) {
703 case 0:
704 /* cache hit */
705 goto found;
706 case -EAGAIN:
707 /* cache hit, trylock failure, caller handles failure */
708 ASSERT(flags & XBF_TRYLOCK);
709 return NULL;
710 case -ENOENT:
711 /* cache miss, go for insert */
712 break;
713 case -EFSCORRUPTED:
714 default:
715 /*
716 * None of the higher layers understand failure types
717 * yet, so return NULL to signal a fatal lookup error.
718 */
719 return NULL;
720 }
721
722 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 if (unlikely(!new_bp))
724 return NULL;
725
726 error = xfs_buf_allocate_memory(new_bp, flags);
727 if (error) {
728 xfs_buf_free(new_bp);
729 return NULL;
730 }
731
732 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 if (error) {
734 xfs_buf_free(new_bp);
735 return NULL;
736 }
737
738 if (bp != new_bp)
739 xfs_buf_free(new_bp);
740
741found:
742 if (!bp->b_addr) {
743 error = _xfs_buf_map_pages(bp, flags);
744 if (unlikely(error)) {
745 xfs_warn(target->bt_mount,
746 "%s: failed to map pagesn", __func__);
747 xfs_buf_relse(bp);
748 return NULL;
749 }
750 }
751
752 /*
753 * Clear b_error if this is a lookup from a caller that doesn't expect
754 * valid data to be found in the buffer.
755 */
756 if (!(flags & XBF_READ))
757 xfs_buf_ioerror(bp, 0);
758
759 XFS_STATS_INC(target->bt_mount, xb_get);
760 trace_xfs_buf_get(bp, flags, _RET_IP_);
761 return bp;
762}
763
764STATIC int
765_xfs_buf_read(
766 xfs_buf_t *bp,
767 xfs_buf_flags_t flags)
768{
769 ASSERT(!(flags & XBF_WRITE));
770 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
771
772 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
774
775 return xfs_buf_submit(bp);
776}
777
778xfs_buf_t *
779xfs_buf_read_map(
780 struct xfs_buftarg *target,
781 struct xfs_buf_map *map,
782 int nmaps,
783 xfs_buf_flags_t flags,
784 const struct xfs_buf_ops *ops)
785{
786 struct xfs_buf *bp;
787
788 flags |= XBF_READ;
789
790 bp = xfs_buf_get_map(target, map, nmaps, flags);
791 if (bp) {
792 trace_xfs_buf_read(bp, flags, _RET_IP_);
793
794 if (!(bp->b_flags & XBF_DONE)) {
795 XFS_STATS_INC(target->bt_mount, xb_get_read);
796 bp->b_ops = ops;
797 _xfs_buf_read(bp, flags);
798 } else if (flags & XBF_ASYNC) {
799 /*
800 * Read ahead call which is already satisfied,
801 * drop the buffer
802 */
803 xfs_buf_relse(bp);
804 return NULL;
805 } else {
806 /* We do not want read in the flags */
807 bp->b_flags &= ~XBF_READ;
808 }
809 }
810
811 return bp;
812}
813
814/*
815 * If we are not low on memory then do the readahead in a deadlock
816 * safe manner.
817 */
818void
819xfs_buf_readahead_map(
820 struct xfs_buftarg *target,
821 struct xfs_buf_map *map,
822 int nmaps,
823 const struct xfs_buf_ops *ops)
824{
825 if (bdi_read_congested(target->bt_bdev->bd_bdi))
826 return;
827
828 xfs_buf_read_map(target, map, nmaps,
829 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
830}
831
832/*
833 * Read an uncached buffer from disk. Allocates and returns a locked
834 * buffer containing the disk contents or nothing.
835 */
836int
837xfs_buf_read_uncached(
838 struct xfs_buftarg *target,
839 xfs_daddr_t daddr,
840 size_t numblks,
841 int flags,
842 struct xfs_buf **bpp,
843 const struct xfs_buf_ops *ops)
844{
845 struct xfs_buf *bp;
846
847 *bpp = NULL;
848
849 bp = xfs_buf_get_uncached(target, numblks, flags);
850 if (!bp)
851 return -ENOMEM;
852
853 /* set up the buffer for a read IO */
854 ASSERT(bp->b_map_count == 1);
855 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
856 bp->b_maps[0].bm_bn = daddr;
857 bp->b_flags |= XBF_READ;
858 bp->b_ops = ops;
859
860 xfs_buf_submit(bp);
861 if (bp->b_error) {
862 int error = bp->b_error;
863 xfs_buf_relse(bp);
864 return error;
865 }
866
867 *bpp = bp;
868 return 0;
869}
870
871/*
872 * Return a buffer allocated as an empty buffer and associated to external
873 * memory via xfs_buf_associate_memory() back to it's empty state.
