blob: f3c393f309e19c8b99e6f2c683c84766efa6c1a8 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_da_format.h"
15#include "xfs_da_btree.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_inode_item.h"
19#include "xfs_bmap.h"
20#include "xfs_bmap_util.h"
21#include "xfs_error.h"
22#include "xfs_dir2.h"
23#include "xfs_dir2_priv.h"
24#include "xfs_ioctl.h"
25#include "xfs_trace.h"
26#include "xfs_log.h"
27#include "xfs_icache.h"
28#include "xfs_pnfs.h"
29#include "xfs_btree.h"
30#include "xfs_refcount_btree.h"
31#include "xfs_refcount.h"
32#include "xfs_bmap_btree.h"
33#include "xfs_trans_space.h"
34#include "xfs_bit.h"
35#include "xfs_alloc.h"
36#include "xfs_quota_defs.h"
37#include "xfs_quota.h"
38#include "xfs_reflink.h"
39#include "xfs_iomap.h"
40#include "xfs_rmap_btree.h"
41#include "xfs_sb.h"
42#include "xfs_ag_resv.h"
43
44/*
45 * Copy on Write of Shared Blocks
46 *
47 * XFS must preserve "the usual" file semantics even when two files share
48 * the same physical blocks. This means that a write to one file must not
49 * alter the blocks in a different file; the way that we'll do that is
50 * through the use of a copy-on-write mechanism. At a high level, that
51 * means that when we want to write to a shared block, we allocate a new
52 * block, write the data to the new block, and if that succeeds we map the
53 * new block into the file.
54 *
55 * XFS provides a "delayed allocation" mechanism that defers the allocation
56 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57 * possible. This reduces fragmentation by enabling the filesystem to ask
58 * for bigger chunks less often, which is exactly what we want for CoW.
59 *
60 * The delalloc mechanism begins when the kernel wants to make a block
61 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
62 * create a delalloc mapping, which is a regular in-core extent, but without
63 * a real startblock. (For delalloc mappings, the startblock encodes both
64 * a flag that this is a delalloc mapping, and a worst-case estimate of how
65 * many blocks might be required to put the mapping into the BMBT.) delalloc
66 * mappings are a reservation against the free space in the filesystem;
67 * adjacent mappings can also be combined into fewer larger mappings.
68 *
69 * As an optimization, the CoW extent size hint (cowextsz) creates
70 * outsized aligned delalloc reservations in the hope of landing out of
71 * order nearby CoW writes in a single extent on disk, thereby reducing
72 * fragmentation and improving future performance.
73 *
74 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75 * C: ------DDDDDDD--------- (CoW fork)
76 *
77 * When dirty pages are being written out (typically in writepage), the
78 * delalloc reservations are converted into unwritten mappings by
79 * allocating blocks and replacing the delalloc mapping with real ones.
80 * A delalloc mapping can be replaced by several unwritten ones if the
81 * free space is fragmented.
82 *
83 * D: --RRRRRRSSSRRRRRRRR---
84 * C: ------UUUUUUU---------
85 *
86 * We want to adapt the delalloc mechanism for copy-on-write, since the
87 * write paths are similar. The first two steps (creating the reservation
88 * and allocating the blocks) are exactly the same as delalloc except that
89 * the mappings must be stored in a separate CoW fork because we do not want
90 * to disturb the mapping in the data fork until we're sure that the write
91 * succeeded. IO completion in this case is the process of removing the old
92 * mapping from the data fork and moving the new mapping from the CoW fork to
93 * the data fork. This will be discussed shortly.
94 *
95 * For now, unaligned directio writes will be bounced back to the page cache.
96 * Block-aligned directio writes will use the same mechanism as buffered
97 * writes.
98 *
99 * Just prior to submitting the actual disk write requests, we convert
100 * the extents representing the range of the file actually being written
101 * (as opposed to extra pieces created for the cowextsize hint) to real
102 * extents. This will become important in the next step:
103 *
104 * D: --RRRRRRSSSRRRRRRRR---
105 * C: ------UUrrUUU---------
106 *
107 * CoW remapping must be done after the data block write completes,
108 * because we don't want to destroy the old data fork map until we're sure
109 * the new block has been written. Since the new mappings are kept in a
110 * separate fork, we can simply iterate these mappings to find the ones
111 * that cover the file blocks that we just CoW'd. For each extent, simply
112 * unmap the corresponding range in the data fork, map the new range into
113 * the data fork, and remove the extent from the CoW fork. Because of
114 * the presence of the cowextsize hint, however, we must be careful
115 * only to remap the blocks that we've actually written out -- we must
116 * never remap delalloc reservations nor CoW staging blocks that have
117 * yet to be written. This corresponds exactly to the real extents in
118 * the CoW fork:
119 *
120 * D: --RRRRRRrrSRRRRRRRR---
121 * C: ------UU--UUU---------
122 *
123 * Since the remapping operation can be applied to an arbitrary file
124 * range, we record the need for the remap step as a flag in the ioend
125 * instead of declaring a new IO type. This is required for direct io
126 * because we only have ioend for the whole dio, and we have to be able to
127 * remember the presence of unwritten blocks and CoW blocks with a single
128 * ioend structure. Better yet, the more ground we can cover with one
129 * ioend, the better.
130 */
131
132/*
133 * Given an AG extent, find the lowest-numbered run of shared blocks
134 * within that range and return the range in fbno/flen. If
135 * find_end_of_shared is true, return the longest contiguous extent of
136 * shared blocks. If there are no shared extents, fbno and flen will
137 * be set to NULLAGBLOCK and 0, respectively.
138 */
139int
140xfs_reflink_find_shared(
141 struct xfs_mount *mp,
142 struct xfs_trans *tp,
143 xfs_agnumber_t agno,
144 xfs_agblock_t agbno,
145 xfs_extlen_t aglen,
146 xfs_agblock_t *fbno,
147 xfs_extlen_t *flen,
148 bool find_end_of_shared)
149{
150 struct xfs_buf *agbp;
151 struct xfs_btree_cur *cur;
152 int error;
153
154 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 if (error)
156 return error;
157 if (!agbp)
158 return -ENOMEM;
159
160 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161
162 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 find_end_of_shared);
164
165 xfs_btree_del_cursor(cur, error);
166
167 xfs_trans_brelse(tp, agbp);
168 return error;
169}
170
171/*
172 * Trim the mapping to the next block where there's a change in the
173 * shared/unshared status. More specifically, this means that we
174 * find the lowest-numbered extent of shared blocks that coincides with
175 * the given block mapping. If the shared extent overlaps the start of
176 * the mapping, trim the mapping to the end of the shared extent. If
177 * the shared region intersects the mapping, trim the mapping to the
178 * start of the shared extent. If there are no shared regions that
179 * overlap, just return the original extent.
