blob: ebaad54f39951686f4c0ce7ec366bbfd1a5edec2 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/string.h>
63#include <linux/seq_file.h>
64#include <linux/namei.h>
65#include <linux/mnt_namespace.h>
66#include <linux/mm.h>
67#include <linux/swap.h>
68#include <linux/rcupdate.h>
69#include <linux/kallsyms.h>
70#include <linux/stacktrace.h>
71#include <linux/resource.h>
72#include <linux/module.h>
73#include <linux/mount.h>
74#include <linux/security.h>
75#include <linux/ptrace.h>
76#include <linux/tracehook.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/flex_array.h>
96#include <linux/posix-timers.h>
97#include <linux/cpufreq_times.h>
98#include <trace/events/oom.h>
99#include "internal.h"
100#include "fd.h"
101
102#include "../../lib/kstrtox.h"
103
104/* NOTE:
105 * Implementing inode permission operations in /proc is almost
106 * certainly an error. Permission checks need to happen during
107 * each system call not at open time. The reason is that most of
108 * what we wish to check for permissions in /proc varies at runtime.
109 *
110 * The classic example of a problem is opening file descriptors
111 * in /proc for a task before it execs a suid executable.
112 */
113
114static u8 nlink_tid __ro_after_init;
115static u8 nlink_tgid __ro_after_init;
116
117struct pid_entry {
118 const char *name;
119 unsigned int len;
120 umode_t mode;
121 const struct inode_operations *iop;
122 const struct file_operations *fop;
123 union proc_op op;
124};
125
126#define NOD(NAME, MODE, IOP, FOP, OP) { \
127 .name = (NAME), \
128 .len = sizeof(NAME) - 1, \
129 .mode = MODE, \
130 .iop = IOP, \
131 .fop = FOP, \
132 .op = OP, \
133}
134
135#define DIR(NAME, MODE, iops, fops) \
136 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
137#define LNK(NAME, get_link) \
138 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
139 &proc_pid_link_inode_operations, NULL, \
140 { .proc_get_link = get_link } )
141#define REG(NAME, MODE, fops) \
142 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
143#define ONE(NAME, MODE, show) \
144 NOD(NAME, (S_IFREG|(MODE)), \
145 NULL, &proc_single_file_operations, \
146 { .proc_show = show } )
147
148/*
149 * Count the number of hardlinks for the pid_entry table, excluding the .
150 * and .. links.
151 */
152static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
153 unsigned int n)
154{
155 unsigned int i;
156 unsigned int count;
157
158 count = 2;
159 for (i = 0; i < n; ++i) {
160 if (S_ISDIR(entries[i].mode))
161 ++count;
162 }
163
164 return count;
165}
166
167static int get_task_root(struct task_struct *task, struct path *root)
168{
169 int result = -ENOENT;
170
171 task_lock(task);
172 if (task->fs) {
173 get_fs_root(task->fs, root);
174 result = 0;
175 }
176 task_unlock(task);
177 return result;
178}
179
180static int proc_cwd_link(struct dentry *dentry, struct path *path)
181{
182 struct task_struct *task = get_proc_task(d_inode(dentry));
183 int result = -ENOENT;
184
185 if (task) {
186 task_lock(task);
187 if (task->fs) {
188 get_fs_pwd(task->fs, path);
189 result = 0;
190 }
191 task_unlock(task);
192 put_task_struct(task);
193 }
194 return result;
195}
196
197static int proc_root_link(struct dentry *dentry, struct path *path)
198{
199 struct task_struct *task = get_proc_task(d_inode(dentry));
200 int result = -ENOENT;
201
202 if (task) {
203 result = get_task_root(task, path);
204 put_task_struct(task);
205 }
206 return result;
207}
208
209/*
210 * If the user used setproctitle(), we just get the string from
211 * user space at arg_start, and limit it to a maximum of one page.
212 */
213static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
214 size_t count, unsigned long pos,
215 unsigned long arg_start)
216{
217 char *page;
218 int ret, got;
219
220 if (pos >= PAGE_SIZE)
221 return 0;
222
223 page = (char *)__get_free_page(GFP_KERNEL);
224 if (!page)
225 return -ENOMEM;
226
227 ret = 0;
228 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
229 if (got > 0) {
230 int len = strnlen(page, got);
231
232 /* Include the NUL character if it was found */
233 if (len < got)
234 len++;
235
236 if (len > pos) {
237 len -= pos;
238 if (len > count)
239 len = count;
240 len -= copy_to_user(buf, page+pos, len);
241 if (!len)
242 len = -EFAULT;
243 ret = len;
244 }
245 }
246 free_page((unsigned long)page);
247 return ret;
248}
249
250static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
251 size_t count, loff_t *ppos)
252{
253 unsigned long arg_start, arg_end, env_start, env_end;
254 unsigned long pos, len;
255 char *page, c;
256
257 /* Check if process spawned far enough to have cmdline. */
258 if (!mm->env_end)
259 return 0;
260
261 spin_lock(&mm->arg_lock);
262 arg_start = mm->arg_start;
263 arg_end = mm->arg_end;
264 env_start = mm->env_start;
265 env_end = mm->env_end;
266 spin_unlock(&mm->arg_lock);
267
268 if (arg_start >= arg_end)
269 return 0;
270
271 /*
272 * We allow setproctitle() to overwrite the argument
273 * strings, and overflow past the original end. But
274 * only when it overflows into the environment area.
275 */
276 if (env_start != arg_end || env_end < env_start)
277 env_start = env_end = arg_end;
278 len = env_end - arg_start;
279
280 /* We're not going to care if "*ppos" has high bits set */
281 pos = *ppos;
282 if (pos >= len)
283 return 0;
284 if (count > len - pos)
285 count = len - pos;
286 if (!count)
287 return 0;
288
289 /*
290 * Magical special case: if the argv[] end byte is not
291 * zero, the user has overwritten it with setproctitle(3).
292 *
293 * Possible future enhancement: do this only once when
294 * pos is 0, and set a flag in the 'struct file'.
295 */
296 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
297 return get_mm_proctitle(mm, buf, count, pos, arg_start);
298
299 /*
300 * For the non-setproctitle() case we limit things strictly
301 * to the [arg_start, arg_end[ range.
302 */
303 pos += arg_start;
304 if (pos < arg_start || pos >= arg_end)
305 return 0;
306 if (count > arg_end - pos)
307 count = arg_end - pos;
308
309 page = (char *)__get_free_page(GFP_KERNEL);
310 if (!page)
311 return -ENOMEM;
312
313 len = 0;
314 while (count) {
315 int got;
316 size_t size = min_t(size_t, PAGE_SIZE, count);
317
318 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
319 if (got <= 0)
320 break;
321 got -= copy_to_user(buf, page, got);
322 if (unlikely(!got)) {
323 if (!len)
324 len = -EFAULT;
325 break;
326 }
327 pos += got;
328 buf += got;
329 len += got;
330 count -= got;
331 }
332
333 free_page((unsigned long)page);
334 return len;
335}
336
337static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
338 size_t count, loff_t *pos)
339{
340 struct mm_struct *mm;
341 ssize_t ret;
342
343 mm = get_task_mm(tsk);
344 if (!mm)
345 return 0;
346
347 ret = get_mm_cmdline(mm, buf, count, pos);
348 mmput(mm);
349 return ret;
350}
351
352static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
353 size_t count, loff_t *pos)
354{
355 struct task_struct *tsk;
356 ssize_t ret;
357
358 BUG_ON(*pos < 0);
359
360 tsk = get_proc_task(file_inode(file));
361 if (!tsk)
362 return -ESRCH;
363 ret = get_task_cmdline(tsk, buf, count, pos);
364 put_task_struct(tsk);
365 if (ret > 0)
366 *pos += ret;
367 return ret;
368}
369
370static const struct file_operations proc_pid_cmdline_ops = {
371 .read = proc_pid_cmdline_read,
372 .llseek = generic_file_llseek,
373};
374
375#ifdef CONFIG_KALLSYMS
376/*
377 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
378 * Returns the resolved symbol. If that fails, simply return the address.
379 */
380static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
381 struct pid *pid, struct task_struct *task)
382{
383 unsigned long wchan;
384 char symname[KSYM_NAME_LEN];
385
386 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
387 goto print0;
388
389 wchan = get_wchan(task);
390 if (wchan && !lookup_symbol_name(wchan, symname)) {
391 seq_puts(m, symname);
392 return 0;
393 }
394
395print0:
396 seq_putc(m, '0');
397 return 0;
398}
399#endif /* CONFIG_KALLSYMS */
400
401static int lock_trace(struct task_struct *task)
402{
403 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
404 if (err)
405 return err;
406 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
407 mutex_unlock(&task->signal->cred_guard_mutex);
408 return -EPERM;
409 }
410 return 0;
411}
412
413static void unlock_trace(struct task_struct *task)
414{
415 mutex_unlock(&task->signal->cred_guard_mutex);
416}
417
418#ifdef CONFIG_STACKTRACE
419
420#define MAX_STACK_TRACE_DEPTH 64
421
422static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
423 struct pid *pid, struct task_struct *task)
424{
425 struct stack_trace trace;
426 unsigned long *entries;
427 int err;
428
429 /*
430 * The ability to racily run the kernel stack unwinder on a running task
431 * and then observe the unwinder output is scary; while it is useful for
432 * debugging kernel issues, it can also allow an attacker to leak kernel
433 * stack contents.
434 * Doing this in a manner that is at least safe from races would require
435 * some work to ensure that the remote task can not be scheduled; and
436 * even then, this would still expose the unwinder as local attack
437 * surface.
438 * Therefore, this interface is restricted to root.
