blob: 6e0ff8b600ced85f19dff12e8204ad03b2096a0b [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#include <linux/signal.h>
19#include <linux/sched.h>
20#include <linux/sched/task_stack.h>
21#include <linux/kernel.h>
22#include <linux/errno.h>
23#include <linux/string.h>
24#include <linux/types.h>
25#include <linux/pagemap.h>
26#include <linux/ptrace.h>
27#include <linux/mman.h>
28#include <linux/mm.h>
29#include <linux/interrupt.h>
30#include <linux/highmem.h>
31#include <linux/extable.h>
32#include <linux/kprobes.h>
33#include <linux/kdebug.h>
34#include <linux/perf_event.h>
35#include <linux/ratelimit.h>
36#include <linux/context_tracking.h>
37#include <linux/hugetlb.h>
38#include <linux/uaccess.h>
39
40#include <asm/firmware.h>
41#include <asm/page.h>
42#include <asm/pgtable.h>
43#include <asm/mmu.h>
44#include <asm/mmu_context.h>
45#include <asm/siginfo.h>
46#include <asm/debug.h>
47
48static inline bool notify_page_fault(struct pt_regs *regs)
49{
50 bool ret = false;
51
52#ifdef CONFIG_KPROBES
53 /* kprobe_running() needs smp_processor_id() */
54 if (!user_mode(regs)) {
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 ret = true;
58 preempt_enable();
59 }
60#endif /* CONFIG_KPROBES */
61
62 if (unlikely(debugger_fault_handler(regs)))
63 ret = true;
64
65 return ret;
66}
67
68/*
69 * Check whether the instruction inst is a store using
70 * an update addressing form which will update r1.
71 */
72static bool store_updates_sp(unsigned int inst)
73{
74 /* check for 1 in the rA field */
75 if (((inst >> 16) & 0x1f) != 1)
76 return false;
77 /* check major opcode */
78 switch (inst >> 26) {
79 case OP_STWU:
80 case OP_STBU:
81 case OP_STHU:
82 case OP_STFSU:
83 case OP_STFDU:
84 return true;
85 case OP_STD: /* std or stdu */
86 return (inst & 3) == 1;
87 case OP_31:
88 /* check minor opcode */
89 switch ((inst >> 1) & 0x3ff) {
90 case OP_31_XOP_STDUX:
91 case OP_31_XOP_STWUX:
92 case OP_31_XOP_STBUX:
93 case OP_31_XOP_STHUX:
94 case OP_31_XOP_STFSUX:
95 case OP_31_XOP_STFDUX:
96 return true;
97 }
98 }
99 return false;
100}
101/*
102 * do_page_fault error handling helpers
103 */
104
105static int
106__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
107 int pkey)
108{
109 /*
110 * If we are in kernel mode, bail out with a SEGV, this will
111 * be caught by the assembly which will restore the non-volatile
112 * registers before calling bad_page_fault()
113 */
114 if (!user_mode(regs))
115 return SIGSEGV;
116
117 _exception_pkey(SIGSEGV, regs, si_code, address, pkey);
118
119 return 0;
120}
121
122static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
123{
124 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
125}
126
127static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
128 int pkey)
129{
130 struct mm_struct *mm = current->mm;
131
132 /*
133 * Something tried to access memory that isn't in our memory map..
134 * Fix it, but check if it's kernel or user first..
