blob: 15f8f24c190d4600a61f07a6acda86e29c433275 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/skbuff.h>
23#include <linux/vmalloc.h>
24#include <linux/rtnetlink.h>
25#include <linux/reciprocal_div.h>
26#include <linux/rbtree.h>
27
28#include <net/netlink.h>
29#include <net/pkt_sched.h>
30#include <net/inet_ecn.h>
31
32#define VERSION "1.3"
33
34/* Network Emulation Queuing algorithm.
35 ====================================
36
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
40
41 ----------------------------------------------------------------
42
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
50
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
55
56 Correlated Loss Generator models
57
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
60
61 References:
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
66
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
69*/
70
71struct disttable {
72 u32 size;
73 s16 table[0];
74};
75
76struct netem_sched_data {
77 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
78 struct rb_root t_root;
79
80 /* optional qdisc for classful handling (NULL at netem init) */
81 struct Qdisc *qdisc;
82
83 struct qdisc_watchdog watchdog;
84
85 s64 latency;
86 s64 jitter;
87
88 u32 loss;
89 u32 ecn;
90 u32 limit;
91 u32 counter;
92 u32 gap;
93 u32 duplicate;
94 u32 reorder;
95 u32 corrupt;
96 u64 rate;
97 s32 packet_overhead;
98 u32 cell_size;
99 struct reciprocal_value cell_size_reciprocal;
100 s32 cell_overhead;
101
102 struct crndstate {
103 u32 last;
104 u32 rho;
105 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
106
107 struct disttable *delay_dist;
108
109 enum {
110 CLG_RANDOM,
111 CLG_4_STATES,
112 CLG_GILB_ELL,
113 } loss_model;
114
115 enum {
116 TX_IN_GAP_PERIOD = 1,
117 TX_IN_BURST_PERIOD,
118 LOST_IN_GAP_PERIOD,
119 LOST_IN_BURST_PERIOD,
120 } _4_state_model;
121
122 enum {
123 GOOD_STATE = 1,
124 BAD_STATE,
125 } GE_state_model;
126
127 /* Correlated Loss Generation models */
128 struct clgstate {
129 /* state of the Markov chain */
130 u8 state;
131
132 /* 4-states and Gilbert-Elliot models */
133 u32 a1; /* p13 for 4-states or p for GE */
134 u32 a2; /* p31 for 4-states or r for GE */
135 u32 a3; /* p32 for 4-states or h for GE */
136 u32 a4; /* p14 for 4-states or 1-k for GE */
137 u32 a5; /* p23 used only in 4-states */
138 } clg;
139
140 struct tc_netem_slot slot_config;
141 struct slotstate {
142 u64 slot_next;
143 s32 packets_left;
144 s32 bytes_left;
145 } slot;
146
147 struct disttable *slot_dist;
148};
149
150/* Time stamp put into socket buffer control block
151 * Only valid when skbs are in our internal t(ime)fifo queue.
152 *
153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
154 * and skb->next & skb->prev are scratch space for a qdisc,
155 * we save skb->tstamp value in skb->cb[] before destroying it.
156 */
157struct netem_skb_cb {
158 u64 time_to_send;
159};
160
161static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
162{
163 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
164 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
165 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166}
167
168/* init_crandom - initialize correlated random number generator
169 * Use entropy source for initial seed.
170 */
171static void init_crandom(struct crndstate *state, unsigned long rho)
172{
173 state->rho = rho;
174 state->last = prandom_u32();
175}
176
177/* get_crandom - correlated random number generator
178 * Next number depends on last value.
179 * rho is scaled to avoid floating point.
180 */
181static u32 get_crandom(struct crndstate *state)
182{
183 u64 value, rho;
184 unsigned long answer;
185
186 if (!state || state->rho == 0) /* no correlation */
187 return prandom_u32();
188
189 value = prandom_u32();
190 rho = (u64)state->rho + 1;
191 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
192 state->last = answer;
193 return answer;
194}
195
196/* loss_4state - 4-state model loss generator
197 * Generates losses according to the 4-state Markov chain adopted in
198 * the GI (General and Intuitive) loss model.
199 */
200static bool loss_4state(struct netem_sched_data *q)
201{
202 struct clgstate *clg = &q->clg;
203 u32 rnd = prandom_u32();
204
205 /*
206 * Makes a comparison between rnd and the transition
207 * probabilities outgoing from the current state, then decides the
208 * next state and if the next packet has to be transmitted or lost.