439 */
440 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
441 return -EACCES;
442
443 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
444 GFP_KERNEL);
445 if (!entries)
446 return -ENOMEM;
447
448 trace.nr_entries = 0;
449 trace.max_entries = MAX_STACK_TRACE_DEPTH;
450 trace.entries = entries;
451 trace.skip = 0;
452
453 err = lock_trace(task);
454 if (!err) {
455 unsigned int i;
456
457 save_stack_trace_tsk(task, &trace);
458
459 for (i = 0; i < trace.nr_entries; i++) {
460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 }
462 unlock_trace(task);
463 }
464 kfree(entries);
465
466 return err;
467}
468#endif
469
470#ifdef CONFIG_SCHED_INFO
471/*
472 * Provides /proc/PID/schedstat
473 */
474static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
475 struct pid *pid, struct task_struct *task)
476{
477 if (unlikely(!sched_info_on()))
478 seq_printf(m, "0 0 0\n");
479 else
480 seq_printf(m, "%llu %llu %lu\n",
481 (unsigned long long)task->se.sum_exec_runtime,
482 (unsigned long long)task->sched_info.run_delay,
483 task->sched_info.pcount);
484
485 return 0;
486}
487#endif
488
489#ifdef CONFIG_LATENCYTOP
490static int lstats_show_proc(struct seq_file *m, void *v)
491{
492 int i;
493 struct inode *inode = m->private;
494 struct task_struct *task = get_proc_task(inode);
495
496 if (!task)
497 return -ESRCH;
498 seq_puts(m, "Latency Top version : v0.1\n");
499 for (i = 0; i < LT_SAVECOUNT; i++) {
500 struct latency_record *lr = &task->latency_record[i];
501 if (lr->backtrace[0]) {
502 int q;
503 seq_printf(m, "%i %li %li",
504 lr->count, lr->time, lr->max);
505 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
506 unsigned long bt = lr->backtrace[q];
507 if (!bt)
508 break;
509 if (bt == ULONG_MAX)
510 break;
511 seq_printf(m, " %ps", (void *)bt);
512 }
513 seq_putc(m, '\n');
514 }
515
516 }
517 put_task_struct(task);
518 return 0;
519}
520
521static int lstats_open(struct inode *inode, struct file *file)
522{
523 return single_open(file, lstats_show_proc, inode);
524}
525
526static ssize_t lstats_write(struct file *file, const char __user *buf,
527 size_t count, loff_t *offs)
528{
529 struct task_struct *task = get_proc_task(file_inode(file));
530
531 if (!task)
532 return -ESRCH;
533 clear_all_latency_tracing(task);
534 put_task_struct(task);
535
536 return count;
537}
538
539static const struct file_operations proc_lstats_operations = {
540 .open = lstats_open,
541 .read = seq_read,
542 .write = lstats_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545};
546
547#endif
548
549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 struct pid *pid, struct task_struct *task)
551{
552 unsigned long totalpages = totalram_pages + total_swap_pages;
553 unsigned long points = 0;
554
555 points = oom_badness(task, NULL, NULL, totalpages) *
556 1000 / totalpages;
557 seq_printf(m, "%lu\n", points);
558
559 return 0;
560}
561
562struct limit_names {
563 const char *name;
564 const char *unit;
565};
566
567static const struct limit_names lnames[RLIM_NLIMITS] = {
568 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
569 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
570 [RLIMIT_DATA] = {"Max data size", "bytes"},
571 [RLIMIT_STACK] = {"Max stack size", "bytes"},
572 [RLIMIT_CORE] = {"Max core file size", "bytes"},
573 [RLIMIT_RSS] = {"Max resident set", "bytes"},
574 [RLIMIT_NPROC] = {"Max processes", "processes"},
575 [RLIMIT_NOFILE] = {"Max open files", "files"},
576 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
577 [RLIMIT_AS] = {"Max address space", "bytes"},
578 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
579 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
580 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
581 [RLIMIT_NICE] = {"Max nice priority", NULL},
582 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
583 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
584};
585
586/* Display limits for a process */
587static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
588 struct pid *pid, struct task_struct *task)
589{
590 unsigned int i;
591 unsigned long flags;
592
593 struct rlimit rlim[RLIM_NLIMITS];
594
595 if (!lock_task_sighand(task, &flags))
596 return 0;
597 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
598 unlock_task_sighand(task, &flags);
599
600 /*
601 * print the file header
602 */
603 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
604 "Limit", "Soft Limit", "Hard Limit", "Units");
605
606 for (i = 0; i < RLIM_NLIMITS; i++) {
607 if (rlim[i].rlim_cur == RLIM_INFINITY)
608 seq_printf(m, "%-25s %-20s ",
609 lnames[i].name, "unlimited");
610 else
611 seq_printf(m, "%-25s %-20lu ",
612 lnames[i].name, rlim[i].rlim_cur);
613
614 if (rlim[i].rlim_max == RLIM_INFINITY)
615 seq_printf(m, "%-20s ", "unlimited");
616 else
617 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
618
619 if (lnames[i].unit)
620 seq_printf(m, "%-10s\n", lnames[i].unit);
621 else
622 seq_putc(m, '\n');
623 }
624
625 return 0;
626}
627
628#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
629static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
630 struct pid *pid, struct task_struct *task)
631{
632 long nr;
633 unsigned long args[6], sp, pc;
634 int res;
635
636 res = lock_trace(task);
637 if (res)
638 return res;
639
640 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
641 seq_puts(m, "running\n");
642 else if (nr < 0)
643 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
644 else
645 seq_printf(m,
646 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
647 nr,
648 args[0], args[1], args[2], args[3], args[4], args[5],
649 sp, pc);
650 unlock_trace(task);
651
652 return 0;
653}
654#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
655
656/************************************************************************/
657/* Here the fs part begins */
658/************************************************************************/
659
660/* permission checks */
661static int proc_fd_access_allowed(struct inode *inode)
662{
663 struct task_struct *task;
664 int allowed = 0;
665 /* Allow access to a task's file descriptors if it is us or we
666 * may use ptrace attach to the process and find out that
667 * information.
668 */
669 task = get_proc_task(inode);
670 if (task) {
671 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
672 put_task_struct(task);
673 }
674 return allowed;
675}
676
677int proc_setattr(struct dentry *dentry, struct iattr *attr)
678{
679 int error;
680 struct inode *inode = d_inode(dentry);
681
682 if (attr->ia_valid & ATTR_MODE)
683 return -EPERM;
684
685 error = setattr_prepare(dentry, attr);
686 if (error)
687 return error;
688
689 setattr_copy(inode, attr);
690 mark_inode_dirty(inode);
691 return 0;
692}
693
694/*
695 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
696 * or euid/egid (for hide_pid_min=2)?
697 */
698static bool has_pid_permissions(struct pid_namespace *pid,
699 struct task_struct *task,
700 int hide_pid_min)
701{
702 if (pid->hide_pid < hide_pid_min)
703 return true;
704 if (in_group_p(pid->pid_gid))
705 return true;
706 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
707}
708
709
710static int proc_pid_permission(struct inode *inode, int mask)
711{
712 struct pid_namespace *pid = proc_pid_ns(inode);
713 struct task_struct *task;
714 bool has_perms;
715
716 task = get_proc_task(inode);
717 if (!task)
718 return -ESRCH;
719 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
720 put_task_struct(task);
721
722 if (!has_perms) {
723 if (pid->hide_pid == HIDEPID_INVISIBLE) {
724 /*
725 * Let's make getdents(), stat(), and open()
726 * consistent with each other. If a process
727 * may not stat() a file, it shouldn't be seen
728 * in procfs at all.
729 */
730 return -ENOENT;
731 }
732
733 return -EPERM;
734 }
735 return generic_permission(inode, mask);
736}
737
738
739
740static const struct inode_operations proc_def_inode_operations = {
741 .setattr = proc_setattr,
742};
743
744static int proc_single_show(struct seq_file *m, void *v)
745{
746 struct inode *inode = m->private;
747 struct pid_namespace *ns = proc_pid_ns(inode);
748 struct pid *pid = proc_pid(inode);
749 struct task_struct *task;
750 int ret;
751
752 task = get_pid_task(pid, PIDTYPE_PID);
753 if (!task)
754 return -ESRCH;
755
756 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
757
758 put_task_struct(task);
759 return ret;
760}
761
762static int proc_single_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, proc_single_show, inode);
765}
766
767static const struct file_operations proc_single_file_operations = {
768 .open = proc_single_open,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
772};
773
774
775struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
776{
777 struct task_struct *task = get_proc_task(inode);
778 struct mm_struct *mm = ERR_PTR(-ESRCH);
779
780 if (task) {
781 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
782 put_task_struct(task);
783
784 if (!IS_ERR_OR_NULL(mm)) {
785 /* ensure this mm_struct can't be freed */
786 mmgrab(mm);
787 /* but do not pin its memory */
788 mmput(mm);
789 }
790 }
791
792 return mm;
793}
794
795static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
796{
797 struct mm_struct *mm = proc_mem_open(inode, mode);
798
799 if (IS_ERR(mm))
800 return PTR_ERR(mm);
801
802 file->private_data = mm;
803 return 0;
804}
805
806static int mem_open(struct inode *inode, struct file *file)
807{
808 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
809
810 /* OK to pass negative loff_t, we can catch out-of-range */
811 file->f_mode |= FMODE_UNSIGNED_OFFSET;
812
813 return ret;
814}
815
816static ssize_t mem_rw(struct file *file, char __user *buf,
817 size_t count, loff_t *ppos, int write)
818{
819 struct mm_struct *mm = file->private_data;
820 unsigned long addr = *ppos;
821 ssize_t copied;
822 char *page;
823 unsigned int flags;
824
825 if (!mm)
826 return 0;
827
828 page = (char *)__get_free_page(GFP_KERNEL);
829 if (!page)
830 return -ENOMEM;
831
832 copied = 0;
833 if (!mmget_not_zero(mm))
834 goto free;
835
836 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
837
838 while (count > 0) {
839 int this_len = min_t(int, count, PAGE_SIZE);
840
841 if (write && copy_from_user(page, buf, this_len)) {
842 copied = -EFAULT;
843 break;
844 }
845
846 this_len = access_remote_vm(mm, addr, page, this_len, flags);
847 if (!this_len) {
848 if (!copied)
849 copied = -EIO;
850 break;
851 }
852
853 if (!write && copy_to_user(buf, page, this_len)) {
854 copied = -EFAULT;
855 break;
856 }
857
858 buf += this_len;
859 addr += this_len;
860 copied += this_len;
861 count -= this_len;
862 }
863 *ppos = addr;
864
865 mmput(mm);
866free:
867 free_page((unsigned long) page);
868 return copied;
869}
870
871static ssize_t mem_read(struct file *file, char __user *buf,
872 size_t count, loff_t *ppos)
873{
874 return mem_rw(file, buf, count, ppos, 0);
875}
876
877static ssize_t mem_write(struct file *file, const char __user *buf,
878 size_t count, loff_t *ppos)
879{
880 return mem_rw(file, (char __user*)buf, count, ppos, 1);
881}
882
883loff_t mem_lseek(struct file *file, loff_t offset, int orig)
884{
885 switch (orig) {
886 case 0:
887 file->f_pos = offset;
888 break;
889 case 1:
890 file->f_pos += offset;
891 break;
892 default:
893 return -EINVAL;
894 }
895 force_successful_syscall_return();
896 return file->f_pos;
897}
898
899static int mem_release(struct inode *inode, struct file *file)
900{
901 struct mm_struct *mm = file->private_data;
902 if (mm)
903 mmdrop(mm);
904 return 0;
905}
906
907static const struct file_operations proc_mem_operations = {
908 .llseek = mem_lseek,
909 .read = mem_read,
910 .write = mem_write,
911 .open = mem_open,
912 .release = mem_release,
913};
914
915static int environ_open(struct inode *inode, struct file *file)
916{
917 return __mem_open(inode, file, PTRACE_MODE_READ);
918}
919
920static ssize_t environ_read(struct file *file, char __user *buf,
921 size_t count, loff_t *ppos)
922{
923 char *page;
924 unsigned long src = *ppos;
925 int ret = 0;
926 struct mm_struct *mm = file->private_data;
927 unsigned long env_start, env_end;
928
929 /* Ensure the process spawned far enough to have an environment. */
930 if (!mm || !mm->env_end)
931 return 0;
932
933 page = (char *)__get_free_page(GFP_KERNEL);
934 if (!page)
935 return -ENOMEM;
936
937 ret = 0;
938 if (!mmget_not_zero(mm))
939 goto free;
940
941 spin_lock(&mm->arg_lock);
942 env_start = mm->env_start;
943 env_end = mm->env_end;
944 spin_unlock(&mm->arg_lock);
945
946 while (count > 0) {
947 size_t this_len, max_len;
948 int retval;
949
950 if (src >= (env_end - env_start))
951 break;
952
953 this_len = env_end - (env_start + src);
954
955 max_len = min_t(size_t, PAGE_SIZE, count);
956 this_len = min(max_len, this_len);
957
958 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
959
960 if (retval <= 0) {
961 ret = retval;
962 break;
963 }
964
965 if (copy_to_user(buf, page, retval)) {
966 ret = -EFAULT;
967 break;
968 }
969
970 ret += retval;
971 src += retval;
972 buf += retval;
973 count -= retval;
974 }
975 *ppos = src;
976 mmput(mm);
977
978free:
979 free_page((unsigned long) page);
980 return ret;
981}
982
983static const struct file_operations proc_environ_operations = {
984 .open = environ_open,
985 .read = environ_read,
986 .llseek = generic_file_llseek,
987 .release = mem_release,
988};
989
990static int auxv_open(struct inode *inode, struct file *file)
991{
992 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
993}
994
995static ssize_t auxv_read(struct file *file, char __user *buf,
996 size_t count, loff_t *ppos)
997{
998 struct mm_struct *mm = file->private_data;
999 unsigned int nwords = 0;
1000
1001 if (!mm)
1002 return 0;
1003 do {
1004 nwords += 2;
1005 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1006 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1007 nwords * sizeof(mm->saved_auxv[0]));
1008}
1009
1010static const struct file_operations proc_auxv_operations = {
1011 .open = auxv_open,
1012 .read = auxv_read,
1013 .llseek = generic_file_llseek,
1014 .release = mem_release,
1015};
1016
1017static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1018 loff_t *ppos)
1019{
1020 struct task_struct *task = get_proc_task(file_inode(file));
1021 char buffer[PROC_NUMBUF];
1022 int oom_adj = OOM_ADJUST_MIN;
1023 size_t len;
1024
1025 if (!task)
1026 return -ESRCH;
1027 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1028 oom_adj = OOM_ADJUST_MAX;
1029 else
1030 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1031 OOM_SCORE_ADJ_MAX;
1032 put_task_struct(task);
1033 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035}
1036
1037static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1038{
1039 static DEFINE_MUTEX(oom_adj_mutex);
1040 struct mm_struct *mm = NULL;
1041 struct task_struct *task;
1042 int err = 0;
1043
1044 task = get_proc_task(file_inode(file));
1045 if (!task)
1046 return -ESRCH;
1047
1048 mutex_lock(&oom_adj_mutex);
1049 if (legacy) {
1050 if (oom_adj < task->signal->oom_score_adj &&
1051 !capable(CAP_SYS_RESOURCE)) {
1052 err = -EACCES;
1053 goto err_unlock;
1054 }
1055 /*
1056 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1057 * /proc/pid/oom_score_adj instead.