874 */
875void
876xfs_buf_set_empty(
877 struct xfs_buf *bp,
878 size_t numblks)
879{
880 if (bp->b_pages)
881 _xfs_buf_free_pages(bp);
882
883 bp->b_pages = NULL;
884 bp->b_page_count = 0;
885 bp->b_addr = NULL;
886 bp->b_length = numblks;
887 bp->b_io_length = numblks;
888
889 ASSERT(bp->b_map_count == 1);
890 bp->b_bn = XFS_BUF_DADDR_NULL;
891 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
892 bp->b_maps[0].bm_len = bp->b_length;
893}
894
895static inline struct page *
896mem_to_page(
897 void *addr)
898{
899 if ((!is_vmalloc_addr(addr))) {
900 return virt_to_page(addr);
901 } else {
902 return vmalloc_to_page(addr);
903 }
904}
905
906int
907xfs_buf_associate_memory(
908 xfs_buf_t *bp,
909 void *mem,
910 size_t len)
911{
912 int rval;
913 int i = 0;
914 unsigned long pageaddr;
915 unsigned long offset;
916 size_t buflen;
917 int page_count;
918
919 pageaddr = (unsigned long)mem & PAGE_MASK;
920 offset = (unsigned long)mem - pageaddr;
921 buflen = PAGE_ALIGN(len + offset);
922 page_count = buflen >> PAGE_SHIFT;
923
924 /* Free any previous set of page pointers */
925 if (bp->b_pages)
926 _xfs_buf_free_pages(bp);
927
928 bp->b_pages = NULL;
929 bp->b_addr = mem;
930
931 rval = _xfs_buf_get_pages(bp, page_count);
932 if (rval)
933 return rval;
934
935 bp->b_offset = offset;
936
937 for (i = 0; i < bp->b_page_count; i++) {
938 bp->b_pages[i] = mem_to_page((void *)pageaddr);
939 pageaddr += PAGE_SIZE;
940 }
941
942 bp->b_io_length = BTOBB(len);
943 bp->b_length = BTOBB(buflen);
944
945 return 0;
946}
947
948xfs_buf_t *
949xfs_buf_get_uncached(
950 struct xfs_buftarg *target,
951 size_t numblks,
952 int flags)
953{
954 unsigned long page_count;
955 int error, i;
956 struct xfs_buf *bp;
957 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
958
959 /* flags might contain irrelevant bits, pass only what we care about */
960 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
961 if (unlikely(bp == NULL))
962 goto fail;
963
964 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
965 error = _xfs_buf_get_pages(bp, page_count);
966 if (error)
967 goto fail_free_buf;
968
969 for (i = 0; i < page_count; i++) {
970 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
971 if (!bp->b_pages[i])
972 goto fail_free_mem;
973 }
974 bp->b_flags |= _XBF_PAGES;
975
976 error = _xfs_buf_map_pages(bp, 0);
977 if (unlikely(error)) {
978 xfs_warn(target->bt_mount,
979 "%s: failed to map pages", __func__);
980 goto fail_free_mem;
981 }
982
983 trace_xfs_buf_get_uncached(bp, _RET_IP_);
984 return bp;
985
986 fail_free_mem:
987 while (--i >= 0)
988 __free_page(bp->b_pages[i]);
989 _xfs_buf_free_pages(bp);
990 fail_free_buf:
991 xfs_buf_free_maps(bp);
992 kmem_zone_free(xfs_buf_zone, bp);
993 fail:
994 return NULL;
995}
996
997/*
998 * Increment reference count on buffer, to hold the buffer concurrently
999 * with another thread which may release (free) the buffer asynchronously.
1000 * Must hold the buffer already to call this function.
1001 */
1002void
1003xfs_buf_hold(
1004 xfs_buf_t *bp)
1005{
1006 trace_xfs_buf_hold(bp, _RET_IP_);
1007 atomic_inc(&bp->b_hold);
1008}
1009
1010/*
1011 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1012 * placed on LRU or freed (depending on b_lru_ref).
1013 */
1014void
1015xfs_buf_rele(
1016 xfs_buf_t *bp)
1017{
1018 struct xfs_perag *pag = bp->b_pag;
1019 bool release;
1020 bool freebuf = false;
1021
1022 trace_xfs_buf_rele(bp, _RET_IP_);
1023
1024 if (!pag) {
1025 ASSERT(list_empty(&bp->b_lru));
1026 if (atomic_dec_and_test(&bp->b_hold)) {
1027 xfs_buf_ioacct_dec(bp);
1028 xfs_buf_free(bp);
1029 }
1030 return;
1031 }
1032
1033 ASSERT(atomic_read(&bp->b_hold) > 0);
1034
1035 /*
1036 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1037 * calls. The pag_buf_lock being taken on the last reference only
1038 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1039 * to last reference we drop here is not serialised against the last
1040 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1041 * first, the last "release" reference can win the race to the lock and
1042 * free the buffer before the second-to-last reference is processed,
1043 * leading to a use-after-free scenario.
1044 */
1045 spin_lock(&bp->b_lock);
1046 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1047 if (!release) {
1048 /*
1049 * Drop the in-flight state if the buffer is already on the LRU
1050 * and it holds the only reference. This is racy because we
1051 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1052 * ensures the decrement occurs only once per-buf.
1053 */
1054 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1055 __xfs_buf_ioacct_dec(bp);
1056 goto out_unlock;
1057 }
1058
1059 /* the last reference has been dropped ... */
1060 __xfs_buf_ioacct_dec(bp);
1061 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1062 /*
1063 * If the buffer is added to the LRU take a new reference to the
1064 * buffer for the LRU and clear the (now stale) dispose list
1065 * state flag
1066 */
1067 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1068 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1069 atomic_inc(&bp->b_hold);
1070 }
1071 spin_unlock(&pag->pag_buf_lock);
1072 } else {
1073 /*
1074 * most of the time buffers will already be removed from the
1075 * LRU, so optimise that case by checking for the
1076 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1077 * was on was the disposal list
1078 */
1079 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1080 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1081 } else {
1082 ASSERT(list_empty(&bp->b_lru));
1083 }
1084
1085 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1086 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1087 xfs_buf_hash_params);
1088 spin_unlock(&pag->pag_buf_lock);
1089 xfs_perag_put(pag);
1090 freebuf = true;
1091 }
1092
1093out_unlock:
1094 spin_unlock(&bp->b_lock);
1095
1096 if (freebuf)
1097 xfs_buf_free(bp);
1098}
1099
1100
1101/*
1102 * Lock a buffer object, if it is not already locked.