135 */
136 up_read(&mm->mmap_sem);
137
138 return __bad_area_nosemaphore(regs, address, si_code, pkey);
139}
140
141static noinline int bad_area(struct pt_regs *regs, unsigned long address)
142{
143 return __bad_area(regs, address, SEGV_MAPERR, 0);
144}
145
146static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
147 int pkey)
148{
149 return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
150}
151
152static noinline int bad_access(struct pt_regs *regs, unsigned long address)
153{
154 return __bad_area(regs, address, SEGV_ACCERR, 0);
155}
156
157static int do_sigbus(struct pt_regs *regs, unsigned long address,
158 vm_fault_t fault)
159{
160 siginfo_t info;
161 unsigned int lsb = 0;
162
163 if (!user_mode(regs))
164 return SIGBUS;
165
166 current->thread.trap_nr = BUS_ADRERR;
167 clear_siginfo(&info);
168 info.si_signo = SIGBUS;
169 info.si_errno = 0;
170 info.si_code = BUS_ADRERR;
171 info.si_addr = (void __user *)address;
172#ifdef CONFIG_MEMORY_FAILURE
173 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
174 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
175 current->comm, current->pid, address);
176 info.si_code = BUS_MCEERR_AR;
177 }
178
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183#endif
184 info.si_addr_lsb = lsb;
185 force_sig_info(SIGBUS, &info, current);
186 return 0;
187}
188
189static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
190 vm_fault_t fault)
191{
192 /*
193 * Kernel page fault interrupted by SIGKILL. We have no reason to
194 * continue processing.
195 */
196 if (fatal_signal_pending(current) && !user_mode(regs))
197 return SIGKILL;
198
199 /* Out of memory */
200 if (fault & VM_FAULT_OOM) {
201 /*
202 * We ran out of memory, or some other thing happened to us that
203 * made us unable to handle the page fault gracefully.
204 */
205 if (!user_mode(regs))
206 return SIGSEGV;
207 pagefault_out_of_memory();
208 } else {
209 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
210 VM_FAULT_HWPOISON_LARGE))
211 return do_sigbus(regs, addr, fault);
212 else if (fault & VM_FAULT_SIGSEGV)
213 return bad_area_nosemaphore(regs, addr);
214 else
215 BUG();
216 }
217 return 0;
218}
219
220/* Is this a bad kernel fault ? */
221static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
222 unsigned long address)
223{
224 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
225 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
226 DSISR_PROTFAULT))) {
227 printk_ratelimited(KERN_CRIT "kernel tried to execute"
228 " exec-protected page (%lx) -"
229 "exploit attempt? (uid: %d)\n",
230 address, from_kuid(&init_user_ns,
231 current_uid()));
232 }
233 return is_exec || (address >= TASK_SIZE);
234}
235
236static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
237 struct vm_area_struct *vma, unsigned int flags,
238 bool *must_retry)
239{
240 /*
241 * N.B. The POWER/Open ABI allows programs to access up to
242 * 288 bytes below the stack pointer.
243 * The kernel signal delivery code writes up to about 1.5kB
244 * below the stack pointer (r1) before decrementing it.
245 * The exec code can write slightly over 640kB to the stack
246 * before setting the user r1. Thus we allow the stack to
247 * expand to 1MB without further checks.
248 */
249 if (address + 0x100000 < vma->vm_end) {
250 unsigned int __user *nip = (unsigned int __user *)regs->nip;
251 /* get user regs even if this fault is in kernel mode */
252 struct pt_regs *uregs = current->thread.regs;
253 if (uregs == NULL)
254 return true;
255
256 /*
257 * A user-mode access to an address a long way below
258 * the stack pointer is only valid if the instruction
259 * is one which would update the stack pointer to the
260 * address accessed if the instruction completed,
261 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
262 * (or the byte, halfword, float or double forms).
263 *
264 * If we don't check this then any write to the area
265 * between the last mapped region and the stack will
266 * expand the stack rather than segfaulting.
267 */
268 if (address + 2048 >= uregs->gpr[1])
269 return false;
270
271 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
272 access_ok(VERIFY_READ, nip, sizeof(*nip))) {
273 unsigned int inst;
274 int res;
275
276 pagefault_disable();
277 res = __get_user_inatomic(inst, nip);
278 pagefault_enable();
279 if (!res)
280 return !store_updates_sp(inst);
281 *must_retry = true;
282 }
283 return true;
284 }
285 return false;
286}
287
288static bool access_error(bool is_write, bool is_exec,
289 struct vm_area_struct *vma)
290{
291 /*
292 * Allow execution from readable areas if the MMU does not
293 * provide separate controls over reading and executing.