1058 */
1059 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1060 current->comm, task_pid_nr(current), task_pid_nr(task),
1061 task_pid_nr(task));
1062 } else {
1063 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1064 !capable(CAP_SYS_RESOURCE)) {
1065 err = -EACCES;
1066 goto err_unlock;
1067 }
1068 }
1069
1070 /*
1071 * Make sure we will check other processes sharing the mm if this is
1072 * not vfrok which wants its own oom_score_adj.
1073 * pin the mm so it doesn't go away and get reused after task_unlock
1074 */
1075 if (!task->vfork_done) {
1076 struct task_struct *p = find_lock_task_mm(task);
1077
1078 if (p) {
1079 if (atomic_read(&p->mm->mm_users) > 1) {
1080 mm = p->mm;
1081 mmgrab(mm);
1082 }
1083 task_unlock(p);
1084 }
1085 }
1086
1087 task->signal->oom_score_adj = oom_adj;
1088 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1089 task->signal->oom_score_adj_min = (short)oom_adj;
1090 trace_oom_score_adj_update(task);
1091
1092 if (mm) {
1093 struct task_struct *p;
1094
1095 rcu_read_lock();
1096 for_each_process(p) {
1097 if (same_thread_group(task, p))
1098 continue;
1099
1100 /* do not touch kernel threads or the global init */
1101 if (p->flags & PF_KTHREAD || is_global_init(p))
1102 continue;
1103
1104 task_lock(p);
1105 if (!p->vfork_done && process_shares_mm(p, mm)) {
1106 p->signal->oom_score_adj = oom_adj;
1107 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108 p->signal->oom_score_adj_min = (short)oom_adj;
1109 }
1110 task_unlock(p);
1111 }
1112 rcu_read_unlock();
1113 mmdrop(mm);
1114 }
1115err_unlock:
1116 mutex_unlock(&oom_adj_mutex);
1117 put_task_struct(task);
1118 return err;
1119}
1120
1121/*
1122 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1123 * kernels. The effective policy is defined by oom_score_adj, which has a
1124 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1125 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1126 * Processes that become oom disabled via oom_adj will still be oom disabled
1127 * with this implementation.
1128 *
1129 * oom_adj cannot be removed since existing userspace binaries use it.
1130 */
1131static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1132 size_t count, loff_t *ppos)
1133{
1134 char buffer[PROC_NUMBUF];
1135 int oom_adj;
1136 int err;
1137
1138 memset(buffer, 0, sizeof(buffer));
1139 if (count > sizeof(buffer) - 1)
1140 count = sizeof(buffer) - 1;
1141 if (copy_from_user(buffer, buf, count)) {
1142 err = -EFAULT;
1143 goto out;
1144 }
1145
1146 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1147 if (err)
1148 goto out;
1149 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1150 oom_adj != OOM_DISABLE) {
1151 err = -EINVAL;
1152 goto out;
1153 }
1154
1155 /*
1156 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1157 * value is always attainable.
1158 */
1159 if (oom_adj == OOM_ADJUST_MAX)
1160 oom_adj = OOM_SCORE_ADJ_MAX;
1161 else
1162 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1163
1164 err = __set_oom_adj(file, oom_adj, true);
1165out:
1166 return err < 0 ? err : count;
1167}
1168
1169static const struct file_operations proc_oom_adj_operations = {
1170 .read = oom_adj_read,
1171 .write = oom_adj_write,
1172 .llseek = generic_file_llseek,
1173};
1174
1175static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1176 size_t count, loff_t *ppos)
1177{
1178 struct task_struct *task = get_proc_task(file_inode(file));
1179 char buffer[PROC_NUMBUF];
1180 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1181 size_t len;
1182
1183 if (!task)
1184 return -ESRCH;
1185 oom_score_adj = task->signal->oom_score_adj;
1186 put_task_struct(task);
1187 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1188 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1189}
1190
1191static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1192 size_t count, loff_t *ppos)
1193{
1194 char buffer[PROC_NUMBUF];
1195 int oom_score_adj;
1196 int err;
1197
1198 memset(buffer, 0, sizeof(buffer));
1199 if (count > sizeof(buffer) - 1)
1200 count = sizeof(buffer) - 1;
1201 if (copy_from_user(buffer, buf, count)) {
1202 err = -EFAULT;
1203 goto out;
1204 }
1205
1206 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1207 if (err)
1208 goto out;
1209 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1210 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1211 err = -EINVAL;
1212 goto out;
1213 }
1214
1215 err = __set_oom_adj(file, oom_score_adj, false);
1216out:
1217 return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221 .read = oom_score_adj_read,
1222 .write = oom_score_adj_write,
1223 .llseek = default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDITSYSCALL
1227#define TMPBUFLEN 11
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229 size_t count, loff_t *ppos)
1230{
1231 struct inode * inode = file_inode(file);
1232 struct task_struct *task = get_proc_task(inode);
1233 ssize_t length;
1234 char tmpbuf[TMPBUFLEN];
1235
1236 if (!task)
1237 return -ESRCH;
1238 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239 from_kuid(file->f_cred->user_ns,
1240 audit_get_loginuid(task)));
1241 put_task_struct(task);
1242 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246 size_t count, loff_t *ppos)
1247{
1248 struct inode * inode = file_inode(file);
1249 uid_t loginuid;
1250 kuid_t kloginuid;
1251 int rv;
1252
1253 rcu_read_lock();
1254 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255 rcu_read_unlock();
1256 return -EPERM;
1257 }
1258 rcu_read_unlock();
1259
1260 if (*ppos != 0) {
1261 /* No partial writes. */
1262 return -EINVAL;
1263 }
1264
1265 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266 if (rv < 0)
1267 return rv;
1268
1269 /* is userspace tring to explicitly UNSET the loginuid? */
1270 if (loginuid == AUDIT_UID_UNSET) {
1271 kloginuid = INVALID_UID;
1272 } else {
1273 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274 if (!uid_valid(kloginuid))
1275 return -EINVAL;
1276 }
1277
1278 rv = audit_set_loginuid(kloginuid);
1279 if (rv < 0)
1280 return rv;
1281 return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285 .read = proc_loginuid_read,
1286 .write = proc_loginuid_write,
1287 .llseek = generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291 size_t count, loff_t *ppos)
1292{
1293 struct inode * inode = file_inode(file);
1294 struct task_struct *task = get_proc_task(inode);
1295 ssize_t length;
1296 char tmpbuf[TMPBUFLEN];
1297
1298 if (!task)
1299 return -ESRCH;
1300 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301 audit_get_sessionid(task));
1302 put_task_struct(task);
1303 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307 .read = proc_sessionid_read,
1308 .llseek = generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314 size_t count, loff_t *ppos)
1315{
1316 struct task_struct *task = get_proc_task(file_inode(file));
1317 char buffer[PROC_NUMBUF];
1318 size_t len;
1319 int make_it_fail;
1320
1321 if (!task)
1322 return -ESRCH;
1323 make_it_fail = task->make_it_fail;
1324 put_task_struct(task);
1325
1326 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332 const char __user * buf, size_t count, loff_t *ppos)
1333{
1334 struct task_struct *task;
1335 char buffer[PROC_NUMBUF];
1336 int make_it_fail;
1337 int rv;
1338
1339 if (!capable(CAP_SYS_RESOURCE))
1340 return -EPERM;
1341 memset(buffer, 0, sizeof(buffer));
1342 if (count > sizeof(buffer) - 1)
1343 count = sizeof(buffer) - 1;
1344 if (copy_from_user(buffer, buf, count))
1345 return -EFAULT;
1346 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347 if (rv < 0)
1348 return rv;
1349 if (make_it_fail < 0 || make_it_fail > 1)
1350 return -EINVAL;
1351
1352 task = get_proc_task(file_inode(file));
1353 if (!task)
1354 return -ESRCH;
1355 task->make_it_fail = make_it_fail;
1356 put_task_struct(task);
1357
1358 return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362 .read = proc_fault_inject_read,
1363 .write = proc_fault_inject_write,
1364 .llseek = generic_file_llseek,
1365};
1366
1367static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1368 size_t count, loff_t *ppos)
1369{
1370 struct task_struct *task;
1371 int err;
1372 unsigned int n;
1373
1374 err = kstrtouint_from_user(buf, count, 0, &n);
1375 if (err)
1376 return err;
1377
1378 task = get_proc_task(file_inode(file));
1379 if (!task)
1380 return -ESRCH;
1381 task->fail_nth = n;
1382 put_task_struct(task);
1383
1384 return count;
1385}
1386
1387static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1388 size_t count, loff_t *ppos)
1389{
1390 struct task_struct *task;
1391 char numbuf[PROC_NUMBUF];
1392 ssize_t len;
1393
1394 task = get_proc_task(file_inode(file));
1395 if (!task)
1396 return -ESRCH;
1397 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1398 put_task_struct(task);
1399 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1400}
1401
1402static const struct file_operations proc_fail_nth_operations = {
1403 .read = proc_fail_nth_read,
1404 .write = proc_fail_nth_write,
1405};
1406#endif
1407
1408
1409#ifdef CONFIG_SCHED_DEBUG
1410/*
1411 * Print out various scheduling related per-task fields:
1412 */
1413static int sched_show(struct seq_file *m, void *v)
1414{
1415 struct inode *inode = m->private;
1416 struct pid_namespace *ns = proc_pid_ns(inode);
1417 struct task_struct *p;
1418
1419 p = get_proc_task(inode);
1420 if (!p)
1421 return -ESRCH;
1422 proc_sched_show_task(p, ns, m);
1423
1424 put_task_struct(p);
1425
1426 return 0;
1427}
1428
1429static ssize_t
1430sched_write(struct file *file, const char __user *buf,
1431 size_t count, loff_t *offset)
1432{
1433 struct inode *inode = file_inode(file);
1434 struct task_struct *p;
1435
1436 p = get_proc_task(inode);
1437 if (!p)
1438 return -ESRCH;
1439 proc_sched_set_task(p);
1440
1441 put_task_struct(p);
1442
1443 return count;
1444}
1445
1446static int sched_open(struct inode *inode, struct file *filp)
1447{
1448 return single_open(filp, sched_show, inode);
1449}
1450
1451static const struct file_operations proc_pid_sched_operations = {
1452 .open = sched_open,
1453 .read = seq_read,
1454 .write = sched_write,
1455 .llseek = seq_lseek,
1456 .release = single_release,
1457};
1458
1459#endif
1460
1461#ifdef CONFIG_SCHED_AUTOGROUP
1462/*
1463 * Print out autogroup related information:
1464 */
1465static int sched_autogroup_show(struct seq_file *m, void *v)
1466{
1467 struct inode *inode = m->private;
1468 struct task_struct *p;
1469
1470 p = get_proc_task(inode);
1471 if (!p)
1472 return -ESRCH;
1473 proc_sched_autogroup_show_task(p, m);
1474
1475 put_task_struct(p);
1476
1477 return 0;
1478}
1479
1480static ssize_t
1481sched_autogroup_write(struct file *file, const char __user *buf,
1482 size_t count, loff_t *offset)
1483{
1484 struct inode *inode = file_inode(file);
1485 struct task_struct *p;
1486 char buffer[PROC_NUMBUF];
1487 int nice;
1488 int err;
1489
1490 memset(buffer, 0, sizeof(buffer));