180 */
181int
182xfs_reflink_trim_around_shared(
183 struct xfs_inode *ip,
184 struct xfs_bmbt_irec *irec,
185 bool *shared,
186 bool *trimmed)
187{
188 xfs_agnumber_t agno;
189 xfs_agblock_t agbno;
190 xfs_extlen_t aglen;
191 xfs_agblock_t fbno;
192 xfs_extlen_t flen;
193 int error = 0;
194
195 /* Holes, unwritten, and delalloc extents cannot be shared */
196 if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
197 *shared = false;
198 return 0;
199 }
200
201 trace_xfs_reflink_trim_around_shared(ip, irec);
202
203 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
204 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
205 aglen = irec->br_blockcount;
206
207 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
208 aglen, &fbno, &flen, true);
209 if (error)
210 return error;
211
212 *shared = *trimmed = false;
213 if (fbno == NULLAGBLOCK) {
214 /* No shared blocks at all. */
215 return 0;
216 } else if (fbno == agbno) {
217 /*
218 * The start of this extent is shared. Truncate the
219 * mapping at the end of the shared region so that a
220 * subsequent iteration starts at the start of the
221 * unshared region.
222 */
223 irec->br_blockcount = flen;
224 *shared = true;
225 if (flen != aglen)
226 *trimmed = true;
227 return 0;
228 } else {
229 /*
230 * There's a shared extent midway through this extent.
231 * Truncate the mapping at the start of the shared
232 * extent so that a subsequent iteration starts at the
233 * start of the shared region.
234 */
235 irec->br_blockcount = fbno - agbno;
236 *trimmed = true;
237 return 0;
238 }
239}
240
241/*
242 * Trim the passed in imap to the next shared/unshared extent boundary, and
243 * if imap->br_startoff points to a shared extent reserve space for it in the
244 * COW fork. In this case *shared is set to true, else to false.
245 *
246 * Note that imap will always contain the block numbers for the existing blocks
247 * in the data fork, as the upper layers need them for read-modify-write
248 * operations.
249 */
250int
251xfs_reflink_reserve_cow(
252 struct xfs_inode *ip,
253 struct xfs_bmbt_irec *imap,
254 bool *shared)
255{
256 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
257 struct xfs_bmbt_irec got;
258 int error = 0;
259 bool eof = false, trimmed;
260 struct xfs_iext_cursor icur;
261
262 /*
263 * Search the COW fork extent list first. This serves two purposes:
264 * first this implement the speculative preallocation using cowextisze,
265 * so that we also unshared block adjacent to shared blocks instead
266 * of just the shared blocks themselves. Second the lookup in the
267 * extent list is generally faster than going out to the shared extent
268 * tree.
269 */
270
271 if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
272 eof = true;
273 if (!eof && got.br_startoff <= imap->br_startoff) {
274 trace_xfs_reflink_cow_found(ip, imap);
275 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
276
277 *shared = true;
278 return 0;
279 }
280
281 /* Trim the mapping to the nearest shared extent boundary. */
282 error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
283 if (error)
284 return error;
285
286 /* Not shared? Just report the (potentially capped) extent. */
287 if (!*shared)
288 return 0;
289
290 /*
291 * Fork all the shared blocks from our write offset until the end of
292 * the extent.
293 */
294 error = xfs_qm_dqattach_locked(ip, false);
295 if (error)
296 return error;
297
298 error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
299 imap->br_blockcount, 0, &got, &icur, eof);
300 if (error == -ENOSPC || error == -EDQUOT)
301 trace_xfs_reflink_cow_enospc(ip, imap);
302 if (error)
303 return error;
304
305 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
306 trace_xfs_reflink_cow_alloc(ip, &got);
307 return 0;
308}
309
310/* Convert part of an unwritten CoW extent to a real one. */
311STATIC int
312xfs_reflink_convert_cow_extent(
313 struct xfs_inode *ip,
314 struct xfs_bmbt_irec *imap,
315 xfs_fileoff_t offset_fsb,
316 xfs_filblks_t count_fsb)
317{
318 int nimaps = 1;
319
320 if (imap->br_state == XFS_EXT_NORM)
321 return 0;
322
323 xfs_trim_extent(imap, offset_fsb, count_fsb);
324 trace_xfs_reflink_convert_cow(ip, imap);
325 if (imap->br_blockcount == 0)
326 return 0;
327 return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
328 XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
329 &nimaps);
330}
331
332/* Convert all of the unwritten CoW extents in a file's range to real ones. */
333int
334xfs_reflink_convert_cow(
335 struct xfs_inode *ip,
336 xfs_off_t offset,
337 xfs_off_t count)
338{
339 struct xfs_mount *mp = ip->i_mount;
340 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
341 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
342 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
343 struct xfs_bmbt_irec imap;
344 int nimaps = 1, error = 0;
345
346 ASSERT(count != 0);
347
348 xfs_ilock(ip, XFS_ILOCK_EXCL);
349 error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
350 XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
351 XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
352 xfs_iunlock(ip, XFS_ILOCK_EXCL);
353 return error;
354}
355
356/*
357 * Find the extent that maps the given range in the COW fork. Even if the extent
358 * is not shared we might have a preallocation for it in the COW fork. If so we
359 * use it that rather than trigger a new allocation.
360 */
361static int
362xfs_find_trim_cow_extent(
363 struct xfs_inode *ip,
364 struct xfs_bmbt_irec *imap,
365 bool *shared,
366 bool *found)
367{
368 xfs_fileoff_t offset_fsb = imap->br_startoff;
369 xfs_filblks_t count_fsb = imap->br_blockcount;
370 struct xfs_iext_cursor icur;
371 struct xfs_bmbt_irec got;
372 bool trimmed;
373
374 *found = false;
375
376 /*
377 * If we don't find an overlapping extent, trim the range we need to
378 * allocate to fit the hole we found.
