blob: fa32ce92ed657a160823db74bb8ed0b51e5ee4d0 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/prefetch.h>
13#include <linux/kthread.h>
14#include <linux/swap.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/sched/signal.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include "gc.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define __reverse_ffz(x) __reverse_ffs(~(x))
27
28static struct kmem_cache *discard_entry_slab;
29static struct kmem_cache *discard_cmd_slab;
30static struct kmem_cache *sit_entry_set_slab;
31static struct kmem_cache *inmem_entry_slab;
32
33static unsigned long __reverse_ulong(unsigned char *str)
34{
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38#if BITS_PER_LONG == 64
39 shift = 56;
40#endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46}
47
48/*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52static inline unsigned long __reverse_ffs(unsigned long word)
53{
54 int num = 0;
55
56#if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61#endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85}
86
87/*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98{
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128found:
129 return result - size + __reverse_ffs(tmp);
130}
131
132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134{
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165found:
166 return result - size + __reverse_ffz(tmp);
167}
168
169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170{
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184}
185
186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187{
188 struct inmem_pages *new;
189
190 f2fs_trace_pid(page);
191
192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
199
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207 trace_f2fs_register_inmem_page(page, INMEM);
208}
209
210static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
213{
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
217
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
220
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224 if (trylock) {
225 /*
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
228 */
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
233 }
234
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
240
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC, HZ/50);
249 cond_resched();
250 goto retry;
251 }
252 err = -EAGAIN;
253 goto next;
254 }
255
256 err = f2fs_get_node_info(sbi, dn.nid, &ni);
257 if (err) {
258 f2fs_put_dnode(&dn);
259 return err;
260 }
261
262 if (cur->old_addr == NEW_ADDR) {
263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 } else
266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 cur->old_addr, ni.version, true, true);
268 f2fs_put_dnode(&dn);
269 }
270next:
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop || recover) {
273 ClearPageUptodate(page);
274 clear_cold_data(page);
275 }
276 f2fs_clear_page_private(page);
277 f2fs_put_page(page, 1);
278
279 list_del(&cur->list);
280 kmem_cache_free(inmem_entry_slab, cur);
281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
282 }
283 return err;
284}
285
286void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
287{
288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
289 struct inode *inode;
290 struct f2fs_inode_info *fi;
291 unsigned int count = sbi->atomic_files;
292 unsigned int looped = 0;
293next:
294 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
295 if (list_empty(head)) {
296 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
297 return;
298 }
299 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
300 inode = igrab(&fi->vfs_inode);
301 if (inode)
302 list_move_tail(&fi->inmem_ilist, head);
303 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
304
305 if (inode) {
306 if (gc_failure) {
307 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
308 goto skip;
309 }
310 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
311 f2fs_drop_inmem_pages(inode);
312skip:
313 iput(inode);
314 }
315 congestion_wait(BLK_RW_ASYNC, HZ/50);
316 cond_resched();
317 if (gc_failure) {
318 if (++looped >= count)
319 return;
320 }
321 goto next;
322}
323
324void f2fs_drop_inmem_pages(struct inode *inode)
325{
326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 struct f2fs_inode_info *fi = F2FS_I(inode);
328
329 while (!list_empty(&fi->inmem_pages)) {
330 mutex_lock(&fi->inmem_lock);
331 __revoke_inmem_pages(inode, &fi->inmem_pages,
332 true, false, true);
333 mutex_unlock(&fi->inmem_lock);
334 }
335
336 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
337 stat_dec_atomic_write(inode);
338
339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 if (!list_empty(&fi->inmem_ilist))
341 list_del_init(&fi->inmem_ilist);
342 if (f2fs_is_atomic_file(inode)) {
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 sbi->atomic_files--;
345 }
346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347}
348
349void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350{
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct list_head *head = &fi->inmem_pages;
354 struct inmem_pages *cur = NULL;
355
356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358 mutex_lock(&fi->inmem_lock);
359 list_for_each_entry(cur, head, list) {
360 if (cur->page == page)
361 break;
362 }
363
364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 list_del(&cur->list);
366 mutex_unlock(&fi->inmem_lock);
367
368 dec_page_count(sbi, F2FS_INMEM_PAGES);
369 kmem_cache_free(inmem_entry_slab, cur);
370
371 ClearPageUptodate(page);
372 f2fs_clear_page_private(page);
373 f2fs_put_page(page, 0);
374
375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376}
377
378static int __f2fs_commit_inmem_pages(struct inode *inode)
379{
380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 struct f2fs_inode_info *fi = F2FS_I(inode);
382 struct inmem_pages *cur, *tmp;
383 struct f2fs_io_info fio = {
384 .sbi = sbi,
385 .ino = inode->i_ino,
386 .type = DATA,
387 .op = REQ_OP_WRITE,
388 .op_flags = REQ_SYNC | REQ_PRIO,
389 .io_type = FS_DATA_IO,
390 };
391 struct list_head revoke_list;
392 bool submit_bio = false;
393 int err = 0;
394
395 INIT_LIST_HEAD(&revoke_list);
396
397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 struct page *page = cur->page;
399
400 lock_page(page);
401 if (page->mapping == inode->i_mapping) {
402 trace_f2fs_commit_inmem_page(page, INMEM);
403
404 f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406 set_page_dirty(page);
407 if (clear_page_dirty_for_io(page)) {
408 inode_dec_dirty_pages(inode);
409 f2fs_remove_dirty_inode(inode);
410 }
411retry:
412 fio.page = page;
413 fio.old_blkaddr = NULL_ADDR;
414 fio.encrypted_page = NULL;
415 fio.need_lock = LOCK_DONE;
416 err = f2fs_do_write_data_page(&fio);
417 if (err) {
418 if (err == -ENOMEM) {
419 congestion_wait(BLK_RW_ASYNC, HZ/50);
420 cond_resched();
421 goto retry;
422 }
423 unlock_page(page);
424 break;
425 }
426 /* record old blkaddr for revoking */
427 cur->old_addr = fio.old_blkaddr;
428 submit_bio = true;
429 }
430 unlock_page(page);
431 list_move_tail(&cur->list, &revoke_list);
432 }
433
434 if (submit_bio)
435 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
436
437 if (err) {
438 /*
439 * try to revoke all committed pages, but still we could fail
440 * due to no memory or other reason, if that happened, EAGAIN
441 * will be returned, which means in such case, transaction is
442 * already not integrity, caller should use journal to do the
443 * recovery or rewrite & commit last transaction. For other
444 * error number, revoking was done by filesystem itself.
445 */
446 err = __revoke_inmem_pages(inode, &revoke_list,
447 false, true, false);
448
449 /* drop all uncommitted pages */
450 __revoke_inmem_pages(inode, &fi->inmem_pages,
451 true, false, false);
452 } else {
453 __revoke_inmem_pages(inode, &revoke_list,
454 false, false, false);
455 }
456
457 return err;
458}
459
460int f2fs_commit_inmem_pages(struct inode *inode)
461{
462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
463 struct f2fs_inode_info *fi = F2FS_I(inode);
464 int err;
465
466 f2fs_balance_fs(sbi, true);
467
468 down_write(&fi->i_gc_rwsem[WRITE]);
469
470 f2fs_lock_op(sbi);
471 set_inode_flag(inode, FI_ATOMIC_COMMIT);
472
473 mutex_lock(&fi->inmem_lock);
474 err = __f2fs_commit_inmem_pages(inode);
475 mutex_unlock(&fi->inmem_lock);
476
477 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
478
479 f2fs_unlock_op(sbi);
480 up_write(&fi->i_gc_rwsem[WRITE]);
481
482 return err;
483}
484
485/*
486 * This function balances dirty node and dentry pages.
487 * In addition, it controls garbage collection.
488 */
489void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
490{
491 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
492 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
493 f2fs_stop_checkpoint(sbi, false);
494 }
495
496 /* balance_fs_bg is able to be pending */
497 if (need && excess_cached_nats(sbi))
498 f2fs_balance_fs_bg(sbi);
499
500 if (!f2fs_is_checkpoint_ready(sbi))
501 return;
502
503 /*
504 * We should do GC or end up with checkpoint, if there are so many dirty
505 * dir/node pages without enough free segments.
506 */
507 if (has_not_enough_free_secs(sbi, 0, 0)) {
508 mutex_lock(&sbi->gc_mutex);
509 f2fs_gc(sbi, false, false, NULL_SEGNO);
510 }
511}
512
513void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
514{
515 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
516 return;
517
518 /* try to shrink extent cache when there is no enough memory */
519 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
520 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
521
522 /* check the # of cached NAT entries */
523 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
524 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
525
526 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
527 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
528 else
529 f2fs_build_free_nids(sbi, false, false);
530
531 if (!is_idle(sbi, REQ_TIME) &&
532 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
533 return;
534
535 /* checkpoint is the only way to shrink partial cached entries */
536 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
537 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
538 excess_prefree_segs(sbi) ||
539 excess_dirty_nats(sbi) ||
540 excess_dirty_nodes(sbi) ||
541 f2fs_time_over(sbi, CP_TIME)) {
542 if (test_opt(sbi, DATA_FLUSH)) {
543 struct blk_plug plug;
544
545 mutex_lock(&sbi->flush_lock);
546
547 blk_start_plug(&plug);
548 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
549 blk_finish_plug(&plug);
550
551 mutex_unlock(&sbi->flush_lock);
552 }
553 f2fs_sync_fs(sbi->sb, true);
554 stat_inc_bg_cp_count(sbi->stat_info);
555 }
556}
557
558static int __submit_flush_wait(struct f2fs_sb_info *sbi,
559 struct block_device *bdev)
560{
561 struct bio *bio;
562 int ret;
563
564 bio = f2fs_bio_alloc(sbi, 0, false);
565 if (!bio)
566 return -ENOMEM;
567
568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
569 bio_set_dev(bio, bdev);
570 ret = submit_bio_wait(bio);
571 bio_put(bio);
572
573 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
574 test_opt(sbi, FLUSH_MERGE), ret);
575 return ret;
576}
577
578static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
579{
580 int ret = 0;
581 int i;
582
583 if (!f2fs_is_multi_device(sbi))
584 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
585
586 for (i = 0; i < sbi->s_ndevs; i++) {
587 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
588 continue;
589 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
590 if (ret)
591 break;
592 }
593 return ret;
594}
595
596static int issue_flush_thread(void *data)
597{
598 struct f2fs_sb_info *sbi = data;
599 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
600 wait_queue_head_t *q = &fcc->flush_wait_queue;
601repeat:
602 if (kthread_should_stop())
603 return 0;
604
605 sb_start_intwrite(sbi->sb);
606
607 if (!llist_empty(&fcc->issue_list)) {
608 struct flush_cmd *cmd, *next;
609 int ret;
610
611 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
612 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
613
614 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
615
616 ret = submit_flush_wait(sbi, cmd->ino);
617 atomic_inc(&fcc->issued_flush);
618
619 llist_for_each_entry_safe(cmd, next,
620 fcc->dispatch_list, llnode) {
621 cmd->ret = ret;
622 complete(&cmd->wait);
623 }
624 fcc->dispatch_list = NULL;
625 }
626
627 sb_end_intwrite(sbi->sb);
628
629 wait_event_interruptible(*q,
630 kthread_should_stop() || !llist_empty(&fcc->issue_list));
631 goto repeat;
632}
633
634int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
635{
636 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
637 struct flush_cmd cmd;
638 int ret;
639
640 if (test_opt(sbi, NOBARRIER))
641 return 0;
642
643 if (!test_opt(sbi, FLUSH_MERGE)) {
644 atomic_inc(&fcc->queued_flush);
645 ret = submit_flush_wait(sbi, ino);
646 atomic_dec(&fcc->queued_flush);
647 atomic_inc(&fcc->issued_flush);
648 return ret;
649 }
650
651 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
652 f2fs_is_multi_device(sbi)) {
653 ret = submit_flush_wait(sbi, ino);
654 atomic_dec(&fcc->queued_flush);
655
656 atomic_inc(&fcc->issued_flush);
657 return ret;
658 }
659
660 cmd.ino = ino;
661 init_completion(&cmd.wait);
662
663 llist_add(&cmd.llnode, &fcc->issue_list);
664
665 /* update issue_list before we wake up issue_flush thread */
666 smp_mb();
667
668 if (waitqueue_active(&fcc->flush_wait_queue))
669 wake_up(&fcc->flush_wait_queue);
670
671 if (fcc->f2fs_issue_flush) {
672 wait_for_completion(&cmd.wait);
673 atomic_dec(&fcc->queued_flush);
674 } else {
675 struct llist_node *list;
676
677 list = llist_del_all(&fcc->issue_list);
678 if (!list) {
679 wait_for_completion(&cmd.wait);
680 atomic_dec(&fcc->queued_flush);
681 } else {
682 struct flush_cmd *tmp, *next;
683
684 ret = submit_flush_wait(sbi, ino);
685
686 llist_for_each_entry_safe(tmp, next, list, llnode) {
687 if (tmp == &cmd) {
688 cmd.ret = ret;
689 atomic_dec(&fcc->queued_flush);
690 continue;
691 }
692 tmp->ret = ret;
693 complete(&tmp->wait);
694 }
695 }
696 }
697
698 return cmd.ret;
699}
700
701int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
702{
703 dev_t dev = sbi->sb->s_bdev->bd_dev;
704 struct flush_cmd_control *fcc;
705 int err = 0;
706
707 if (SM_I(sbi)->fcc_info) {
708 fcc = SM_I(sbi)->fcc_info;
709 if (fcc->f2fs_issue_flush)
710 return err;
711 goto init_thread;
712 }
713
714 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
715 if (!fcc)
716 return -ENOMEM;
717 atomic_set(&fcc->issued_flush, 0);
718 atomic_set(&fcc->queued_flush, 0);
719 init_waitqueue_head(&fcc->flush_wait_queue);
720 init_llist_head(&fcc->issue_list);
721 SM_I(sbi)->fcc_info = fcc;
722 if (!test_opt(sbi, FLUSH_MERGE))
723 return err;
724
725init_thread:
726 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
727 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
728 if (IS_ERR(fcc->f2fs_issue_flush)) {
729 err = PTR_ERR(fcc->f2fs_issue_flush);
730 kvfree(fcc);
731 SM_I(sbi)->fcc_info = NULL;
732 return err;
733 }
734
735 return err;
736}
737
738void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
739{
740 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
741
742 if (fcc && fcc->f2fs_issue_flush) {
743 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
744
745 fcc->f2fs_issue_flush = NULL;
746 kthread_stop(flush_thread);
747 }
748 if (free) {
749 kvfree(fcc);
750 SM_I(sbi)->fcc_info = NULL;
751 }
752}
753
754int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
755{
756 int ret = 0, i;
757
758 if (!f2fs_is_multi_device(sbi))
759 return 0;
760
761 for (i = 1; i < sbi->s_ndevs; i++) {
762 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
763 continue;
764 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
765 if (ret)
766 break;
767
768 spin_lock(&sbi->dev_lock);
769 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
770 spin_unlock(&sbi->dev_lock);
771 }
772
773 return ret;
774}
775
776static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
777 enum dirty_type dirty_type)
778{
779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780
781 /* need not be added */
782 if (IS_CURSEG(sbi, segno))
783 return;
784
785 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786 dirty_i->nr_dirty[dirty_type]++;
787
788 if (dirty_type == DIRTY) {
789 struct seg_entry *sentry = get_seg_entry(sbi, segno);
790 enum dirty_type t = sentry->type;
791
792 if (unlikely(t >= DIRTY)) {
793 f2fs_bug_on(sbi, 1);
794 return;
795 }
796 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
797 dirty_i->nr_dirty[t]++;
798 }
799}
800
801static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
802 enum dirty_type dirty_type)
803{
804 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
805
806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
807 dirty_i->nr_dirty[dirty_type]--;
808
809 if (dirty_type == DIRTY) {
810 struct seg_entry *sentry = get_seg_entry(sbi, segno);
811 enum dirty_type t = sentry->type;
812
813 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
814 dirty_i->nr_dirty[t]--;
815
816 if (get_valid_blocks(sbi, segno, true) == 0) {
817 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
818 dirty_i->victim_secmap);
819#ifdef CONFIG_F2FS_CHECK_FS
820 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
821#endif
822 }
823 }
824}
825
826/*
827 * Should not occur error such as -ENOMEM.