1491 if (count > sizeof(buffer) - 1)
1492 count = sizeof(buffer) - 1;
1493 if (copy_from_user(buffer, buf, count))
1494 return -EFAULT;
1495
1496 err = kstrtoint(strstrip(buffer), 0, &nice);
1497 if (err < 0)
1498 return err;
1499
1500 p = get_proc_task(inode);
1501 if (!p)
1502 return -ESRCH;
1503
1504 err = proc_sched_autogroup_set_nice(p, nice);
1505 if (err)
1506 count = err;
1507
1508 put_task_struct(p);
1509
1510 return count;
1511}
1512
1513static int sched_autogroup_open(struct inode *inode, struct file *filp)
1514{
1515 int ret;
1516
1517 ret = single_open(filp, sched_autogroup_show, NULL);
1518 if (!ret) {
1519 struct seq_file *m = filp->private_data;
1520
1521 m->private = inode;
1522 }
1523 return ret;
1524}
1525
1526static const struct file_operations proc_pid_sched_autogroup_operations = {
1527 .open = sched_autogroup_open,
1528 .read = seq_read,
1529 .write = sched_autogroup_write,
1530 .llseek = seq_lseek,
1531 .release = single_release,
1532};
1533
1534#endif /* CONFIG_SCHED_AUTOGROUP */
1535
1536static ssize_t comm_write(struct file *file, const char __user *buf,
1537 size_t count, loff_t *offset)
1538{
1539 struct inode *inode = file_inode(file);
1540 struct task_struct *p;
1541 char buffer[TASK_COMM_LEN];
1542 const size_t maxlen = sizeof(buffer) - 1;
1543
1544 memset(buffer, 0, sizeof(buffer));
1545 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1546 return -EFAULT;
1547
1548 p = get_proc_task(inode);
1549 if (!p)
1550 return -ESRCH;
1551
1552 if (same_thread_group(current, p))
1553 set_task_comm(p, buffer);
1554 else
1555 count = -EINVAL;
1556
1557 put_task_struct(p);
1558
1559 return count;
1560}
1561
1562static int comm_show(struct seq_file *m, void *v)
1563{
1564 struct inode *inode = m->private;
1565 struct task_struct *p;
1566
1567 p = get_proc_task(inode);
1568 if (!p)
1569 return -ESRCH;
1570
1571 proc_task_name(m, p, false);
1572 seq_putc(m, '\n');
1573
1574 put_task_struct(p);
1575
1576 return 0;
1577}
1578
1579static int comm_open(struct inode *inode, struct file *filp)
1580{
1581 return single_open(filp, comm_show, inode);
1582}
1583
1584static const struct file_operations proc_pid_set_comm_operations = {
1585 .open = comm_open,
1586 .read = seq_read,
1587 .write = comm_write,
1588 .llseek = seq_lseek,
1589 .release = single_release,
1590};
1591
1592static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1593{
1594 struct task_struct *task;
1595 struct file *exe_file;
1596
1597 task = get_proc_task(d_inode(dentry));
1598 if (!task)
1599 return -ENOENT;
1600 exe_file = get_task_exe_file(task);
1601 put_task_struct(task);
1602 if (exe_file) {
1603 *exe_path = exe_file->f_path;
1604 path_get(&exe_file->f_path);
1605 fput(exe_file);
1606 return 0;
1607 } else
1608 return -ENOENT;
1609}
1610
1611static const char *proc_pid_get_link(struct dentry *dentry,
1612 struct inode *inode,
1613 struct delayed_call *done)
1614{
1615 struct path path;
1616 int error = -EACCES;
1617
1618 if (!dentry)
1619 return ERR_PTR(-ECHILD);
1620
1621 /* Are we allowed to snoop on the tasks file descriptors? */
1622 if (!proc_fd_access_allowed(inode))
1623 goto out;
1624
1625 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1626 if (error)
1627 goto out;
1628
1629 nd_jump_link(&path);
1630 return NULL;
1631out:
1632 return ERR_PTR(error);
1633}
1634
1635static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1636{
1637 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1638 char *pathname;
1639 int len;
1640
1641 if (!tmp)
1642 return -ENOMEM;
1643
1644 pathname = d_path(path, tmp, PAGE_SIZE);
1645 len = PTR_ERR(pathname);
1646 if (IS_ERR(pathname))
1647 goto out;
1648 len = tmp + PAGE_SIZE - 1 - pathname;
1649
1650 if (len > buflen)
1651 len = buflen;
1652 if (copy_to_user(buffer, pathname, len))
1653 len = -EFAULT;
1654 out:
1655 free_page((unsigned long)tmp);
1656 return len;
1657}
1658
1659static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1660{
1661 int error = -EACCES;
1662 struct inode *inode = d_inode(dentry);
1663 struct path path;
1664
1665 /* Are we allowed to snoop on the tasks file descriptors? */
1666 if (!proc_fd_access_allowed(inode))
1667 goto out;
1668
1669 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1670 if (error)
1671 goto out;
1672
1673 error = do_proc_readlink(&path, buffer, buflen);
1674 path_put(&path);
1675out:
1676 return error;
1677}
1678
1679const struct inode_operations proc_pid_link_inode_operations = {
1680 .readlink = proc_pid_readlink,
1681 .get_link = proc_pid_get_link,
1682 .setattr = proc_setattr,
1683};
1684
1685
1686/* building an inode */
1687
1688void task_dump_owner(struct task_struct *task, umode_t mode,
1689 kuid_t *ruid, kgid_t *rgid)
1690{
1691 /* Depending on the state of dumpable compute who should own a
1692 * proc file for a task.
1693 */
1694 const struct cred *cred;
1695 kuid_t uid;
1696 kgid_t gid;
1697
1698 if (unlikely(task->flags & PF_KTHREAD)) {
1699 *ruid = GLOBAL_ROOT_UID;
1700 *rgid = GLOBAL_ROOT_GID;
1701 return;
1702 }
1703
1704 /* Default to the tasks effective ownership */
1705 rcu_read_lock();
1706 cred = __task_cred(task);
1707 uid = cred->euid;
1708 gid = cred->egid;
1709 rcu_read_unlock();
1710
1711 /*
1712 * Before the /proc/pid/status file was created the only way to read
1713 * the effective uid of a /process was to stat /proc/pid. Reading
1714 * /proc/pid/status is slow enough that procps and other packages
1715 * kept stating /proc/pid. To keep the rules in /proc simple I have
1716 * made this apply to all per process world readable and executable
1717 * directories.
1718 */
1719 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1720 struct mm_struct *mm;
1721 task_lock(task);
1722 mm = task->mm;
1723 /* Make non-dumpable tasks owned by some root */
1724 if (mm) {
1725 if (get_dumpable(mm) != SUID_DUMP_USER) {
1726 struct user_namespace *user_ns = mm->user_ns;
1727
1728 uid = make_kuid(user_ns, 0);
1729 if (!uid_valid(uid))
1730 uid = GLOBAL_ROOT_UID;
1731
1732 gid = make_kgid(user_ns, 0);
1733 if (!gid_valid(gid))
1734 gid = GLOBAL_ROOT_GID;
1735 }
1736 } else {
1737 uid = GLOBAL_ROOT_UID;
1738 gid = GLOBAL_ROOT_GID;
1739 }
1740 task_unlock(task);
1741 }
1742 *ruid = uid;
1743 *rgid = gid;
1744}
1745
1746struct inode *proc_pid_make_inode(struct super_block * sb,
1747 struct task_struct *task, umode_t mode)
1748{
1749 struct inode * inode;
1750 struct proc_inode *ei;
1751
1752 /* We need a new inode */
1753
1754 inode = new_inode(sb);
1755 if (!inode)
1756 goto out;
1757
1758 /* Common stuff */
1759 ei = PROC_I(inode);
1760 inode->i_mode = mode;
1761 inode->i_ino = get_next_ino();
1762 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1763 inode->i_op = &proc_def_inode_operations;
1764
1765 /*
1766 * grab the reference to task.
1767 */
1768 ei->pid = get_task_pid(task, PIDTYPE_PID);
1769 if (!ei->pid)
1770 goto out_unlock;
1771
1772 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1773 security_task_to_inode(task, inode);
1774
1775out:
1776 return inode;
1777
1778out_unlock:
1779 iput(inode);
1780 return NULL;
1781}
1782
1783int pid_getattr(const struct path *path, struct kstat *stat,
1784 u32 request_mask, unsigned int query_flags)
1785{
1786 struct inode *inode = d_inode(path->dentry);
1787 struct pid_namespace *pid = proc_pid_ns(inode);
1788 struct task_struct *task;
1789
1790 generic_fillattr(inode, stat);
1791
1792 stat->uid = GLOBAL_ROOT_UID;
1793 stat->gid = GLOBAL_ROOT_GID;
1794 rcu_read_lock();
1795 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1796 if (task) {
1797 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1798 rcu_read_unlock();
1799 /*
1800 * This doesn't prevent learning whether PID exists,
1801 * it only makes getattr() consistent with readdir().
1802 */
1803 return -ENOENT;
1804 }
1805 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1806 }
1807 rcu_read_unlock();
1808 return 0;
1809}
1810
1811/* dentry stuff */
1812
1813/*
1814 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1815 */
1816void pid_update_inode(struct task_struct *task, struct inode *inode)
1817{
1818 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1819
1820 inode->i_mode &= ~(S_ISUID | S_ISGID);
1821 security_task_to_inode(task, inode);
1822}
1823
1824/*
1825 * Rewrite the inode's ownerships here because the owning task may have
1826 * performed a setuid(), etc.
1827 *
1828 */
1829static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1830{
1831 struct inode *inode;
1832 struct task_struct *task;
1833
1834 if (flags & LOOKUP_RCU)
1835 return -ECHILD;
1836
1837 inode = d_inode(dentry);
1838 task = get_proc_task(inode);
1839
1840 if (task) {
1841 pid_update_inode(task, inode);
1842 put_task_struct(task);
1843 return 1;
1844 }
1845 return 0;
1846}
1847
1848static inline bool proc_inode_is_dead(struct inode *inode)
1849{
1850 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1851}
1852
1853int pid_delete_dentry(const struct dentry *dentry)
1854{
1855 /* Is the task we represent dead?
1856 * If so, then don't put the dentry on the lru list,
1857 * kill it immediately.
1858 */
1859 return proc_inode_is_dead(d_inode(dentry));
1860}
1861
1862const struct dentry_operations pid_dentry_operations =
1863{
1864 .d_revalidate = pid_revalidate,
1865 .d_delete = pid_delete_dentry,
1866};
1867
1868/* Lookups */
1869
1870/*
1871 * Fill a directory entry.
1872 *
1873 * If possible create the dcache entry and derive our inode number and
1874 * file type from dcache entry.
1875 *
1876 * Since all of the proc inode numbers are dynamically generated, the inode
1877 * numbers do not exist until the inode is cache. This means creating the
1878 * the dcache entry in readdir is necessary to keep the inode numbers
1879 * reported by readdir in sync with the inode numbers reported
1880 * by stat.
1881 */
1882bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1883 const char *name, unsigned int len,
1884 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1885{
1886 struct dentry *child, *dir = file->f_path.dentry;
1887 struct qstr qname = QSTR_INIT(name, len);
1888 struct inode *inode;
1889 unsigned type = DT_UNKNOWN;
1890 ino_t ino = 1;
1891
1892 child = d_hash_and_lookup(dir, &qname);
1893 if (!child) {
1894 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1895 child = d_alloc_parallel(dir, &qname, &wq);
1896 if (IS_ERR(child))
1897 goto end_instantiate;
1898 if (d_in_lookup(child)) {
1899 struct dentry *res;
1900 res = instantiate(child, task, ptr);
1901 d_lookup_done(child);
1902 if (unlikely(res)) {
1903 dput(child);
1904 child = res;
1905 if (IS_ERR(child))
1906 goto end_instantiate;
1907 }
1908 }
1909 }
1910 inode = d_inode(child);
1911 ino = inode->i_ino;
1912 type = inode->i_mode >> 12;
1913 dput(child);
1914end_instantiate:
1915 return dir_emit(ctx, name, len, ino, type);
1916}
1917
1918/*
1919 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1920 * which represent vma start and end addresses.