379 */
380 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) ||
381 got.br_startoff > offset_fsb)
382 return xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
383
384 *shared = true;
385 if (isnullstartblock(got.br_startblock)) {
386 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
387 return 0;
388 }
389
390 /* real extent found - no need to allocate */
391 xfs_trim_extent(&got, offset_fsb, count_fsb);
392 *imap = got;
393 *found = true;
394 return 0;
395}
396
397/* Allocate all CoW reservations covering a range of blocks in a file. */
398int
399xfs_reflink_allocate_cow(
400 struct xfs_inode *ip,
401 struct xfs_bmbt_irec *imap,
402 bool *shared,
403 uint *lockmode)
404{
405 struct xfs_mount *mp = ip->i_mount;
406 xfs_fileoff_t offset_fsb = imap->br_startoff;
407 xfs_filblks_t count_fsb = imap->br_blockcount;
408 struct xfs_trans *tp;
409 int nimaps, error = 0;
410 bool found;
411 xfs_filblks_t resaligned;
412 xfs_extlen_t resblks = 0;
413
414 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
415 ASSERT(xfs_is_reflink_inode(ip));
416
417 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
418 if (error || !*shared)
419 return error;
420 if (found)
421 goto convert;
422
423 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
424 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
425 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
426
427 xfs_iunlock(ip, *lockmode);
428 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
429 *lockmode = XFS_ILOCK_EXCL;
430 xfs_ilock(ip, *lockmode);
431
432 if (error)
433 return error;
434
435 error = xfs_qm_dqattach_locked(ip, false);
436 if (error)
437 goto out_trans_cancel;
438
439 /*
440 * Check for an overlapping extent again now that we dropped the ilock.
441 */
442 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
443 if (error || !*shared)
444 goto out_trans_cancel;
445 if (found) {
446 xfs_trans_cancel(tp);
447 goto convert;
448 }
449
450 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
451 XFS_QMOPT_RES_REGBLKS);
452 if (error)
453 goto out_trans_cancel;
454
455 xfs_trans_ijoin(tp, ip, 0);
456
457 /* Allocate the entire reservation as unwritten blocks. */
458 nimaps = 1;
459 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
460 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
461 resblks, imap, &nimaps);
462 if (error)
463 goto out_unreserve;
464
465 xfs_inode_set_cowblocks_tag(ip);
466 error = xfs_trans_commit(tp);
467 if (error)
468 return error;
469
470 /*
471 * Allocation succeeded but the requested range was not even partially
472 * satisfied? Bail out!
473 */
474 if (nimaps == 0)
475 return -ENOSPC;
476convert:
477 return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
478
479out_unreserve:
480 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
481 XFS_QMOPT_RES_REGBLKS);
482out_trans_cancel:
483 xfs_trans_cancel(tp);
484 return error;
485}
486
487/*
488 * Cancel CoW reservations for some block range of an inode.
489 *
490 * If cancel_real is true this function cancels all COW fork extents for the
491 * inode; if cancel_real is false, real extents are not cleared.
492 *
493 * Caller must have already joined the inode to the current transaction. The
494 * inode will be joined to the transaction returned to the caller.
495 */
496int
497xfs_reflink_cancel_cow_blocks(
498 struct xfs_inode *ip,
499 struct xfs_trans **tpp,
500 xfs_fileoff_t offset_fsb,
501 xfs_fileoff_t end_fsb,
502 bool cancel_real)
503{
504 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
505 struct xfs_bmbt_irec got, del;
506 struct xfs_iext_cursor icur;
507 int error = 0;
508
509 if (!xfs_inode_has_cow_data(ip))
510 return 0;
511 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
512 return 0;
513
514 /* Walk backwards until we're out of the I/O range... */
515 while (got.br_startoff + got.br_blockcount > offset_fsb) {
516 del = got;
517 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
518
519 /* Extent delete may have bumped ext forward */
520 if (!del.br_blockcount) {
521 xfs_iext_prev(ifp, &icur);
522 goto next_extent;
523 }
524
525 trace_xfs_reflink_cancel_cow(ip, &del);
526
527 if (isnullstartblock(del.br_startblock)) {
528 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
529 &icur, &got, &del);
530 if (error)
531 break;
532 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
533 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
534
535 /* Free the CoW orphan record. */
536 error = xfs_refcount_free_cow_extent(*tpp,
537 del.br_startblock, del.br_blockcount);
538 if (error)
539 break;
540
541 xfs_bmap_add_free(*tpp, del.br_startblock,
542 del.br_blockcount, NULL);
543
544 /* Roll the transaction */
545 error = xfs_defer_finish(tpp);
546 if (error)
547 break;
548
549 /* Remove the mapping from the CoW fork. */
550 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
551
552 /* Remove the quota reservation */
553 error = xfs_trans_reserve_quota_nblks(NULL, ip,
554 -(long)del.br_blockcount, 0,
555 XFS_QMOPT_RES_REGBLKS);
556 if (error)
557 break;
558 } else {
559 /* Didn't do anything, push cursor back. */
560 xfs_iext_prev(ifp, &icur);
561 }
562next_extent:
563 if (!xfs_iext_get_extent(ifp, &icur, &got))
564 break;
565 }
566
567 /* clear tag if cow fork is emptied */
568 if (!ifp->if_bytes)
569 xfs_inode_clear_cowblocks_tag(ip);
570 return error;
571}
572
573/*
574 * Cancel CoW reservations for some byte range of an inode.
575 *
576 * If cancel_real is true this function cancels all COW fork extents for the
577 * inode; if cancel_real is false, real extents are not cleared.
578 */
579int
580xfs_reflink_cancel_cow_range(
581 struct xfs_inode *ip,
582 xfs_off_t offset,
583 xfs_off_t count,
584 bool cancel_real)
585{
586 struct xfs_trans *tp;
587 xfs_fileoff_t offset_fsb;
588 xfs_fileoff_t end_fsb;
589 int error;
590
591 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
592 ASSERT(xfs_is_reflink_inode(ip));
593
594 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
595 if (count == NULLFILEOFF)
596 end_fsb = NULLFILEOFF;
597 else
598 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
599
600 /* Start a rolling transaction to remove the mappings */
601 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
602 0, 0, XFS_TRANS_NOFS, &tp);
603 if (error)
604 goto out;
605
606 xfs_ilock(ip, XFS_ILOCK_EXCL);
607 xfs_trans_ijoin(tp, ip, 0);
608
609 /* Scrape out the old CoW reservations */
610 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
611 cancel_real);
612 if (error)
613 goto out_cancel;
614
615 error = xfs_trans_commit(tp);
616
617 xfs_iunlock(ip, XFS_ILOCK_EXCL);
618 return error;
619
620out_cancel:
621 xfs_trans_cancel(tp);
622 xfs_iunlock(ip, XFS_ILOCK_EXCL);
623out:
624 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
625 return error;
626}
627
628/*
629 * Remap parts of a file's data fork after a successful CoW.