828 * Adding dirty entry into seglist is not critical operation.
829 * If a given segment is one of current working segments, it won't be added.
830 */
831static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
832{
833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 unsigned short valid_blocks, ckpt_valid_blocks;
835
836 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
837 return;
838
839 mutex_lock(&dirty_i->seglist_lock);
840
841 valid_blocks = get_valid_blocks(sbi, segno, false);
842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
843
844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845 ckpt_valid_blocks == sbi->blocks_per_seg)) {
846 __locate_dirty_segment(sbi, segno, PRE);
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 } else if (valid_blocks < sbi->blocks_per_seg) {
849 __locate_dirty_segment(sbi, segno, DIRTY);
850 } else {
851 /* Recovery routine with SSR needs this */
852 __remove_dirty_segment(sbi, segno, DIRTY);
853 }
854
855 mutex_unlock(&dirty_i->seglist_lock);
856}
857
858/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
859void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860{
861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862 unsigned int segno;
863
864 mutex_lock(&dirty_i->seglist_lock);
865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 if (get_valid_blocks(sbi, segno, false))
867 continue;
868 if (IS_CURSEG(sbi, segno))
869 continue;
870 __locate_dirty_segment(sbi, segno, PRE);
871 __remove_dirty_segment(sbi, segno, DIRTY);
872 }
873 mutex_unlock(&dirty_i->seglist_lock);
874}
875
876block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877{
878 int ovp_hole_segs =
879 (overprovision_segments(sbi) - reserved_segments(sbi));
880 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 block_t holes[2] = {0, 0}; /* DATA and NODE */
883 block_t unusable;
884 struct seg_entry *se;
885 unsigned int segno;
886
887 mutex_lock(&dirty_i->seglist_lock);
888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 se = get_seg_entry(sbi, segno);
890 if (IS_NODESEG(se->type))
891 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
892 else
893 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
894 }
895 mutex_unlock(&dirty_i->seglist_lock);
896
897 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
898 if (unusable > ovp_holes)
899 return unusable - ovp_holes;
900 return 0;
901}
902
903int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
904{
905 int ovp_hole_segs =
906 (overprovision_segments(sbi) - reserved_segments(sbi));
907 if (unusable > F2FS_OPTION(sbi).unusable_cap)
908 return -EAGAIN;
909 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
910 dirty_segments(sbi) > ovp_hole_segs)
911 return -EAGAIN;
912 return 0;
913}
914
915/* This is only used by SBI_CP_DISABLED */
916static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
917{
918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
919 unsigned int segno = 0;
920
921 mutex_lock(&dirty_i->seglist_lock);
922 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
923 if (get_valid_blocks(sbi, segno, false))
924 continue;
925 if (get_ckpt_valid_blocks(sbi, segno))
926 continue;
927 mutex_unlock(&dirty_i->seglist_lock);
928 return segno;
929 }
930 mutex_unlock(&dirty_i->seglist_lock);
931 return NULL_SEGNO;
932}
933
934static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
935 struct block_device *bdev, block_t lstart,
936 block_t start, block_t len)
937{
938 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
939 struct list_head *pend_list;
940 struct discard_cmd *dc;
941
942 f2fs_bug_on(sbi, !len);
943
944 pend_list = &dcc->pend_list[plist_idx(len)];
945
946 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
947 INIT_LIST_HEAD(&dc->list);
948 dc->bdev = bdev;
949 dc->lstart = lstart;
950 dc->start = start;
951 dc->len = len;
952 dc->ref = 0;
953 dc->state = D_PREP;
954 dc->queued = 0;
955 dc->error = 0;
956 init_completion(&dc->wait);
957 list_add_tail(&dc->list, pend_list);
958 spin_lock_init(&dc->lock);
959 dc->bio_ref = 0;
960 atomic_inc(&dcc->discard_cmd_cnt);
961 dcc->undiscard_blks += len;
962
963 return dc;
964}
965
966static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
967 struct block_device *bdev, block_t lstart,
968 block_t start, block_t len,
969 struct rb_node *parent, struct rb_node **p,
970 bool leftmost)
971{
972 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973 struct discard_cmd *dc;
974
975 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
976
977 rb_link_node(&dc->rb_node, parent, p);
978 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
979
980 return dc;
981}
982
983static void __detach_discard_cmd(struct discard_cmd_control *dcc,
984 struct discard_cmd *dc)
985{
986 if (dc->state == D_DONE)
987 atomic_sub(dc->queued, &dcc->queued_discard);
988
989 list_del(&dc->list);
990 rb_erase_cached(&dc->rb_node, &dcc->root);
991 dcc->undiscard_blks -= dc->len;
992
993 kmem_cache_free(discard_cmd_slab, dc);
994
995 atomic_dec(&dcc->discard_cmd_cnt);
996}
997
998static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
999 struct discard_cmd *dc)
1000{
1001 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002 unsigned long flags;
1003
1004 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1005
1006 spin_lock_irqsave(&dc->lock, flags);
1007 if (dc->bio_ref) {
1008 spin_unlock_irqrestore(&dc->lock, flags);
1009 return;
1010 }
1011 spin_unlock_irqrestore(&dc->lock, flags);
1012
1013 f2fs_bug_on(sbi, dc->ref);
1014
1015 if (dc->error == -EOPNOTSUPP)
1016 dc->error = 0;
1017
1018 if (dc->error)
1019 printk_ratelimited(
1020 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1021 KERN_INFO, sbi->sb->s_id,
1022 dc->lstart, dc->start, dc->len, dc->error);
1023 __detach_discard_cmd(dcc, dc);
1024}
1025
1026static void f2fs_submit_discard_endio(struct bio *bio)
1027{
1028 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1029 unsigned long flags;
1030
1031 dc->error = blk_status_to_errno(bio->bi_status);
1032
1033 spin_lock_irqsave(&dc->lock, flags);
1034 dc->bio_ref--;
1035 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1036 dc->state = D_DONE;
1037 complete_all(&dc->wait);
1038 }
1039 spin_unlock_irqrestore(&dc->lock, flags);
1040 bio_put(bio);
1041}
1042
1043static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1044 block_t start, block_t end)
1045{
1046#ifdef CONFIG_F2FS_CHECK_FS
1047 struct seg_entry *sentry;
1048 unsigned int segno;
1049 block_t blk = start;
1050 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1051 unsigned long *map;
1052
1053 while (blk < end) {
1054 segno = GET_SEGNO(sbi, blk);
1055 sentry = get_seg_entry(sbi, segno);
1056 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1057
1058 if (end < START_BLOCK(sbi, segno + 1))
1059 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1060 else
1061 size = max_blocks;
1062 map = (unsigned long *)(sentry->cur_valid_map);
1063 offset = __find_rev_next_bit(map, size, offset);
1064 f2fs_bug_on(sbi, offset != size);
1065 blk = START_BLOCK(sbi, segno + 1);
1066 }
1067#endif
1068}
1069
1070static void __init_discard_policy(struct f2fs_sb_info *sbi,
1071 struct discard_policy *dpolicy,
1072 int discard_type, unsigned int granularity)
1073{
1074 /* common policy */
1075 dpolicy->type = discard_type;
1076 dpolicy->sync = true;
1077 dpolicy->ordered = false;
1078 dpolicy->granularity = granularity;
1079
1080 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1081 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1082 dpolicy->timeout = 0;
1083
1084 if (discard_type == DPOLICY_BG) {
1085 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1086 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1087 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1088 dpolicy->io_aware = true;
1089 dpolicy->sync = false;
1090 dpolicy->ordered = true;
1091 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1092 dpolicy->granularity = 1;
1093 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1094 }
1095 } else if (discard_type == DPOLICY_FORCE) {
1096 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1097 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1098 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1099 dpolicy->io_aware = false;
1100 } else if (discard_type == DPOLICY_FSTRIM) {
1101 dpolicy->io_aware = false;
1102 } else if (discard_type == DPOLICY_UMOUNT) {
1103 dpolicy->max_requests = UINT_MAX;
1104 dpolicy->io_aware = false;
1105 /* we need to issue all to keep CP_TRIMMED_FLAG */
1106 dpolicy->granularity = 1;
1107 }
1108}
1109
1110static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1111 struct block_device *bdev, block_t lstart,
1112 block_t start, block_t len);
1113/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1114static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1115 struct discard_policy *dpolicy,
1116 struct discard_cmd *dc,
1117 unsigned int *issued)
1118{
1119 struct block_device *bdev = dc->bdev;
1120 struct request_queue *q = bdev_get_queue(bdev);
1121 unsigned int max_discard_blocks =
1122 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1123 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1124 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1125 &(dcc->fstrim_list) : &(dcc->wait_list);
1126 int flag = dpolicy->sync ? REQ_SYNC : 0;
1127 block_t lstart, start, len, total_len;
1128 int err = 0;
1129
1130 if (dc->state != D_PREP)
1131 return 0;
1132
1133 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1134 return 0;
1135
1136 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1137
1138 lstart = dc->lstart;
1139 start = dc->start;
1140 len = dc->len;
1141 total_len = len;
1142
1143 dc->len = 0;
1144
1145 while (total_len && *issued < dpolicy->max_requests && !err) {
1146 struct bio *bio = NULL;
1147 unsigned long flags;
1148 bool last = true;
1149
1150 if (len > max_discard_blocks) {
1151 len = max_discard_blocks;
1152 last = false;
1153 }
1154
1155 (*issued)++;
1156 if (*issued == dpolicy->max_requests)
1157 last = true;
1158
1159 dc->len += len;
1160
1161 if (time_to_inject(sbi, FAULT_DISCARD)) {
1162 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1163 err = -EIO;
1164 goto submit;
1165 }
1166 err = __blkdev_issue_discard(bdev,
1167 SECTOR_FROM_BLOCK(start),
1168 SECTOR_FROM_BLOCK(len),
1169 GFP_NOFS, 0, &bio);
1170submit:
1171 if (err) {
1172 spin_lock_irqsave(&dc->lock, flags);
1173 if (dc->state == D_PARTIAL)
1174 dc->state = D_SUBMIT;
1175 spin_unlock_irqrestore(&dc->lock, flags);
1176
1177 break;
1178 }
1179
1180 f2fs_bug_on(sbi, !bio);
1181
1182 /*
1183 * should keep before submission to avoid D_DONE
1184 * right away
1185 */
1186 spin_lock_irqsave(&dc->lock, flags);
1187 if (last)
1188 dc->state = D_SUBMIT;
1189 else
1190 dc->state = D_PARTIAL;
1191 dc->bio_ref++;
1192 spin_unlock_irqrestore(&dc->lock, flags);
1193
1194 atomic_inc(&dcc->queued_discard);
1195 dc->queued++;
1196 list_move_tail(&dc->list, wait_list);
1197
1198 /* sanity check on discard range */
1199 __check_sit_bitmap(sbi, lstart, lstart + len);
1200
1201 bio->bi_private = dc;
1202 bio->bi_end_io = f2fs_submit_discard_endio;
1203 bio->bi_opf |= flag;
1204 submit_bio(bio);
1205
1206 atomic_inc(&dcc->issued_discard);
1207
1208 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1209
1210 lstart += len;
1211 start += len;
1212 total_len -= len;
1213 len = total_len;
1214 }
1215
1216 if (!err && len)
1217 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1218 return err;
1219}
1220
1221static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1222 struct block_device *bdev, block_t lstart,
1223 block_t start, block_t len,
1224 struct rb_node **insert_p,
1225 struct rb_node *insert_parent)
1226{
1227 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1228 struct rb_node **p;
1229 struct rb_node *parent = NULL;
1230 struct discard_cmd *dc = NULL;
1231 bool leftmost = true;
1232
1233 if (insert_p && insert_parent) {
1234 parent = insert_parent;
1235 p = insert_p;
1236 goto do_insert;
1237 }
1238
1239 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1240 lstart, &leftmost);
1241do_insert:
1242 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1243 p, leftmost);
1244 if (!dc)
1245 return NULL;
1246
1247 return dc;
1248}
1249
1250static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1251 struct discard_cmd *dc)
1252{
1253 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1254}
1255
1256static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1257 struct discard_cmd *dc, block_t blkaddr)
1258{
1259 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260 struct discard_info di = dc->di;
1261 bool modified = false;
1262
1263 if (dc->state == D_DONE || dc->len == 1) {
1264 __remove_discard_cmd(sbi, dc);
1265 return;
1266 }
1267
1268 dcc->undiscard_blks -= di.len;
1269
1270 if (blkaddr > di.lstart) {
1271 dc->len = blkaddr - dc->lstart;
1272 dcc->undiscard_blks += dc->len;
1273 __relocate_discard_cmd(dcc, dc);
1274 modified = true;
1275 }
1276
1277 if (blkaddr < di.lstart + di.len - 1) {
1278 if (modified) {
1279 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1280 di.start + blkaddr + 1 - di.lstart,
1281 di.lstart + di.len - 1 - blkaddr,
1282 NULL, NULL);
1283 } else {
1284 dc->lstart++;
1285 dc->len--;
1286 dc->start++;
1287 dcc->undiscard_blks += dc->len;
1288 __relocate_discard_cmd(dcc, dc);
1289 }
1290 }
1291}
1292
1293static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1294 struct block_device *bdev, block_t lstart,
1295 block_t start, block_t len)
1296{
1297 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1298 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1299 struct discard_cmd *dc;
1300 struct discard_info di = {0};
1301 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1302 struct request_queue *q = bdev_get_queue(bdev);
1303 unsigned int max_discard_blocks =
1304 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1305 block_t end = lstart + len;
1306
1307 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1308 NULL, lstart,
1309 (struct rb_entry **)&prev_dc,
1310 (struct rb_entry **)&next_dc,
1311 &insert_p, &insert_parent, true, NULL);
1312 if (dc)
1313 prev_dc = dc;
1314
1315 if (!prev_dc) {
1316 di.lstart = lstart;
1317 di.len = next_dc ? next_dc->lstart - lstart : len;
1318 di.len = min(di.len, len);
1319 di.start = start;
1320 }
1321
1322 while (1) {
1323 struct rb_node *node;
1324 bool merged = false;
1325 struct discard_cmd *tdc = NULL;
1326
1327 if (prev_dc) {
1328 di.lstart = prev_dc->lstart + prev_dc->len;
1329 if (di.lstart < lstart)
1330 di.lstart = lstart;
1331 if (di.lstart >= end)
1332 break;
1333
1334 if (!next_dc || next_dc->lstart > end)
1335 di.len = end - di.lstart;
1336 else
1337 di.len = next_dc->lstart - di.lstart;
1338 di.start = start + di.lstart - lstart;
1339 }
1340
1341 if (!di.len)
1342 goto next;
1343
1344 if (prev_dc && prev_dc->state == D_PREP &&
1345 prev_dc->bdev == bdev &&
1346 __is_discard_back_mergeable(&di, &prev_dc->di,
1347 max_discard_blocks)) {
1348 prev_dc->di.len += di.len;
1349 dcc->undiscard_blks += di.len;
1350 __relocate_discard_cmd(dcc, prev_dc);
1351 di = prev_dc->di;
1352 tdc = prev_dc;
1353 merged = true;
1354 }
1355
1356 if (next_dc && next_dc->state == D_PREP &&
1357 next_dc->bdev == bdev &&
1358 __is_discard_front_mergeable(&di, &next_dc->di,
1359 max_discard_blocks)) {
1360 next_dc->di.lstart = di.lstart;
1361 next_dc->di.len += di.len;
1362 next_dc->di.start = di.start;
1363 dcc->undiscard_blks += di.len;
1364 __relocate_discard_cmd(dcc, next_dc);
1365 if (tdc)
1366 __remove_discard_cmd(sbi, tdc);
1367 merged = true;
1368 }
1369
1370 if (!merged) {
1371 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1372 di.len, NULL, NULL);
1373 }
1374 next:
1375 prev_dc = next_dc;
1376 if (!prev_dc)
1377 break;
1378
1379 node = rb_next(&prev_dc->rb_node);
1380 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1381 }
1382}
1383
1384static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1385 struct block_device *bdev, block_t blkstart, block_t blklen)
1386{