294 *
295 * Note: That code used to not be enabled for 4xx/BookE.
296 * It is now as I/D cache coherency for these is done at
297 * set_pte_at() time and I see no reason why the test
298 * below wouldn't be valid on those processors. This -may-
299 * break programs compiled with a really old ABI though.
300 */
301 if (is_exec) {
302 return !(vma->vm_flags & VM_EXEC) &&
303 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
304 !(vma->vm_flags & (VM_READ | VM_WRITE)));
305 }
306
307 if (is_write) {
308 if (unlikely(!(vma->vm_flags & VM_WRITE)))
309 return true;
310 return false;
311 }
312
313 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
314 return true;
315 /*
316 * We should ideally do the vma pkey access check here. But in the
317 * fault path, handle_mm_fault() also does the same check. To avoid
318 * these multiple checks, we skip it here and handle access error due
319 * to pkeys later.
320 */
321 return false;
322}
323
324#ifdef CONFIG_PPC_SMLPAR
325static inline void cmo_account_page_fault(void)
326{
327 if (firmware_has_feature(FW_FEATURE_CMO)) {
328 u32 page_ins;
329
330 preempt_disable();
331 page_ins = be32_to_cpu(get_lppaca()->page_ins);
332 page_ins += 1 << PAGE_FACTOR;
333 get_lppaca()->page_ins = cpu_to_be32(page_ins);
334 preempt_enable();
335 }
336}
337#else
338static inline void cmo_account_page_fault(void) { }
339#endif /* CONFIG_PPC_SMLPAR */
340
341#ifdef CONFIG_PPC_STD_MMU
342static void sanity_check_fault(bool is_write, unsigned long error_code)
343{
344 /*
345 * For hash translation mode, we should never get a
346 * PROTFAULT. Any update to pte to reduce access will result in us
347 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
348 * fault instead of DSISR_PROTFAULT.
349 *
350 * A pte update to relax the access will not result in a hash page table
351 * entry invalidate and hence can result in DSISR_PROTFAULT.
352 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
353 * the special !is_write in the below conditional.
354 *
355 * For platforms that doesn't supports coherent icache and do support
356 * per page noexec bit, we do setup things such that we do the
357 * sync between D/I cache via fault. But that is handled via low level
358 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
359 * here in such case.
360 *
361 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
362 * check should handle those and hence we should fall to the bad_area
363 * handling correctly.
364 *
365 * For embedded with per page exec support that doesn't support coherent
366 * icache we do get PROTFAULT and we handle that D/I cache sync in
367 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
368 * is conditional for server MMU.
369 *
370 * For radix, we can get prot fault for autonuma case, because radix
371 * page table will have them marked noaccess for user.
372 */
373 if (!radix_enabled() && !is_write)
374 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
375}
376#else
377static void sanity_check_fault(bool is_write, unsigned long error_code) { }
378#endif /* CONFIG_PPC_STD_MMU */
379
380/*
381 * Define the correct "is_write" bit in error_code based
382 * on the processor family
383 */
384#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
385#define page_fault_is_write(__err) ((__err) & ESR_DST)
386#define page_fault_is_bad(__err) (0)
387#else
388#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
389#if defined(CONFIG_PPC_8xx)
390#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
391#elif defined(CONFIG_PPC64)
392#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
393#else
394#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
395#endif
396#endif
397
398/*
399 * For 600- and 800-family processors, the error_code parameter is DSISR
400 * for a data fault, SRR1 for an instruction fault. For 400-family processors
401 * the error_code parameter is ESR for a data fault, 0 for an instruction
402 * fault.
403 * For 64-bit processors, the error_code parameter is
404 * - DSISR for a non-SLB data access fault,
405 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
406 * - 0 any SLB fault.