630 */
631int
632xfs_reflink_end_cow(
633 struct xfs_inode *ip,
634 xfs_off_t offset,
635 xfs_off_t count)
636{
637 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
638 struct xfs_bmbt_irec got, del;
639 struct xfs_trans *tp;
640 xfs_fileoff_t offset_fsb;
641 xfs_fileoff_t end_fsb;
642 int error;
643 unsigned int resblks;
644 xfs_filblks_t rlen;
645 struct xfs_iext_cursor icur;
646
647 trace_xfs_reflink_end_cow(ip, offset, count);
648
649 /* No COW extents? That's easy! */
650 if (ifp->if_bytes == 0)
651 return 0;
652
653 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
654 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
655
656 /*
657 * Start a rolling transaction to switch the mappings. We're
658 * unlikely ever to have to remap 16T worth of single-block
659 * extents, so just cap the worst case extent count to 2^32-1.
660 * Stick a warning in just in case, and avoid 64-bit division.
661 */
662 BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
663 if (end_fsb - offset_fsb > UINT_MAX) {
664 error = -EFSCORRUPTED;
665 xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
666 ASSERT(0);
667 goto out;
668 }
669 resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
670 (unsigned int)(end_fsb - offset_fsb),
671 XFS_DATA_FORK);
672 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
673 resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
674 if (error)
675 goto out;
676
677 xfs_ilock(ip, XFS_ILOCK_EXCL);
678 xfs_trans_ijoin(tp, ip, 0);
679
680 /*
681 * In case of racing, overlapping AIO writes no COW extents might be
682 * left by the time I/O completes for the loser of the race. In that
683 * case we are done.
684 */
685 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
686 goto out_cancel;
687
688 /* Walk backwards until we're out of the I/O range... */
689 while (got.br_startoff + got.br_blockcount > offset_fsb) {
690 del = got;
691 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
692
693 /* Extent delete may have bumped ext forward */
694 if (!del.br_blockcount)
695 goto prev_extent;
696
697 /*
698 * Only remap real extent that contain data. With AIO
699 * speculatively preallocations can leak into the range we
700 * are called upon, and we need to skip them.
701 */
702 if (!xfs_bmap_is_real_extent(&got))
703 goto prev_extent;
704
705 /* Unmap the old blocks in the data fork. */
706 ASSERT(tp->t_firstblock == NULLFSBLOCK);
707 rlen = del.br_blockcount;
708 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
709 if (error)
710 goto out_cancel;
711
712 /* Trim the extent to whatever got unmapped. */
713 if (rlen) {
714 xfs_trim_extent(&del, del.br_startoff + rlen,
715 del.br_blockcount - rlen);
716 }
717 trace_xfs_reflink_cow_remap(ip, &del);
718
719 /* Free the CoW orphan record. */
720 error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
721 del.br_blockcount);
722 if (error)
723 goto out_cancel;
724
725 /* Map the new blocks into the data fork. */
726 error = xfs_bmap_map_extent(tp, ip, &del);
727 if (error)
728 goto out_cancel;
729
730 /* Charge this new data fork mapping to the on-disk quota. */
731 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
732 (long)del.br_blockcount);
733
734 /* Remove the mapping from the CoW fork. */
735 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
736
737 error = xfs_defer_finish(&tp);
738 if (error)
739 goto out_cancel;
740 if (!xfs_iext_get_extent(ifp, &icur, &got))
741 break;
742 continue;
743prev_extent:
744 if (!xfs_iext_prev_extent(ifp, &icur, &got))
745 break;
746 }
747
748 error = xfs_trans_commit(tp);
749 xfs_iunlock(ip, XFS_ILOCK_EXCL);
750 if (error)
751 goto out;
752 return 0;
753
754out_cancel:
755 xfs_trans_cancel(tp);
756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
757out:
758 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
759 return error;
760}
761
762/*
763 * Free leftover CoW reservations that didn't get cleaned out.
764 */
765int
766xfs_reflink_recover_cow(
767 struct xfs_mount *mp)
768{
769 xfs_agnumber_t agno;
770 int error = 0;
771
772 if (!xfs_sb_version_hasreflink(&mp->m_sb))
773 return 0;
774
775 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
776 error = xfs_refcount_recover_cow_leftovers(mp, agno);
777 if (error)
778 break;
779 }
780
781 return error;
782}
783
784/*
785 * Reflinking (Block) Ranges of Two Files Together
786 *
787 * First, ensure that the reflink flag is set on both inodes. The flag is an
788 * optimization to avoid unnecessary refcount btree lookups in the write path.
789 *
790 * Now we can iteratively remap the range of extents (and holes) in src to the
791 * corresponding ranges in dest. Let drange and srange denote the ranges of
792 * logical blocks in dest and src touched by the reflink operation.
793 *
794 * While the length of drange is greater than zero,
795 * - Read src's bmbt at the start of srange ("imap")
796 * - If imap doesn't exist, make imap appear to start at the end of srange
797 * with zero length.
798 * - If imap starts before srange, advance imap to start at srange.
799 * - If imap goes beyond srange, truncate imap to end at the end of srange.
800 * - Punch (imap start - srange start + imap len) blocks from dest at
801 * offset (drange start).
802 * - If imap points to a real range of pblks,
803 * > Increase the refcount of the imap's pblks
804 * > Map imap's pblks into dest at the offset
805 * (drange start + imap start - srange start)
806 * - Advance drange and srange by (imap start - srange start + imap len)
807 *
808 * Finally, if the reflink made dest longer, update both the in-core and
809 * on-disk file sizes.
810 *
811 * ASCII Art Demonstration:
812 *
813 * Let's say we want to reflink this source file:
814 *
815 * ----SSSSSSS-SSSSS----SSSSSS (src file)
816 * <-------------------->
817 *
818 * into this destination file:
819 *
820 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
821 * <-------------------->
822 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
823 * Observe that the range has different logical offsets in either file.
824 *
825 * Consider that the first extent in the source file doesn't line up with our
826 * reflink range. Unmapping and remapping are separate operations, so we can
827 * unmap more blocks from the destination file than we remap.
828 *
829 * ----SSSSSSS-SSSSS----SSSSSS
830 * <------->
831 * --DDDDD---------DDDDD--DDD
832 * <------->
833 *
834 * Now remap the source extent into the destination file:
835 *
836 * ----SSSSSSS-SSSSS----SSSSSS
837 * <------->
838 * --DDDDD--SSSSSSSDDDDD--DDD
839 * <------->
840 *
841 * Do likewise with the second hole and extent in our range. Holes in the
842 * unmap range don't affect our operation.
843 *
844 * ----SSSSSSS-SSSSS----SSSSSS
845 * <---->
846 * --DDDDD--SSSSSSS-SSSSS-DDD
847 * <---->
848 *
849 * Finally, unmap and remap part of the third extent. This will increase the
850 * size of the destination file.