209 * The four states correspond to:
210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
211 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
212 * LOST_IN_GAP_PERIOD => lost packets within a burst period
213 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
214 */
215 switch (clg->state) {
216 case TX_IN_GAP_PERIOD:
217 if (rnd < clg->a4) {
218 clg->state = LOST_IN_BURST_PERIOD;
219 return true;
220 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
221 clg->state = LOST_IN_GAP_PERIOD;
222 return true;
223 } else if (clg->a1 + clg->a4 < rnd) {
224 clg->state = TX_IN_GAP_PERIOD;
225 }
226
227 break;
228 case TX_IN_BURST_PERIOD:
229 if (rnd < clg->a5) {
230 clg->state = LOST_IN_GAP_PERIOD;
231 return true;
232 } else {
233 clg->state = TX_IN_BURST_PERIOD;
234 }
235
236 break;
237 case LOST_IN_GAP_PERIOD:
238 if (rnd < clg->a3)
239 clg->state = TX_IN_BURST_PERIOD;
240 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
241 clg->state = TX_IN_GAP_PERIOD;
242 } else if (clg->a2 + clg->a3 < rnd) {
243 clg->state = LOST_IN_GAP_PERIOD;
244 return true;
245 }
246 break;
247 case LOST_IN_BURST_PERIOD:
248 clg->state = TX_IN_GAP_PERIOD;
249 break;
250 }
251
252 return false;
253}
254
255/* loss_gilb_ell - Gilbert-Elliot model loss generator
256 * Generates losses according to the Gilbert-Elliot loss model or
257 * its special cases (Gilbert or Simple Gilbert)
258 *
259 * Makes a comparison between random number and the transition
260 * probabilities outgoing from the current state, then decides the
261 * next state. A second random number is extracted and the comparison
262 * with the loss probability of the current state decides if the next
263 * packet will be transmitted or lost.
264 */
265static bool loss_gilb_ell(struct netem_sched_data *q)
266{
267 struct clgstate *clg = &q->clg;
268
269 switch (clg->state) {
270 case GOOD_STATE:
271 if (prandom_u32() < clg->a1)
272 clg->state = BAD_STATE;
273 if (prandom_u32() < clg->a4)
274 return true;
275 break;
276 case BAD_STATE:
277 if (prandom_u32() < clg->a2)
278 clg->state = GOOD_STATE;
279 if (prandom_u32() > clg->a3)
280 return true;
281 }
282
283 return false;
284}
285
286static bool loss_event(struct netem_sched_data *q)
287{
288 switch (q->loss_model) {
289 case CLG_RANDOM:
290 /* Random packet drop 0 => none, ~0 => all */
291 return q->loss && q->loss >= get_crandom(&q->loss_cor);
292
293 case CLG_4_STATES:
294 /* 4state loss model algorithm (used also for GI model)
295 * Extracts a value from the markov 4 state loss generator,
296 * if it is 1 drops a packet and if needed writes the event in
297 * the kernel logs
298 */
299 return loss_4state(q);
300
301 case CLG_GILB_ELL:
302 /* Gilbert-Elliot loss model algorithm
303 * Extracts a value from the Gilbert-Elliot loss generator,
304 * if it is 1 drops a packet and if needed writes the event in
305 * the kernel logs
306 */
307 return loss_gilb_ell(q);
308 }
309
310 return false; /* not reached */
311}
312
313
314/* tabledist - return a pseudo-randomly distributed value with mean mu and
315 * std deviation sigma. Uses table lookup to approximate the desired
316 * distribution, and a uniformly-distributed pseudo-random source.