1103 *
1104 * If we come across a stale, pinned, locked buffer, we know that we are
1105 * being asked to lock a buffer that has been reallocated. Because it is
1106 * pinned, we know that the log has not been pushed to disk and hence it
1107 * will still be locked. Rather than continuing to have trylock attempts
1108 * fail until someone else pushes the log, push it ourselves before
1109 * returning. This means that the xfsaild will not get stuck trying
1110 * to push on stale inode buffers.
1111 */
1112int
1113xfs_buf_trylock(
1114 struct xfs_buf *bp)
1115{
1116 int locked;
1117
1118 locked = down_trylock(&bp->b_sema) == 0;
1119 if (locked)
1120 trace_xfs_buf_trylock(bp, _RET_IP_);
1121 else
1122 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1123 return locked;
1124}
1125
1126/*
1127 * Lock a buffer object.
1128 *
1129 * If we come across a stale, pinned, locked buffer, we know that we
1130 * are being asked to lock a buffer that has been reallocated. Because
1131 * it is pinned, we know that the log has not been pushed to disk and
1132 * hence it will still be locked. Rather than sleeping until someone
1133 * else pushes the log, push it ourselves before trying to get the lock.
1134 */
1135void
1136xfs_buf_lock(
1137 struct xfs_buf *bp)
1138{
1139 trace_xfs_buf_lock(bp, _RET_IP_);
1140
1141 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1142 xfs_log_force(bp->b_target->bt_mount, 0);
1143 down(&bp->b_sema);
1144
1145 trace_xfs_buf_lock_done(bp, _RET_IP_);
1146}
1147
1148void
1149xfs_buf_unlock(
1150 struct xfs_buf *bp)
1151{
1152 ASSERT(xfs_buf_islocked(bp));
1153
1154 up(&bp->b_sema);
1155 trace_xfs_buf_unlock(bp, _RET_IP_);
1156}
1157
1158STATIC void
1159xfs_buf_wait_unpin(
1160 xfs_buf_t *bp)
1161{
1162 DECLARE_WAITQUEUE (wait, current);
1163
1164 if (atomic_read(&bp->b_pin_count) == 0)
1165 return;
1166
1167 add_wait_queue(&bp->b_waiters, &wait);
1168 for (;;) {
1169 set_current_state(TASK_UNINTERRUPTIBLE);
1170 if (atomic_read(&bp->b_pin_count) == 0)
1171 break;
1172 io_schedule();
1173 }
1174 remove_wait_queue(&bp->b_waiters, &wait);
1175 set_current_state(TASK_RUNNING);
1176}
1177
1178/*
1179 * Buffer Utility Routines
1180 */
1181
1182void
1183xfs_buf_ioend(
1184 struct xfs_buf *bp)
1185{
1186 bool read = bp->b_flags & XBF_READ;
1187
1188 trace_xfs_buf_iodone(bp, _RET_IP_);
1189
1190 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1191
1192 /*
1193 * Pull in IO completion errors now. We are guaranteed to be running
1194 * single threaded, so we don't need the lock to read b_io_error.
1195 */
1196 if (!bp->b_error && bp->b_io_error)
1197 xfs_buf_ioerror(bp, bp->b_io_error);
1198
1199 /* Only validate buffers that were read without errors */
1200 if (read && !bp->b_error && bp->b_ops) {
1201 ASSERT(!bp->b_iodone);
1202 bp->b_ops->verify_read(bp);
1203 }
1204
1205 if (!bp->b_error)
1206 bp->b_flags |= XBF_DONE;
1207
1208 if (bp->b_iodone)
1209 (*(bp->b_iodone))(bp);
1210 else if (bp->b_flags & XBF_ASYNC)
1211 xfs_buf_relse(bp);
1212 else
1213 complete(&bp->b_iowait);
1214}
1215
1216static void
1217xfs_buf_ioend_work(
1218 struct work_struct *work)
1219{
1220 struct xfs_buf *bp =
1221 container_of(work, xfs_buf_t, b_ioend_work);
1222
1223 xfs_buf_ioend(bp);
1224}
1225
1226static void
1227xfs_buf_ioend_async(
1228 struct xfs_buf *bp)
1229{
1230 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1231 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1232}
1233
1234void
1235__xfs_buf_ioerror(
1236 xfs_buf_t *bp,
1237 int error,
1238 xfs_failaddr_t failaddr)
1239{
1240 ASSERT(error <= 0 && error >= -1000);
1241 bp->b_error = error;
1242 trace_xfs_buf_ioerror(bp, error, failaddr);
1243}
1244
1245void
1246xfs_buf_ioerror_alert(
1247 struct xfs_buf *bp,
1248 const char *func)
1249{
1250 xfs_alert(bp->b_target->bt_mount,
1251"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1252 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1253 -bp->b_error);
1254}
1255
1256int
1257xfs_bwrite(
1258 struct xfs_buf *bp)
1259{
1260 int error;
1261
1262 ASSERT(xfs_buf_islocked(bp));
1263
1264 bp->b_flags |= XBF_WRITE;
1265 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1266 XBF_WRITE_FAIL | XBF_DONE);
1267
1268 error = xfs_buf_submit(bp);
1269 if (error) {
1270 xfs_force_shutdown(bp->b_target->bt_mount,
1271 SHUTDOWN_META_IO_ERROR);
1272 }
1273 return error;
1274}
1275
1276static void
1277xfs_buf_bio_end_io(
1278 struct bio *bio)
1279{
1280 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1281
1282 /*
1283 * don't overwrite existing errors - otherwise we can lose errors on
1284 * buffers that require multiple bios to complete.