851 *
852 * ----SSSSSSS-SSSSS----SSSSSS
853 * <----->
854 * --DDDDD--SSSSSSS-SSSSS----SSS
855 * <----->
856 *
857 * Once we update the destination file's i_size, we're done.
858 */
859
860/*
861 * Ensure the reflink bit is set in both inodes.
862 */
863STATIC int
864xfs_reflink_set_inode_flag(
865 struct xfs_inode *src,
866 struct xfs_inode *dest)
867{
868 struct xfs_mount *mp = src->i_mount;
869 int error;
870 struct xfs_trans *tp;
871
872 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
873 return 0;
874
875 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
876 if (error)
877 goto out_error;
878
879 /* Lock both files against IO */
880 if (src->i_ino == dest->i_ino)
881 xfs_ilock(src, XFS_ILOCK_EXCL);
882 else
883 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
884
885 if (!xfs_is_reflink_inode(src)) {
886 trace_xfs_reflink_set_inode_flag(src);
887 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
888 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
889 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
890 xfs_ifork_init_cow(src);
891 } else
892 xfs_iunlock(src, XFS_ILOCK_EXCL);
893
894 if (src->i_ino == dest->i_ino)
895 goto commit_flags;
896
897 if (!xfs_is_reflink_inode(dest)) {
898 trace_xfs_reflink_set_inode_flag(dest);
899 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
900 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
901 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
902 xfs_ifork_init_cow(dest);
903 } else
904 xfs_iunlock(dest, XFS_ILOCK_EXCL);
905
906commit_flags:
907 error = xfs_trans_commit(tp);
908 if (error)
909 goto out_error;
910 return error;
911
912out_error:
913 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
914 return error;
915}
916
917/*
918 * Update destination inode size & cowextsize hint, if necessary.
919 */
920STATIC int
921xfs_reflink_update_dest(
922 struct xfs_inode *dest,
923 xfs_off_t newlen,
924 xfs_extlen_t cowextsize,
925 bool is_dedupe)
926{
927 struct xfs_mount *mp = dest->i_mount;
928 struct xfs_trans *tp;
929 int error;
930
931 if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
932 return 0;
933
934 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
935 if (error)
936 goto out_error;
937
938 xfs_ilock(dest, XFS_ILOCK_EXCL);
939 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
940
941 if (newlen > i_size_read(VFS_I(dest))) {
942 trace_xfs_reflink_update_inode_size(dest, newlen);
943 i_size_write(VFS_I(dest), newlen);
944 dest->i_d.di_size = newlen;
945 }
946
947 if (cowextsize) {
948 dest->i_d.di_cowextsize = cowextsize;
949 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
950 }
951
952 if (!is_dedupe) {
953 xfs_trans_ichgtime(tp, dest,
954 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
955 }
956 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
957
958 error = xfs_trans_commit(tp);
959 if (error)
960 goto out_error;
961 return error;
962
963out_error:
964 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
965 return error;
966}
967
968/*
969 * Do we have enough reserve in this AG to handle a reflink? The refcount
970 * btree already reserved all the space it needs, but the rmap btree can grow
971 * infinitely, so we won't allow more reflinks when the AG is down to the
972 * btree reserves.
973 */
974static int
975xfs_reflink_ag_has_free_space(
976 struct xfs_mount *mp,
977 xfs_agnumber_t agno)
978{
979 struct xfs_perag *pag;
980 int error = 0;
981
982 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
983 return 0;
984
985 pag = xfs_perag_get(mp, agno);
986 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
987 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
988 error = -ENOSPC;
989 xfs_perag_put(pag);
990 return error;
991}
992
993/*
994 * Unmap a range of blocks from a file, then map other blocks into the hole.
995 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
996 * The extent irec is mapped into dest at irec->br_startoff.
997 */
998STATIC int
999xfs_reflink_remap_extent(
1000 struct xfs_inode *ip,
1001 struct xfs_bmbt_irec *irec,
1002 xfs_fileoff_t destoff,
1003 xfs_off_t new_isize)
1004{
1005 struct xfs_mount *mp = ip->i_mount;
1006 bool real_extent = xfs_bmap_is_real_extent(irec);
1007 struct xfs_trans *tp;
1008 unsigned int resblks;
1009 struct xfs_bmbt_irec uirec;
1010 xfs_filblks_t rlen;
1011 xfs_filblks_t unmap_len;
1012 xfs_off_t newlen;
1013 int error;
1014
1015 unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1016 trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1017
1018 /* No reflinking if we're low on space */
1019 if (real_extent) {
1020 error = xfs_reflink_ag_has_free_space(mp,
1021 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1022 if (error)
1023 goto out;
1024 }
1025
1026 /* Start a rolling transaction to switch the mappings */
1027 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1028 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1029 if (error)
1030 goto out;
1031
1032 xfs_ilock(ip, XFS_ILOCK_EXCL);
1033 xfs_trans_ijoin(tp, ip, 0);
1034
1035 /* If we're not just clearing space, then do we have enough quota? */
1036 if (real_extent) {
1037 error = xfs_trans_reserve_quota_nblks(tp, ip,
1038 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1039 if (error)
1040 goto out_cancel;
1041 }
1042
1043 trace_xfs_reflink_remap(ip, irec->br_startoff,
1044 irec->br_blockcount, irec->br_startblock);
1045
1046 /* Unmap the old blocks in the data fork. */
1047 rlen = unmap_len;
1048 while (rlen) {
1049 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1050 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1051 if (error)
1052 goto out_cancel;
1053
1054 /*
1055 * Trim the extent to whatever got unmapped.
1056 * Remember, bunmapi works backwards.
1057 */
1058 uirec.br_startblock = irec->br_startblock + rlen;
1059 uirec.br_startoff = irec->br_startoff + rlen;
1060 uirec.br_blockcount = unmap_len - rlen;
1061 unmap_len = rlen;
1062
1063 /* If this isn't a real mapping, we're done. */
1064 if (!real_extent || uirec.br_blockcount == 0)
1065 goto next_extent;
1066
1067 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1068 uirec.br_blockcount, uirec.br_startblock);
1069
1070 /* Update the refcount tree */
1071 error = xfs_refcount_increase_extent(tp, &uirec);
1072 if (error)
1073 goto out_cancel;
1074
1075 /* Map the new blocks into the data fork. */
1076 error = xfs_bmap_map_extent(tp, ip, &uirec);
1077 if (error)
1078 goto out_cancel;
1079
1080 /* Update quota accounting. */
1081 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1082 uirec.br_blockcount);
1083
1084 /* Update dest isize if needed. */
1085 newlen = XFS_FSB_TO_B(mp,
1086 uirec.br_startoff + uirec.br_blockcount);
1087 newlen = min_t(xfs_off_t, newlen, new_isize);
1088 if (newlen > i_size_read(VFS_I(ip))) {
1089 trace_xfs_reflink_update_inode_size(ip, newlen);
1090 i_size_write(VFS_I(ip), newlen);
1091 ip->i_d.di_size = newlen;
1092 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1093 }
1094
1095next_extent:
1096 /* Process all the deferred stuff. */
1097 error = xfs_defer_finish(&tp);
1098 if (error)
1099 goto out_cancel;
1100 }
1101
1102 error = xfs_trans_commit(tp);
1103 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1104 if (error)
1105 goto out;
1106 return 0;
1107
1108out_cancel:
1109 xfs_trans_cancel(tp);
1110 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1111out:
1112 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1113 return error;
1114}
1115
1116/*
1117 * Iteratively remap one file's extents (and holes) to another's.