317 */
318static s64 tabledist(s64 mu, s32 sigma,
319 struct crndstate *state,
320 const struct disttable *dist)
321{
322 s64 x;
323 long t;
324 u32 rnd;
325
326 if (sigma == 0)
327 return mu;
328
329 rnd = get_crandom(state);
330
331 /* default uniform distribution */
332 if (dist == NULL)
333 return ((rnd % (2 * sigma)) + mu) - sigma;
334
335 t = dist->table[rnd % dist->size];
336 x = (sigma % NETEM_DIST_SCALE) * t;
337 if (x >= 0)
338 x += NETEM_DIST_SCALE/2;
339 else
340 x -= NETEM_DIST_SCALE/2;
341
342 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
343}
344
345static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
346{
347 len += q->packet_overhead;
348
349 if (q->cell_size) {
350 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
351
352 if (len > cells * q->cell_size) /* extra cell needed for remainder */
353 cells++;
354 len = cells * (q->cell_size + q->cell_overhead);
355 }
356
357 return div64_u64(len * NSEC_PER_SEC, q->rate);
358}
359
360static void tfifo_reset(struct Qdisc *sch)
361{
362 struct netem_sched_data *q = qdisc_priv(sch);
363 struct rb_node *p = rb_first(&q->t_root);
364
365 while (p) {
366 struct sk_buff *skb = rb_to_skb(p);
367
368 p = rb_next(p);
369 rb_erase(&skb->rbnode, &q->t_root);
370 rtnl_kfree_skbs(skb, skb);
371 }
372}
373
374static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
375{
376 struct netem_sched_data *q = qdisc_priv(sch);
377 u64 tnext = netem_skb_cb(nskb)->time_to_send;
378 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
379
380 while (*p) {
381 struct sk_buff *skb;
382
383 parent = *p;
384 skb = rb_to_skb(parent);
385 if (tnext >= netem_skb_cb(skb)->time_to_send)
386 p = &parent->rb_right;
387 else
388 p = &parent->rb_left;
389 }
390 rb_link_node(&nskb->rbnode, parent, p);
391 rb_insert_color(&nskb->rbnode, &q->t_root);
392 sch->q.qlen++;
393}
394
395/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
396 * when we statistically choose to corrupt one, we instead segment it, returning
397 * the first packet to be corrupted, and re-enqueue the remaining frames
398 */
399static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
400 struct sk_buff **to_free)
401{
402 struct sk_buff *segs;
403 netdev_features_t features = netif_skb_features(skb);
404
405 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
406
407 if (IS_ERR_OR_NULL(segs)) {
408 qdisc_drop(skb, sch, to_free);
409 return NULL;
410 }
411 consume_skb(skb);
412 return segs;
413}
414
415static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
416{
417 skb->next = qh->head;
418
419 if (!qh->head)
420 qh->tail = skb;
421 qh->head = skb;
422 qh->qlen++;
423}
424
425/*
426 * Insert one skb into qdisc.
427 * Note: parent depends on return value to account for queue length.
428 * NET_XMIT_DROP: queue length didn't change.
429 * NET_XMIT_SUCCESS: one skb was queued.
430 */
431static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
432 struct sk_buff **to_free)
433{
434 struct netem_sched_data *q = qdisc_priv(sch);
435 /* We don't fill cb now as skb_unshare() may invalidate it */
436 struct netem_skb_cb *cb;
437 struct sk_buff *skb2;
438 struct sk_buff *segs = NULL;
439 unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
440 int nb = 0;
441 int count = 1;
442 int rc = NET_XMIT_SUCCESS;
443 int rc_drop = NET_XMIT_DROP;
444
445 /* Do not fool qdisc_drop_all() */
446 skb->prev = NULL;
447
448 /* Random duplication */
449 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
450 ++count;
451
452 /* Drop packet? */
453 if (loss_event(q)) {
454 if (q->ecn && INET_ECN_set_ce(skb))
455 qdisc_qstats_drop(sch); /* mark packet */
456 else
457 --count;
458 }
459 if (count == 0) {
460 qdisc_qstats_drop(sch);
461 __qdisc_drop(skb, to_free);
462 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
463 }
464
465 /* If a delay is expected, orphan the skb. (orphaning usually takes
466 * place at TX completion time, so _before_ the link transit delay)
467 */
468 if (q->latency || q->jitter || q->rate)
469 skb_orphan_partial(skb);
470
471 /*
472 * If we need to duplicate packet, then re-insert at top of the
473 * qdisc tree, since parent queuer expects that only one
474 * skb will be queued.
475 */
476 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
477 struct Qdisc *rootq = qdisc_root_bh(sch);
478 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
479
480 q->duplicate = 0;
481 rootq->enqueue(skb2, rootq, to_free);
482 q->duplicate = dupsave;
483 rc_drop = NET_XMIT_SUCCESS;
484 }
485
486 /*
487 * Randomized packet corruption.
488 * Make copy if needed since we are modifying
489 * If packet is going to be hardware checksummed, then
490 * do it now in software before we mangle it.