1285 */
1286 if (bio->bi_status) {
1287 int error = blk_status_to_errno(bio->bi_status);
1288
1289 cmpxchg(&bp->b_io_error, 0, error);
1290 }
1291
1292 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1293 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1294
1295 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1296 xfs_buf_ioend_async(bp);
1297 bio_put(bio);
1298}
1299
1300static void
1301xfs_buf_ioapply_map(
1302 struct xfs_buf *bp,
1303 int map,
1304 int *buf_offset,
1305 int *count,
1306 int op,
1307 int op_flags)
1308{
1309 int page_index;
1310 int total_nr_pages = bp->b_page_count;
1311 int nr_pages;
1312 struct bio *bio;
1313 sector_t sector = bp->b_maps[map].bm_bn;
1314 int size;
1315 int offset;
1316
1317 /* skip the pages in the buffer before the start offset */
1318 page_index = 0;
1319 offset = *buf_offset;
1320 while (offset >= PAGE_SIZE) {
1321 page_index++;
1322 offset -= PAGE_SIZE;
1323 }
1324
1325 /*
1326 * Limit the IO size to the length of the current vector, and update the
1327 * remaining IO count for the next time around.
1328 */
1329 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1330 *count -= size;
1331 *buf_offset += size;
1332
1333next_chunk:
1334 atomic_inc(&bp->b_io_remaining);
1335 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1336
1337 bio = bio_alloc(GFP_NOIO, nr_pages);
1338 bio_set_dev(bio, bp->b_target->bt_bdev);
1339 bio->bi_iter.bi_sector = sector;
1340 bio->bi_end_io = xfs_buf_bio_end_io;
1341 bio->bi_private = bp;
1342 bio_set_op_attrs(bio, op, op_flags);
1343
1344 for (; size && nr_pages; nr_pages--, page_index++) {
1345 int rbytes, nbytes = PAGE_SIZE - offset;
1346
1347 if (nbytes > size)
1348 nbytes = size;
1349
1350 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1351 offset);
1352 if (rbytes < nbytes)
1353 break;
1354
1355 offset = 0;
1356 sector += BTOBB(nbytes);
1357 size -= nbytes;
1358 total_nr_pages--;
1359 }
1360
1361 if (likely(bio->bi_iter.bi_size)) {
1362 if (xfs_buf_is_vmapped(bp)) {
1363 flush_kernel_vmap_range(bp->b_addr,
1364 xfs_buf_vmap_len(bp));
1365 }
1366 submit_bio(bio);
1367 if (size)
1368 goto next_chunk;
1369 } else {
1370 /*
1371 * This is guaranteed not to be the last io reference count
1372 * because the caller (xfs_buf_submit) holds a count itself.
1373 */
1374 atomic_dec(&bp->b_io_remaining);
1375 xfs_buf_ioerror(bp, -EIO);
1376 bio_put(bio);
1377 }
1378
1379}
1380
1381STATIC void
1382_xfs_buf_ioapply(
1383 struct xfs_buf *bp)
1384{
1385 struct blk_plug plug;
1386 int op;
1387 int op_flags = 0;
1388 int offset;
1389 int size;
1390 int i;
1391
1392 /*
1393 * Make sure we capture only current IO errors rather than stale errors
1394 * left over from previous use of the buffer (e.g. failed readahead).
1395 */
1396 bp->b_error = 0;
1397
1398 /*
1399 * Initialize the I/O completion workqueue if we haven't yet or the
1400 * submitter has not opted to specify a custom one.
1401 */
1402 if (!bp->b_ioend_wq)
1403 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1404
1405 if (bp->b_flags & XBF_WRITE) {
1406 op = REQ_OP_WRITE;
1407 if (bp->b_flags & XBF_SYNCIO)
1408 op_flags = REQ_SYNC;
1409 if (bp->b_flags & XBF_FUA)
1410 op_flags |= REQ_FUA;
1411 if (bp->b_flags & XBF_FLUSH)
1412 op_flags |= REQ_PREFLUSH;
1413
1414 /*
1415 * Run the write verifier callback function if it exists. If
1416 * this function fails it will mark the buffer with an error and
1417 * the IO should not be dispatched.
1418 */
1419 if (bp->b_ops) {
1420 bp->b_ops->verify_write(bp);
1421 if (bp->b_error) {
1422 xfs_force_shutdown(bp->b_target->bt_mount,
1423 SHUTDOWN_CORRUPT_INCORE);
1424 return;
1425 }
1426 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1427 struct xfs_mount *mp = bp->b_target->bt_mount;
1428
1429 /*
1430 * non-crc filesystems don't attach verifiers during
1431 * log recovery, so don't warn for such filesystems.
1432 */
1433 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1434 xfs_warn(mp,
1435 "%s: no buf ops on daddr 0x%llx len %d",
1436 __func__, bp->b_bn, bp->b_length);
1437 xfs_hex_dump(bp->b_addr,
1438 XFS_CORRUPTION_DUMP_LEN);
1439 dump_stack();
1440 }
1441 }
1442 } else if (bp->b_flags & XBF_READ_AHEAD) {
1443 op = REQ_OP_READ;
1444 op_flags = REQ_RAHEAD;
1445 } else {
1446 op = REQ_OP_READ;
1447 }
1448
1449 /* we only use the buffer cache for meta-data */
1450 op_flags |= REQ_META;
1451
1452 /*
1453 * Walk all the vectors issuing IO on them. Set up the initial offset
1454 * into the buffer and the desired IO size before we start -
1455 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1456 * subsequent call.