1921 */
1922static int dname_to_vma_addr(struct dentry *dentry,
1923 unsigned long *start, unsigned long *end)
1924{
1925 const char *str = dentry->d_name.name;
1926 unsigned long long sval, eval;
1927 unsigned int len;
1928
1929 if (str[0] == '0' && str[1] != '-')
1930 return -EINVAL;
1931 len = _parse_integer(str, 16, &sval);
1932 if (len & KSTRTOX_OVERFLOW)
1933 return -EINVAL;
1934 if (sval != (unsigned long)sval)
1935 return -EINVAL;
1936 str += len;
1937
1938 if (*str != '-')
1939 return -EINVAL;
1940 str++;
1941
1942 if (str[0] == '0' && str[1])
1943 return -EINVAL;
1944 len = _parse_integer(str, 16, &eval);
1945 if (len & KSTRTOX_OVERFLOW)
1946 return -EINVAL;
1947 if (eval != (unsigned long)eval)
1948 return -EINVAL;
1949 str += len;
1950
1951 if (*str != '\0')
1952 return -EINVAL;
1953
1954 *start = sval;
1955 *end = eval;
1956
1957 return 0;
1958}
1959
1960static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1961{
1962 unsigned long vm_start, vm_end;
1963 bool exact_vma_exists = false;
1964 struct mm_struct *mm = NULL;
1965 struct task_struct *task;
1966 struct inode *inode;
1967 int status = 0;
1968
1969 if (flags & LOOKUP_RCU)
1970 return -ECHILD;
1971
1972 inode = d_inode(dentry);
1973 task = get_proc_task(inode);
1974 if (!task)
1975 goto out_notask;
1976
1977 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1978 if (IS_ERR_OR_NULL(mm))
1979 goto out;
1980
1981 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1982 status = down_read_killable(&mm->mmap_sem);
1983 if (!status) {
1984 exact_vma_exists = !!find_exact_vma(mm, vm_start,
1985 vm_end);
1986 up_read(&mm->mmap_sem);
1987 }
1988 }
1989
1990 mmput(mm);
1991
1992 if (exact_vma_exists) {
1993 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1994
1995 security_task_to_inode(task, inode);
1996 status = 1;
1997 }
1998
1999out:
2000 put_task_struct(task);
2001
2002out_notask:
2003 return status;
2004}
2005
2006static const struct dentry_operations tid_map_files_dentry_operations = {
2007 .d_revalidate = map_files_d_revalidate,
2008 .d_delete = pid_delete_dentry,
2009};
2010
2011static int map_files_get_link(struct dentry *dentry, struct path *path)
2012{
2013 unsigned long vm_start, vm_end;
2014 struct vm_area_struct *vma;
2015 struct task_struct *task;
2016 struct mm_struct *mm;
2017 int rc;
2018
2019 rc = -ENOENT;
2020 task = get_proc_task(d_inode(dentry));
2021 if (!task)
2022 goto out;
2023
2024 mm = get_task_mm(task);
2025 put_task_struct(task);
2026 if (!mm)
2027 goto out;
2028
2029 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2030 if (rc)
2031 goto out_mmput;
2032
2033 rc = down_read_killable(&mm->mmap_sem);
2034 if (rc)
2035 goto out_mmput;
2036
2037 rc = -ENOENT;
2038 vma = find_exact_vma(mm, vm_start, vm_end);
2039 if (vma && vma->vm_file) {
2040 *path = vma->vm_file->f_path;
2041 path_get(path);
2042 rc = 0;
2043 }
2044 up_read(&mm->mmap_sem);
2045
2046out_mmput:
2047 mmput(mm);
2048out:
2049 return rc;
2050}
2051
2052struct map_files_info {
2053 unsigned long start;
2054 unsigned long end;
2055 fmode_t mode;
2056};
2057
2058/*
2059 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2060 * symlinks may be used to bypass permissions on ancestor directories in the
2061 * path to the file in question.
2062 */
2063static const char *
2064proc_map_files_get_link(struct dentry *dentry,
2065 struct inode *inode,
2066 struct delayed_call *done)
2067{
2068 if (!capable(CAP_SYS_ADMIN))
2069 return ERR_PTR(-EPERM);
2070
2071 return proc_pid_get_link(dentry, inode, done);
2072}
2073
2074/*
2075 * Identical to proc_pid_link_inode_operations except for get_link()
2076 */
2077static const struct inode_operations proc_map_files_link_inode_operations = {
2078 .readlink = proc_pid_readlink,
2079 .get_link = proc_map_files_get_link,
2080 .setattr = proc_setattr,
2081};
2082
2083static struct dentry *
2084proc_map_files_instantiate(struct dentry *dentry,
2085 struct task_struct *task, const void *ptr)
2086{
2087 fmode_t mode = (fmode_t)(unsigned long)ptr;
2088 struct proc_inode *ei;
2089 struct inode *inode;
2090
2091 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2092 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2093 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2094 if (!inode)
2095 return ERR_PTR(-ENOENT);
2096
2097 ei = PROC_I(inode);
2098 ei->op.proc_get_link = map_files_get_link;
2099
2100 inode->i_op = &proc_map_files_link_inode_operations;
2101 inode->i_size = 64;
2102
2103 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2104 return d_splice_alias(inode, dentry);
2105}
2106
2107static struct dentry *proc_map_files_lookup(struct inode *dir,
2108 struct dentry *dentry, unsigned int flags)
2109{
2110 unsigned long vm_start, vm_end;
2111 struct vm_area_struct *vma;
2112 struct task_struct *task;
2113 struct dentry *result;
2114 struct mm_struct *mm;
2115
2116 result = ERR_PTR(-ENOENT);
2117 task = get_proc_task(dir);
2118 if (!task)
2119 goto out;
2120
2121 result = ERR_PTR(-EACCES);
2122 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2123 goto out_put_task;
2124
2125 result = ERR_PTR(-ENOENT);
2126 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2127 goto out_put_task;
2128
2129 mm = get_task_mm(task);
2130 if (!mm)
2131 goto out_put_task;
2132
2133 result = ERR_PTR(-EINTR);
2134 if (down_read_killable(&mm->mmap_sem))
2135 goto out_put_mm;
2136
2137 result = ERR_PTR(-ENOENT);
2138 vma = find_exact_vma(mm, vm_start, vm_end);
2139 if (!vma)
2140 goto out_no_vma;
2141
2142 if (vma->vm_file)
2143 result = proc_map_files_instantiate(dentry, task,
2144 (void *)(unsigned long)vma->vm_file->f_mode);
2145
2146out_no_vma:
2147 up_read(&mm->mmap_sem);
2148out_put_mm:
2149 mmput(mm);
2150out_put_task:
2151 put_task_struct(task);
2152out:
2153 return result;
2154}
2155
2156static const struct inode_operations proc_map_files_inode_operations = {
2157 .lookup = proc_map_files_lookup,
2158 .permission = proc_fd_permission,
2159 .setattr = proc_setattr,
2160};
2161
2162static int
2163proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2164{
2165 struct vm_area_struct *vma;
2166 struct task_struct *task;
2167 struct mm_struct *mm;
2168 unsigned long nr_files, pos, i;
2169 struct flex_array *fa = NULL;
2170 struct map_files_info info;
2171 struct map_files_info *p;
2172 int ret;
2173
2174 ret = -ENOENT;
2175 task = get_proc_task(file_inode(file));
2176 if (!task)
2177 goto out;
2178
2179 ret = -EACCES;
2180 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2181 goto out_put_task;
2182
2183 ret = 0;
2184 if (!dir_emit_dots(file, ctx))
2185 goto out_put_task;
2186
2187 mm = get_task_mm(task);
2188 if (!mm)
2189 goto out_put_task;
2190
2191 ret = down_read_killable(&mm->mmap_sem);
2192 if (ret) {
2193 mmput(mm);
2194 goto out_put_task;
2195 }
2196
2197 nr_files = 0;
2198
2199 /*
2200 * We need two passes here:
2201 *
2202 * 1) Collect vmas of mapped files with mmap_sem taken
2203 * 2) Release mmap_sem and instantiate entries
2204 *
2205 * otherwise we get lockdep complained, since filldir()
2206 * routine might require mmap_sem taken in might_fault().
2207 */
2208
2209 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2210 if (vma->vm_file && ++pos > ctx->pos)
2211 nr_files++;
2212 }
2213
2214 if (nr_files) {
2215 fa = flex_array_alloc(sizeof(info), nr_files,
2216 GFP_KERNEL);
2217 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2218 GFP_KERNEL)) {
2219 ret = -ENOMEM;
2220 if (fa)
2221 flex_array_free(fa);
2222 up_read(&mm->mmap_sem);
2223 mmput(mm);
2224 goto out_put_task;
2225 }
2226 for (i = 0, vma = mm->mmap, pos = 2; vma;
2227 vma = vma->vm_next) {
2228 if (!vma->vm_file)
2229 continue;
2230 if (++pos <= ctx->pos)
2231 continue;
2232
2233 info.start = vma->vm_start;
2234 info.end = vma->vm_end;
2235 info.mode = vma->vm_file->f_mode;
2236 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2237 BUG();
2238 }
2239 }
2240 up_read(&mm->mmap_sem);
2241 mmput(mm);
2242
2243 for (i = 0; i < nr_files; i++) {
2244 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2245 unsigned int len;
2246
2247 p = flex_array_get(fa, i);
2248 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2249 if (!proc_fill_cache(file, ctx,
2250 buf, len,
2251 proc_map_files_instantiate,
2252 task,
2253 (void *)(unsigned long)p->mode))
2254 break;
2255 ctx->pos++;
2256 }
2257 if (fa)
2258 flex_array_free(fa);
2259
2260out_put_task:
2261 put_task_struct(task);
2262out:
2263 return ret;
2264}
2265
2266static const struct file_operations proc_map_files_operations = {
2267 .read = generic_read_dir,
2268 .iterate_shared = proc_map_files_readdir,
2269 .llseek = generic_file_llseek,
2270};
2271
2272#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2273struct timers_private {
2274 struct pid *pid;
2275 struct task_struct *task;
2276 struct sighand_struct *sighand;
2277 struct pid_namespace *ns;
2278 unsigned long flags;
2279};
2280
2281static void *timers_start(struct seq_file *m, loff_t *pos)
2282{
2283 struct timers_private *tp = m->private;
2284
2285 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2286 if (!tp->task)
2287 return ERR_PTR(-ESRCH);
2288
2289 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2290 if (!tp->sighand)
2291 return ERR_PTR(-ESRCH);
2292
2293 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2294}
2295
2296static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2297{
2298 struct timers_private *tp = m->private;
2299 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2300}
2301
2302static void timers_stop(struct seq_file *m, void *v)
2303{
2304 struct timers_private *tp = m->private;
2305
2306 if (tp->sighand) {
2307 unlock_task_sighand(tp->task, &tp->flags);
2308 tp->sighand = NULL;
2309 }
2310
2311 if (tp->task) {
2312 put_task_struct(tp->task);
2313 tp->task = NULL;
2314 }
2315}
2316
2317static int show_timer(struct seq_file *m, void *v)
2318{
2319 struct k_itimer *timer;
2320 struct timers_private *tp = m->private;
2321 int notify;
2322 static const char * const nstr[] = {
2323 [SIGEV_SIGNAL] = "signal",
2324 [SIGEV_NONE] = "none",
2325 [SIGEV_THREAD] = "thread",
2326 };
2327
2328 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2329 notify = timer->it_sigev_notify;
2330
2331 seq_printf(m, "ID: %d\n", timer->it_id);
2332 seq_printf(m, "signal: %d/%px\n",
2333 timer->sigq->info.si_signo,
2334 timer->sigq->info.si_value.sival_ptr);
2335 seq_printf(m, "notify: %s/%s.%d\n",
2336 nstr[notify & ~SIGEV_THREAD_ID],
2337 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2338 pid_nr_ns(timer->it_pid, tp->ns));
2339 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2340
2341 return 0;
2342}
2343
2344static const struct seq_operations proc_timers_seq_ops = {
2345 .start = timers_start,
2346 .next = timers_next,
2347 .stop = timers_stop,
2348 .show = show_timer,
2349};
2350
2351static int proc_timers_open(struct inode *inode, struct file *file)
2352{
2353 struct timers_private *tp;
2354
2355 tp = __seq_open_private(file, &proc_timers_seq_ops,
2356 sizeof(struct timers_private));
2357 if (!tp)
2358 return -ENOMEM;
2359
2360 tp->pid = proc_pid(inode);
2361 tp->ns = proc_pid_ns(inode);
2362 return 0;
2363}
2364
2365static const struct file_operations proc_timers_operations = {
2366 .open = proc_timers_open,
2367 .read = seq_read,
2368 .llseek = seq_lseek,
2369 .release = seq_release_private,
2370};
2371#endif
2372
2373static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2374 size_t count, loff_t *offset)
2375{
2376 struct inode *inode = file_inode(file);
2377 struct task_struct *p;
2378 u64 slack_ns;
2379 int err;
2380
2381 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2382 if (err < 0)
2383 return err;
2384
2385 p = get_proc_task(inode);
2386 if (!p)
2387 return -ESRCH;
2388
2389 if (p != current) {
2390 if (!capable(CAP_SYS_NICE)) {
2391 count = -EPERM;
2392 goto out;
2393 }
2394
2395 err = security_task_setscheduler(p);
2396 if (err) {
2397 count = err;
2398 goto out;
2399 }
2400 }
2401
2402 task_lock(p);
2403 if (slack_ns == 0)
2404 p->timer_slack_ns = p->default_timer_slack_ns;
2405 else
2406 p->timer_slack_ns = slack_ns;
2407 task_unlock(p);
2408
2409out:
2410 put_task_struct(p);
2411
2412 return count;
2413}
2414
2415static int timerslack_ns_show(struct seq_file *m, void *v)
2416{
2417 struct inode *inode = m->private;
2418 struct task_struct *p;
2419 int err = 0;
2420
2421 p = get_proc_task(inode);
2422 if (!p)
2423 return -ESRCH;
2424
2425 if (p != current) {
2426
2427 if (!capable(CAP_SYS_NICE)) {
2428 err = -EPERM;
2429 goto out;
2430 }
2431 err = security_task_getscheduler(p);
2432 if (err)
2433 goto out;
2434 }
2435
2436 task_lock(p);
2437 seq_printf(m, "%llu\n", p->timer_slack_ns);
2438 task_unlock(p);
2439
2440out:
2441 put_task_struct(p);
2442
2443 return err;
2444}
2445
2446static int timerslack_ns_open(struct inode *inode, struct file *filp)
2447{
2448 return single_open(filp, timerslack_ns_show, inode);
2449}
2450
2451static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2452 .open = timerslack_ns_open,
2453 .read = seq_read,
2454 .write = timerslack_ns_write,
2455 .llseek = seq_lseek,
2456 .release = single_release,
2457};
2458
2459static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2460 struct task_struct *task, const void *ptr)
2461{
2462 const struct pid_entry *p = ptr;
2463 struct inode *inode;
2464 struct proc_inode *ei;
2465
2466 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2467 if (!inode)
2468 return ERR_PTR(-ENOENT);
2469
2470 ei = PROC_I(inode);
2471 if (S_ISDIR(inode->i_mode))
2472 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2473 if (p->iop)
2474 inode->i_op = p->iop;
2475 if (p->fop)
2476 inode->i_fop = p->fop;
2477 ei->op = p->op;
2478 pid_update_inode(task, inode);
2479 d_set_d_op(dentry, &pid_dentry_operations);
2480 return d_splice_alias(inode, dentry);
2481}
2482
2483static struct dentry *proc_pident_lookup(struct inode *dir,
2484 struct dentry *dentry,
2485 const struct pid_entry *ents,
2486 unsigned int nents)
2487{
2488 struct task_struct *task = get_proc_task(dir);
2489 const struct pid_entry *p, *last;
2490 struct dentry *res = ERR_PTR(-ENOENT);
2491
2492 if (!task)
2493 goto out_no_task;
2494
2495 /*
2496 * Yes, it does not scale. And it should not. Don't add
2497 * new entries into /proc/<tgid>/ without very good reasons.