491 */
492 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
493 if (skb_is_gso(skb)) {
494 segs = netem_segment(skb, sch, to_free);
495 if (!segs)
496 return rc_drop;
497 } else {
498 segs = skb;
499 }
500
501 skb = segs;
502 segs = segs->next;
503
504 skb = skb_unshare(skb, GFP_ATOMIC);
505 if (unlikely(!skb)) {
506 qdisc_qstats_drop(sch);
507 goto finish_segs;
508 }
509 if (skb->ip_summed == CHECKSUM_PARTIAL &&
510 skb_checksum_help(skb)) {
511 qdisc_drop(skb, sch, to_free);
512 goto finish_segs;
513 }
514
515 skb->data[prandom_u32() % skb_headlen(skb)] ^=
516 1<<(prandom_u32() % 8);
517 }
518
519 if (unlikely(sch->q.qlen >= sch->limit)) {
520 qdisc_drop_all(skb, sch, to_free);
521 return rc_drop;
522 }
523
524 qdisc_qstats_backlog_inc(sch, skb);
525
526 cb = netem_skb_cb(skb);
527 if (q->gap == 0 || /* not doing reordering */
528 q->counter < q->gap - 1 || /* inside last reordering gap */
529 q->reorder < get_crandom(&q->reorder_cor)) {
530 u64 now;
531 s64 delay;
532
533 delay = tabledist(q->latency, q->jitter,
534 &q->delay_cor, q->delay_dist);
535
536 now = ktime_get_ns();
537
538 if (q->rate) {
539 struct netem_skb_cb *last = NULL;
540
541 if (sch->q.tail)
542 last = netem_skb_cb(sch->q.tail);
543 if (q->t_root.rb_node) {
544 struct sk_buff *t_skb;
545 struct netem_skb_cb *t_last;
546
547 t_skb = skb_rb_last(&q->t_root);
548 t_last = netem_skb_cb(t_skb);
549 if (!last ||
550 t_last->time_to_send > last->time_to_send) {
551 last = t_last;
552 }
553 }
554
555 if (last) {
556 /*
557 * Last packet in queue is reference point (now),
558 * calculate this time bonus and subtract
559 * from delay.
560 */
561 delay -= last->time_to_send - now;
562 delay = max_t(s64, 0, delay);
563 now = last->time_to_send;
564 }
565
566 delay += packet_time_ns(qdisc_pkt_len(skb), q);
567 }
568
569 cb->time_to_send = now + delay;
570 ++q->counter;
571 tfifo_enqueue(skb, sch);
572 } else {
573 /*
574 * Do re-ordering by putting one out of N packets at the front
575 * of the queue.
576 */
577 cb->time_to_send = ktime_get_ns();
578 q->counter = 0;
579
580 netem_enqueue_skb_head(&sch->q, skb);
581 sch->qstats.requeues++;
582 }
583
584finish_segs:
585 if (segs) {
586 while (segs) {
587 skb2 = segs->next;
588 segs->next = NULL;
589 qdisc_skb_cb(segs)->pkt_len = segs->len;
590 last_len = segs->len;
591 rc = qdisc_enqueue(segs, sch, to_free);
592 if (rc != NET_XMIT_SUCCESS) {
593 if (net_xmit_drop_count(rc))
594 qdisc_qstats_drop(sch);
595 } else {
596 nb++;
597 len += last_len;
598 }
599 segs = skb2;
600 }
601 sch->q.qlen += nb;
602 if (nb > 1)
603 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
604 }
605 return NET_XMIT_SUCCESS;
606}
607
608/* Delay the next round with a new future slot with a
609 * correct number of bytes and packets.
610 */
611
612static void get_slot_next(struct netem_sched_data *q, u64 now)
613{
614 s64 next_delay;
615
616 if (!q->slot_dist)
617 next_delay = q->slot_config.min_delay +
618 (prandom_u32() *
619 (q->slot_config.max_delay -
620 q->slot_config.min_delay) >> 32);
621 else
622 next_delay = tabledist(q->slot_config.dist_delay,
623 (s32)(q->slot_config.dist_jitter),
624 NULL, q->slot_dist);
625
626 q->slot.slot_next = now + next_delay;
627 q->slot.packets_left = q->slot_config.max_packets;
628 q->slot.bytes_left = q->slot_config.max_bytes;
629}
630
631static struct sk_buff *netem_dequeue(struct Qdisc *sch)
632{
633 struct netem_sched_data *q = qdisc_priv(sch);
634 struct sk_buff *skb;
635 struct rb_node *p;
636
637tfifo_dequeue:
638 skb = __qdisc_dequeue_head(&sch->q);
639 if (skb) {
640 qdisc_qstats_backlog_dec(sch, skb);
641deliver:
642 qdisc_bstats_update(sch, skb);
643 return skb;
644 }
645 p = rb_first(&q->t_root);
646 if (p) {
647 u64 time_to_send;
648 u64 now = ktime_get_ns();
649
650 skb = rb_to_skb(p);
651
652 /* if more time remaining? */
653 time_to_send = netem_skb_cb(skb)->time_to_send;
654 if (q->slot.slot_next && q->slot.slot_next < time_to_send)
655 get_slot_next(q, now);
656
657 if (time_to_send <= now && q->slot.slot_next <= now) {
658 rb_erase(p, &q->t_root);
659 sch->q.qlen--;
660 qdisc_qstats_backlog_dec(sch, skb);
661 skb->next = NULL;
662 skb->prev = NULL;
663 /* skb->dev shares skb->rbnode area,
664 * we need to restore its value.