1457 */
1458 offset = bp->b_offset;
1459 size = BBTOB(bp->b_io_length);
1460 blk_start_plug(&plug);
1461 for (i = 0; i < bp->b_map_count; i++) {
1462 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1463 if (bp->b_error)
1464 break;
1465 if (size <= 0)
1466 break; /* all done */
1467 }
1468 blk_finish_plug(&plug);
1469}
1470
1471/*
1472 * Wait for I/O completion of a sync buffer and return the I/O error code.
1473 */
1474static int
1475xfs_buf_iowait(
1476 struct xfs_buf *bp)
1477{
1478 ASSERT(!(bp->b_flags & XBF_ASYNC));
1479
1480 trace_xfs_buf_iowait(bp, _RET_IP_);
1481 wait_for_completion(&bp->b_iowait);
1482 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1483
1484 return bp->b_error;
1485}
1486
1487/*
1488 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1489 * the buffer lock ownership and the current reference to the IO. It is not
1490 * safe to reference the buffer after a call to this function unless the caller
1491 * holds an additional reference itself.
1492 */
1493int
1494__xfs_buf_submit(
1495 struct xfs_buf *bp,
1496 bool wait)
1497{
1498 int error = 0;
1499
1500 trace_xfs_buf_submit(bp, _RET_IP_);
1501
1502 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1503
1504 /* on shutdown we stale and complete the buffer immediately */
1505 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1506 xfs_buf_ioerror(bp, -EIO);
1507 bp->b_flags &= ~XBF_DONE;
1508 xfs_buf_stale(bp);
1509 xfs_buf_ioend(bp);
1510 return -EIO;
1511 }
1512
1513 /*
1514 * Grab a reference so the buffer does not go away underneath us. For
1515 * async buffers, I/O completion drops the callers reference, which
1516 * could occur before submission returns.
1517 */
1518 xfs_buf_hold(bp);
1519
1520 if (bp->b_flags & XBF_WRITE)
1521 xfs_buf_wait_unpin(bp);
1522
1523 /* clear the internal error state to avoid spurious errors */
1524 bp->b_io_error = 0;
1525
1526 /*
1527 * Set the count to 1 initially, this will stop an I/O completion
1528 * callout which happens before we have started all the I/O from calling
1529 * xfs_buf_ioend too early.
1530 */
1531 atomic_set(&bp->b_io_remaining, 1);
1532 if (bp->b_flags & XBF_ASYNC)
1533 xfs_buf_ioacct_inc(bp);
1534 _xfs_buf_ioapply(bp);
1535
1536 /*
1537 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1538 * reference we took above. If we drop it to zero, run completion so
1539 * that we don't return to the caller with completion still pending.
1540 */
1541 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1542 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1543 xfs_buf_ioend(bp);
1544 else
1545 xfs_buf_ioend_async(bp);
1546 }
1547
1548 if (wait)
1549 error = xfs_buf_iowait(bp);
1550
1551 /*
1552 * Release the hold that keeps the buffer referenced for the entire
1553 * I/O. Note that if the buffer is async, it is not safe to reference
1554 * after this release.
1555 */
1556 xfs_buf_rele(bp);
1557 return error;
1558}
1559
1560void *
1561xfs_buf_offset(
1562 struct xfs_buf *bp,
1563 size_t offset)
1564{
1565 struct page *page;
1566
1567 if (bp->b_addr)
1568 return bp->b_addr + offset;
1569
1570 offset += bp->b_offset;
1571 page = bp->b_pages[offset >> PAGE_SHIFT];
1572 return page_address(page) + (offset & (PAGE_SIZE-1));
1573}
1574
1575/*
1576 * Move data into or out of a buffer.
1577 */
1578void
1579xfs_buf_iomove(
1580 xfs_buf_t *bp, /* buffer to process */
1581 size_t boff, /* starting buffer offset */
1582 size_t bsize, /* length to copy */
1583 void *data, /* data address */
1584 xfs_buf_rw_t mode) /* read/write/zero flag */
1585{
1586 size_t bend;
1587
1588 bend = boff + bsize;
1589 while (boff < bend) {
1590 struct page *page;
1591 int page_index, page_offset, csize;
1592
1593 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1594 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1595 page = bp->b_pages[page_index];
1596 csize = min_t(size_t, PAGE_SIZE - page_offset,
1597 BBTOB(bp->b_io_length) - boff);
1598
1599 ASSERT((csize + page_offset) <= PAGE_SIZE);
1600
1601 switch (mode) {
1602 case XBRW_ZERO:
1603 memset(page_address(page) + page_offset, 0, csize);
1604 break;
1605 case XBRW_READ:
1606 memcpy(data, page_address(page) + page_offset, csize);
1607 break;
1608 case XBRW_WRITE:
1609 memcpy(page_address(page) + page_offset, data, csize);
1610 }
1611
1612 boff += csize;
1613 data += csize;
1614 }
1615}
1616
1617/*
1618 * Handling of buffer targets (buftargs).
1619 */
1620
1621/*
1622 * Wait for any bufs with callbacks that have been submitted but have not yet
1623 * returned. These buffers will have an elevated hold count, so wait on those
1624 * while freeing all the buffers only held by the LRU.