1118 */
1119STATIC int
1120xfs_reflink_remap_blocks(
1121 struct xfs_inode *src,
1122 xfs_fileoff_t srcoff,
1123 struct xfs_inode *dest,
1124 xfs_fileoff_t destoff,
1125 xfs_filblks_t len,
1126 xfs_off_t new_isize)
1127{
1128 struct xfs_bmbt_irec imap;
1129 int nimaps;
1130 int error = 0;
1131 xfs_filblks_t range_len;
1132
1133 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1134 while (len) {
1135 uint lock_mode;
1136
1137 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1138 dest, destoff);
1139
1140 /* Read extent from the source file */
1141 nimaps = 1;
1142 lock_mode = xfs_ilock_data_map_shared(src);
1143 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1144 xfs_iunlock(src, lock_mode);
1145 if (error)
1146 goto err;
1147 ASSERT(nimaps == 1);
1148
1149 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1150 &imap);
1151
1152 /* Translate imap into the destination file. */
1153 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1154 imap.br_startoff += destoff - srcoff;
1155
1156 /* Clear dest from destoff to the end of imap and map it in. */
1157 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1158 new_isize);
1159 if (error)
1160 goto err;
1161
1162 if (fatal_signal_pending(current)) {
1163 error = -EINTR;
1164 goto err;
1165 }
1166
1167 /* Advance drange/srange */
1168 srcoff += range_len;
1169 destoff += range_len;
1170 len -= range_len;
1171 }
1172
1173 return 0;
1174
1175err:
1176 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1177 return error;
1178}
1179
1180/*
1181 * Grab the exclusive iolock for a data copy from src to dest, making
1182 * sure to abide vfs locking order (lowest pointer value goes first) and
1183 * breaking the pnfs layout leases on dest before proceeding. The loop
1184 * is needed because we cannot call the blocking break_layout() with the
1185 * src iolock held, and therefore have to back out both locks.
1186 */
1187static int
1188xfs_iolock_two_inodes_and_break_layout(
1189 struct inode *src,
1190 struct inode *dest)
1191{
1192 int error;
1193
1194retry:
1195 if (src < dest) {
1196 inode_lock_shared(src);
1197 inode_lock_nested(dest, I_MUTEX_NONDIR2);
1198 } else {
1199 /* src >= dest */
1200 inode_lock(dest);
1201 }
1202
1203 error = break_layout(dest, false);
1204 if (error == -EWOULDBLOCK) {
1205 inode_unlock(dest);
1206 if (src < dest)
1207 inode_unlock_shared(src);
1208 error = break_layout(dest, true);
1209 if (error)
1210 return error;
1211 goto retry;
1212 }
1213 if (error) {
1214 inode_unlock(dest);
1215 if (src < dest)
1216 inode_unlock_shared(src);
1217 return error;
1218 }
1219 if (src > dest)
1220 inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1221 return 0;
1222}
1223
1224/* Unlock both inodes after they've been prepped for a range clone. */
1225STATIC void
1226xfs_reflink_remap_unlock(
1227 struct file *file_in,
1228 struct file *file_out)
1229{
1230 struct inode *inode_in = file_inode(file_in);
1231 struct xfs_inode *src = XFS_I(inode_in);
1232 struct inode *inode_out = file_inode(file_out);
1233 struct xfs_inode *dest = XFS_I(inode_out);
1234 bool same_inode = (inode_in == inode_out);
1235
1236 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1237 if (!same_inode)
1238 xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1239 inode_unlock(inode_out);
1240 if (!same_inode)
1241 inode_unlock_shared(inode_in);
1242}
1243
1244/*
1245 * If we're reflinking to a point past the destination file's EOF, we must
1246 * zero any speculative post-EOF preallocations that sit between the old EOF
1247 * and the destination file offset.
1248 */
1249static int
1250xfs_reflink_zero_posteof(
1251 struct xfs_inode *ip,
1252 loff_t pos)
1253{
1254 loff_t isize = i_size_read(VFS_I(ip));
1255
1256 if (pos <= isize)
1257 return 0;
1258
1259 trace_xfs_zero_eof(ip, isize, pos - isize);
1260 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1261 &xfs_iomap_ops);
1262}
1263
1264/*
1265 * Prepare two files for range cloning. Upon a successful return both inodes
1266 * will have the iolock and mmaplock held, the page cache of the out file will
1267 * be truncated, and any leases on the out file will have been broken. This
1268 * function borrows heavily from xfs_file_aio_write_checks.
1269 *
1270 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1271 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1272 * EOF block in the source dedupe range because it's not a complete block match,
1273 * hence can introduce a corruption into the file that has it's block replaced.
1274 *
1275 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1276 * "block aligned" for the purposes of cloning entire files. However, if the
1277 * source file range includes the EOF block and it lands within the existing EOF
1278 * of the destination file, then we can expose stale data from beyond the source
1279 * file EOF in the destination file.
1280 *
1281 * XFS doesn't support partial block sharing, so in both cases we have check
1282 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1283 * down to the previous whole block and ignore the partial EOF block. While this
1284 * means we can't dedupe the last block of a file, this is an acceptible
1285 * tradeoff for simplicity on implementation.
1286 *
1287 * For cloning, we want to share the partial EOF block if it is also the new EOF
1288 * block of the destination file. If the partial EOF block lies inside the
1289 * existing destination EOF, then we have to abort the clone to avoid exposing
1290 * stale data in the destination file. Hence we reject these clone attempts with
1291 * -EINVAL in this case.