1387 block_t lblkstart = blkstart;
1388
1389 if (!f2fs_bdev_support_discard(bdev))
1390 return 0;
1391
1392 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1393
1394 if (f2fs_is_multi_device(sbi)) {
1395 int devi = f2fs_target_device_index(sbi, blkstart);
1396
1397 blkstart -= FDEV(devi).start_blk;
1398 }
1399 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1400 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1401 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1402 return 0;
1403}
1404
1405static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1406 struct discard_policy *dpolicy)
1407{
1408 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1409 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1410 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1411 struct discard_cmd *dc;
1412 struct blk_plug plug;
1413 unsigned int pos = dcc->next_pos;
1414 unsigned int issued = 0;
1415 bool io_interrupted = false;
1416
1417 mutex_lock(&dcc->cmd_lock);
1418 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1419 NULL, pos,
1420 (struct rb_entry **)&prev_dc,
1421 (struct rb_entry **)&next_dc,
1422 &insert_p, &insert_parent, true, NULL);
1423 if (!dc)
1424 dc = next_dc;
1425
1426 blk_start_plug(&plug);
1427
1428 while (dc) {
1429 struct rb_node *node;
1430 int err = 0;
1431
1432 if (dc->state != D_PREP)
1433 goto next;
1434
1435 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1436 io_interrupted = true;
1437 break;
1438 }
1439
1440 dcc->next_pos = dc->lstart + dc->len;
1441 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1442
1443 if (issued >= dpolicy->max_requests)
1444 break;
1445next:
1446 node = rb_next(&dc->rb_node);
1447 if (err)
1448 __remove_discard_cmd(sbi, dc);
1449 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1450 }
1451
1452 blk_finish_plug(&plug);
1453
1454 if (!dc)
1455 dcc->next_pos = 0;
1456
1457 mutex_unlock(&dcc->cmd_lock);
1458
1459 if (!issued && io_interrupted)
1460 issued = -1;
1461
1462 return issued;
1463}
1464
1465static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1466 struct discard_policy *dpolicy)
1467{
1468 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469 struct list_head *pend_list;
1470 struct discard_cmd *dc, *tmp;
1471 struct blk_plug plug;
1472 int i, issued = 0;
1473 bool io_interrupted = false;
1474
1475 if (dpolicy->timeout != 0)
1476 f2fs_update_time(sbi, dpolicy->timeout);
1477
1478 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1479 if (dpolicy->timeout != 0 &&
1480 f2fs_time_over(sbi, dpolicy->timeout))
1481 break;
1482
1483 if (i + 1 < dpolicy->granularity)
1484 break;
1485
1486 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1487 return __issue_discard_cmd_orderly(sbi, dpolicy);
1488
1489 pend_list = &dcc->pend_list[i];
1490
1491 mutex_lock(&dcc->cmd_lock);
1492 if (list_empty(pend_list))
1493 goto next;
1494 if (unlikely(dcc->rbtree_check))
1495 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1496 &dcc->root));
1497 blk_start_plug(&plug);
1498 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1499 f2fs_bug_on(sbi, dc->state != D_PREP);
1500
1501 if (dpolicy->timeout != 0 &&
1502 f2fs_time_over(sbi, dpolicy->timeout))
1503 break;
1504
1505 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1506 !is_idle(sbi, DISCARD_TIME)) {
1507 io_interrupted = true;
1508 break;
1509 }
1510
1511 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1512
1513 if (issued >= dpolicy->max_requests)
1514 break;
1515 }
1516 blk_finish_plug(&plug);
1517next:
1518 mutex_unlock(&dcc->cmd_lock);
1519
1520 if (issued >= dpolicy->max_requests || io_interrupted)
1521 break;
1522 }
1523
1524 if (!issued && io_interrupted)
1525 issued = -1;
1526
1527 return issued;
1528}
1529
1530static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1531{
1532 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1533 struct list_head *pend_list;
1534 struct discard_cmd *dc, *tmp;
1535 int i;
1536 bool dropped = false;
1537
1538 mutex_lock(&dcc->cmd_lock);
1539 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1540 pend_list = &dcc->pend_list[i];
1541 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1542 f2fs_bug_on(sbi, dc->state != D_PREP);
1543 __remove_discard_cmd(sbi, dc);
1544 dropped = true;
1545 }
1546 }
1547 mutex_unlock(&dcc->cmd_lock);
1548
1549 return dropped;
1550}
1551
1552void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1553{
1554 __drop_discard_cmd(sbi);
1555}
1556
1557static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1558 struct discard_cmd *dc)
1559{
1560 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1561 unsigned int len = 0;
1562
1563 wait_for_completion_io(&dc->wait);
1564 mutex_lock(&dcc->cmd_lock);
1565 f2fs_bug_on(sbi, dc->state != D_DONE);
1566 dc->ref--;
1567 if (!dc->ref) {
1568 if (!dc->error)
1569 len = dc->len;
1570 __remove_discard_cmd(sbi, dc);
1571 }
1572 mutex_unlock(&dcc->cmd_lock);
1573
1574 return len;
1575}
1576
1577static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1578 struct discard_policy *dpolicy,
1579 block_t start, block_t end)
1580{
1581 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1582 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1583 &(dcc->fstrim_list) : &(dcc->wait_list);
1584 struct discard_cmd *dc, *tmp;
1585 bool need_wait;
1586 unsigned int trimmed = 0;
1587
1588next:
1589 need_wait = false;
1590
1591 mutex_lock(&dcc->cmd_lock);
1592 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1593 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1594 continue;
1595 if (dc->len < dpolicy->granularity)
1596 continue;
1597 if (dc->state == D_DONE && !dc->ref) {
1598 wait_for_completion_io(&dc->wait);
1599 if (!dc->error)
1600 trimmed += dc->len;
1601 __remove_discard_cmd(sbi, dc);
1602 } else {
1603 dc->ref++;
1604 need_wait = true;
1605 break;
1606 }
1607 }
1608 mutex_unlock(&dcc->cmd_lock);
1609
1610 if (need_wait) {
1611 trimmed += __wait_one_discard_bio(sbi, dc);
1612 goto next;
1613 }
1614
1615 return trimmed;
1616}
1617
1618static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1619 struct discard_policy *dpolicy)
1620{
1621 struct discard_policy dp;
1622 unsigned int discard_blks;
1623
1624 if (dpolicy)
1625 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1626
1627 /* wait all */
1628 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1629 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1630 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1631 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1632
1633 return discard_blks;
1634}
1635
1636/* This should be covered by global mutex, &sit_i->sentry_lock */
1637static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1638{
1639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1640 struct discard_cmd *dc;
1641 bool need_wait = false;
1642
1643 mutex_lock(&dcc->cmd_lock);
1644 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1645 NULL, blkaddr);
1646 if (dc) {
1647 if (dc->state == D_PREP) {
1648 __punch_discard_cmd(sbi, dc, blkaddr);
1649 } else {
1650 dc->ref++;
1651 need_wait = true;
1652 }
1653 }
1654 mutex_unlock(&dcc->cmd_lock);
1655
1656 if (need_wait)
1657 __wait_one_discard_bio(sbi, dc);
1658}
1659
1660void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1661{
1662 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1663
1664 if (dcc && dcc->f2fs_issue_discard) {
1665 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1666
1667 dcc->f2fs_issue_discard = NULL;
1668 kthread_stop(discard_thread);
1669 }
1670}
1671
1672/* This comes from f2fs_put_super */
1673bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1674{
1675 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1676 struct discard_policy dpolicy;
1677 bool dropped;
1678
1679 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1680 dcc->discard_granularity);
1681 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1682 __issue_discard_cmd(sbi, &dpolicy);
1683 dropped = __drop_discard_cmd(sbi);
1684
1685 /* just to make sure there is no pending discard commands */
1686 __wait_all_discard_cmd(sbi, NULL);
1687
1688 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1689 return dropped;
1690}
1691
1692static int issue_discard_thread(void *data)
1693{
1694 struct f2fs_sb_info *sbi = data;
1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696 wait_queue_head_t *q = &dcc->discard_wait_queue;
1697 struct discard_policy dpolicy;
1698 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1699 int issued;
1700
1701 set_freezable();
1702
1703 do {
1704 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1705 dcc->discard_granularity);
1706
1707 wait_event_interruptible_timeout(*q,
1708 kthread_should_stop() || freezing(current) ||
1709 dcc->discard_wake,
1710 msecs_to_jiffies(wait_ms));
1711
1712 if (dcc->discard_wake)
1713 dcc->discard_wake = 0;
1714
1715 /* clean up pending candidates before going to sleep */
1716 if (atomic_read(&dcc->queued_discard))
1717 __wait_all_discard_cmd(sbi, NULL);
1718
1719 if (try_to_freeze())
1720 continue;
1721 if (f2fs_readonly(sbi->sb))
1722 continue;
1723 if (kthread_should_stop())
1724 return 0;
1725 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1726 wait_ms = dpolicy.max_interval;
1727 continue;
1728 }
1729
1730 if (sbi->gc_mode == GC_URGENT)
1731 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1732
1733 sb_start_intwrite(sbi->sb);
1734
1735 issued = __issue_discard_cmd(sbi, &dpolicy);
1736 if (issued > 0) {
1737 __wait_all_discard_cmd(sbi, &dpolicy);
1738 wait_ms = dpolicy.min_interval;
1739 } else if (issued == -1){
1740 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1741 if (!wait_ms)
1742 wait_ms = dpolicy.mid_interval;
1743 } else {
1744 wait_ms = dpolicy.max_interval;
1745 }
1746
1747 sb_end_intwrite(sbi->sb);
1748
1749 } while (!kthread_should_stop());
1750 return 0;
1751}
1752
1753#ifdef CONFIG_BLK_DEV_ZONED
1754static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1755 struct block_device *bdev, block_t blkstart, block_t blklen)
1756{
1757 sector_t sector, nr_sects;
1758 block_t lblkstart = blkstart;
1759 int devi = 0;
1760
1761 if (f2fs_is_multi_device(sbi)) {
1762 devi = f2fs_target_device_index(sbi, blkstart);
1763 if (blkstart < FDEV(devi).start_blk ||
1764 blkstart > FDEV(devi).end_blk) {
1765 f2fs_err(sbi, "Invalid block %x", blkstart);
1766 return -EIO;
1767 }
1768 blkstart -= FDEV(devi).start_blk;
1769 }
1770
1771 /* For sequential zones, reset the zone write pointer */
1772 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1773 sector = SECTOR_FROM_BLOCK(blkstart);
1774 nr_sects = SECTOR_FROM_BLOCK(blklen);
1775
1776 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1777 nr_sects != bdev_zone_sectors(bdev)) {
1778 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1779 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1780 blkstart, blklen);
1781 return -EIO;
1782 }
1783 trace_f2fs_issue_reset_zone(bdev, blkstart);
1784 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1785 }
1786
1787 /* For conventional zones, use regular discard if supported */
1788 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1789}
1790#endif
1791
1792static int __issue_discard_async(struct f2fs_sb_info *sbi,
1793 struct block_device *bdev, block_t blkstart, block_t blklen)
1794{
1795#ifdef CONFIG_BLK_DEV_ZONED
1796 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1797 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1798#endif
1799 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1800}
1801
1802static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1803 block_t blkstart, block_t blklen)
1804{
1805 sector_t start = blkstart, len = 0;
1806 struct block_device *bdev;
1807 struct seg_entry *se;
1808 unsigned int offset;
1809 block_t i;
1810 int err = 0;
1811
1812 bdev = f2fs_target_device(sbi, blkstart, NULL);
1813
1814 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1815 if (i != start) {
1816 struct block_device *bdev2 =
1817 f2fs_target_device(sbi, i, NULL);
1818
1819 if (bdev2 != bdev) {
1820 err = __issue_discard_async(sbi, bdev,
1821 start, len);
1822 if (err)
1823 return err;
1824 bdev = bdev2;
1825 start = i;
1826 len = 0;
1827 }
1828 }
1829
1830 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1831 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1832
1833 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1834 sbi->discard_blks--;
1835 }
1836
1837 if (len)
1838 err = __issue_discard_async(sbi, bdev, start, len);
1839 return err;
1840}
1841
1842static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1843 bool check_only)
1844{
1845 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1846 int max_blocks = sbi->blocks_per_seg;
1847 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1848 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1849 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1850 unsigned long *discard_map = (unsigned long *)se->discard_map;
1851 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1852 unsigned int start = 0, end = -1;
1853 bool force = (cpc->reason & CP_DISCARD);
1854 struct discard_entry *de = NULL;
1855 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1856 int i;
1857
1858 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1859 return false;
1860
1861 if (!force) {
1862 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1863 SM_I(sbi)->dcc_info->nr_discards >=
1864 SM_I(sbi)->dcc_info->max_discards)
1865 return false;
1866 }
1867
1868 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1869 for (i = 0; i < entries; i++)
1870 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1871 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1872
1873 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1874 SM_I(sbi)->dcc_info->max_discards) {
1875 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1876 if (start >= max_blocks)
1877 break;
1878
1879 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1880 if (force && start && end != max_blocks
1881 && (end - start) < cpc->trim_minlen)
1882 continue;
1883
1884 if (check_only)
1885 return true;
1886
1887 if (!de) {
1888 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1889 GFP_F2FS_ZERO);
1890 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1891 list_add_tail(&de->list, head);
1892 }
1893
1894 for (i = start; i < end; i++)
1895 __set_bit_le(i, (void *)de->discard_map);
1896
1897 SM_I(sbi)->dcc_info->nr_discards += end - start;
1898 }
1899 return false;
1900}
1901
1902static void release_discard_addr(struct discard_entry *entry)
1903{
1904 list_del(&entry->list);
1905 kmem_cache_free(discard_entry_slab, entry);
1906}
1907
1908void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1909{
1910 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1911 struct discard_entry *entry, *this;
1912
1913 /* drop caches */
1914 list_for_each_entry_safe(entry, this, head, list)
1915 release_discard_addr(entry);
1916}
1917
1918/*
1919 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1920 */
1921static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1922{
1923 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1924 unsigned int segno;
1925
1926 mutex_lock(&dirty_i->seglist_lock);
1927 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1928 __set_test_and_free(sbi, segno);
1929 mutex_unlock(&dirty_i->seglist_lock);
1930}
1931
1932void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1933 struct cp_control *cpc)
1934{
1935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1936 struct list_head *head = &dcc->entry_list;
1937 struct discard_entry *entry, *this;
1938 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1939 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1940 unsigned int start = 0, end = -1;
1941 unsigned int secno, start_segno;
1942 bool force = (cpc->reason & CP_DISCARD);
1943 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1944
1945 mutex_lock(&dirty_i->seglist_lock);
1946
1947 while (1) {
1948 int i;
1949
1950 if (need_align && end != -1)
1951 end--;
1952 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1953 if (start >= MAIN_SEGS(sbi))