665 */
666 skb->dev = qdisc_dev(sch);
667
668#ifdef CONFIG_NET_CLS_ACT
669 /*
670 * If it's at ingress let's pretend the delay is
671 * from the network (tstamp will be updated).
672 */
673 if (skb->tc_redirected && skb->tc_from_ingress)
674 skb->tstamp = 0;
675#endif
676
677 if (q->slot.slot_next) {
678 q->slot.packets_left--;
679 q->slot.bytes_left -= qdisc_pkt_len(skb);
680 if (q->slot.packets_left <= 0 ||
681 q->slot.bytes_left <= 0)
682 get_slot_next(q, now);
683 }
684
685 if (q->qdisc) {
686 unsigned int pkt_len = qdisc_pkt_len(skb);
687 struct sk_buff *to_free = NULL;
688 int err;
689
690 err = qdisc_enqueue(skb, q->qdisc, &to_free);
691 kfree_skb_list(to_free);
692 if (err != NET_XMIT_SUCCESS &&
693 net_xmit_drop_count(err)) {
694 qdisc_qstats_drop(sch);
695 qdisc_tree_reduce_backlog(sch, 1,
696 pkt_len);
697 }
698 goto tfifo_dequeue;
699 }
700 goto deliver;
701 }
702
703 if (q->qdisc) {
704 skb = q->qdisc->ops->dequeue(q->qdisc);
705 if (skb)
706 goto deliver;
707 }
708
709 qdisc_watchdog_schedule_ns(&q->watchdog,
710 max(time_to_send,
711 q->slot.slot_next));
712 }
713
714 if (q->qdisc) {
715 skb = q->qdisc->ops->dequeue(q->qdisc);
716 if (skb)
717 goto deliver;
718 }
719 return NULL;
720}
721
722static void netem_reset(struct Qdisc *sch)
723{
724 struct netem_sched_data *q = qdisc_priv(sch);
725
726 qdisc_reset_queue(sch);
727 tfifo_reset(sch);
728 if (q->qdisc)
729 qdisc_reset(q->qdisc);
730 qdisc_watchdog_cancel(&q->watchdog);
731}
732
733static void dist_free(struct disttable *d)
734{
735 kvfree(d);
736}
737
738/*
739 * Distribution data is a variable size payload containing
740 * signed 16 bit values.
741 */
742
743static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
744 const struct nlattr *attr)
745{
746 size_t n = nla_len(attr)/sizeof(__s16);
747 const __s16 *data = nla_data(attr);
748 spinlock_t *root_lock;
749 struct disttable *d;
750 int i;
751
752 if (!n || n > NETEM_DIST_MAX)
753 return -EINVAL;
754
755 d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
756 if (!d)
757 return -ENOMEM;
758
759 d->size = n;
760 for (i = 0; i < n; i++)
761 d->table[i] = data[i];
762
763 root_lock = qdisc_root_sleeping_lock(sch);
764
765 spin_lock_bh(root_lock);
766 swap(*tbl, d);
767 spin_unlock_bh(root_lock);
768
769 dist_free(d);
770 return 0;
771}
772
773static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
774{
775 const struct tc_netem_slot *c = nla_data(attr);
776
777 q->slot_config = *c;
778 if (q->slot_config.max_packets == 0)
779 q->slot_config.max_packets = INT_MAX;
780 if (q->slot_config.max_bytes == 0)
781 q->slot_config.max_bytes = INT_MAX;
782 q->slot.packets_left = q->slot_config.max_packets;
783 q->slot.bytes_left = q->slot_config.max_bytes;
784 if (q->slot_config.min_delay | q->slot_config.max_delay |
785 q->slot_config.dist_jitter)
786 q->slot.slot_next = ktime_get_ns();
787 else
788 q->slot.slot_next = 0;
789}
790
791static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
792{
793 const struct tc_netem_corr *c = nla_data(attr);
794
795 init_crandom(&q->delay_cor, c->delay_corr);
796 init_crandom(&q->loss_cor, c->loss_corr);
797 init_crandom(&q->dup_cor, c->dup_corr);
798}
799
800static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
801{
802 const struct tc_netem_reorder *r = nla_data(attr);
803
804 q->reorder = r->probability;
805 init_crandom(&q->reorder_cor, r->correlation);
806}
807
808static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
809{
810 const struct tc_netem_corrupt *r = nla_data(attr);
811
812 q->corrupt = r->probability;
813 init_crandom(&q->corrupt_cor, r->correlation);
814}
815
816static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
817{
818 const struct tc_netem_rate *r = nla_data(attr);
819
820 q->rate = r->rate;
821 q->packet_overhead = r->packet_overhead;
822 q->cell_size = r->cell_size;
823 q->cell_overhead = r->cell_overhead;
824 if (q->cell_size)