1625 */
1626static enum lru_status
1627xfs_buftarg_wait_rele(
1628 struct list_head *item,
1629 struct list_lru_one *lru,
1630 spinlock_t *lru_lock,
1631 void *arg)
1632
1633{
1634 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1635 struct list_head *dispose = arg;
1636
1637 if (atomic_read(&bp->b_hold) > 1) {
1638 /* need to wait, so skip it this pass */
1639 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1640 return LRU_SKIP;
1641 }
1642 if (!spin_trylock(&bp->b_lock))
1643 return LRU_SKIP;
1644
1645 /*
1646 * clear the LRU reference count so the buffer doesn't get
1647 * ignored in xfs_buf_rele().
1648 */
1649 atomic_set(&bp->b_lru_ref, 0);
1650 bp->b_state |= XFS_BSTATE_DISPOSE;
1651 list_lru_isolate_move(lru, item, dispose);
1652 spin_unlock(&bp->b_lock);
1653 return LRU_REMOVED;
1654}
1655
1656void
1657xfs_wait_buftarg(
1658 struct xfs_buftarg *btp)
1659{
1660 LIST_HEAD(dispose);
1661 int loop = 0;
1662
1663 /*
1664 * First wait on the buftarg I/O count for all in-flight buffers to be
1665 * released. This is critical as new buffers do not make the LRU until
1666 * they are released.
1667 *
1668 * Next, flush the buffer workqueue to ensure all completion processing
1669 * has finished. Just waiting on buffer locks is not sufficient for
1670 * async IO as the reference count held over IO is not released until
1671 * after the buffer lock is dropped. Hence we need to ensure here that
1672 * all reference counts have been dropped before we start walking the
1673 * LRU list.
1674 */
1675 while (percpu_counter_sum(&btp->bt_io_count))
1676 delay(100);
1677 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1678
1679 /* loop until there is nothing left on the lru list. */
1680 while (list_lru_count(&btp->bt_lru)) {
1681 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1682 &dispose, LONG_MAX);
1683
1684 while (!list_empty(&dispose)) {
1685 struct xfs_buf *bp;
1686 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1687 list_del_init(&bp->b_lru);
1688 if (bp->b_flags & XBF_WRITE_FAIL) {
1689 xfs_alert(btp->bt_mount,
1690"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1691 (long long)bp->b_bn);
1692 xfs_alert(btp->bt_mount,
1693"Please run xfs_repair to determine the extent of the problem.");
1694 }
1695 xfs_buf_rele(bp);
1696 }
1697 if (loop++ != 0)
1698 delay(100);
1699 }
1700}
1701
1702static enum lru_status
1703xfs_buftarg_isolate(
1704 struct list_head *item,
1705 struct list_lru_one *lru,
1706 spinlock_t *lru_lock,
1707 void *arg)
1708{
1709 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1710 struct list_head *dispose = arg;
1711
1712 /*
1713 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1714 * If we fail to get the lock, just skip it.
1715 */
1716 if (!spin_trylock(&bp->b_lock))
1717 return LRU_SKIP;
1718 /*
1719 * Decrement the b_lru_ref count unless the value is already
1720 * zero. If the value is already zero, we need to reclaim the
1721 * buffer, otherwise it gets another trip through the LRU.
1722 */
1723 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1724 spin_unlock(&bp->b_lock);
1725 return LRU_ROTATE;
1726 }
1727
1728 bp->b_state |= XFS_BSTATE_DISPOSE;
1729 list_lru_isolate_move(lru, item, dispose);
1730 spin_unlock(&bp->b_lock);
1731 return LRU_REMOVED;
1732}
1733
1734static unsigned long
1735xfs_buftarg_shrink_scan(
1736 struct shrinker *shrink,
1737 struct shrink_control *sc)
1738{
1739 struct xfs_buftarg *btp = container_of(shrink,
1740 struct xfs_buftarg, bt_shrinker);
1741 LIST_HEAD(dispose);
1742 unsigned long freed;
1743
1744 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1745 xfs_buftarg_isolate, &dispose);
1746
1747 while (!list_empty(&dispose)) {
1748 struct xfs_buf *bp;
1749 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1750 list_del_init(&bp->b_lru);
1751 xfs_buf_rele(bp);
1752 }
1753
1754 return freed;
1755}
1756
1757static unsigned long
1758xfs_buftarg_shrink_count(
1759 struct shrinker *shrink,
1760 struct shrink_control *sc)
1761{
1762 struct xfs_buftarg *btp = container_of(shrink,
1763 struct xfs_buftarg, bt_shrinker);
1764 return list_lru_shrink_count(&btp->bt_lru, sc);
1765}
1766
1767void
1768xfs_free_buftarg(
1769 struct xfs_buftarg *btp)
1770{
1771 unregister_shrinker(&btp->bt_shrinker);
1772 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1773 percpu_counter_destroy(&btp->bt_io_count);
1774 list_lru_destroy(&btp->bt_lru);
1775
1776 xfs_blkdev_issue_flush(btp);
1777
1778 kmem_free(btp);
1779}
1780
1781int
1782xfs_setsize_buftarg(
1783 xfs_buftarg_t *btp,
1784 unsigned int sectorsize)
1785{
1786 /* Set up metadata sector size info */
1787 btp->bt_meta_sectorsize = sectorsize;
1788 btp->bt_meta_sectormask = sectorsize - 1;
1789
1790 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1791 xfs_warn(btp->bt_mount,
1792 "Cannot set_blocksize to %u on device %pg",
1793 sectorsize, btp->bt_bdev);
1794 return -EINVAL;
1795 }
1796
1797 /* Set up device logical sector size mask */
1798 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1799 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1800
1801 return 0;
1802}
1803
1804/*
1805 * When allocating the initial buffer target we have not yet
1806 * read in the superblock, so don't know what sized sectors
1807 * are being used at this early stage. Play safe.