1292 */
1293STATIC int
1294xfs_reflink_remap_prep(
1295 struct file *file_in,
1296 loff_t pos_in,
1297 struct file *file_out,
1298 loff_t pos_out,
1299 u64 *len,
1300 bool is_dedupe)
1301{
1302 struct inode *inode_in = file_inode(file_in);
1303 struct xfs_inode *src = XFS_I(inode_in);
1304 struct inode *inode_out = file_inode(file_out);
1305 struct xfs_inode *dest = XFS_I(inode_out);
1306 bool same_inode = (inode_in == inode_out);
1307 u64 blkmask = i_blocksize(inode_in) - 1;
1308 ssize_t ret;
1309
1310 /* Lock both files against IO */
1311 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1312 if (ret)
1313 return ret;
1314 if (same_inode)
1315 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1316 else
1317 xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1318 XFS_MMAPLOCK_EXCL);
1319
1320 /* Check file eligibility and prepare for block sharing. */
1321 ret = -EINVAL;
1322 /* Don't reflink realtime inodes */
1323 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1324 goto out_unlock;
1325
1326 /* Don't share DAX file data for now. */
1327 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1328 goto out_unlock;
1329
1330 ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
1331 len, is_dedupe);
1332 if (ret <= 0)
1333 goto out_unlock;
1334
1335 /*
1336 * If the dedupe data matches, chop off the partial EOF block
1337 * from the source file so we don't try to dedupe the partial
1338 * EOF block.
1339 */
1340 if (is_dedupe) {
1341 *len &= ~blkmask;
1342 } else if (*len & blkmask) {
1343 /*
1344 * The user is attempting to share a partial EOF block,
1345 * if it's inside the destination EOF then reject it.
1346 */
1347 if (pos_out + *len < i_size_read(inode_out)) {
1348 ret = -EINVAL;
1349 goto out_unlock;
1350 }
1351 }
1352
1353 /* Attach dquots to dest inode before changing block map */
1354 ret = xfs_qm_dqattach(dest);
1355 if (ret)
1356 goto out_unlock;
1357
1358 /*
1359 * Zero existing post-eof speculative preallocations in the destination
1360 * file.
1361 */
1362 ret = xfs_reflink_zero_posteof(dest, pos_out);
1363 if (ret)
1364 goto out_unlock;
1365
1366 /* Set flags and remap blocks. */
1367 ret = xfs_reflink_set_inode_flag(src, dest);
1368 if (ret)
1369 goto out_unlock;
1370
1371 /*
1372 * If pos_out > EOF, we may have dirtied blocks between EOF and
1373 * pos_out. In that case, we need to extend the flush and unmap to cover
1374 * from EOF to the end of the copy length.
1375 */
1376 if (pos_out > XFS_ISIZE(dest)) {
1377 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1378 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1379 } else {
1380 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1381 }
1382 if (ret)
1383 goto out_unlock;
1384
1385 /* If we're altering the file contents... */
1386 if (!is_dedupe) {
1387 /*
1388 * ...update the timestamps (which will grab the ilock again
1389 * from xfs_fs_dirty_inode, so we have to call it before we
1390 * take the ilock).
1391 */
1392 if (!(file_out->f_mode & FMODE_NOCMTIME)) {
1393 ret = file_update_time(file_out);
1394 if (ret)
1395 goto out_unlock;
1396 }
1397
1398 /*
1399 * ...clear the security bits if the process is not being run
1400 * by root. This keeps people from modifying setuid and setgid
1401 * binaries.
1402 */
1403 ret = file_remove_privs(file_out);
1404 if (ret)
1405 goto out_unlock;
1406 }
1407
1408 return 1;
1409out_unlock:
1410 xfs_reflink_remap_unlock(file_in, file_out);
1411 return ret;
1412}
1413
1414/*
1415 * Link a range of blocks from one file to another.
1416 */
1417int
1418xfs_reflink_remap_range(
1419 struct file *file_in,
1420 loff_t pos_in,
1421 struct file *file_out,
1422 loff_t pos_out,
1423 u64 len,
1424 bool is_dedupe)
1425{
1426 struct inode *inode_in = file_inode(file_in);
1427 struct xfs_inode *src = XFS_I(inode_in);
1428 struct inode *inode_out = file_inode(file_out);
1429 struct xfs_inode *dest = XFS_I(inode_out);
1430 struct xfs_mount *mp = src->i_mount;
1431 xfs_fileoff_t sfsbno, dfsbno;
1432 xfs_filblks_t fsblen;
1433 xfs_extlen_t cowextsize;
1434 ssize_t ret;
1435
1436 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1437 return -EOPNOTSUPP;
1438
1439 if (XFS_FORCED_SHUTDOWN(mp))
1440 return -EIO;
1441
1442 /* Prepare and then clone file data. */
1443 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1444 &len, is_dedupe);
1445 if (ret <= 0)
1446 return ret;
1447
1448 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1449
1450 dfsbno = XFS_B_TO_FSBT(mp, pos_out);
1451 sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1452 fsblen = XFS_B_TO_FSB(mp, len);
1453 ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
1454 pos_out + len);
1455 if (ret)
1456 goto out_unlock;
1457
1458 /*
1459 * Carry the cowextsize hint from src to dest if we're sharing the
1460 * entire source file to the entire destination file, the source file
1461 * has a cowextsize hint, and the destination file does not.
1462 */
1463 cowextsize = 0;
1464 if (pos_in == 0 && len == i_size_read(inode_in) &&
1465 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1466 pos_out == 0 && len >= i_size_read(inode_out) &&
1467 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1468 cowextsize = src->i_d.di_cowextsize;
1469
1470 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1471 is_dedupe);
1472
1473out_unlock:
1474 xfs_reflink_remap_unlock(file_in, file_out);
1475 if (ret)
1476 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1477 return ret;
1478}
1479
1480/*
1481 * The user wants to preemptively CoW all shared blocks in this file,
1482 * which enables us to turn off the reflink flag. Iterate all
1483 * extents which are not prealloc/delalloc to see which ranges are
1484 * mentioned in the refcount tree, then read those blocks into the
1485 * pagecache, dirty them, fsync them back out, and then we can update
1486 * the inode flag. What happens if we run out of memory? :)
1487 */
1488STATIC int
1489xfs_reflink_dirty_extents(
1490 struct xfs_inode *ip,
1491 xfs_fileoff_t fbno,
1492 xfs_filblks_t end,
1493 xfs_off_t isize)
1494{
1495 struct xfs_mount *mp = ip->i_mount;
1496 xfs_agnumber_t agno;
1497 xfs_agblock_t agbno;
1498 xfs_extlen_t aglen;
1499 xfs_agblock_t rbno;
1500 xfs_extlen_t rlen;
1501 xfs_off_t fpos;
1502 xfs_off_t flen;
1503 struct xfs_bmbt_irec map[2];
1504 int nmaps;
1505 int error = 0;
1506
1507 while (end - fbno > 0) {
1508 nmaps = 1;
1509 /*
1510 * Look for extents in the file. Skip holes, delalloc, or
1511 * unwritten extents; they can't be reflinked.