1954 break;
1955 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1956 start + 1);
1957
1958 if (need_align) {
1959 start = rounddown(start, sbi->segs_per_sec);
1960 end = roundup(end, sbi->segs_per_sec);
1961 }
1962
1963 for (i = start; i < end; i++) {
1964 if (test_and_clear_bit(i, prefree_map))
1965 dirty_i->nr_dirty[PRE]--;
1966 }
1967
1968 if (!f2fs_realtime_discard_enable(sbi))
1969 continue;
1970
1971 if (force && start >= cpc->trim_start &&
1972 (end - 1) <= cpc->trim_end)
1973 continue;
1974
1975 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1976 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1977 (end - start) << sbi->log_blocks_per_seg);
1978 continue;
1979 }
1980next:
1981 secno = GET_SEC_FROM_SEG(sbi, start);
1982 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1983 if (!IS_CURSEC(sbi, secno) &&
1984 !get_valid_blocks(sbi, start, true))
1985 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1986 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1987
1988 start = start_segno + sbi->segs_per_sec;
1989 if (start < end)
1990 goto next;
1991 else
1992 end = start - 1;
1993 }
1994 mutex_unlock(&dirty_i->seglist_lock);
1995
1996 /* send small discards */
1997 list_for_each_entry_safe(entry, this, head, list) {
1998 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1999 bool is_valid = test_bit_le(0, entry->discard_map);
2000
2001find_next:
2002 if (is_valid) {
2003 next_pos = find_next_zero_bit_le(entry->discard_map,
2004 sbi->blocks_per_seg, cur_pos);
2005 len = next_pos - cur_pos;
2006
2007 if (f2fs_sb_has_blkzoned(sbi) ||
2008 (force && len < cpc->trim_minlen))
2009 goto skip;
2010
2011 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2012 len);
2013 total_len += len;
2014 } else {
2015 next_pos = find_next_bit_le(entry->discard_map,
2016 sbi->blocks_per_seg, cur_pos);
2017 }
2018skip:
2019 cur_pos = next_pos;
2020 is_valid = !is_valid;
2021
2022 if (cur_pos < sbi->blocks_per_seg)
2023 goto find_next;
2024
2025 release_discard_addr(entry);
2026 dcc->nr_discards -= total_len;
2027 }
2028
2029 wake_up_discard_thread(sbi, false);
2030}
2031
2032static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2033{
2034 dev_t dev = sbi->sb->s_bdev->bd_dev;
2035 struct discard_cmd_control *dcc;
2036 int err = 0, i;
2037
2038 if (SM_I(sbi)->dcc_info) {
2039 dcc = SM_I(sbi)->dcc_info;
2040 goto init_thread;
2041 }
2042
2043 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2044 if (!dcc)
2045 return -ENOMEM;
2046
2047 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2048 INIT_LIST_HEAD(&dcc->entry_list);
2049 for (i = 0; i < MAX_PLIST_NUM; i++)
2050 INIT_LIST_HEAD(&dcc->pend_list[i]);
2051 INIT_LIST_HEAD(&dcc->wait_list);
2052 INIT_LIST_HEAD(&dcc->fstrim_list);
2053 mutex_init(&dcc->cmd_lock);
2054 atomic_set(&dcc->issued_discard, 0);
2055 atomic_set(&dcc->queued_discard, 0);
2056 atomic_set(&dcc->discard_cmd_cnt, 0);
2057 dcc->nr_discards = 0;
2058 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2059 dcc->undiscard_blks = 0;
2060 dcc->next_pos = 0;
2061 dcc->root = RB_ROOT_CACHED;
2062 dcc->rbtree_check = false;
2063
2064 init_waitqueue_head(&dcc->discard_wait_queue);
2065 SM_I(sbi)->dcc_info = dcc;
2066init_thread:
2067 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2068 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2069 if (IS_ERR(dcc->f2fs_issue_discard)) {
2070 err = PTR_ERR(dcc->f2fs_issue_discard);
2071 kvfree(dcc);
2072 SM_I(sbi)->dcc_info = NULL;
2073 return err;
2074 }
2075
2076 return err;
2077}
2078
2079static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2080{
2081 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2082
2083 if (!dcc)
2084 return;
2085
2086 f2fs_stop_discard_thread(sbi);
2087
2088 /*
2089 * Recovery can cache discard commands, so in error path of
2090 * fill_super(), it needs to give a chance to handle them.
2091 */
2092 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2093 f2fs_issue_discard_timeout(sbi);
2094
2095 kvfree(dcc);
2096 SM_I(sbi)->dcc_info = NULL;
2097}
2098
2099static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2100{
2101 struct sit_info *sit_i = SIT_I(sbi);
2102
2103 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2104 sit_i->dirty_sentries++;
2105 return false;
2106 }
2107
2108 return true;
2109}
2110
2111static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2112 unsigned int segno, int modified)
2113{
2114 struct seg_entry *se = get_seg_entry(sbi, segno);
2115 se->type = type;
2116 if (modified)
2117 __mark_sit_entry_dirty(sbi, segno);
2118}
2119
2120static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2121{
2122 struct seg_entry *se;
2123 unsigned int segno, offset;
2124 long int new_vblocks;
2125 bool exist;
2126#ifdef CONFIG_F2FS_CHECK_FS
2127 bool mir_exist;
2128#endif
2129
2130 segno = GET_SEGNO(sbi, blkaddr);
2131
2132 se = get_seg_entry(sbi, segno);
2133 new_vblocks = se->valid_blocks + del;
2134 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2135
2136 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2137 (new_vblocks > sbi->blocks_per_seg)));
2138
2139 se->valid_blocks = new_vblocks;
2140 se->mtime = get_mtime(sbi, false);
2141 if (se->mtime > SIT_I(sbi)->max_mtime)
2142 SIT_I(sbi)->max_mtime = se->mtime;
2143
2144 /* Update valid block bitmap */
2145 if (del > 0) {
2146 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2147#ifdef CONFIG_F2FS_CHECK_FS
2148 mir_exist = f2fs_test_and_set_bit(offset,
2149 se->cur_valid_map_mir);
2150 if (unlikely(exist != mir_exist)) {
2151 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2152 blkaddr, exist);
2153 f2fs_bug_on(sbi, 1);
2154 }
2155#endif
2156 if (unlikely(exist)) {
2157 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2158 blkaddr);
2159 f2fs_bug_on(sbi, 1);
2160 se->valid_blocks--;
2161 del = 0;
2162 }
2163
2164 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2165 sbi->discard_blks--;
2166
2167 /*
2168 * SSR should never reuse block which is checkpointed
2169 * or newly invalidated.
2170 */
2171 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2172 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2173 se->ckpt_valid_blocks++;
2174 }
2175 } else {
2176 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2177#ifdef CONFIG_F2FS_CHECK_FS
2178 mir_exist = f2fs_test_and_clear_bit(offset,
2179 se->cur_valid_map_mir);
2180 if (unlikely(exist != mir_exist)) {
2181 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2182 blkaddr, exist);
2183 f2fs_bug_on(sbi, 1);
2184 }
2185#endif
2186 if (unlikely(!exist)) {
2187 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2188 blkaddr);
2189 f2fs_bug_on(sbi, 1);
2190 se->valid_blocks++;
2191 del = 0;
2192 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2193 /*
2194 * If checkpoints are off, we must not reuse data that
2195 * was used in the previous checkpoint. If it was used
2196 * before, we must track that to know how much space we
2197 * really have.
2198 */
2199 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2200 spin_lock(&sbi->stat_lock);
2201 sbi->unusable_block_count++;
2202 spin_unlock(&sbi->stat_lock);
2203 }
2204 }
2205
2206 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2207 sbi->discard_blks++;
2208 }
2209 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2210 se->ckpt_valid_blocks += del;
2211
2212 __mark_sit_entry_dirty(sbi, segno);
2213
2214 /* update total number of valid blocks to be written in ckpt area */
2215 SIT_I(sbi)->written_valid_blocks += del;
2216
2217 if (__is_large_section(sbi))
2218 get_sec_entry(sbi, segno)->valid_blocks += del;
2219}
2220
2221void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2222{
2223 unsigned int segno = GET_SEGNO(sbi, addr);
2224 struct sit_info *sit_i = SIT_I(sbi);
2225
2226 f2fs_bug_on(sbi, addr == NULL_ADDR);
2227 if (addr == NEW_ADDR)
2228 return;
2229
2230 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2231
2232 /* add it into sit main buffer */
2233 down_write(&sit_i->sentry_lock);
2234
2235 update_sit_entry(sbi, addr, -1);
2236
2237 /* add it into dirty seglist */
2238 locate_dirty_segment(sbi, segno);
2239
2240 up_write(&sit_i->sentry_lock);
2241}
2242
2243bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2244{
2245 struct sit_info *sit_i = SIT_I(sbi);
2246 unsigned int segno, offset;
2247 struct seg_entry *se;
2248 bool is_cp = false;
2249
2250 if (!__is_valid_data_blkaddr(blkaddr))
2251 return true;
2252
2253 down_read(&sit_i->sentry_lock);
2254
2255 segno = GET_SEGNO(sbi, blkaddr);
2256 se = get_seg_entry(sbi, segno);
2257 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2258
2259 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2260 is_cp = true;
2261
2262 up_read(&sit_i->sentry_lock);
2263
2264 return is_cp;
2265}
2266
2267/*
2268 * This function should be resided under the curseg_mutex lock
2269 */
2270static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2271 struct f2fs_summary *sum)
2272{
2273 struct curseg_info *curseg = CURSEG_I(sbi, type);
2274 void *addr = curseg->sum_blk;
2275 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2276 memcpy(addr, sum, sizeof(struct f2fs_summary));
2277}
2278
2279/*
2280 * Calculate the number of current summary pages for writing
2281 */
2282int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2283{
2284 int valid_sum_count = 0;
2285 int i, sum_in_page;
2286
2287 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2288 if (sbi->ckpt->alloc_type[i] == SSR)
2289 valid_sum_count += sbi->blocks_per_seg;
2290 else {
2291 if (for_ra)
2292 valid_sum_count += le16_to_cpu(
2293 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2294 else
2295 valid_sum_count += curseg_blkoff(sbi, i);
2296 }
2297 }
2298
2299 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2300 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2301 if (valid_sum_count <= sum_in_page)
2302 return 1;
2303 else if ((valid_sum_count - sum_in_page) <=
2304 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2305 return 2;
2306 return 3;
2307}
2308
2309/*
2310 * Caller should put this summary page
2311 */
2312struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2313{
2314 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2315}
2316
2317void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2318 void *src, block_t blk_addr)
2319{
2320 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2321
2322 memcpy(page_address(page), src, PAGE_SIZE);
2323 set_page_dirty(page);
2324 f2fs_put_page(page, 1);
2325}
2326
2327static void write_sum_page(struct f2fs_sb_info *sbi,
2328 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2329{
2330 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2331}
2332
2333static void write_current_sum_page(struct f2fs_sb_info *sbi,
2334 int type, block_t blk_addr)
2335{
2336 struct curseg_info *curseg = CURSEG_I(sbi, type);
2337 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2338 struct f2fs_summary_block *src = curseg->sum_blk;
2339 struct f2fs_summary_block *dst;
2340
2341 dst = (struct f2fs_summary_block *)page_address(page);
2342 memset(dst, 0, PAGE_SIZE);
2343
2344 mutex_lock(&curseg->curseg_mutex);
2345
2346 down_read(&curseg->journal_rwsem);
2347 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2348 up_read(&curseg->journal_rwsem);
2349
2350 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2351 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2352
2353 mutex_unlock(&curseg->curseg_mutex);
2354
2355 set_page_dirty(page);
2356 f2fs_put_page(page, 1);
2357}
2358
2359static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2360{
2361 struct curseg_info *curseg = CURSEG_I(sbi, type);
2362 unsigned int segno = curseg->segno + 1;
2363 struct free_segmap_info *free_i = FREE_I(sbi);
2364
2365 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2366 return !test_bit(segno, free_i->free_segmap);
2367 return 0;
2368}
2369
2370/*
2371 * Find a new segment from the free segments bitmap to right order
2372 * This function should be returned with success, otherwise BUG
2373 */
2374static void get_new_segment(struct f2fs_sb_info *sbi,
2375 unsigned int *newseg, bool new_sec, int dir)
2376{
2377 struct free_segmap_info *free_i = FREE_I(sbi);
2378 unsigned int segno, secno, zoneno;
2379 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2380 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2381 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2382 unsigned int left_start = hint;
2383 bool init = true;
2384 int go_left = 0;
2385 int i;
2386
2387 spin_lock(&free_i->segmap_lock);
2388
2389 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2390 segno = find_next_zero_bit(free_i->free_segmap,
2391 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2392 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2393 goto got_it;
2394 }
2395find_other_zone:
2396 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2397 if (secno >= MAIN_SECS(sbi)) {
2398 if (dir == ALLOC_RIGHT) {
2399 secno = find_next_zero_bit(free_i->free_secmap,
2400 MAIN_SECS(sbi), 0);
2401 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2402 } else {
2403 go_left = 1;
2404 left_start = hint - 1;
2405 }
2406 }
2407 if (go_left == 0)
2408 goto skip_left;
2409
2410 while (test_bit(left_start, free_i->free_secmap)) {
2411 if (left_start > 0) {
2412 left_start--;
2413 continue;
2414 }
2415 left_start = find_next_zero_bit(free_i->free_secmap,
2416 MAIN_SECS(sbi), 0);
2417 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2418 break;
2419 }
2420 secno = left_start;
2421skip_left:
2422 segno = GET_SEG_FROM_SEC(sbi, secno);
2423 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2424
2425 /* give up on finding another zone */
2426 if (!init)
2427 goto got_it;
2428 if (sbi->secs_per_zone == 1)
2429 goto got_it;
2430 if (zoneno == old_zoneno)
2431 goto got_it;
2432 if (dir == ALLOC_LEFT) {
2433 if (!go_left && zoneno + 1 >= total_zones)
2434 goto got_it;
2435 if (go_left && zoneno == 0)
2436 goto got_it;
2437 }
2438 for (i = 0; i < NR_CURSEG_TYPE; i++)
2439 if (CURSEG_I(sbi, i)->zone == zoneno)
2440 break;
2441
2442 if (i < NR_CURSEG_TYPE) {
2443 /* zone is in user, try another */
2444 if (go_left)
2445 hint = zoneno * sbi->secs_per_zone - 1;
2446 else if (zoneno + 1 >= total_zones)
2447 hint = 0;
2448 else
2449 hint = (zoneno + 1) * sbi->secs_per_zone;
2450 init = false;
2451 goto find_other_zone;
2452 }
2453got_it:
2454 /* set it as dirty segment in free segmap */
2455 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2456 __set_inuse(sbi, segno);
2457 *newseg = segno;
2458 spin_unlock(&free_i->segmap_lock);
2459}
2460
2461static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2462{
2463 struct curseg_info *curseg = CURSEG_I(sbi, type);
2464 struct summary_footer *sum_footer;
2465
2466 curseg->segno = curseg->next_segno;
2467 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2468 curseg->next_blkoff = 0;
2469 curseg->next_segno = NULL_SEGNO;
2470
2471 sum_footer = &(curseg->sum_blk->footer);
2472 memset(sum_footer, 0, sizeof(struct summary_footer));
2473 if (IS_DATASEG(type))
2474 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2475 if (IS_NODESEG(type))
2476 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2477 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2478}
2479
2480static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2481{
2482 /* if segs_per_sec is large than 1, we need to keep original policy. */
2483 if (__is_large_section(sbi))
2484 return CURSEG_I(sbi, type)->segno;
2485
2486 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2487 return 0;
2488
2489 if (test_opt(sbi, NOHEAP) &&
2490 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2491 return 0;
2492
2493 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2494 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2495
2496 /* find segments from 0 to reuse freed segments */
2497 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2498 return 0;
2499
2500 return CURSEG_I(sbi, type)->segno;
2501}
2502
2503/*
2504 * Allocate a current working segment.