825 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
826 else
827 q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
828}
829
830static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
831{
832 const struct nlattr *la;
833 int rem;
834
835 nla_for_each_nested(la, attr, rem) {
836 u16 type = nla_type(la);
837
838 switch (type) {
839 case NETEM_LOSS_GI: {
840 const struct tc_netem_gimodel *gi = nla_data(la);
841
842 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
843 pr_info("netem: incorrect gi model size\n");
844 return -EINVAL;
845 }
846
847 q->loss_model = CLG_4_STATES;
848
849 q->clg.state = TX_IN_GAP_PERIOD;
850 q->clg.a1 = gi->p13;
851 q->clg.a2 = gi->p31;
852 q->clg.a3 = gi->p32;
853 q->clg.a4 = gi->p14;
854 q->clg.a5 = gi->p23;
855 break;
856 }
857
858 case NETEM_LOSS_GE: {
859 const struct tc_netem_gemodel *ge = nla_data(la);
860
861 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
862 pr_info("netem: incorrect ge model size\n");
863 return -EINVAL;
864 }
865
866 q->loss_model = CLG_GILB_ELL;
867 q->clg.state = GOOD_STATE;
868 q->clg.a1 = ge->p;
869 q->clg.a2 = ge->r;
870 q->clg.a3 = ge->h;
871 q->clg.a4 = ge->k1;
872 break;
873 }
874
875 default:
876 pr_info("netem: unknown loss type %u\n", type);
877 return -EINVAL;
878 }
879 }
880
881 return 0;
882}
883
884static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
885 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
886 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
887 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
888 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
889 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
890 [TCA_NETEM_ECN] = { .type = NLA_U32 },
891 [TCA_NETEM_RATE64] = { .type = NLA_U64 },
892 [TCA_NETEM_LATENCY64] = { .type = NLA_S64 },
893 [TCA_NETEM_JITTER64] = { .type = NLA_S64 },
894 [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) },
895};
896
897static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
898 const struct nla_policy *policy, int len)
899{
900 int nested_len = nla_len(nla) - NLA_ALIGN(len);
901
902 if (nested_len < 0) {
903 pr_info("netem: invalid attributes len %d\n", nested_len);
904 return -EINVAL;
905 }
906
907 if (nested_len >= nla_attr_size(0))
908 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
909 nested_len, policy, NULL);
910
911 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
912 return 0;
913}
914
915/* Parse netlink message to set options */
916static int netem_change(struct Qdisc *sch, struct nlattr *opt,
917 struct netlink_ext_ack *extack)
918{
919 struct netem_sched_data *q = qdisc_priv(sch);
920 struct nlattr *tb[TCA_NETEM_MAX + 1];
921 struct tc_netem_qopt *qopt;
922 struct clgstate old_clg;
923 int old_loss_model = CLG_RANDOM;
924 int ret;
925
926 if (opt == NULL)
927 return -EINVAL;
928
929 qopt = nla_data(opt);
930 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
931 if (ret < 0)
932 return ret;
933
934 /* backup q->clg and q->loss_model */
935 old_clg = q->clg;
936 old_loss_model = q->loss_model;
937
938 if (tb[TCA_NETEM_LOSS]) {
939 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
940 if (ret) {
941 q->loss_model = old_loss_model;
942 return ret;
943 }
944 } else {
945 q->loss_model = CLG_RANDOM;
946 }
947
948 if (tb[TCA_NETEM_DELAY_DIST]) {
949 ret = get_dist_table(sch, &q->delay_dist,
950 tb[TCA_NETEM_DELAY_DIST]);
951 if (ret)
952 goto get_table_failure;
953 }
954
955 if (tb[TCA_NETEM_SLOT_DIST]) {
956 ret = get_dist_table(sch, &q->slot_dist,
957 tb[TCA_NETEM_SLOT_DIST]);
958 if (ret)
959 goto get_table_failure;
960 }
961
962 sch->limit = qopt->limit;
963
964 q->latency = PSCHED_TICKS2NS(qopt->latency);
965 q->jitter = PSCHED_TICKS2NS(qopt->jitter);
966 q->limit = qopt->limit;
967 q->gap = qopt->gap;
968 q->counter = 0;
969 q->loss = qopt->loss;
970 q->duplicate = qopt->duplicate;
971
972 /* for compatibility with earlier versions.