2498 */
2499 last = &ents[nents];
2500 for (p = ents; p < last; p++) {
2501 if (p->len != dentry->d_name.len)
2502 continue;
2503 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2504 res = proc_pident_instantiate(dentry, task, p);
2505 break;
2506 }
2507 }
2508 put_task_struct(task);
2509out_no_task:
2510 return res;
2511}
2512
2513static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2514 const struct pid_entry *ents, unsigned int nents)
2515{
2516 struct task_struct *task = get_proc_task(file_inode(file));
2517 const struct pid_entry *p;
2518
2519 if (!task)
2520 return -ENOENT;
2521
2522 if (!dir_emit_dots(file, ctx))
2523 goto out;
2524
2525 if (ctx->pos >= nents + 2)
2526 goto out;
2527
2528 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2529 if (!proc_fill_cache(file, ctx, p->name, p->len,
2530 proc_pident_instantiate, task, p))
2531 break;
2532 ctx->pos++;
2533 }
2534out:
2535 put_task_struct(task);
2536 return 0;
2537}
2538
2539#ifdef CONFIG_SECURITY
2540static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2541 size_t count, loff_t *ppos)
2542{
2543 struct inode * inode = file_inode(file);
2544 char *p = NULL;
2545 ssize_t length;
2546 struct task_struct *task = get_proc_task(inode);
2547
2548 if (!task)
2549 return -ESRCH;
2550
2551 length = security_getprocattr(task,
2552 (char*)file->f_path.dentry->d_name.name,
2553 &p);
2554 put_task_struct(task);
2555 if (length > 0)
2556 length = simple_read_from_buffer(buf, count, ppos, p, length);
2557 kfree(p);
2558 return length;
2559}
2560
2561static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2562 size_t count, loff_t *ppos)
2563{
2564 struct inode * inode = file_inode(file);
2565 struct task_struct *task;
2566 void *page;
2567 int rv;
2568
2569 rcu_read_lock();
2570 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2571 if (!task) {
2572 rcu_read_unlock();
2573 return -ESRCH;
2574 }
2575 /* A task may only write its own attributes. */
2576 if (current != task) {
2577 rcu_read_unlock();
2578 return -EACCES;
2579 }
2580 /* Prevent changes to overridden credentials. */
2581 if (current_cred() != current_real_cred()) {
2582 rcu_read_unlock();
2583 return -EBUSY;
2584 }
2585 rcu_read_unlock();
2586
2587 if (count > PAGE_SIZE)
2588 count = PAGE_SIZE;
2589
2590 /* No partial writes. */
2591 if (*ppos != 0)
2592 return -EINVAL;
2593
2594 page = memdup_user(buf, count);
2595 if (IS_ERR(page)) {
2596 rv = PTR_ERR(page);
2597 goto out;
2598 }
2599
2600 /* Guard against adverse ptrace interaction */
2601 rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2602 if (rv < 0)
2603 goto out_free;
2604
2605 rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2606 mutex_unlock(&current->signal->cred_guard_mutex);
2607out_free:
2608 kfree(page);
2609out:
2610 return rv;
2611}
2612
2613static const struct file_operations proc_pid_attr_operations = {
2614 .read = proc_pid_attr_read,
2615 .write = proc_pid_attr_write,
2616 .llseek = generic_file_llseek,
2617};
2618
2619static const struct pid_entry attr_dir_stuff[] = {
2620 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2621 REG("prev", S_IRUGO, proc_pid_attr_operations),
2622 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2623 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2624 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2625 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2626};
2627
2628static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2629{
2630 return proc_pident_readdir(file, ctx,
2631 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2632}
2633
2634static const struct file_operations proc_attr_dir_operations = {
2635 .read = generic_read_dir,
2636 .iterate_shared = proc_attr_dir_readdir,
2637 .llseek = generic_file_llseek,
2638};
2639
2640static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2641 struct dentry *dentry, unsigned int flags)
2642{
2643 return proc_pident_lookup(dir, dentry,
2644 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2645}
2646
2647static const struct inode_operations proc_attr_dir_inode_operations = {
2648 .lookup = proc_attr_dir_lookup,
2649 .getattr = pid_getattr,
2650 .setattr = proc_setattr,
2651};
2652
2653#endif
2654
2655#ifdef CONFIG_ELF_CORE
2656static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2657 size_t count, loff_t *ppos)
2658{
2659 struct task_struct *task = get_proc_task(file_inode(file));
2660 struct mm_struct *mm;
2661 char buffer[PROC_NUMBUF];
2662 size_t len;
2663 int ret;
2664
2665 if (!task)
2666 return -ESRCH;
2667
2668 ret = 0;
2669 mm = get_task_mm(task);
2670 if (mm) {
2671 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2672 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2673 MMF_DUMP_FILTER_SHIFT));
2674 mmput(mm);
2675 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2676 }
2677
2678 put_task_struct(task);
2679
2680 return ret;
2681}
2682
2683static ssize_t proc_coredump_filter_write(struct file *file,
2684 const char __user *buf,
2685 size_t count,
2686 loff_t *ppos)
2687{
2688 struct task_struct *task;
2689 struct mm_struct *mm;
2690 unsigned int val;
2691 int ret;
2692 int i;
2693 unsigned long mask;
2694
2695 ret = kstrtouint_from_user(buf, count, 0, &val);
2696 if (ret < 0)
2697 return ret;
2698
2699 ret = -ESRCH;
2700 task = get_proc_task(file_inode(file));
2701 if (!task)
2702 goto out_no_task;
2703
2704 mm = get_task_mm(task);
2705 if (!mm)
2706 goto out_no_mm;
2707 ret = 0;
2708
2709 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2710 if (val & mask)
2711 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2712 else
2713 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2714 }
2715
2716 mmput(mm);
2717 out_no_mm:
2718 put_task_struct(task);
2719 out_no_task:
2720 if (ret < 0)
2721 return ret;
2722 return count;
2723}
2724
2725static const struct file_operations proc_coredump_filter_operations = {
2726 .read = proc_coredump_filter_read,
2727 .write = proc_coredump_filter_write,
2728 .llseek = generic_file_llseek,
2729};
2730#endif
2731
2732#ifdef CONFIG_TASK_IO_ACCOUNTING
2733static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2734{
2735 struct task_io_accounting acct = task->ioac;
2736 unsigned long flags;
2737 int result;
2738
2739 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2740 if (result)
2741 return result;
2742
2743 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2744 result = -EACCES;
2745 goto out_unlock;
2746 }
2747
2748 if (whole && lock_task_sighand(task, &flags)) {
2749 struct task_struct *t = task;
2750
2751 task_io_accounting_add(&acct, &task->signal->ioac);
2752 while_each_thread(task, t)
2753 task_io_accounting_add(&acct, &t->ioac);
2754
2755 unlock_task_sighand(task, &flags);
2756 }
2757 seq_printf(m,
2758 "rchar: %llu\n"
2759 "wchar: %llu\n"
2760 "syscr: %llu\n"
2761 "syscw: %llu\n"
2762 "read_bytes: %llu\n"
2763 "write_bytes: %llu\n"
2764 "cancelled_write_bytes: %llu\n",
2765 (unsigned long long)acct.rchar,
2766 (unsigned long long)acct.wchar,
2767 (unsigned long long)acct.syscr,
2768 (unsigned long long)acct.syscw,
2769 (unsigned long long)acct.read_bytes,
2770 (unsigned long long)acct.write_bytes,
2771 (unsigned long long)acct.cancelled_write_bytes);
2772 result = 0;
2773
2774out_unlock:
2775 mutex_unlock(&task->signal->cred_guard_mutex);
2776 return result;
2777}
2778
2779static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2780 struct pid *pid, struct task_struct *task)
2781{
2782 return do_io_accounting(task, m, 0);
2783}
2784
2785static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2786 struct pid *pid, struct task_struct *task)
2787{
2788 return do_io_accounting(task, m, 1);
2789}
2790#endif /* CONFIG_TASK_IO_ACCOUNTING */
2791
2792#ifdef CONFIG_USER_NS
2793static int proc_id_map_open(struct inode *inode, struct file *file,
2794 const struct seq_operations *seq_ops)
2795{
2796 struct user_namespace *ns = NULL;
2797 struct task_struct *task;
2798 struct seq_file *seq;
2799 int ret = -EINVAL;
2800
2801 task = get_proc_task(inode);
2802 if (task) {
2803 rcu_read_lock();
2804 ns = get_user_ns(task_cred_xxx(task, user_ns));
2805 rcu_read_unlock();
2806 put_task_struct(task);
2807 }
2808 if (!ns)
2809 goto err;
2810
2811 ret = seq_open(file, seq_ops);
2812 if (ret)
2813 goto err_put_ns;
2814
2815 seq = file->private_data;
2816 seq->private = ns;
2817
2818 return 0;
2819err_put_ns:
2820 put_user_ns(ns);
2821err:
2822 return ret;
2823}
2824
2825static int proc_id_map_release(struct inode *inode, struct file *file)
2826{
2827 struct seq_file *seq = file->private_data;
2828 struct user_namespace *ns = seq->private;
2829 put_user_ns(ns);
2830 return seq_release(inode, file);
2831}
2832
2833static int proc_uid_map_open(struct inode *inode, struct file *file)
2834{
2835 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2836}
2837
2838static int proc_gid_map_open(struct inode *inode, struct file *file)
2839{
2840 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2841}
2842
2843static int proc_projid_map_open(struct inode *inode, struct file *file)
2844{
2845 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2846}
2847
2848static const struct file_operations proc_uid_map_operations = {
2849 .open = proc_uid_map_open,
2850 .write = proc_uid_map_write,
2851 .read = seq_read,
2852 .llseek = seq_lseek,
2853 .release = proc_id_map_release,
2854};
2855
2856static const struct file_operations proc_gid_map_operations = {
2857 .open = proc_gid_map_open,
2858 .write = proc_gid_map_write,
2859 .read = seq_read,
2860 .llseek = seq_lseek,
2861 .release = proc_id_map_release,
2862};
2863
2864static const struct file_operations proc_projid_map_operations = {
2865 .open = proc_projid_map_open,
2866 .write = proc_projid_map_write,
2867 .read = seq_read,
2868 .llseek = seq_lseek,
2869 .release = proc_id_map_release,
2870};
2871
2872static int proc_setgroups_open(struct inode *inode, struct file *file)
2873{
2874 struct user_namespace *ns = NULL;
2875 struct task_struct *task;
2876 int ret;
2877
2878 ret = -ESRCH;
2879 task = get_proc_task(inode);
2880 if (task) {
2881 rcu_read_lock();
2882 ns = get_user_ns(task_cred_xxx(task, user_ns));
2883 rcu_read_unlock();
2884 put_task_struct(task);
2885 }
2886 if (!ns)
2887 goto err;
2888
2889 if (file->f_mode & FMODE_WRITE) {
2890 ret = -EACCES;
2891 if (!ns_capable(ns, CAP_SYS_ADMIN))
2892 goto err_put_ns;
2893 }
2894
2895 ret = single_open(file, &proc_setgroups_show, ns);
2896 if (ret)
2897 goto err_put_ns;
2898
2899 return 0;
2900err_put_ns:
2901 put_user_ns(ns);
2902err:
2903 return ret;
2904}
2905
2906static int proc_setgroups_release(struct inode *inode, struct file *file)
2907{
2908 struct seq_file *seq = file->private_data;
2909 struct user_namespace *ns = seq->private;