2505 * This function always allocates a free segment in LFS manner.
2506 */
2507static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2508{
2509 struct curseg_info *curseg = CURSEG_I(sbi, type);
2510 unsigned int segno = curseg->segno;
2511 int dir = ALLOC_LEFT;
2512
2513 write_sum_page(sbi, curseg->sum_blk,
2514 GET_SUM_BLOCK(sbi, segno));
2515 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2516 dir = ALLOC_RIGHT;
2517
2518 if (test_opt(sbi, NOHEAP))
2519 dir = ALLOC_RIGHT;
2520
2521 segno = __get_next_segno(sbi, type);
2522 get_new_segment(sbi, &segno, new_sec, dir);
2523 curseg->next_segno = segno;
2524 reset_curseg(sbi, type, 1);
2525 curseg->alloc_type = LFS;
2526}
2527
2528static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2529 struct curseg_info *seg, block_t start)
2530{
2531 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2532 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2533 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2534 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2535 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2536 int i, pos;
2537
2538 for (i = 0; i < entries; i++)
2539 target_map[i] = ckpt_map[i] | cur_map[i];
2540
2541 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2542
2543 seg->next_blkoff = pos;
2544}
2545
2546/*
2547 * If a segment is written by LFS manner, next block offset is just obtained
2548 * by increasing the current block offset. However, if a segment is written by
2549 * SSR manner, next block offset obtained by calling __next_free_blkoff
2550 */
2551static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2552 struct curseg_info *seg)
2553{
2554 if (seg->alloc_type == SSR)
2555 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2556 else
2557 seg->next_blkoff++;
2558}
2559
2560/*
2561 * This function always allocates a used segment(from dirty seglist) by SSR
2562 * manner, so it should recover the existing segment information of valid blocks
2563 */
2564static void change_curseg(struct f2fs_sb_info *sbi, int type)
2565{
2566 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2567 struct curseg_info *curseg = CURSEG_I(sbi, type);
2568 unsigned int new_segno = curseg->next_segno;
2569 struct f2fs_summary_block *sum_node;
2570 struct page *sum_page;
2571
2572 write_sum_page(sbi, curseg->sum_blk,
2573 GET_SUM_BLOCK(sbi, curseg->segno));
2574 __set_test_and_inuse(sbi, new_segno);
2575
2576 mutex_lock(&dirty_i->seglist_lock);
2577 __remove_dirty_segment(sbi, new_segno, PRE);
2578 __remove_dirty_segment(sbi, new_segno, DIRTY);
2579 mutex_unlock(&dirty_i->seglist_lock);
2580
2581 reset_curseg(sbi, type, 1);
2582 curseg->alloc_type = SSR;
2583 __next_free_blkoff(sbi, curseg, 0);
2584
2585 sum_page = f2fs_get_sum_page(sbi, new_segno);
2586 f2fs_bug_on(sbi, IS_ERR(sum_page));
2587 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2588 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2589 f2fs_put_page(sum_page, 1);
2590}
2591
2592static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2593{
2594 struct curseg_info *curseg = CURSEG_I(sbi, type);
2595 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2596 unsigned segno = NULL_SEGNO;
2597 int i, cnt;
2598 bool reversed = false;
2599
2600 /* f2fs_need_SSR() already forces to do this */
2601 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2602 curseg->next_segno = segno;
2603 return 1;
2604 }
2605
2606 /* For node segments, let's do SSR more intensively */
2607 if (IS_NODESEG(type)) {
2608 if (type >= CURSEG_WARM_NODE) {
2609 reversed = true;
2610 i = CURSEG_COLD_NODE;
2611 } else {
2612 i = CURSEG_HOT_NODE;
2613 }
2614 cnt = NR_CURSEG_NODE_TYPE;
2615 } else {
2616 if (type >= CURSEG_WARM_DATA) {
2617 reversed = true;
2618 i = CURSEG_COLD_DATA;
2619 } else {
2620 i = CURSEG_HOT_DATA;
2621 }
2622 cnt = NR_CURSEG_DATA_TYPE;
2623 }
2624
2625 for (; cnt-- > 0; reversed ? i-- : i++) {
2626 if (i == type)
2627 continue;
2628 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2629 curseg->next_segno = segno;
2630 return 1;
2631 }
2632 }
2633
2634 /* find valid_blocks=0 in dirty list */
2635 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2636 segno = get_free_segment(sbi);
2637 if (segno != NULL_SEGNO) {
2638 curseg->next_segno = segno;
2639 return 1;
2640 }
2641 }
2642 return 0;
2643}
2644
2645/*
2646 * flush out current segment and replace it with new segment
2647 * This function should be returned with success, otherwise BUG
2648 */
2649static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2650 int type, bool force)
2651{
2652 struct curseg_info *curseg = CURSEG_I(sbi, type);
2653
2654 if (force)
2655 new_curseg(sbi, type, true);
2656 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2657 type == CURSEG_WARM_NODE)
2658 new_curseg(sbi, type, false);
2659 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2660 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2661 new_curseg(sbi, type, false);
2662 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2663 change_curseg(sbi, type);
2664 else
2665 new_curseg(sbi, type, false);
2666
2667 stat_inc_seg_type(sbi, curseg);
2668}
2669
2670void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2671 unsigned int start, unsigned int end)
2672{
2673 struct curseg_info *curseg = CURSEG_I(sbi, type);
2674 unsigned int segno;
2675
2676 down_read(&SM_I(sbi)->curseg_lock);
2677 mutex_lock(&curseg->curseg_mutex);
2678 down_write(&SIT_I(sbi)->sentry_lock);
2679
2680 segno = CURSEG_I(sbi, type)->segno;
2681 if (segno < start || segno > end)
2682 goto unlock;
2683
2684 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2685 change_curseg(sbi, type);
2686 else
2687 new_curseg(sbi, type, true);
2688
2689 stat_inc_seg_type(sbi, curseg);
2690
2691 locate_dirty_segment(sbi, segno);
2692unlock:
2693 up_write(&SIT_I(sbi)->sentry_lock);
2694
2695 if (segno != curseg->segno)
2696 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2697 type, segno, curseg->segno);
2698
2699 mutex_unlock(&curseg->curseg_mutex);
2700 up_read(&SM_I(sbi)->curseg_lock);
2701}
2702
2703void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2704{
2705 struct curseg_info *curseg;
2706 unsigned int old_segno;
2707 int i;
2708
2709 down_write(&SIT_I(sbi)->sentry_lock);
2710
2711 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2712 if (type != NO_CHECK_TYPE && i != type)
2713 continue;
2714
2715 curseg = CURSEG_I(sbi, i);
2716 if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2717 get_valid_blocks(sbi, curseg->segno, false) ||
2718 get_ckpt_valid_blocks(sbi, curseg->segno)) {
2719 old_segno = curseg->segno;
2720 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2721 locate_dirty_segment(sbi, old_segno);
2722 }
2723 }
2724
2725 up_write(&SIT_I(sbi)->sentry_lock);
2726}
2727
2728static const struct segment_allocation default_salloc_ops = {
2729 .allocate_segment = allocate_segment_by_default,
2730};
2731
2732bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2733 struct cp_control *cpc)
2734{
2735 __u64 trim_start = cpc->trim_start;
2736 bool has_candidate = false;
2737
2738 down_write(&SIT_I(sbi)->sentry_lock);
2739 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2740 if (add_discard_addrs(sbi, cpc, true)) {
2741 has_candidate = true;
2742 break;
2743 }
2744 }
2745 up_write(&SIT_I(sbi)->sentry_lock);
2746
2747 cpc->trim_start = trim_start;
2748 return has_candidate;
2749}
2750
2751static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2752 struct discard_policy *dpolicy,
2753 unsigned int start, unsigned int end)
2754{
2755 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2756 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2757 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2758 struct discard_cmd *dc;
2759 struct blk_plug plug;
2760 int issued;
2761 unsigned int trimmed = 0;
2762
2763next:
2764 issued = 0;
2765
2766 mutex_lock(&dcc->cmd_lock);
2767 if (unlikely(dcc->rbtree_check))
2768 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2769 &dcc->root));
2770
2771 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2772 NULL, start,
2773 (struct rb_entry **)&prev_dc,
2774 (struct rb_entry **)&next_dc,
2775 &insert_p, &insert_parent, true, NULL);
2776 if (!dc)
2777 dc = next_dc;
2778
2779 blk_start_plug(&plug);
2780
2781 while (dc && dc->lstart <= end) {
2782 struct rb_node *node;
2783 int err = 0;
2784
2785 if (dc->len < dpolicy->granularity)
2786 goto skip;
2787
2788 if (dc->state != D_PREP) {
2789 list_move_tail(&dc->list, &dcc->fstrim_list);
2790 goto skip;
2791 }
2792
2793 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2794
2795 if (issued >= dpolicy->max_requests) {
2796 start = dc->lstart + dc->len;
2797
2798 if (err)
2799 __remove_discard_cmd(sbi, dc);
2800
2801 blk_finish_plug(&plug);
2802 mutex_unlock(&dcc->cmd_lock);
2803 trimmed += __wait_all_discard_cmd(sbi, NULL);
2804 congestion_wait(BLK_RW_ASYNC, HZ/50);
2805 goto next;
2806 }
2807skip:
2808 node = rb_next(&dc->rb_node);
2809 if (err)
2810 __remove_discard_cmd(sbi, dc);
2811 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2812
2813 if (fatal_signal_pending(current))
2814 break;
2815 }
2816
2817 blk_finish_plug(&plug);
2818 mutex_unlock(&dcc->cmd_lock);
2819
2820 return trimmed;
2821}
2822
2823int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2824{
2825 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2826 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2827 unsigned int start_segno, end_segno;
2828 block_t start_block, end_block;
2829 struct cp_control cpc;
2830 struct discard_policy dpolicy;
2831 unsigned long long trimmed = 0;
2832 int err = 0;
2833 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2834
2835 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2836 return -EINVAL;
2837
2838 if (end < MAIN_BLKADDR(sbi))
2839 goto out;
2840
2841 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2842 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2843 return -EFSCORRUPTED;
2844 }
2845
2846 /* start/end segment number in main_area */
2847 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2848 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2849 GET_SEGNO(sbi, end);
2850 if (need_align) {
2851 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2852 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2853 }
2854
2855 cpc.reason = CP_DISCARD;
2856 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2857 cpc.trim_start = start_segno;
2858 cpc.trim_end = end_segno;
2859
2860 if (sbi->discard_blks == 0)
2861 goto out;
2862
2863 mutex_lock(&sbi->gc_mutex);
2864 err = f2fs_write_checkpoint(sbi, &cpc);
2865 mutex_unlock(&sbi->gc_mutex);
2866 if (err)
2867 goto out;
2868
2869 /*
2870 * We filed discard candidates, but actually we don't need to wait for
2871 * all of them, since they'll be issued in idle time along with runtime
2872 * discard option. User configuration looks like using runtime discard
2873 * or periodic fstrim instead of it.
2874 */
2875 if (f2fs_realtime_discard_enable(sbi))
2876 goto out;
2877
2878 start_block = START_BLOCK(sbi, start_segno);
2879 end_block = START_BLOCK(sbi, end_segno + 1);
2880
2881 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2882 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2883 start_block, end_block);
2884
2885 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2886 start_block, end_block);
2887out:
2888 if (!err)
2889 range->len = F2FS_BLK_TO_BYTES(trimmed);
2890 return err;
2891}
2892
2893static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2894{
2895 struct curseg_info *curseg = CURSEG_I(sbi, type);
2896 if (curseg->next_blkoff < sbi->blocks_per_seg)
2897 return true;
2898 return false;
2899}
2900
2901int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2902{
2903 switch (hint) {
2904 case WRITE_LIFE_SHORT:
2905 return CURSEG_HOT_DATA;
2906 case WRITE_LIFE_EXTREME:
2907 return CURSEG_COLD_DATA;
2908 default:
2909 return CURSEG_WARM_DATA;
2910 }
2911}
2912
2913/* This returns write hints for each segment type. This hints will be
2914 * passed down to block layer. There are mapping tables which depend on
2915 * the mount option 'whint_mode'.