1808 */
1809STATIC int
1810xfs_setsize_buftarg_early(
1811 xfs_buftarg_t *btp,
1812 struct block_device *bdev)
1813{
1814 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1815}
1816
1817xfs_buftarg_t *
1818xfs_alloc_buftarg(
1819 struct xfs_mount *mp,
1820 struct block_device *bdev,
1821 struct dax_device *dax_dev)
1822{
1823 xfs_buftarg_t *btp;
1824
1825 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1826
1827 btp->bt_mount = mp;
1828 btp->bt_dev = bdev->bd_dev;
1829 btp->bt_bdev = bdev;
1830 btp->bt_daxdev = dax_dev;
1831
1832 if (xfs_setsize_buftarg_early(btp, bdev))
1833 goto error_free;
1834
1835 if (list_lru_init(&btp->bt_lru))
1836 goto error_free;
1837
1838 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1839 goto error_lru;
1840
1841 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1842 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1843 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1844 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1845 if (register_shrinker(&btp->bt_shrinker))
1846 goto error_pcpu;
1847 return btp;
1848
1849error_pcpu:
1850 percpu_counter_destroy(&btp->bt_io_count);
1851error_lru:
1852 list_lru_destroy(&btp->bt_lru);
1853error_free:
1854 kmem_free(btp);
1855 return NULL;
1856}
1857
1858/*
1859 * Cancel a delayed write list.
1860 *
1861 * Remove each buffer from the list, clear the delwri queue flag and drop the
1862 * associated buffer reference.
1863 */
1864void
1865xfs_buf_delwri_cancel(
1866 struct list_head *list)
1867{
1868 struct xfs_buf *bp;
1869
1870 while (!list_empty(list)) {
1871 bp = list_first_entry(list, struct xfs_buf, b_list);
1872
1873 xfs_buf_lock(bp);
1874 bp->b_flags &= ~_XBF_DELWRI_Q;
1875 list_del_init(&bp->b_list);
1876 xfs_buf_relse(bp);
1877 }
1878}
1879
1880/*
1881 * Add a buffer to the delayed write list.
1882 *
1883 * This queues a buffer for writeout if it hasn't already been. Note that
1884 * neither this routine nor the buffer list submission functions perform
1885 * any internal synchronization. It is expected that the lists are thread-local
1886 * to the callers.
1887 *
1888 * Returns true if we queued up the buffer, or false if it already had
1889 * been on the buffer list.
1890 */
1891bool
1892xfs_buf_delwri_queue(
1893 struct xfs_buf *bp,
1894 struct list_head *list)
1895{
1896 ASSERT(xfs_buf_islocked(bp));
1897 ASSERT(!(bp->b_flags & XBF_READ));
1898
1899 /*
1900 * If the buffer is already marked delwri it already is queued up
1901 * by someone else for imediate writeout. Just ignore it in that
1902 * case.
1903 */
1904 if (bp->b_flags & _XBF_DELWRI_Q) {
1905 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1906 return false;
1907 }
1908
1909 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1910
1911 /*
1912 * If a buffer gets written out synchronously or marked stale while it
1913 * is on a delwri list we lazily remove it. To do this, the other party
1914 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1915 * It remains referenced and on the list. In a rare corner case it
1916 * might get readded to a delwri list after the synchronous writeout, in
1917 * which case we need just need to re-add the flag here.
1918 */
1919 bp->b_flags |= _XBF_DELWRI_Q;
1920 if (list_empty(&bp->b_list)) {
1921 atomic_inc(&bp->b_hold);
1922 list_add_tail(&bp->b_list, list);
1923 }
1924
1925 return true;
1926}
1927
1928/*
1929 * Compare function is more complex than it needs to be because
1930 * the return value is only 32 bits and we are doing comparisons
1931 * on 64 bit values
1932 */
1933static int
1934xfs_buf_cmp(
1935 void *priv,
1936 struct list_head *a,
1937 struct list_head *b)
1938{
1939 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1940 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1941 xfs_daddr_t diff;
1942
1943 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1944 if (diff < 0)
1945 return -1;
1946 if (diff > 0)
1947 return 1;
1948 return 0;
1949}
1950
1951/*
1952 * Submit buffers for write. If wait_list is specified, the buffers are
1953 * submitted using sync I/O and placed on the wait list such that the caller can
1954 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1955 * at I/O completion time. In either case, buffers remain locked until I/O
1956 * completes and the buffer is released from the queue.
1957 */
1958static int
1959xfs_buf_delwri_submit_buffers(
1960 struct list_head *buffer_list,
1961 struct list_head *wait_list)
1962{
1963 struct xfs_buf *bp, *n;
1964 LIST_HEAD (submit_list);
1965 int pinned = 0;
1966 struct blk_plug plug;
1967
1968 list_sort(NULL, buffer_list, xfs_buf_cmp);
1969
1970 blk_start_plug(&plug);
1971 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1972 if (!wait_list) {
1973 if (xfs_buf_ispinned(bp)) {
1974 pinned++;
1975 continue;
1976 }
1977 if (!xfs_buf_trylock(bp))
1978 continue;
1979 } else {
1980 xfs_buf_lock(bp);
1981 }
1982
1983 /*
1984 * Someone else might have written the buffer synchronously or
1985 * marked it stale in the meantime. In that case only the
1986 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1987 * reference and remove it from the list here.