407 *
408 * The return value is 0 if the fault was handled, or the signal
409 * number if this is a kernel fault that can't be handled here.
410 */
411static int __do_page_fault(struct pt_regs *regs, unsigned long address,
412 unsigned long error_code)
413{
414 struct vm_area_struct * vma;
415 struct mm_struct *mm = current->mm;
416 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
417 int is_exec = TRAP(regs) == 0x400;
418 int is_user = user_mode(regs);
419 int is_write = page_fault_is_write(error_code);
420 vm_fault_t fault, major = 0;
421 bool must_retry = false;
422
423 if (notify_page_fault(regs))
424 return 0;
425
426 if (unlikely(page_fault_is_bad(error_code))) {
427 if (is_user) {
428 _exception(SIGBUS, regs, BUS_OBJERR, address);
429 return 0;
430 }
431 return SIGBUS;
432 }
433
434 /* Additional sanity check(s) */
435 sanity_check_fault(is_write, error_code);
436
437 /*
438 * The kernel should never take an execute fault nor should it
439 * take a page fault to a kernel address.
440 */
441 if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
442 return SIGSEGV;
443
444 /*
445 * If we're in an interrupt, have no user context or are running
446 * in a region with pagefaults disabled then we must not take the fault
447 */
448 if (unlikely(faulthandler_disabled() || !mm)) {
449 if (is_user)
450 printk_ratelimited(KERN_ERR "Page fault in user mode"
451 " with faulthandler_disabled()=%d"
452 " mm=%p\n",
453 faulthandler_disabled(), mm);
454 return bad_area_nosemaphore(regs, address);
455 }
456
457 /* We restore the interrupt state now */
458 if (!arch_irq_disabled_regs(regs))
459 local_irq_enable();
460
461 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
462
463 if (error_code & DSISR_KEYFAULT)
464 return bad_key_fault_exception(regs, address,
465 get_mm_addr_key(mm, address));
466
467 /*
468 * We want to do this outside mmap_sem, because reading code around nip
469 * can result in fault, which will cause a deadlock when called with
470 * mmap_sem held
471 */
472 if (is_user)
473 flags |= FAULT_FLAG_USER;
474 if (is_write)
475 flags |= FAULT_FLAG_WRITE;
476 if (is_exec)
477 flags |= FAULT_FLAG_INSTRUCTION;
478
479 /* When running in the kernel we expect faults to occur only to
480 * addresses in user space. All other faults represent errors in the
481 * kernel and should generate an OOPS. Unfortunately, in the case of an
482 * erroneous fault occurring in a code path which already holds mmap_sem
483 * we will deadlock attempting to validate the fault against the
484 * address space. Luckily the kernel only validly references user
485 * space from well defined areas of code, which are listed in the
486 * exceptions table.
487 *
488 * As the vast majority of faults will be valid we will only perform
489 * the source reference check when there is a possibility of a deadlock.
490 * Attempt to lock the address space, if we cannot we then validate the
491 * source. If this is invalid we can skip the address space check,
492 * thus avoiding the deadlock.
493 */
494 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
495 if (!is_user && !search_exception_tables(regs->nip))
496 return bad_area_nosemaphore(regs, address);
497
498retry:
499 down_read(&mm->mmap_sem);
500 } else {
501 /*
502 * The above down_read_trylock() might have succeeded in
503 * which case we'll have missed the might_sleep() from
504 * down_read():
505 */
506 might_sleep();
507 }
508
509 vma = find_vma(mm, address);
510 if (unlikely(!vma))
511 return bad_area(regs, address);
512 if (likely(vma->vm_start <= address))
513 goto good_area;
514 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
515 return bad_area(regs, address);
516
517 /* The stack is being expanded, check if it's valid */
518 if (unlikely(bad_stack_expansion(regs, address, vma, flags,
519 &must_retry))) {
520 if (!must_retry)
521 return bad_area(regs, address);
522
523 up_read(&mm->mmap_sem);
524 if (fault_in_pages_readable((const char __user *)regs->nip,
525 sizeof(unsigned int)))
526 return bad_area_nosemaphore(regs, address);
527 goto retry;
528 }
529
530 /* Try to expand it */
531 if (unlikely(expand_stack(vma, address)))
532 return bad_area(regs, address);
533
534good_area:
535 if (unlikely(access_error(is_write, is_exec, vma)))
536 return bad_access(regs, address);
537
538 /*
539 * If for any reason at all we couldn't handle the fault,
540 * make sure we exit gracefully rather than endlessly redo
541 * the fault.