2916 *
2917 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2918 *
2919 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2920 *
2921 * User F2FS Block
2922 * ---- ---- -----
2923 * META WRITE_LIFE_NOT_SET
2924 * HOT_NODE "
2925 * WARM_NODE "
2926 * COLD_NODE "
2927 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2928 * extension list " "
2929 *
2930 * -- buffered io
2931 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2932 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2933 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2934 * WRITE_LIFE_NONE " "
2935 * WRITE_LIFE_MEDIUM " "
2936 * WRITE_LIFE_LONG " "
2937 *
2938 * -- direct io
2939 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2940 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2941 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2942 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2943 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2944 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2945 *
2946 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2947 *
2948 * User F2FS Block
2949 * ---- ---- -----
2950 * META WRITE_LIFE_MEDIUM;
2951 * HOT_NODE WRITE_LIFE_NOT_SET
2952 * WARM_NODE "
2953 * COLD_NODE WRITE_LIFE_NONE
2954 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2955 * extension list " "
2956 *
2957 * -- buffered io
2958 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2959 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2960 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2961 * WRITE_LIFE_NONE " "
2962 * WRITE_LIFE_MEDIUM " "
2963 * WRITE_LIFE_LONG " "
2964 *
2965 * -- direct io
2966 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2967 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2968 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2969 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2970 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2971 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2972 */
2973
2974enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2975 enum page_type type, enum temp_type temp)
2976{
2977 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2978 if (type == DATA) {
2979 if (temp == WARM)
2980 return WRITE_LIFE_NOT_SET;
2981 else if (temp == HOT)
2982 return WRITE_LIFE_SHORT;
2983 else if (temp == COLD)
2984 return WRITE_LIFE_EXTREME;
2985 } else {
2986 return WRITE_LIFE_NOT_SET;
2987 }
2988 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2989 if (type == DATA) {
2990 if (temp == WARM)
2991 return WRITE_LIFE_LONG;
2992 else if (temp == HOT)
2993 return WRITE_LIFE_SHORT;
2994 else if (temp == COLD)
2995 return WRITE_LIFE_EXTREME;
2996 } else if (type == NODE) {
2997 if (temp == WARM || temp == HOT)
2998 return WRITE_LIFE_NOT_SET;
2999 else if (temp == COLD)
3000 return WRITE_LIFE_NONE;
3001 } else if (type == META) {
3002 return WRITE_LIFE_MEDIUM;
3003 }
3004 }
3005 return WRITE_LIFE_NOT_SET;
3006}
3007
3008static int __get_segment_type_2(struct f2fs_io_info *fio)
3009{
3010 if (fio->type == DATA)
3011 return CURSEG_HOT_DATA;
3012 else
3013 return CURSEG_HOT_NODE;
3014}
3015
3016static int __get_segment_type_4(struct f2fs_io_info *fio)
3017{
3018 if (fio->type == DATA) {
3019 struct inode *inode = fio->page->mapping->host;
3020
3021 if (S_ISDIR(inode->i_mode))
3022 return CURSEG_HOT_DATA;
3023 else
3024 return CURSEG_COLD_DATA;
3025 } else {
3026 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3027 return CURSEG_WARM_NODE;
3028 else
3029 return CURSEG_COLD_NODE;
3030 }
3031}
3032
3033static int __get_segment_type_6(struct f2fs_io_info *fio)
3034{
3035 if (fio->type == DATA) {
3036 struct inode *inode = fio->page->mapping->host;
3037
3038 if (is_cold_data(fio->page) || file_is_cold(inode))
3039 return CURSEG_COLD_DATA;
3040 if (file_is_hot(inode) ||
3041 is_inode_flag_set(inode, FI_HOT_DATA) ||
3042 f2fs_is_atomic_file(inode) ||
3043 f2fs_is_volatile_file(inode))
3044 return CURSEG_HOT_DATA;
3045 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3046 } else {
3047 if (IS_DNODE(fio->page))
3048 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3049 CURSEG_HOT_NODE;
3050 return CURSEG_COLD_NODE;
3051 }
3052}
3053
3054static int __get_segment_type(struct f2fs_io_info *fio)
3055{
3056 int type = 0;
3057
3058 switch (F2FS_OPTION(fio->sbi).active_logs) {
3059 case 2:
3060 type = __get_segment_type_2(fio);
3061 break;
3062 case 4:
3063 type = __get_segment_type_4(fio);
3064 break;
3065 case 6:
3066 type = __get_segment_type_6(fio);
3067 break;
3068 default:
3069 f2fs_bug_on(fio->sbi, true);
3070 }
3071
3072 if (IS_HOT(type))
3073 fio->temp = HOT;
3074 else if (IS_WARM(type))
3075 fio->temp = WARM;
3076 else
3077 fio->temp = COLD;
3078 return type;
3079}
3080
3081void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3082 block_t old_blkaddr, block_t *new_blkaddr,
3083 struct f2fs_summary *sum, int type,
3084 struct f2fs_io_info *fio, bool add_list)
3085{
3086 struct sit_info *sit_i = SIT_I(sbi);
3087 struct curseg_info *curseg = CURSEG_I(sbi, type);
3088 bool put_pin_sem = false;
3089
3090 if (type == CURSEG_COLD_DATA) {
3091 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3092 if (down_read_trylock(&sbi->pin_sem)) {
3093 put_pin_sem = true;
3094 } else {
3095 type = CURSEG_WARM_DATA;
3096 curseg = CURSEG_I(sbi, type);
3097 }
3098 } else if (type == CURSEG_COLD_DATA_PINNED) {
3099 type = CURSEG_COLD_DATA;
3100 }
3101
3102 down_read(&SM_I(sbi)->curseg_lock);
3103
3104 mutex_lock(&curseg->curseg_mutex);
3105 down_write(&sit_i->sentry_lock);
3106
3107 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3108
3109 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3110
3111 /*
3112 * __add_sum_entry should be resided under the curseg_mutex
3113 * because, this function updates a summary entry in the
3114 * current summary block.
3115 */
3116 __add_sum_entry(sbi, type, sum);
3117
3118 __refresh_next_blkoff(sbi, curseg);
3119
3120 stat_inc_block_count(sbi, curseg);
3121
3122 /*
3123 * SIT information should be updated before segment allocation,
3124 * since SSR needs latest valid block information.
3125 */
3126 update_sit_entry(sbi, *new_blkaddr, 1);
3127 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3128 update_sit_entry(sbi, old_blkaddr, -1);
3129
3130 if (!__has_curseg_space(sbi, type))
3131 sit_i->s_ops->allocate_segment(sbi, type, false);
3132
3133 /*
3134 * segment dirty status should be updated after segment allocation,
3135 * so we just need to update status only one time after previous
3136 * segment being closed.
3137 */
3138 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3139 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3140
3141 up_write(&sit_i->sentry_lock);
3142
3143 if (page && IS_NODESEG(type)) {
3144 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3145
3146 f2fs_inode_chksum_set(sbi, page);
3147 }
3148
3149 if (F2FS_IO_ALIGNED(sbi))
3150 fio->retry = false;
3151
3152 if (add_list) {
3153 struct f2fs_bio_info *io;
3154
3155 INIT_LIST_HEAD(&fio->list);
3156 fio->in_list = true;
3157 io = sbi->write_io[fio->type] + fio->temp;
3158 spin_lock(&io->io_lock);
3159 list_add_tail(&fio->list, &io->io_list);
3160 spin_unlock(&io->io_lock);
3161 }
3162
3163 mutex_unlock(&curseg->curseg_mutex);
3164
3165 up_read(&SM_I(sbi)->curseg_lock);
3166
3167 if (put_pin_sem)
3168 up_read(&sbi->pin_sem);
3169}
3170
3171static void update_device_state(struct f2fs_io_info *fio)
3172{
3173 struct f2fs_sb_info *sbi = fio->sbi;
3174 unsigned int devidx;
3175
3176 if (!f2fs_is_multi_device(sbi))
3177 return;
3178
3179 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3180
3181 /* update device state for fsync */
3182 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3183
3184 /* update device state for checkpoint */
3185 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3186 spin_lock(&sbi->dev_lock);
3187 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3188 spin_unlock(&sbi->dev_lock);
3189 }
3190}
3191
3192static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3193{
3194 int type = __get_segment_type(fio);
3195 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3196
3197 if (keep_order)
3198 down_read(&fio->sbi->io_order_lock);
3199reallocate:
3200 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3201 &fio->new_blkaddr, sum, type, fio, true);
3202 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3203 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3204 fio->old_blkaddr, fio->old_blkaddr);
3205
3206 /* writeout dirty page into bdev */
3207 f2fs_submit_page_write(fio);
3208 if (fio->retry) {
3209 fio->old_blkaddr = fio->new_blkaddr;
3210 goto reallocate;
3211 }
3212
3213 update_device_state(fio);
3214
3215 if (keep_order)
3216 up_read(&fio->sbi->io_order_lock);
3217}
3218
3219void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3220 enum iostat_type io_type)
3221{
3222 struct f2fs_io_info fio = {
3223 .sbi = sbi,
3224 .type = META,
3225 .temp = HOT,
3226 .op = REQ_OP_WRITE,
3227 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3228 .old_blkaddr = page->index,
3229 .new_blkaddr = page->index,
3230 .page = page,
3231 .encrypted_page = NULL,
3232 .in_list = false,
3233 };
3234
3235 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3236 fio.op_flags &= ~REQ_META;
3237
3238 set_page_writeback(page);
3239 ClearPageError(page);
3240 f2fs_submit_page_write(&fio);
3241
3242 stat_inc_meta_count(sbi, page->index);
3243 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3244}
3245
3246void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3247{
3248 struct f2fs_summary sum;
3249
3250 set_summary(&sum, nid, 0, 0);
3251 do_write_page(&sum, fio);
3252
3253 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3254}
3255
3256void f2fs_outplace_write_data(struct dnode_of_data *dn,
3257 struct f2fs_io_info *fio)
3258{
3259 struct f2fs_sb_info *sbi = fio->sbi;
3260 struct f2fs_summary sum;
3261
3262 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3263 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3264 do_write_page(&sum, fio);
3265 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3266
3267 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3268}
3269
3270int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3271{
3272 int err;
3273 struct f2fs_sb_info *sbi = fio->sbi;
3274 unsigned int segno;
3275
3276 fio->new_blkaddr = fio->old_blkaddr;
3277 /* i/o temperature is needed for passing down write hints */
3278 __get_segment_type(fio);
3279
3280 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3281
3282 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3283 set_sbi_flag(sbi, SBI_NEED_FSCK);
3284 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3285 __func__, segno);
3286 return -EFSCORRUPTED;
3287 }
3288
3289 stat_inc_inplace_blocks(fio->sbi);
3290
3291 if (fio->bio)
3292 err = f2fs_merge_page_bio(fio);
3293 else
3294 err = f2fs_submit_page_bio(fio);
3295 if (!err) {
3296 update_device_state(fio);
3297 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3298 }
3299
3300 return err;
3301}
3302
3303static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3304 unsigned int segno)
3305{
3306 int i;
3307
3308 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3309 if (CURSEG_I(sbi, i)->segno == segno)
3310 break;
3311 }
3312 return i;
3313}
3314
3315void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3316 block_t old_blkaddr, block_t new_blkaddr,
3317 bool recover_curseg, bool recover_newaddr)
3318{
3319 struct sit_info *sit_i = SIT_I(sbi);
3320 struct curseg_info *curseg;
3321 unsigned int segno, old_cursegno;
3322 struct seg_entry *se;
3323 int type;
3324 unsigned short old_blkoff;
3325
3326 segno = GET_SEGNO(sbi, new_blkaddr);
3327 se = get_seg_entry(sbi, segno);
3328 type = se->type;
3329
3330 down_write(&SM_I(sbi)->curseg_lock);
3331
3332 if (!recover_curseg) {
3333 /* for recovery flow */
3334 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3335 if (old_blkaddr == NULL_ADDR)
3336 type = CURSEG_COLD_DATA;
3337 else
3338 type = CURSEG_WARM_DATA;
3339 }
3340 } else {
3341 if (IS_CURSEG(sbi, segno)) {
3342 /* se->type is volatile as SSR allocation */
3343 type = __f2fs_get_curseg(sbi, segno);
3344 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3345 } else {
3346 type = CURSEG_WARM_DATA;
3347 }
3348 }
3349
3350 f2fs_bug_on(sbi, !IS_DATASEG(type));
3351 curseg = CURSEG_I(sbi, type);
3352
3353 mutex_lock(&curseg->curseg_mutex);
3354 down_write(&sit_i->sentry_lock);
3355
3356 old_cursegno = curseg->segno;
3357 old_blkoff = curseg->next_blkoff;
3358
3359 /* change the current segment */
3360 if (segno != curseg->segno) {
3361 curseg->next_segno = segno;
3362 change_curseg(sbi, type);
3363 }
3364
3365 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3366 __add_sum_entry(sbi, type, sum);
3367
3368 if (!recover_curseg || recover_newaddr)
3369 update_sit_entry(sbi, new_blkaddr, 1);
3370 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3371 invalidate_mapping_pages(META_MAPPING(sbi),
3372 old_blkaddr, old_blkaddr);
3373 update_sit_entry(sbi, old_blkaddr, -1);
3374 }
3375
3376 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3377 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3378
3379 locate_dirty_segment(sbi, old_cursegno);
3380
3381 if (recover_curseg) {
3382 if (old_cursegno != curseg->segno) {
3383 curseg->next_segno = old_cursegno;
3384 change_curseg(sbi, type);
3385 }
3386 curseg->next_blkoff = old_blkoff;
3387 }
3388
3389 up_write(&sit_i->sentry_lock);
3390 mutex_unlock(&curseg->curseg_mutex);
3391 up_write(&SM_I(sbi)->curseg_lock);
3392}
3393
3394void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3395 block_t old_addr, block_t new_addr,
3396 unsigned char version, bool recover_curseg,
3397 bool recover_newaddr)
3398{
3399 struct f2fs_summary sum;
3400
3401 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3402
3403 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3404 recover_curseg, recover_newaddr);
3405
3406 f2fs_update_data_blkaddr(dn, new_addr);
3407}
3408
3409void f2fs_wait_on_page_writeback(struct page *page,
3410 enum page_type type, bool ordered, bool locked)
3411{
3412 if (PageWriteback(page)) {
3413 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3414
3415 /* submit cached LFS IO */
3416 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3417 /* sbumit cached IPU IO */
3418 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3419 if (ordered) {
3420 wait_on_page_writeback(page);
3421 f2fs_bug_on(sbi, locked && PageWriteback(page));
3422 } else {
3423 wait_for_stable_page(page);
3424 }
3425 }
3426}
3427
3428void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3429{
3430 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3431 struct page *cpage;
3432
3433 if (!f2fs_post_read_required(inode))
3434 return;
3435
3436 if (!__is_valid_data_blkaddr(blkaddr))
3437 return;
3438
3439 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3440 if (cpage) {
3441 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3442 f2fs_put_page(cpage, 1);
3443 }
3444}
3445
3446void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3447 block_t len)
3448{
3449 block_t i;
3450
3451 for (i = 0; i < len; i++)
3452 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3453}
3454
3455static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3456{
3457 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3458 struct curseg_info *seg_i;
3459 unsigned char *kaddr;
3460 struct page *page;
3461 block_t start;
3462 int i, j, offset;
3463
3464 start = start_sum_block(sbi);
3465
3466 page = f2fs_get_meta_page(sbi, start++);
3467 if (IS_ERR(page))
3468 return PTR_ERR(page);
3469 kaddr = (unsigned char *)page_address(page);
3470
3471 /* Step 1: restore nat cache */
3472 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3473 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3474
3475 /* Step 2: restore sit cache */
3476 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3477 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3478 offset = 2 * SUM_JOURNAL_SIZE;
3479
3480 /* Step 3: restore summary entries */
3481 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3482 unsigned short blk_off;
3483 unsigned int segno;
3484
3485 seg_i = CURSEG_I(sbi, i);
3486 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3487 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3488 seg_i->next_segno = segno;