973 * if gap is set, need to assume 100% probability
974 */
975 if (q->gap)
976 q->reorder = ~0;
977
978 if (tb[TCA_NETEM_CORR])
979 get_correlation(q, tb[TCA_NETEM_CORR]);
980
981 if (tb[TCA_NETEM_REORDER])
982 get_reorder(q, tb[TCA_NETEM_REORDER]);
983
984 if (tb[TCA_NETEM_CORRUPT])
985 get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
986
987 if (tb[TCA_NETEM_RATE])
988 get_rate(q, tb[TCA_NETEM_RATE]);
989
990 if (tb[TCA_NETEM_RATE64])
991 q->rate = max_t(u64, q->rate,
992 nla_get_u64(tb[TCA_NETEM_RATE64]));
993
994 if (tb[TCA_NETEM_LATENCY64])
995 q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
996
997 if (tb[TCA_NETEM_JITTER64])
998 q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
999
1000 if (tb[TCA_NETEM_ECN])
1001 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1002
1003 if (tb[TCA_NETEM_SLOT])
1004 get_slot(q, tb[TCA_NETEM_SLOT]);
1005
1006 return ret;
1007
1008get_table_failure:
1009 /* recover clg and loss_model, in case of
1010 * q->clg and q->loss_model were modified
1011 * in get_loss_clg()
1012 */
1013 q->clg = old_clg;
1014 q->loss_model = old_loss_model;
1015 return ret;
1016}
1017
1018static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1019 struct netlink_ext_ack *extack)
1020{
1021 struct netem_sched_data *q = qdisc_priv(sch);
1022 int ret;
1023
1024 qdisc_watchdog_init(&q->watchdog, sch);
1025
1026 if (!opt)
1027 return -EINVAL;
1028
1029 q->loss_model = CLG_RANDOM;
1030 ret = netem_change(sch, opt, extack);
1031 if (ret)
1032 pr_info("netem: change failed\n");
1033 return ret;
1034}
1035
1036static void netem_destroy(struct Qdisc *sch)
1037{
1038 struct netem_sched_data *q = qdisc_priv(sch);
1039
1040 qdisc_watchdog_cancel(&q->watchdog);
1041 if (q->qdisc)
1042 qdisc_destroy(q->qdisc);
1043 dist_free(q->delay_dist);
1044 dist_free(q->slot_dist);
1045}
1046
1047static int dump_loss_model(const struct netem_sched_data *q,
1048 struct sk_buff *skb)
1049{
1050 struct nlattr *nest;
1051
1052 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
1053 if (nest == NULL)
1054 goto nla_put_failure;
1055
1056 switch (q->loss_model) {
1057 case CLG_RANDOM:
1058 /* legacy loss model */
1059 nla_nest_cancel(skb, nest);
1060 return 0; /* no data */
1061
1062 case CLG_4_STATES: {
1063 struct tc_netem_gimodel gi = {
1064 .p13 = q->clg.a1,
1065 .p31 = q->clg.a2,
1066 .p32 = q->clg.a3,
1067 .p14 = q->clg.a4,
1068 .p23 = q->clg.a5,
1069 };
1070
1071 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1072 goto nla_put_failure;
1073 break;
1074 }
1075 case CLG_GILB_ELL: {
1076 struct tc_netem_gemodel ge = {
1077 .p = q->clg.a1,
1078 .r = q->clg.a2,
1079 .h = q->clg.a3,
1080 .k1 = q->clg.a4,
1081 };
1082
1083 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1084 goto nla_put_failure;
1085 break;
1086 }
1087 }
1088
1089 nla_nest_end(skb, nest);
1090 return 0;
1091
1092nla_put_failure:
1093 nla_nest_cancel(skb, nest);
1094 return -1;
1095}
1096
1097static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1098{
1099 const struct netem_sched_data *q = qdisc_priv(sch);
1100 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1101 struct tc_netem_qopt qopt;
1102 struct tc_netem_corr cor;
1103 struct tc_netem_reorder reorder;
1104 struct tc_netem_corrupt corrupt;
1105 struct tc_netem_rate rate;
1106 struct tc_netem_slot slot;
1107
1108 qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1109 UINT_MAX);
1110 qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1111 UINT_MAX);
1112 qopt.limit = q->limit;
1113 qopt.loss = q->loss;
1114 qopt.gap = q->gap;
1115 qopt.duplicate = q->duplicate;
1116 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1117 goto nla_put_failure;
1118
1119 if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1120 goto nla_put_failure;
1121