2910 int ret = single_release(inode, file);
2911 put_user_ns(ns);
2912 return ret;
2913}
2914
2915static const struct file_operations proc_setgroups_operations = {
2916 .open = proc_setgroups_open,
2917 .write = proc_setgroups_write,
2918 .read = seq_read,
2919 .llseek = seq_lseek,
2920 .release = proc_setgroups_release,
2921};
2922#endif /* CONFIG_USER_NS */
2923
2924static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2925 struct pid *pid, struct task_struct *task)
2926{
2927 int err = lock_trace(task);
2928 if (!err) {
2929 seq_printf(m, "%08x\n", task->personality);
2930 unlock_trace(task);
2931 }
2932 return err;
2933}
2934
2935#ifdef CONFIG_LIVEPATCH
2936static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2937 struct pid *pid, struct task_struct *task)
2938{
2939 seq_printf(m, "%d\n", task->patch_state);
2940 return 0;
2941}
2942#endif /* CONFIG_LIVEPATCH */
2943
2944/*
2945 * Thread groups
2946 */
2947static const struct file_operations proc_task_operations;
2948static const struct inode_operations proc_task_inode_operations;
2949
2950static const struct pid_entry tgid_base_stuff[] = {
2951 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2952 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2953 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2954 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2955 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2956#ifdef CONFIG_NET
2957 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2958#endif
2959 REG("environ", S_IRUSR, proc_environ_operations),
2960 REG("auxv", S_IRUSR, proc_auxv_operations),
2961 ONE("status", S_IRUGO, proc_pid_status),
2962 ONE("personality", S_IRUSR, proc_pid_personality),
2963 ONE("limits", S_IRUGO, proc_pid_limits),
2964#ifdef CONFIG_SCHED_DEBUG
2965 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2966#endif
2967#ifdef CONFIG_SCHED_AUTOGROUP
2968 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2969#endif
2970 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2971#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2972 ONE("syscall", S_IRUSR, proc_pid_syscall),
2973#endif
2974 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2975 ONE("stat", S_IRUGO, proc_tgid_stat),
2976 ONE("statm", S_IRUGO, proc_pid_statm),
2977 REG("maps", S_IRUGO, proc_pid_maps_operations),
2978#ifdef CONFIG_NUMA
2979 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2980#endif
2981 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2982 LNK("cwd", proc_cwd_link),
2983 LNK("root", proc_root_link),
2984 LNK("exe", proc_exe_link),
2985 REG("mounts", S_IRUGO, proc_mounts_operations),
2986 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2987 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2988#ifdef CONFIG_PROC_PAGE_MONITOR
2989 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2990 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2991 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2992 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2993#endif
2994#ifdef CONFIG_SECURITY
2995 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2996#endif
2997#ifdef CONFIG_KALLSYMS
2998 ONE("wchan", S_IRUGO, proc_pid_wchan),
2999#endif
3000#ifdef CONFIG_STACKTRACE
3001 ONE("stack", S_IRUSR, proc_pid_stack),
3002#endif
3003#ifdef CONFIG_SCHED_INFO
3004 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3005#endif
3006#ifdef CONFIG_LATENCYTOP
3007 REG("latency", S_IRUGO, proc_lstats_operations),
3008#endif
3009#ifdef CONFIG_PROC_PID_CPUSET
3010 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3011#endif
3012#ifdef CONFIG_CGROUPS
3013 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3014#endif
3015 ONE("oom_score", S_IRUGO, proc_oom_score),
3016 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3017 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3018#ifdef CONFIG_AUDITSYSCALL
3019 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3020 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3021#endif
3022#ifdef CONFIG_FAULT_INJECTION
3023 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3024 REG("fail-nth", 0644, proc_fail_nth_operations),
3025#endif
3026#ifdef CONFIG_ELF_CORE
3027 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3028#endif
3029#ifdef CONFIG_TASK_IO_ACCOUNTING
3030 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3031#endif
3032#ifdef CONFIG_USER_NS
3033 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3034 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3035 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3036 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3037#endif
3038#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3039 REG("timers", S_IRUGO, proc_timers_operations),
3040#endif
3041 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3042#ifdef CONFIG_LIVEPATCH
3043 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3044#endif
3045#ifdef CONFIG_CPU_FREQ_TIMES
3046 ONE("time_in_state", 0444, proc_time_in_state_show),
3047#endif
3048};
3049
3050static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3051{
3052 return proc_pident_readdir(file, ctx,
3053 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3054}
3055
3056static const struct file_operations proc_tgid_base_operations = {
3057 .read = generic_read_dir,
3058 .iterate_shared = proc_tgid_base_readdir,
3059 .llseek = generic_file_llseek,
3060};
3061
3062struct pid *tgid_pidfd_to_pid(const struct file *file)
3063{
3064 if (!d_is_dir(file->f_path.dentry) ||
3065 (file->f_op != &proc_tgid_base_operations))
3066 return ERR_PTR(-EBADF);
3067
3068 return proc_pid(file_inode(file));
3069}
3070
3071static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3072{
3073 return proc_pident_lookup(dir, dentry,
3074 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3075}
3076
3077static const struct inode_operations proc_tgid_base_inode_operations = {
3078 .lookup = proc_tgid_base_lookup,
3079 .getattr = pid_getattr,
3080 .setattr = proc_setattr,
3081 .permission = proc_pid_permission,
3082};
3083
3084static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3085{
3086 struct dentry *dentry, *leader, *dir;
3087 char buf[10 + 1];
3088 struct qstr name;
3089
3090 name.name = buf;
3091 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3092 /* no ->d_hash() rejects on procfs */
3093 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3094 if (dentry) {
3095 d_invalidate(dentry);
3096 dput(dentry);
3097 }
3098
3099 if (pid == tgid)
3100 return;
3101
3102 name.name = buf;
3103 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3104 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3105 if (!leader)
3106 goto out;
3107
3108 name.name = "task";
3109 name.len = strlen(name.name);
3110 dir = d_hash_and_lookup(leader, &name);
3111 if (!dir)
3112 goto out_put_leader;
3113
3114 name.name = buf;
3115 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3116 dentry = d_hash_and_lookup(dir, &name);
3117 if (dentry) {
3118 d_invalidate(dentry);
3119 dput(dentry);
3120 }
3121
3122 dput(dir);
3123out_put_leader:
3124 dput(leader);
3125out:
3126 return;
3127}
3128
3129/**
3130 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3131 * @task: task that should be flushed.
3132 *
3133 * When flushing dentries from proc, one needs to flush them from global
3134 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3135 * in. This call is supposed to do all of this job.
3136 *
3137 * Looks in the dcache for
3138 * /proc/@pid
3139 * /proc/@tgid/task/@pid
3140 * if either directory is present flushes it and all of it'ts children
3141 * from the dcache.
3142 *
3143 * It is safe and reasonable to cache /proc entries for a task until
3144 * that task exits. After that they just clog up the dcache with
3145 * useless entries, possibly causing useful dcache entries to be
3146 * flushed instead. This routine is proved to flush those useless
3147 * dcache entries at process exit time.
3148 *
3149 * NOTE: This routine is just an optimization so it does not guarantee
3150 * that no dcache entries will exist at process exit time it
3151 * just makes it very unlikely that any will persist.
3152 */
3153
3154void proc_flush_task(struct task_struct *task)
3155{
3156 int i;
3157 struct pid *pid, *tgid;
3158 struct upid *upid;
3159
3160 pid = task_pid(task);
3161 tgid = task_tgid(task);
3162
3163 for (i = 0; i <= pid->level; i++) {
3164 upid = &pid->numbers[i];
3165 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3166 tgid->numbers[i].nr);
3167 }
3168}
3169
3170static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3171 struct task_struct *task, const void *ptr)
3172{
3173 struct inode *inode;
3174
3175 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3176 if (!inode)
3177 return ERR_PTR(-ENOENT);
3178
3179 inode->i_op = &proc_tgid_base_inode_operations;
3180 inode->i_fop = &proc_tgid_base_operations;
3181 inode->i_flags|=S_IMMUTABLE;
3182
3183 set_nlink(inode, nlink_tgid);
3184 pid_update_inode(task, inode);
3185
3186 d_set_d_op(dentry, &pid_dentry_operations);
3187 return d_splice_alias(inode, dentry);
3188}
3189
3190struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3191{
3192 struct task_struct *task;
3193 unsigned tgid;
3194 struct pid_namespace *ns;
3195 struct dentry *result = ERR_PTR(-ENOENT);
3196
3197 tgid = name_to_int(&dentry->d_name);
3198 if (tgid == ~0U)
3199 goto out;
3200
3201 ns = dentry->d_sb->s_fs_info;
3202 rcu_read_lock();
3203 task = find_task_by_pid_ns(tgid, ns);
3204 if (task)
3205 get_task_struct(task);
3206 rcu_read_unlock();
3207 if (!task)
3208 goto out;
3209
3210 result = proc_pid_instantiate(dentry, task, NULL);
3211 put_task_struct(task);
3212out:
3213 return result;
3214}
3215
3216/*
3217 * Find the first task with tgid >= tgid
3218 *
3219 */
3220struct tgid_iter {
3221 unsigned int tgid;
3222 struct task_struct *task;
3223};
3224static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3225{
3226 struct pid *pid;
3227
3228 if (iter.task)
3229 put_task_struct(iter.task);
3230 rcu_read_lock();
3231retry:
3232 iter.task = NULL;
3233 pid = find_ge_pid(iter.tgid, ns);
3234 if (pid) {
3235 iter.tgid = pid_nr_ns(pid, ns);
3236 iter.task = pid_task(pid, PIDTYPE_PID);
3237 /* What we to know is if the pid we have find is the
3238 * pid of a thread_group_leader. Testing for task
3239 * being a thread_group_leader is the obvious thing
3240 * todo but there is a window when it fails, due to
3241 * the pid transfer logic in de_thread.
3242 *
3243 * So we perform the straight forward test of seeing
3244 * if the pid we have found is the pid of a thread
3245 * group leader, and don't worry if the task we have
3246 * found doesn't happen to be a thread group leader.
3247 * As we don't care in the case of readdir.