3489 reset_curseg(sbi, i, 0);
3490 seg_i->alloc_type = ckpt->alloc_type[i];
3491 seg_i->next_blkoff = blk_off;
3492
3493 if (seg_i->alloc_type == SSR)
3494 blk_off = sbi->blocks_per_seg;
3495
3496 for (j = 0; j < blk_off; j++) {
3497 struct f2fs_summary *s;
3498 s = (struct f2fs_summary *)(kaddr + offset);
3499 seg_i->sum_blk->entries[j] = *s;
3500 offset += SUMMARY_SIZE;
3501 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3502 SUM_FOOTER_SIZE)
3503 continue;
3504
3505 f2fs_put_page(page, 1);
3506 page = NULL;
3507
3508 page = f2fs_get_meta_page(sbi, start++);
3509 if (IS_ERR(page))
3510 return PTR_ERR(page);
3511 kaddr = (unsigned char *)page_address(page);
3512 offset = 0;
3513 }
3514 }
3515 f2fs_put_page(page, 1);
3516 return 0;
3517}
3518
3519static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3520{
3521 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3522 struct f2fs_summary_block *sum;
3523 struct curseg_info *curseg;
3524 struct page *new;
3525 unsigned short blk_off;
3526 unsigned int segno = 0;
3527 block_t blk_addr = 0;
3528 int err = 0;
3529
3530 /* get segment number and block addr */
3531 if (IS_DATASEG(type)) {
3532 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3533 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3534 CURSEG_HOT_DATA]);
3535 if (__exist_node_summaries(sbi))
3536 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3537 else
3538 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3539 } else {
3540 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3541 CURSEG_HOT_NODE]);
3542 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3543 CURSEG_HOT_NODE]);
3544 if (__exist_node_summaries(sbi))
3545 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3546 type - CURSEG_HOT_NODE);
3547 else
3548 blk_addr = GET_SUM_BLOCK(sbi, segno);
3549 }
3550
3551 new = f2fs_get_meta_page(sbi, blk_addr);
3552 if (IS_ERR(new))
3553 return PTR_ERR(new);
3554 sum = (struct f2fs_summary_block *)page_address(new);
3555
3556 if (IS_NODESEG(type)) {
3557 if (__exist_node_summaries(sbi)) {
3558 struct f2fs_summary *ns = &sum->entries[0];
3559 int i;
3560 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3561 ns->version = 0;
3562 ns->ofs_in_node = 0;
3563 }
3564 } else {
3565 err = f2fs_restore_node_summary(sbi, segno, sum);
3566 if (err)
3567 goto out;
3568 }
3569 }
3570
3571 /* set uncompleted segment to curseg */
3572 curseg = CURSEG_I(sbi, type);
3573 mutex_lock(&curseg->curseg_mutex);
3574
3575 /* update journal info */
3576 down_write(&curseg->journal_rwsem);
3577 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3578 up_write(&curseg->journal_rwsem);
3579
3580 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3581 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3582 curseg->next_segno = segno;
3583 reset_curseg(sbi, type, 0);
3584 curseg->alloc_type = ckpt->alloc_type[type];
3585 curseg->next_blkoff = blk_off;
3586 mutex_unlock(&curseg->curseg_mutex);
3587out:
3588 f2fs_put_page(new, 1);
3589 return err;
3590}
3591
3592static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3593{
3594 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3595 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3596 int type = CURSEG_HOT_DATA;
3597 int err;
3598
3599 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3600 int npages = f2fs_npages_for_summary_flush(sbi, true);
3601
3602 if (npages >= 2)
3603 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3604 META_CP, true);
3605
3606 /* restore for compacted data summary */
3607 err = read_compacted_summaries(sbi);
3608 if (err)
3609 return err;
3610 type = CURSEG_HOT_NODE;
3611 }
3612
3613 if (__exist_node_summaries(sbi))
3614 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3615 NR_CURSEG_TYPE - type, META_CP, true);
3616
3617 for (; type <= CURSEG_COLD_NODE; type++) {
3618 err = read_normal_summaries(sbi, type);
3619 if (err)
3620 return err;
3621 }
3622
3623 /* sanity check for summary blocks */
3624 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3625 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3626 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3627 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3628 return -EINVAL;
3629 }
3630
3631 return 0;
3632}
3633
3634static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3635{
3636 struct page *page;
3637 unsigned char *kaddr;
3638 struct f2fs_summary *summary;
3639 struct curseg_info *seg_i;
3640 int written_size = 0;
3641 int i, j;
3642
3643 page = f2fs_grab_meta_page(sbi, blkaddr++);
3644 kaddr = (unsigned char *)page_address(page);
3645 memset(kaddr, 0, PAGE_SIZE);
3646
3647 /* Step 1: write nat cache */
3648 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3649 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3650 written_size += SUM_JOURNAL_SIZE;
3651
3652 /* Step 2: write sit cache */
3653 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3654 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3655 written_size += SUM_JOURNAL_SIZE;
3656
3657 /* Step 3: write summary entries */
3658 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3659 unsigned short blkoff;
3660 seg_i = CURSEG_I(sbi, i);
3661 if (sbi->ckpt->alloc_type[i] == SSR)
3662 blkoff = sbi->blocks_per_seg;
3663 else
3664 blkoff = curseg_blkoff(sbi, i);
3665
3666 for (j = 0; j < blkoff; j++) {
3667 if (!page) {
3668 page = f2fs_grab_meta_page(sbi, blkaddr++);
3669 kaddr = (unsigned char *)page_address(page);
3670 memset(kaddr, 0, PAGE_SIZE);
3671 written_size = 0;
3672 }
3673 summary = (struct f2fs_summary *)(kaddr + written_size);
3674 *summary = seg_i->sum_blk->entries[j];
3675 written_size += SUMMARY_SIZE;
3676
3677 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3678 SUM_FOOTER_SIZE)
3679 continue;
3680
3681 set_page_dirty(page);
3682 f2fs_put_page(page, 1);
3683 page = NULL;
3684 }
3685 }
3686 if (page) {
3687 set_page_dirty(page);
3688 f2fs_put_page(page, 1);
3689 }
3690}
3691
3692static void write_normal_summaries(struct f2fs_sb_info *sbi,
3693 block_t blkaddr, int type)
3694{
3695 int i, end;
3696 if (IS_DATASEG(type))
3697 end = type + NR_CURSEG_DATA_TYPE;
3698 else
3699 end = type + NR_CURSEG_NODE_TYPE;
3700
3701 for (i = type; i < end; i++)
3702 write_current_sum_page(sbi, i, blkaddr + (i - type));
3703}
3704
3705void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3706{
3707 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3708 write_compacted_summaries(sbi, start_blk);
3709 else
3710 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3711}
3712
3713void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3714{
3715 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3716}
3717
3718int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3719 unsigned int val, int alloc)
3720{
3721 int i;
3722
3723 if (type == NAT_JOURNAL) {
3724 for (i = 0; i < nats_in_cursum(journal); i++) {
3725 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3726 return i;
3727 }
3728 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3729 return update_nats_in_cursum(journal, 1);
3730 } else if (type == SIT_JOURNAL) {
3731 for (i = 0; i < sits_in_cursum(journal); i++)
3732 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3733 return i;
3734 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3735 return update_sits_in_cursum(journal, 1);
3736 }
3737 return -1;
3738}
3739
3740static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3741 unsigned int segno)
3742{
3743 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3744}
3745
3746static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3747 unsigned int start)
3748{
3749 struct sit_info *sit_i = SIT_I(sbi);
3750 struct page *page;
3751 pgoff_t src_off, dst_off;
3752
3753 src_off = current_sit_addr(sbi, start);
3754 dst_off = next_sit_addr(sbi, src_off);
3755
3756 page = f2fs_grab_meta_page(sbi, dst_off);
3757 seg_info_to_sit_page(sbi, page, start);
3758
3759 set_page_dirty(page);
3760 set_to_next_sit(sit_i, start);
3761
3762 return page;
3763}
3764
3765static struct sit_entry_set *grab_sit_entry_set(void)
3766{
3767 struct sit_entry_set *ses =
3768 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3769
3770 ses->entry_cnt = 0;
3771 INIT_LIST_HEAD(&ses->set_list);
3772 return ses;
3773}
3774
3775static void release_sit_entry_set(struct sit_entry_set *ses)
3776{
3777 list_del(&ses->set_list);
3778 kmem_cache_free(sit_entry_set_slab, ses);
3779}
3780
3781static void adjust_sit_entry_set(struct sit_entry_set *ses,
3782 struct list_head *head)
3783{
3784 struct sit_entry_set *next = ses;
3785
3786 if (list_is_last(&ses->set_list, head))
3787 return;
3788
3789 list_for_each_entry_continue(next, head, set_list)
3790 if (ses->entry_cnt <= next->entry_cnt)
3791 break;
3792
3793 list_move_tail(&ses->set_list, &next->set_list);
3794}
3795
3796static void add_sit_entry(unsigned int segno, struct list_head *head)
3797{
3798 struct sit_entry_set *ses;
3799 unsigned int start_segno = START_SEGNO(segno);
3800
3801 list_for_each_entry(ses, head, set_list) {
3802 if (ses->start_segno == start_segno) {
3803 ses->entry_cnt++;
3804 adjust_sit_entry_set(ses, head);
3805 return;
3806 }
3807 }
3808
3809 ses = grab_sit_entry_set();
3810
3811 ses->start_segno = start_segno;
3812 ses->entry_cnt++;
3813 list_add(&ses->set_list, head);
3814}
3815
3816static void add_sits_in_set(struct f2fs_sb_info *sbi)
3817{
3818 struct f2fs_sm_info *sm_info = SM_I(sbi);
3819 struct list_head *set_list = &sm_info->sit_entry_set;
3820 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3821 unsigned int segno;
3822
3823 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3824 add_sit_entry(segno, set_list);
3825}
3826
3827static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3828{
3829 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3830 struct f2fs_journal *journal = curseg->journal;
3831 int i;
3832
3833 down_write(&curseg->journal_rwsem);
3834 for (i = 0; i < sits_in_cursum(journal); i++) {
3835 unsigned int segno;
3836 bool dirtied;
3837
3838 segno = le32_to_cpu(segno_in_journal(journal, i));
3839 dirtied = __mark_sit_entry_dirty(sbi, segno);
3840
3841 if (!dirtied)
3842 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3843 }
3844 update_sits_in_cursum(journal, -i);
3845 up_write(&curseg->journal_rwsem);
3846}
3847
3848/*
3849 * CP calls this function, which flushes SIT entries including sit_journal,
3850 * and moves prefree segs to free segs.
3851 */
3852void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3853{
3854 struct sit_info *sit_i = SIT_I(sbi);
3855 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3856 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3857 struct f2fs_journal *journal = curseg->journal;
3858 struct sit_entry_set *ses, *tmp;
3859 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3860 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3861 struct seg_entry *se;
3862
3863 down_write(&sit_i->sentry_lock);
3864
3865 if (!sit_i->dirty_sentries)
3866 goto out;
3867
3868 /*
3869 * add and account sit entries of dirty bitmap in sit entry
3870 * set temporarily
3871 */
3872 add_sits_in_set(sbi);
3873
3874 /*
3875 * if there are no enough space in journal to store dirty sit
3876 * entries, remove all entries from journal and add and account
3877 * them in sit entry set.
3878 */
3879 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3880 !to_journal)
3881 remove_sits_in_journal(sbi);
3882
3883 /*
3884 * there are two steps to flush sit entries:
3885 * #1, flush sit entries to journal in current cold data summary block.
3886 * #2, flush sit entries to sit page.
3887 */
3888 list_for_each_entry_safe(ses, tmp, head, set_list) {
3889 struct page *page = NULL;
3890 struct f2fs_sit_block *raw_sit = NULL;
3891 unsigned int start_segno = ses->start_segno;
3892 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3893 (unsigned long)MAIN_SEGS(sbi));
3894 unsigned int segno = start_segno;
3895
3896 if (to_journal &&
3897 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3898 to_journal = false;
3899
3900 if (to_journal) {
3901 down_write(&curseg->journal_rwsem);
3902 } else {
3903 page = get_next_sit_page(sbi, start_segno);
3904 raw_sit = page_address(page);
3905 }
3906
3907 /* flush dirty sit entries in region of current sit set */
3908 for_each_set_bit_from(segno, bitmap, end) {
3909 int offset, sit_offset;
3910
3911 se = get_seg_entry(sbi, segno);
3912#ifdef CONFIG_F2FS_CHECK_FS
3913 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3914 SIT_VBLOCK_MAP_SIZE))
3915 f2fs_bug_on(sbi, 1);
3916#endif
3917
3918 /* add discard candidates */
3919 if (!(cpc->reason & CP_DISCARD)) {
3920 cpc->trim_start = segno;
3921 add_discard_addrs(sbi, cpc, false);
3922 }
3923
3924 if (to_journal) {
3925 offset = f2fs_lookup_journal_in_cursum(journal,
3926 SIT_JOURNAL, segno, 1);
3927 f2fs_bug_on(sbi, offset < 0);
3928 segno_in_journal(journal, offset) =
3929 cpu_to_le32(segno);
3930 seg_info_to_raw_sit(se,
3931 &sit_in_journal(journal, offset));
3932 check_block_count(sbi, segno,
3933 &sit_in_journal(journal, offset));
3934 } else {
3935 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3936 seg_info_to_raw_sit(se,
3937 &raw_sit->entries[sit_offset]);
3938 check_block_count(sbi, segno,
3939 &raw_sit->entries[sit_offset]);
3940 }
3941
3942 __clear_bit(segno, bitmap);
3943 sit_i->dirty_sentries--;
3944 ses->entry_cnt--;
3945 }
3946
3947 if (to_journal)
3948 up_write(&curseg->journal_rwsem);
3949 else
3950 f2fs_put_page(page, 1);
3951
3952 f2fs_bug_on(sbi, ses->entry_cnt);
3953 release_sit_entry_set(ses);
3954 }
3955
3956 f2fs_bug_on(sbi, !list_empty(head));
3957 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3958out:
3959 if (cpc->reason & CP_DISCARD) {
3960 __u64 trim_start = cpc->trim_start;
3961
3962 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3963 add_discard_addrs(sbi, cpc, false);
3964
3965 cpc->trim_start = trim_start;
3966 }
3967 up_write(&sit_i->sentry_lock);
3968
3969 set_prefree_as_free_segments(sbi);
3970}
3971
3972static int build_sit_info(struct f2fs_sb_info *sbi)
3973{
3974 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3975 struct sit_info *sit_i;
3976 unsigned int sit_segs, start;
3977 char *src_bitmap, *bitmap;
3978 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3979
3980 /* allocate memory for SIT information */
3981 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3982 if (!sit_i)
3983 return -ENOMEM;
3984
3985 SM_I(sbi)->sit_info = sit_i;
3986
3987 sit_i->sentries =
3988 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3989 MAIN_SEGS(sbi)),
3990 GFP_KERNEL);
3991 if (!sit_i->sentries)
3992 return -ENOMEM;
3993
3994 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3995 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3996 GFP_KERNEL);
3997 if (!sit_i->dirty_sentries_bitmap)
3998 return -ENOMEM;
3999
4000#ifdef CONFIG_F2FS_CHECK_FS
4001 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4002#else
4003 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4004#endif
4005 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4006 if (!sit_i->bitmap)
4007 return -ENOMEM;
4008
4009 bitmap = sit_i->bitmap;
4010
4011 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4012 sit_i->sentries[start].cur_valid_map = bitmap;
4013 bitmap += SIT_VBLOCK_MAP_SIZE;
4014
4015 sit_i->sentries[start].ckpt_valid_map = bitmap;
4016 bitmap += SIT_VBLOCK_MAP_SIZE;
4017
4018#ifdef CONFIG_F2FS_CHECK_FS
4019 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4020 bitmap += SIT_VBLOCK_MAP_SIZE;
4021#endif
4022
4023 sit_i->sentries[start].discard_map = bitmap;
4024 bitmap += SIT_VBLOCK_MAP_SIZE;
4025 }
4026
4027 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4028 if (!sit_i->tmp_map)
4029 return -ENOMEM;
4030
4031 if (__is_large_section(sbi)) {
4032 sit_i->sec_entries =
4033 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4034 MAIN_SECS(sbi)),
4035 GFP_KERNEL);
4036 if (!sit_i->sec_entries)
4037 return -ENOMEM;
4038 }
4039
4040 /* get information related with SIT */
4041 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4042
4043 /* setup SIT bitmap from ckeckpoint pack */
4044 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4045 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4046