1988 */
1989 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1990 list_del_init(&bp->b_list);
1991 xfs_buf_relse(bp);
1992 continue;
1993 }
1994
1995 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1996
1997 /*
1998 * If we have a wait list, each buffer (and associated delwri
1999 * queue reference) transfers to it and is submitted
2000 * synchronously. Otherwise, drop the buffer from the delwri
2001 * queue and submit async.
2002 */
2003 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2004 bp->b_flags |= XBF_WRITE;
2005 if (wait_list) {
2006 bp->b_flags &= ~XBF_ASYNC;
2007 list_move_tail(&bp->b_list, wait_list);
2008 } else {
2009 bp->b_flags |= XBF_ASYNC;
2010 list_del_init(&bp->b_list);
2011 }
2012 __xfs_buf_submit(bp, false);
2013 }
2014 blk_finish_plug(&plug);
2015
2016 return pinned;
2017}
2018
2019/*
2020 * Write out a buffer list asynchronously.
2021 *
2022 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2023 * out and not wait for I/O completion on any of the buffers. This interface
2024 * is only safely useable for callers that can track I/O completion by higher
2025 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2026 * function.
2027 *
2028 * Note: this function will skip buffers it would block on, and in doing so
2029 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2030 * it is up to the caller to ensure that the buffer list is fully submitted or
2031 * cancelled appropriately when they are finished with the list. Failure to
2032 * cancel or resubmit the list until it is empty will result in leaked buffers
2033 * at unmount time.
2034 */
2035int
2036xfs_buf_delwri_submit_nowait(
2037 struct list_head *buffer_list)
2038{
2039 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2040}
2041
2042/*
2043 * Write out a buffer list synchronously.
2044 *
2045 * This will take the @buffer_list, write all buffers out and wait for I/O
2046 * completion on all of the buffers. @buffer_list is consumed by the function,
2047 * so callers must have some other way of tracking buffers if they require such
2048 * functionality.
2049 */
2050int
2051xfs_buf_delwri_submit(
2052 struct list_head *buffer_list)
2053{
2054 LIST_HEAD (wait_list);
2055 int error = 0, error2;
2056 struct xfs_buf *bp;
2057
2058 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2059
2060 /* Wait for IO to complete. */
2061 while (!list_empty(&wait_list)) {
2062 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2063
2064 list_del_init(&bp->b_list);
2065
2066 /*
2067 * Wait on the locked buffer, check for errors and unlock and
2068 * release the delwri queue reference.
2069 */
2070 error2 = xfs_buf_iowait(bp);
2071 xfs_buf_relse(bp);
2072 if (!error)
2073 error = error2;
2074 }
2075
2076 return error;
2077}
2078
2079/*
2080 * Push a single buffer on a delwri queue.
2081 *
2082 * The purpose of this function is to submit a single buffer of a delwri queue
2083 * and return with the buffer still on the original queue. The waiting delwri
2084 * buffer submission infrastructure guarantees transfer of the delwri queue
2085 * buffer reference to a temporary wait list. We reuse this infrastructure to
2086 * transfer the buffer back to the original queue.
2087 *
2088 * Note the buffer transitions from the queued state, to the submitted and wait
2089 * listed state and back to the queued state during this call. The buffer
2090 * locking and queue management logic between _delwri_pushbuf() and
2091 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2092 * before returning.
2093 */
2094int
2095xfs_buf_delwri_pushbuf(
2096 struct xfs_buf *bp,
2097 struct list_head *buffer_list)
2098{
2099 LIST_HEAD (submit_list);
2100 int error;
2101
2102 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2103
2104 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2105
2106 /*
2107 * Isolate the buffer to a new local list so we can submit it for I/O
2108 * independently from the rest of the original list.
2109 */
2110 xfs_buf_lock(bp);
2111 list_move(&bp->b_list, &submit_list);
2112 xfs_buf_unlock(bp);
2113
2114 /*
2115 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2116 * the buffer on the wait list with the original reference. Rather than
2117 * bounce the buffer from a local wait list back to the original list
2118 * after I/O completion, reuse the original list as the wait list.
2119 */
2120 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2121
2122 /*
2123 * The buffer is now locked, under I/O and wait listed on the original
2124 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2125 * return with the buffer unlocked and on the original queue.
2126 */
2127 error = xfs_buf_iowait(bp);
2128 bp->b_flags |= _XBF_DELWRI_Q;
2129 xfs_buf_unlock(bp);
2130
2131 return error;
2132}
2133
2134int __init
2135xfs_buf_init(void)
2136{
2137 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2138 KM_ZONE_HWALIGN, NULL);
2139 if (!xfs_buf_zone)
2140 goto out;
2141
2142 return 0;
2143
2144 out:
2145 return -ENOMEM;
2146}
2147
2148void
2149xfs_buf_terminate(void)
2150{
2151 kmem_zone_destroy(xfs_buf_zone);
2152}
2153
2154void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2155{
2156 /*
2157 * Set the lru reference count to 0 based on the error injection tag.
2158 * This allows userspace to disrupt buffer caching for debug/testing
2159 * purposes.
2160 */
2161 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2162 XFS_ERRTAG_BUF_LRU_REF))
2163 lru_ref = 0;
2164
2165 atomic_set(&bp->b_lru_ref, lru_ref);
2166}