1512 */
1513 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1514 if (error)
1515 goto out;
1516 if (nmaps == 0)
1517 break;
1518 if (!xfs_bmap_is_real_extent(&map[0]))
1519 goto next;
1520
1521 map[1] = map[0];
1522 while (map[1].br_blockcount) {
1523 agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1524 agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1525 aglen = map[1].br_blockcount;
1526
1527 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1528 aglen, &rbno, &rlen, true);
1529 if (error)
1530 goto out;
1531 if (rbno == NULLAGBLOCK)
1532 break;
1533
1534 /* Dirty the pages */
1535 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1536 fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1537 (rbno - agbno));
1538 flen = XFS_FSB_TO_B(mp, rlen);
1539 if (fpos + flen > isize)
1540 flen = isize - fpos;
1541 error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1542 &xfs_iomap_ops);
1543 xfs_ilock(ip, XFS_ILOCK_EXCL);
1544 if (error)
1545 goto out;
1546
1547 map[1].br_blockcount -= (rbno - agbno + rlen);
1548 map[1].br_startoff += (rbno - agbno + rlen);
1549 map[1].br_startblock += (rbno - agbno + rlen);
1550 }
1551
1552next:
1553 fbno = map[0].br_startoff + map[0].br_blockcount;
1554 }
1555out:
1556 return error;
1557}
1558
1559/* Does this inode need the reflink flag? */
1560int
1561xfs_reflink_inode_has_shared_extents(
1562 struct xfs_trans *tp,
1563 struct xfs_inode *ip,
1564 bool *has_shared)
1565{
1566 struct xfs_bmbt_irec got;
1567 struct xfs_mount *mp = ip->i_mount;
1568 struct xfs_ifork *ifp;
1569 xfs_agnumber_t agno;
1570 xfs_agblock_t agbno;
1571 xfs_extlen_t aglen;
1572 xfs_agblock_t rbno;
1573 xfs_extlen_t rlen;
1574 struct xfs_iext_cursor icur;
1575 bool found;
1576 int error;
1577
1578 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1579 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1580 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1581 if (error)
1582 return error;
1583 }
1584
1585 *has_shared = false;
1586 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1587 while (found) {
1588 if (isnullstartblock(got.br_startblock) ||
1589 got.br_state != XFS_EXT_NORM)
1590 goto next;
1591 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1592 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1593 aglen = got.br_blockcount;
1594
1595 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1596 &rbno, &rlen, false);
1597 if (error)
1598 return error;
1599 /* Is there still a shared block here? */
1600 if (rbno != NULLAGBLOCK) {
1601 *has_shared = true;
1602 return 0;
1603 }
1604next:
1605 found = xfs_iext_next_extent(ifp, &icur, &got);
1606 }
1607
1608 return 0;
1609}
1610
1611/*
1612 * Clear the inode reflink flag if there are no shared extents.
1613 *
1614 * The caller is responsible for joining the inode to the transaction passed in.
1615 * The inode will be joined to the transaction that is returned to the caller.
1616 */
1617int
1618xfs_reflink_clear_inode_flag(
1619 struct xfs_inode *ip,
1620 struct xfs_trans **tpp)
1621{
1622 bool needs_flag;
1623 int error = 0;
1624
1625 ASSERT(xfs_is_reflink_inode(ip));
1626
1627 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1628 if (error || needs_flag)
1629 return error;
1630
1631 /*
1632 * We didn't find any shared blocks so turn off the reflink flag.
1633 * First, get rid of any leftover CoW mappings.
1634 */
1635 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1636 if (error)
1637 return error;
1638
1639 /* Clear the inode flag. */
1640 trace_xfs_reflink_unset_inode_flag(ip);
1641 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1642 xfs_inode_clear_cowblocks_tag(ip);
1643 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1644
1645 return error;
1646}
1647
1648/*
1649 * Clear the inode reflink flag if there are no shared extents and the size
1650 * hasn't changed.
1651 */
1652STATIC int
1653xfs_reflink_try_clear_inode_flag(
1654 struct xfs_inode *ip)
1655{
1656 struct xfs_mount *mp = ip->i_mount;
1657 struct xfs_trans *tp;
1658 int error = 0;
1659
1660 /* Start a rolling transaction to remove the mappings */
1661 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1662 if (error)
1663 return error;
1664
1665 xfs_ilock(ip, XFS_ILOCK_EXCL);
1666 xfs_trans_ijoin(tp, ip, 0);
1667
1668 error = xfs_reflink_clear_inode_flag(ip, &tp);
1669 if (error)
1670 goto cancel;
1671
1672 error = xfs_trans_commit(tp);
1673 if (error)
1674 goto out;
1675
1676 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1677 return 0;
1678cancel:
1679 xfs_trans_cancel(tp);
1680out:
1681 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1682 return error;
1683}
1684
1685/*
1686 * Pre-COW all shared blocks within a given byte range of a file and turn off
1687 * the reflink flag if we unshare all of the file's blocks.
1688 */
1689int
1690xfs_reflink_unshare(
1691 struct xfs_inode *ip,
1692 xfs_off_t offset,
1693 xfs_off_t len)
1694{
1695 struct xfs_mount *mp = ip->i_mount;
1696 xfs_fileoff_t fbno;
1697 xfs_filblks_t end;
1698 xfs_off_t isize;
1699 int error;
1700
1701 if (!xfs_is_reflink_inode(ip))
1702 return 0;
1703
1704 trace_xfs_reflink_unshare(ip, offset, len);
1705
1706 inode_dio_wait(VFS_I(ip));
1707
1708 /* Try to CoW the selected ranges */
1709 xfs_ilock(ip, XFS_ILOCK_EXCL);
1710 fbno = XFS_B_TO_FSBT(mp, offset);
1711 isize = i_size_read(VFS_I(ip));
1712 end = XFS_B_TO_FSB(mp, offset + len);
1713 error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1714 if (error)
1715 goto out_unlock;
1716 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1717
1718 /* Wait for the IO to finish */
1719 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1720 if (error)
1721 goto out;
1722
1723 /* Turn off the reflink flag if possible. */
1724 error = xfs_reflink_try_clear_inode_flag(ip);
1725 if (error)
1726 goto out;
1727
1728 return 0;
1729
1730out_unlock:
1731 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1732out:
1733 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1734 return error;
1735}