4047 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4048 if (!sit_i->sit_bitmap)
4049 return -ENOMEM;
4050
4051#ifdef CONFIG_F2FS_CHECK_FS
4052 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4053 sit_bitmap_size, GFP_KERNEL);
4054 if (!sit_i->sit_bitmap_mir)
4055 return -ENOMEM;
4056
4057 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4058 main_bitmap_size, GFP_KERNEL);
4059 if (!sit_i->invalid_segmap)
4060 return -ENOMEM;
4061#endif
4062
4063 /* init SIT information */
4064 sit_i->s_ops = &default_salloc_ops;
4065
4066 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4067 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4068 sit_i->written_valid_blocks = 0;
4069 sit_i->bitmap_size = sit_bitmap_size;
4070 sit_i->dirty_sentries = 0;
4071 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4072 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4073 sit_i->mounted_time = ktime_get_real_seconds();
4074 init_rwsem(&sit_i->sentry_lock);
4075 return 0;
4076}
4077
4078static int build_free_segmap(struct f2fs_sb_info *sbi)
4079{
4080 struct free_segmap_info *free_i;
4081 unsigned int bitmap_size, sec_bitmap_size;
4082
4083 /* allocate memory for free segmap information */
4084 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4085 if (!free_i)
4086 return -ENOMEM;
4087
4088 SM_I(sbi)->free_info = free_i;
4089
4090 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4091 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4092 if (!free_i->free_segmap)
4093 return -ENOMEM;
4094
4095 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4096 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4097 if (!free_i->free_secmap)
4098 return -ENOMEM;
4099
4100 /* set all segments as dirty temporarily */
4101 memset(free_i->free_segmap, 0xff, bitmap_size);
4102 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4103
4104 /* init free segmap information */
4105 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4106 free_i->free_segments = 0;
4107 free_i->free_sections = 0;
4108 spin_lock_init(&free_i->segmap_lock);
4109 return 0;
4110}
4111
4112static int build_curseg(struct f2fs_sb_info *sbi)
4113{
4114 struct curseg_info *array;
4115 int i;
4116
4117 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4118 GFP_KERNEL);
4119 if (!array)
4120 return -ENOMEM;
4121
4122 SM_I(sbi)->curseg_array = array;
4123
4124 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4125 mutex_init(&array[i].curseg_mutex);
4126 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4127 if (!array[i].sum_blk)
4128 return -ENOMEM;
4129 init_rwsem(&array[i].journal_rwsem);
4130 array[i].journal = f2fs_kzalloc(sbi,
4131 sizeof(struct f2fs_journal), GFP_KERNEL);
4132 if (!array[i].journal)
4133 return -ENOMEM;
4134 array[i].segno = NULL_SEGNO;
4135 array[i].next_blkoff = 0;
4136 }
4137 return restore_curseg_summaries(sbi);
4138}
4139
4140static int build_sit_entries(struct f2fs_sb_info *sbi)
4141{
4142 struct sit_info *sit_i = SIT_I(sbi);
4143 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4144 struct f2fs_journal *journal = curseg->journal;
4145 struct seg_entry *se;
4146 struct f2fs_sit_entry sit;
4147 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4148 unsigned int i, start, end;
4149 unsigned int readed, start_blk = 0;
4150 int err = 0;
4151 block_t total_node_blocks = 0;
4152
4153 do {
4154 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4155 META_SIT, true);
4156
4157 start = start_blk * sit_i->sents_per_block;
4158 end = (start_blk + readed) * sit_i->sents_per_block;
4159
4160 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4161 struct f2fs_sit_block *sit_blk;
4162 struct page *page;
4163
4164 se = &sit_i->sentries[start];
4165 page = get_current_sit_page(sbi, start);
4166 if (IS_ERR(page))
4167 return PTR_ERR(page);
4168 sit_blk = (struct f2fs_sit_block *)page_address(page);
4169 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4170 f2fs_put_page(page, 1);
4171
4172 err = check_block_count(sbi, start, &sit);
4173 if (err)
4174 return err;
4175 seg_info_from_raw_sit(se, &sit);
4176 if (IS_NODESEG(se->type))
4177 total_node_blocks += se->valid_blocks;
4178
4179 /* build discard map only one time */
4180 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4181 memset(se->discard_map, 0xff,
4182 SIT_VBLOCK_MAP_SIZE);
4183 } else {
4184 memcpy(se->discard_map,
4185 se->cur_valid_map,
4186 SIT_VBLOCK_MAP_SIZE);
4187 sbi->discard_blks +=
4188 sbi->blocks_per_seg -
4189 se->valid_blocks;
4190 }
4191
4192 if (__is_large_section(sbi))
4193 get_sec_entry(sbi, start)->valid_blocks +=
4194 se->valid_blocks;
4195 }
4196 start_blk += readed;
4197 } while (start_blk < sit_blk_cnt);
4198
4199 down_read(&curseg->journal_rwsem);
4200 for (i = 0; i < sits_in_cursum(journal); i++) {
4201 unsigned int old_valid_blocks;
4202
4203 start = le32_to_cpu(segno_in_journal(journal, i));
4204 if (start >= MAIN_SEGS(sbi)) {
4205 f2fs_err(sbi, "Wrong journal entry on segno %u",
4206 start);
4207 err = -EFSCORRUPTED;
4208 break;
4209 }
4210
4211 se = &sit_i->sentries[start];
4212 sit = sit_in_journal(journal, i);
4213
4214 old_valid_blocks = se->valid_blocks;
4215 if (IS_NODESEG(se->type))
4216 total_node_blocks -= old_valid_blocks;
4217
4218 err = check_block_count(sbi, start, &sit);
4219 if (err)
4220 break;
4221 seg_info_from_raw_sit(se, &sit);
4222 if (IS_NODESEG(se->type))
4223 total_node_blocks += se->valid_blocks;
4224
4225 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4226 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4227 } else {
4228 memcpy(se->discard_map, se->cur_valid_map,
4229 SIT_VBLOCK_MAP_SIZE);
4230 sbi->discard_blks += old_valid_blocks;
4231 sbi->discard_blks -= se->valid_blocks;
4232 }
4233
4234 if (__is_large_section(sbi)) {
4235 get_sec_entry(sbi, start)->valid_blocks +=
4236 se->valid_blocks;
4237 get_sec_entry(sbi, start)->valid_blocks -=
4238 old_valid_blocks;
4239 }
4240 }
4241 up_read(&curseg->journal_rwsem);
4242
4243 if (!err && total_node_blocks != valid_node_count(sbi)) {
4244 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4245 total_node_blocks, valid_node_count(sbi));
4246 err = -EFSCORRUPTED;
4247 }
4248
4249 return err;
4250}
4251
4252static void init_free_segmap(struct f2fs_sb_info *sbi)
4253{
4254 unsigned int start;
4255 int type;
4256
4257 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4258 struct seg_entry *sentry = get_seg_entry(sbi, start);
4259 if (!sentry->valid_blocks)
4260 __set_free(sbi, start);
4261 else
4262 SIT_I(sbi)->written_valid_blocks +=
4263 sentry->valid_blocks;
4264 }
4265
4266 /* set use the current segments */
4267 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4268 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4269 __set_test_and_inuse(sbi, curseg_t->segno);
4270 }
4271}
4272
4273static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4274{
4275 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4276 struct free_segmap_info *free_i = FREE_I(sbi);
4277 unsigned int segno = 0, offset = 0;
4278 unsigned short valid_blocks;
4279
4280 while (1) {
4281 /* find dirty segment based on free segmap */
4282 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4283 if (segno >= MAIN_SEGS(sbi))
4284 break;
4285 offset = segno + 1;
4286 valid_blocks = get_valid_blocks(sbi, segno, false);
4287 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4288 continue;
4289 if (valid_blocks > sbi->blocks_per_seg) {
4290 f2fs_bug_on(sbi, 1);
4291 continue;
4292 }
4293 mutex_lock(&dirty_i->seglist_lock);
4294 __locate_dirty_segment(sbi, segno, DIRTY);
4295 mutex_unlock(&dirty_i->seglist_lock);
4296 }
4297}
4298
4299static int init_victim_secmap(struct f2fs_sb_info *sbi)
4300{
4301 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4302 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4303
4304 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4305 if (!dirty_i->victim_secmap)
4306 return -ENOMEM;
4307 return 0;
4308}
4309
4310static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4311{
4312 struct dirty_seglist_info *dirty_i;
4313 unsigned int bitmap_size, i;
4314
4315 /* allocate memory for dirty segments list information */
4316 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4317 GFP_KERNEL);
4318 if (!dirty_i)
4319 return -ENOMEM;
4320
4321 SM_I(sbi)->dirty_info = dirty_i;
4322 mutex_init(&dirty_i->seglist_lock);
4323
4324 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4325
4326 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4327 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4328 GFP_KERNEL);
4329 if (!dirty_i->dirty_segmap[i])
4330 return -ENOMEM;
4331 }
4332
4333 init_dirty_segmap(sbi);
4334 return init_victim_secmap(sbi);
4335}
4336
4337static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4338{
4339 int i;
4340
4341 /*
4342 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4343 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4344 */
4345 for (i = 0; i < NO_CHECK_TYPE; i++) {
4346 struct curseg_info *curseg = CURSEG_I(sbi, i);
4347 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4348 unsigned int blkofs = curseg->next_blkoff;
4349
4350 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4351 goto out;
4352
4353 if (curseg->alloc_type == SSR)
4354 continue;
4355
4356 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4357 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4358 continue;
4359out:
4360 f2fs_err(sbi,
4361 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4362 i, curseg->segno, curseg->alloc_type,
4363 curseg->next_blkoff, blkofs);
4364 return -EFSCORRUPTED;
4365 }
4366 }
4367 return 0;
4368}
4369
4370/*
4371 * Update min, max modified time for cost-benefit GC algorithm
4372 */
4373static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4374{
4375 struct sit_info *sit_i = SIT_I(sbi);
4376 unsigned int segno;
4377
4378 down_write(&sit_i->sentry_lock);
4379
4380 sit_i->min_mtime = ULLONG_MAX;
4381
4382 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4383 unsigned int i;
4384 unsigned long long mtime = 0;
4385
4386 for (i = 0; i < sbi->segs_per_sec; i++)
4387 mtime += get_seg_entry(sbi, segno + i)->mtime;
4388
4389 mtime = div_u64(mtime, sbi->segs_per_sec);
4390
4391 if (sit_i->min_mtime > mtime)
4392 sit_i->min_mtime = mtime;
4393 }
4394 sit_i->max_mtime = get_mtime(sbi, false);
4395 up_write(&sit_i->sentry_lock);
4396}
4397
4398int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4399{
4400 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4401 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4402 struct f2fs_sm_info *sm_info;
4403 int err;
4404
4405 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4406 if (!sm_info)
4407 return -ENOMEM;
4408
4409 /* init sm info */
4410 sbi->sm_info = sm_info;
4411 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4412 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4413 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4414 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4415 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4416 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4417 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4418 sm_info->rec_prefree_segments = sm_info->main_segments *
4419 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4420 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4421 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4422
4423 if (!test_opt(sbi, LFS))
4424 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4425 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4426 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4427 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4428 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4429 sm_info->min_ssr_sections = reserved_sections(sbi);
4430
4431 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4432
4433 init_rwsem(&sm_info->curseg_lock);
4434
4435 if (!f2fs_readonly(sbi->sb)) {
4436 err = f2fs_create_flush_cmd_control(sbi);
4437 if (err)
4438 return err;
4439 }
4440
4441 err = create_discard_cmd_control(sbi);
4442 if (err)
4443 return err;
4444
4445 err = build_sit_info(sbi);
4446 if (err)
4447 return err;
4448 err = build_free_segmap(sbi);
4449 if (err)
4450 return err;
4451 err = build_curseg(sbi);
4452 if (err)
4453 return err;
4454
4455 /* reinit free segmap based on SIT */
4456 err = build_sit_entries(sbi);
4457 if (err)
4458 return err;
4459
4460 init_free_segmap(sbi);
4461 err = build_dirty_segmap(sbi);
4462 if (err)
4463 return err;
4464
4465 err = sanity_check_curseg(sbi);
4466 if (err)
4467 return err;
4468
4469 init_min_max_mtime(sbi);
4470 return 0;
4471}
4472
4473static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4474 enum dirty_type dirty_type)
4475{
4476 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4477
4478 mutex_lock(&dirty_i->seglist_lock);
4479 kvfree(dirty_i->dirty_segmap[dirty_type]);
4480 dirty_i->nr_dirty[dirty_type] = 0;
4481 mutex_unlock(&dirty_i->seglist_lock);
4482}
4483
4484static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4485{
4486 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4487 kvfree(dirty_i->victim_secmap);
4488}
4489
4490static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4491{
4492 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4493 int i;
4494
4495 if (!dirty_i)
4496 return;
4497
4498 /* discard pre-free/dirty segments list */
4499 for (i = 0; i < NR_DIRTY_TYPE; i++)
4500 discard_dirty_segmap(sbi, i);
4501
4502 destroy_victim_secmap(sbi);
4503 SM_I(sbi)->dirty_info = NULL;
4504 kvfree(dirty_i);
4505}
4506
4507static void destroy_curseg(struct f2fs_sb_info *sbi)
4508{
4509 struct curseg_info *array = SM_I(sbi)->curseg_array;
4510 int i;
4511
4512 if (!array)
4513 return;
4514 SM_I(sbi)->curseg_array = NULL;
4515 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4516 kvfree(array[i].sum_blk);
4517 kvfree(array[i].journal);
4518 }
4519 kvfree(array);
4520}
4521
4522static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4523{
4524 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4525 if (!free_i)
4526 return;
4527 SM_I(sbi)->free_info = NULL;
4528 kvfree(free_i->free_segmap);
4529 kvfree(free_i->free_secmap);
4530 kvfree(free_i);
4531}
4532
4533static void destroy_sit_info(struct f2fs_sb_info *sbi)
4534{
4535 struct sit_info *sit_i = SIT_I(sbi);
4536
4537 if (!sit_i)
4538 return;
4539
4540 if (sit_i->sentries)
4541 kvfree(sit_i->bitmap);
4542 kvfree(sit_i->tmp_map);
4543
4544 kvfree(sit_i->sentries);
4545 kvfree(sit_i->sec_entries);
4546 kvfree(sit_i->dirty_sentries_bitmap);
4547
4548 SM_I(sbi)->sit_info = NULL;
4549 kvfree(sit_i->sit_bitmap);
4550#ifdef CONFIG_F2FS_CHECK_FS
4551 kvfree(sit_i->sit_bitmap_mir);
4552 kvfree(sit_i->invalid_segmap);
4553#endif
4554 kvfree(sit_i);
4555}
4556
4557void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4558{
4559 struct f2fs_sm_info *sm_info = SM_I(sbi);
4560
4561 if (!sm_info)
4562 return;
4563 f2fs_destroy_flush_cmd_control(sbi, true);
4564 destroy_discard_cmd_control(sbi);
4565 destroy_dirty_segmap(sbi);
4566 destroy_curseg(sbi);
4567 destroy_free_segmap(sbi);
4568 destroy_sit_info(sbi);
4569 sbi->sm_info = NULL;
4570 kvfree(sm_info);
4571}
4572
4573int __init f2fs_create_segment_manager_caches(void)
4574{
4575 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4576 sizeof(struct discard_entry));
4577 if (!discard_entry_slab)
4578 goto fail;
4579
4580 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4581 sizeof(struct discard_cmd));
4582 if (!discard_cmd_slab)
4583 goto destroy_discard_entry;
4584
4585 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4586 sizeof(struct sit_entry_set));
4587 if (!sit_entry_set_slab)
4588 goto destroy_discard_cmd;
4589
4590 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4591 sizeof(struct inmem_pages));
4592 if (!inmem_entry_slab)
4593 goto destroy_sit_entry_set;
4594 return 0;
4595
4596destroy_sit_entry_set:
4597 kmem_cache_destroy(sit_entry_set_slab);
4598destroy_discard_cmd:
4599 kmem_cache_destroy(discard_cmd_slab);
4600destroy_discard_entry:
4601 kmem_cache_destroy(discard_entry_slab);
4602fail:
4603 return -ENOMEM;
4604}
4605
4606void f2fs_destroy_segment_manager_caches(void)
4607{
4608 kmem_cache_destroy(sit_entry_set_slab);
4609 kmem_cache_destroy(discard_cmd_slab);
4610 kmem_cache_destroy(discard_entry_slab);
4611 kmem_cache_destroy(inmem_entry_slab);
4612}