1122 if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1123 goto nla_put_failure;
1124
1125 cor.delay_corr = q->delay_cor.rho;
1126 cor.loss_corr = q->loss_cor.rho;
1127 cor.dup_corr = q->dup_cor.rho;
1128 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1129 goto nla_put_failure;
1130
1131 reorder.probability = q->reorder;
1132 reorder.correlation = q->reorder_cor.rho;
1133 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1134 goto nla_put_failure;
1135
1136 corrupt.probability = q->corrupt;
1137 corrupt.correlation = q->corrupt_cor.rho;
1138 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1139 goto nla_put_failure;
1140
1141 if (q->rate >= (1ULL << 32)) {
1142 if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1143 TCA_NETEM_PAD))
1144 goto nla_put_failure;
1145 rate.rate = ~0U;
1146 } else {
1147 rate.rate = q->rate;
1148 }
1149 rate.packet_overhead = q->packet_overhead;
1150 rate.cell_size = q->cell_size;
1151 rate.cell_overhead = q->cell_overhead;
1152 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1153 goto nla_put_failure;
1154
1155 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1156 goto nla_put_failure;
1157
1158 if (dump_loss_model(q, skb) != 0)
1159 goto nla_put_failure;
1160
1161 if (q->slot_config.min_delay | q->slot_config.max_delay |
1162 q->slot_config.dist_jitter) {
1163 slot = q->slot_config;
1164 if (slot.max_packets == INT_MAX)
1165 slot.max_packets = 0;
1166 if (slot.max_bytes == INT_MAX)
1167 slot.max_bytes = 0;
1168 if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1169 goto nla_put_failure;
1170 }
1171
1172 return nla_nest_end(skb, nla);
1173
1174nla_put_failure:
1175 nlmsg_trim(skb, nla);
1176 return -1;
1177}
1178
1179static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1180 struct sk_buff *skb, struct tcmsg *tcm)
1181{
1182 struct netem_sched_data *q = qdisc_priv(sch);
1183
1184 if (cl != 1 || !q->qdisc) /* only one class */
1185 return -ENOENT;
1186
1187 tcm->tcm_handle |= TC_H_MIN(1);
1188 tcm->tcm_info = q->qdisc->handle;
1189
1190 return 0;
1191}
1192
1193static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1194 struct Qdisc **old, struct netlink_ext_ack *extack)
1195{
1196 struct netem_sched_data *q = qdisc_priv(sch);
1197
1198 *old = qdisc_replace(sch, new, &q->qdisc);
1199 return 0;
1200}
1201
1202static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1203{
1204 struct netem_sched_data *q = qdisc_priv(sch);
1205 return q->qdisc;
1206}
1207
1208static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1209{
1210 return 1;
1211}
1212
1213static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1214{
1215 if (!walker->stop) {
1216 if (walker->count >= walker->skip)
1217 if (walker->fn(sch, 1, walker) < 0) {
1218 walker->stop = 1;
1219 return;
1220 }
1221 walker->count++;
1222 }
1223}
1224
1225static const struct Qdisc_class_ops netem_class_ops = {
1226 .graft = netem_graft,
1227 .leaf = netem_leaf,
1228 .find = netem_find,
1229 .walk = netem_walk,
1230 .dump = netem_dump_class,
1231};
1232
1233static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1234 .id = "netem",
1235 .cl_ops = &netem_class_ops,
1236 .priv_size = sizeof(struct netem_sched_data),
1237 .enqueue = netem_enqueue,
1238 .dequeue = netem_dequeue,
1239 .peek = qdisc_peek_dequeued,
1240 .init = netem_init,
1241 .reset = netem_reset,
1242 .destroy = netem_destroy,
1243 .change = netem_change,
1244 .dump = netem_dump,
1245 .owner = THIS_MODULE,
1246};
1247
1248
1249static int __init netem_module_init(void)
1250{
1251 pr_info("netem: version " VERSION "\n");
1252 return register_qdisc(&netem_qdisc_ops);
1253}
1254static void __exit netem_module_exit(void)
1255{
1256 unregister_qdisc(&netem_qdisc_ops);
1257}
1258module_init(netem_module_init)
1259module_exit(netem_module_exit)
1260MODULE_LICENSE("GPL");