542 */
543 fault = handle_mm_fault(vma, address, flags);
544
545#ifdef CONFIG_PPC_MEM_KEYS
546 /*
547 * we skipped checking for access error due to key earlier.
548 * Check that using handle_mm_fault error return.
549 */
550 if (unlikely(fault & VM_FAULT_SIGSEGV) &&
551 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
552
553 int pkey = vma_pkey(vma);
554
555 up_read(&mm->mmap_sem);
556 return bad_key_fault_exception(regs, address, pkey);
557 }
558#endif /* CONFIG_PPC_MEM_KEYS */
559
560 major |= fault & VM_FAULT_MAJOR;
561
562 /*
563 * Handle the retry right now, the mmap_sem has been released in that
564 * case.
565 */
566 if (unlikely(fault & VM_FAULT_RETRY)) {
567 /* We retry only once */
568 if (flags & FAULT_FLAG_ALLOW_RETRY) {
569 /*
570 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
571 * of starvation.
572 */
573 flags &= ~FAULT_FLAG_ALLOW_RETRY;
574 flags |= FAULT_FLAG_TRIED;
575 if (!fatal_signal_pending(current))
576 goto retry;
577 }
578
579 /*
580 * User mode? Just return to handle the fatal exception otherwise
581 * return to bad_page_fault
582 */
583 return is_user ? 0 : SIGBUS;
584 }
585
586 up_read(&current->mm->mmap_sem);
587
588 if (unlikely(fault & VM_FAULT_ERROR))
589 return mm_fault_error(regs, address, fault);
590
591 /*
592 * Major/minor page fault accounting.
593 */
594 if (major) {
595 current->maj_flt++;
596 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
597 cmo_account_page_fault();
598 } else {
599 current->min_flt++;
600 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
601 }
602 return 0;
603}
604NOKPROBE_SYMBOL(__do_page_fault);
605
606int do_page_fault(struct pt_regs *regs, unsigned long address,
607 unsigned long error_code)
608{
609 enum ctx_state prev_state = exception_enter();
610 int rc = __do_page_fault(regs, address, error_code);
611 exception_exit(prev_state);
612 return rc;
613}
614NOKPROBE_SYMBOL(do_page_fault);
615
616/*
617 * bad_page_fault is called when we have a bad access from the kernel.
618 * It is called from the DSI and ISI handlers in head.S and from some
619 * of the procedures in traps.c.
620 */
621void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
622{
623 const struct exception_table_entry *entry;
624
625 /* Are we prepared to handle this fault? */
626 if ((entry = search_exception_tables(regs->nip)) != NULL) {
627 regs->nip = extable_fixup(entry);
628 return;
629 }
630
631 /* kernel has accessed a bad area */
632
633 switch (TRAP(regs)) {
634 case 0x300:
635 case 0x380:
636 pr_alert("BUG: %s at 0x%08lx\n",
637 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
638 "Unable to handle kernel data access", regs->dar);
639 break;
640 case 0x400:
641 case 0x480:
642 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
643 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
644 break;
645 case 0x600:
646 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
647 regs->dar);
648 break;
649 default:
650 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
651 regs->dar);
652 break;
653 }
654 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
655 regs->nip);
656
657 if (task_stack_end_corrupted(current))
658 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
659
660 die("Kernel access of bad area", regs, sig);
661}