3248 */
3249 if (!iter.task || !has_group_leader_pid(iter.task)) {
3250 iter.tgid += 1;
3251 goto retry;
3252 }
3253 get_task_struct(iter.task);
3254 }
3255 rcu_read_unlock();
3256 return iter;
3257}
3258
3259#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3260
3261/* for the /proc/ directory itself, after non-process stuff has been done */
3262int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3263{
3264 struct tgid_iter iter;
3265 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3266 loff_t pos = ctx->pos;
3267
3268 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3269 return 0;
3270
3271 if (pos == TGID_OFFSET - 2) {
3272 struct inode *inode = d_inode(ns->proc_self);
3273 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3274 return 0;
3275 ctx->pos = pos = pos + 1;
3276 }
3277 if (pos == TGID_OFFSET - 1) {
3278 struct inode *inode = d_inode(ns->proc_thread_self);
3279 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3280 return 0;
3281 ctx->pos = pos = pos + 1;
3282 }
3283 iter.tgid = pos - TGID_OFFSET;
3284 iter.task = NULL;
3285 for (iter = next_tgid(ns, iter);
3286 iter.task;
3287 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3288 char name[10 + 1];
3289 unsigned int len;
3290
3291 cond_resched();
3292 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3293 continue;
3294
3295 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3296 ctx->pos = iter.tgid + TGID_OFFSET;
3297 if (!proc_fill_cache(file, ctx, name, len,
3298 proc_pid_instantiate, iter.task, NULL)) {
3299 put_task_struct(iter.task);
3300 return 0;
3301 }
3302 }
3303 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3304 return 0;
3305}
3306
3307/*
3308 * proc_tid_comm_permission is a special permission function exclusively
3309 * used for the node /proc/<pid>/task/<tid>/comm.
3310 * It bypasses generic permission checks in the case where a task of the same
3311 * task group attempts to access the node.
3312 * The rationale behind this is that glibc and bionic access this node for
3313 * cross thread naming (pthread_set/getname_np(!self)). However, if
3314 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3315 * which locks out the cross thread naming implementation.
3316 * This function makes sure that the node is always accessible for members of
3317 * same thread group.
3318 */
3319static int proc_tid_comm_permission(struct inode *inode, int mask)
3320{
3321 bool is_same_tgroup;
3322 struct task_struct *task;
3323
3324 task = get_proc_task(inode);
3325 if (!task)
3326 return -ESRCH;
3327 is_same_tgroup = same_thread_group(current, task);
3328 put_task_struct(task);
3329
3330 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3331 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3332 * read or written by the members of the corresponding
3333 * thread group.
3334 */
3335 return 0;
3336 }
3337
3338 return generic_permission(inode, mask);
3339}
3340
3341static const struct inode_operations proc_tid_comm_inode_operations = {
3342 .permission = proc_tid_comm_permission,
3343};
3344
3345/*
3346 * Tasks
3347 */
3348static const struct pid_entry tid_base_stuff[] = {
3349 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3350 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3351 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3352#ifdef CONFIG_NET
3353 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3354#endif
3355 REG("environ", S_IRUSR, proc_environ_operations),
3356 REG("auxv", S_IRUSR, proc_auxv_operations),
3357 ONE("status", S_IRUGO, proc_pid_status),
3358 ONE("personality", S_IRUSR, proc_pid_personality),
3359 ONE("limits", S_IRUGO, proc_pid_limits),
3360#ifdef CONFIG_SCHED_DEBUG
3361 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3362#endif
3363 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3364 &proc_tid_comm_inode_operations,
3365 &proc_pid_set_comm_operations, {}),
3366#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3367 ONE("syscall", S_IRUSR, proc_pid_syscall),
3368#endif
3369 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3370 ONE("stat", S_IRUGO, proc_tid_stat),
3371 ONE("statm", S_IRUGO, proc_pid_statm),
3372 REG("maps", S_IRUGO, proc_pid_maps_operations),
3373#ifdef CONFIG_PROC_CHILDREN
3374 REG("children", S_IRUGO, proc_tid_children_operations),
3375#endif
3376#ifdef CONFIG_NUMA
3377 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3378#endif
3379 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3380 LNK("cwd", proc_cwd_link),
3381 LNK("root", proc_root_link),
3382 LNK("exe", proc_exe_link),
3383 REG("mounts", S_IRUGO, proc_mounts_operations),
3384 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3385#ifdef CONFIG_PROC_PAGE_MONITOR
3386 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3387 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3388 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3389 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3390#endif
3391#ifdef CONFIG_SECURITY
3392 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3393#endif
3394#ifdef CONFIG_KALLSYMS
3395 ONE("wchan", S_IRUGO, proc_pid_wchan),
3396#endif
3397#ifdef CONFIG_STACKTRACE
3398 ONE("stack", S_IRUSR, proc_pid_stack),
3399#endif
3400#ifdef CONFIG_SCHED_INFO
3401 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3402#endif
3403#ifdef CONFIG_LATENCYTOP
3404 REG("latency", S_IRUGO, proc_lstats_operations),
3405#endif
3406#ifdef CONFIG_PROC_PID_CPUSET
3407 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3408#endif
3409#ifdef CONFIG_CGROUPS
3410 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3411#endif
3412 ONE("oom_score", S_IRUGO, proc_oom_score),
3413 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3414 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3415#ifdef CONFIG_AUDITSYSCALL
3416 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3417 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3418#endif
3419#ifdef CONFIG_FAULT_INJECTION
3420 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3421 REG("fail-nth", 0644, proc_fail_nth_operations),
3422#endif
3423#ifdef CONFIG_TASK_IO_ACCOUNTING
3424 ONE("io", S_IRUSR, proc_tid_io_accounting),
3425#endif
3426#ifdef CONFIG_USER_NS
3427 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3428 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3429 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3430 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3431#endif
3432#ifdef CONFIG_LIVEPATCH
3433 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3434#endif
3435#ifdef CONFIG_CPU_FREQ_TIMES
3436 ONE("time_in_state", 0444, proc_time_in_state_show),
3437#endif
3438};
3439
3440static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3441{
3442 return proc_pident_readdir(file, ctx,
3443 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3444}
3445
3446static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3447{
3448 return proc_pident_lookup(dir, dentry,
3449 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3450}
3451
3452static const struct file_operations proc_tid_base_operations = {
3453 .read = generic_read_dir,
3454 .iterate_shared = proc_tid_base_readdir,
3455 .llseek = generic_file_llseek,
3456};
3457
3458static const struct inode_operations proc_tid_base_inode_operations = {
3459 .lookup = proc_tid_base_lookup,
3460 .getattr = pid_getattr,
3461 .setattr = proc_setattr,
3462};
3463
3464static struct dentry *proc_task_instantiate(struct dentry *dentry,
3465 struct task_struct *task, const void *ptr)
3466{
3467 struct inode *inode;
3468 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3469 if (!inode)
3470 return ERR_PTR(-ENOENT);
3471
3472 inode->i_op = &proc_tid_base_inode_operations;
3473 inode->i_fop = &proc_tid_base_operations;
3474 inode->i_flags |= S_IMMUTABLE;
3475
3476 set_nlink(inode, nlink_tid);
3477 pid_update_inode(task, inode);
3478
3479 d_set_d_op(dentry, &pid_dentry_operations);
3480 return d_splice_alias(inode, dentry);
3481}
3482
3483static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3484{
3485 struct task_struct *task;
3486 struct task_struct *leader = get_proc_task(dir);
3487 unsigned tid;
3488 struct pid_namespace *ns;
3489 struct dentry *result = ERR_PTR(-ENOENT);
3490
3491 if (!leader)
3492 goto out_no_task;
3493
3494 tid = name_to_int(&dentry->d_name);
3495 if (tid == ~0U)
3496 goto out;
3497
3498 ns = dentry->d_sb->s_fs_info;
3499 rcu_read_lock();
3500 task = find_task_by_pid_ns(tid, ns);
3501 if (task)
3502 get_task_struct(task);
3503 rcu_read_unlock();
3504 if (!task)
3505 goto out;
3506 if (!same_thread_group(leader, task))
3507 goto out_drop_task;
3508
3509 result = proc_task_instantiate(dentry, task, NULL);
3510out_drop_task:
3511 put_task_struct(task);
3512out:
3513 put_task_struct(leader);
3514out_no_task:
3515 return result;
3516}
3517
3518/*
3519 * Find the first tid of a thread group to return to user space.
3520 *
3521 * Usually this is just the thread group leader, but if the users
3522 * buffer was too small or there was a seek into the middle of the
3523 * directory we have more work todo.
3524 *
3525 * In the case of a short read we start with find_task_by_pid.
3526 *
3527 * In the case of a seek we start with the leader and walk nr
3528 * threads past it.
3529 */
3530static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3531 struct pid_namespace *ns)
3532{
3533 struct task_struct *pos, *task;
3534 unsigned long nr = f_pos;
3535
3536 if (nr != f_pos) /* 32bit overflow? */
3537 return NULL;
3538
3539 rcu_read_lock();
3540 task = pid_task(pid, PIDTYPE_PID);
3541 if (!task)
3542 goto fail;
3543
3544 /* Attempt to start with the tid of a thread */
3545 if (tid && nr) {
3546 pos = find_task_by_pid_ns(tid, ns);
3547 if (pos && same_thread_group(pos, task))
3548 goto found;
3549 }
3550
3551 /* If nr exceeds the number of threads there is nothing todo */
3552 if (nr >= get_nr_threads(task))
3553 goto fail;
3554
3555 /* If we haven't found our starting place yet start
3556 * with the leader and walk nr threads forward.
3557 */
3558 pos = task = task->group_leader;
3559 do {
3560 if (!nr--)
3561 goto found;
3562 } while_each_thread(task, pos);
3563fail:
3564 pos = NULL;
3565 goto out;
3566found:
3567 get_task_struct(pos);
3568out:
3569 rcu_read_unlock();
3570 return pos;
3571}
3572
3573/*
3574 * Find the next thread in the thread list.
3575 * Return NULL if there is an error or no next thread.
3576 *
3577 * The reference to the input task_struct is released.
3578 */
3579static struct task_struct *next_tid(struct task_struct *start)
3580{
3581 struct task_struct *pos = NULL;
3582 rcu_read_lock();
3583 if (pid_alive(start)) {
3584 pos = next_thread(start);
3585 if (thread_group_leader(pos))
3586 pos = NULL;
3587 else
3588 get_task_struct(pos);
3589 }
3590 rcu_read_unlock();
3591 put_task_struct(start);
3592 return pos;
3593}
3594
3595/* for the /proc/TGID/task/ directories */
3596static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3597{
3598 struct inode *inode = file_inode(file);
3599 struct task_struct *task;
3600 struct pid_namespace *ns;
3601 int tid;
3602
3603 if (proc_inode_is_dead(inode))
3604 return -ENOENT;
3605
3606 if (!dir_emit_dots(file, ctx))
3607 return 0;
3608
3609 /* f_version caches the tgid value that the last readdir call couldn't
3610 * return. lseek aka telldir automagically resets f_version to 0.
3611 */
3612 ns = proc_pid_ns(inode);
3613 tid = (int)file->f_version;
3614 file->f_version = 0;
3615 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3616 task;
3617 task = next_tid(task), ctx->pos++) {
3618 char name[10 + 1];
3619 unsigned int len;
3620 tid = task_pid_nr_ns(task, ns);
3621 len = snprintf(name, sizeof(name), "%u", tid);
3622 if (!proc_fill_cache(file, ctx, name, len,
3623 proc_task_instantiate, task, NULL)) {
3624 /* returning this tgid failed, save it as the first
3625 * pid for the next readir call */
3626 file->f_version = (u64)tid;
3627 put_task_struct(task);
3628 break;
3629 }
3630 }
3631
3632 return 0;
3633}
3634
3635static int proc_task_getattr(const struct path *path, struct kstat *stat,
3636 u32 request_mask, unsigned int query_flags)
3637{
3638 struct inode *inode = d_inode(path->dentry);
3639 struct task_struct *p = get_proc_task(inode);
3640 generic_fillattr(inode, stat);
3641
3642 if (p) {
3643 stat->nlink += get_nr_threads(p);
3644 put_task_struct(p);
3645 }
3646
3647 return 0;
3648}
3649
3650static const struct inode_operations proc_task_inode_operations = {
3651 .lookup = proc_task_lookup,
3652 .getattr = proc_task_getattr,
3653 .setattr = proc_setattr,
3654 .permission = proc_pid_permission,
3655};
3656
3657static const struct file_operations proc_task_operations = {
3658 .read = generic_read_dir,
3659 .iterate_shared = proc_task_readdir,
3660 .llseek = generic_file_llseek,
3661};
3662
3663void __init set_proc_pid_nlink(void)
3664{
3665 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3666 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3667}