blob: 918260b65c6025cb0be5ee68235606d1767bda3c [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2#include "util.h"
3#include "build-id.h"
4#include "hist.h"
5#include "map.h"
6#include "session.h"
7#include "namespaces.h"
8#include "sort.h"
9#include "units.h"
10#include "evlist.h"
11#include "evsel.h"
12#include "annotate.h"
13#include "srcline.h"
14#include "thread.h"
15#include "ui/progress.h"
16#include <errno.h>
17#include <math.h>
18#include <inttypes.h>
19#include <sys/param.h>
20
21static bool hists__filter_entry_by_dso(struct hists *hists,
22 struct hist_entry *he);
23static bool hists__filter_entry_by_thread(struct hists *hists,
24 struct hist_entry *he);
25static bool hists__filter_entry_by_symbol(struct hists *hists,
26 struct hist_entry *he);
27static bool hists__filter_entry_by_socket(struct hists *hists,
28 struct hist_entry *he);
29
30u16 hists__col_len(struct hists *hists, enum hist_column col)
31{
32 return hists->col_len[col];
33}
34
35void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
36{
37 hists->col_len[col] = len;
38}
39
40bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
41{
42 if (len > hists__col_len(hists, col)) {
43 hists__set_col_len(hists, col, len);
44 return true;
45 }
46 return false;
47}
48
49void hists__reset_col_len(struct hists *hists)
50{
51 enum hist_column col;
52
53 for (col = 0; col < HISTC_NR_COLS; ++col)
54 hists__set_col_len(hists, col, 0);
55}
56
57static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
58{
59 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
60
61 if (hists__col_len(hists, dso) < unresolved_col_width &&
62 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
63 !symbol_conf.dso_list)
64 hists__set_col_len(hists, dso, unresolved_col_width);
65}
66
67void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
68{
69 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70 int symlen;
71 u16 len;
72
73 /*
74 * +4 accounts for '[x] ' priv level info
75 * +2 accounts for 0x prefix on raw addresses
76 * +3 accounts for ' y ' symtab origin info
77 */
78 if (h->ms.sym) {
79 symlen = h->ms.sym->namelen + 4;
80 if (verbose > 0)
81 symlen += BITS_PER_LONG / 4 + 2 + 3;
82 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 } else {
84 symlen = unresolved_col_width + 4 + 2;
85 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
86 hists__set_unres_dso_col_len(hists, HISTC_DSO);
87 }
88
89 len = thread__comm_len(h->thread);
90 if (hists__new_col_len(hists, HISTC_COMM, len))
91 hists__set_col_len(hists, HISTC_THREAD, len + 8);
92
93 if (h->ms.map) {
94 len = dso__name_len(h->ms.map->dso);
95 hists__new_col_len(hists, HISTC_DSO, len);
96 }
97
98 if (h->parent)
99 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
100
101 if (h->branch_info) {
102 if (h->branch_info->from.sym) {
103 symlen = (int)h->branch_info->from.sym->namelen + 4;
104 if (verbose > 0)
105 symlen += BITS_PER_LONG / 4 + 2 + 3;
106 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
107
108 symlen = dso__name_len(h->branch_info->from.map->dso);
109 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
110 } else {
111 symlen = unresolved_col_width + 4 + 2;
112 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
113 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
114 }
115
116 if (h->branch_info->to.sym) {
117 symlen = (int)h->branch_info->to.sym->namelen + 4;
118 if (verbose > 0)
119 symlen += BITS_PER_LONG / 4 + 2 + 3;
120 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
121
122 symlen = dso__name_len(h->branch_info->to.map->dso);
123 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
124 } else {
125 symlen = unresolved_col_width + 4 + 2;
126 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
127 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
128 }
129
130 if (h->branch_info->srcline_from)
131 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
132 strlen(h->branch_info->srcline_from));
133 if (h->branch_info->srcline_to)
134 hists__new_col_len(hists, HISTC_SRCLINE_TO,
135 strlen(h->branch_info->srcline_to));
136 }
137
138 if (h->mem_info) {
139 if (h->mem_info->daddr.sym) {
140 symlen = (int)h->mem_info->daddr.sym->namelen + 4
141 + unresolved_col_width + 2;
142 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
143 symlen);
144 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
145 symlen + 1);
146 } else {
147 symlen = unresolved_col_width + 4 + 2;
148 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
149 symlen);
150 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
151 symlen);
152 }
153
154 if (h->mem_info->iaddr.sym) {
155 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
156 + unresolved_col_width + 2;
157 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
158 symlen);
159 } else {
160 symlen = unresolved_col_width + 4 + 2;
161 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
162 symlen);
163 }
164
165 if (h->mem_info->daddr.map) {
166 symlen = dso__name_len(h->mem_info->daddr.map->dso);
167 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
168 symlen);
169 } else {
170 symlen = unresolved_col_width + 4 + 2;
171 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
172 }
173
174 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
175 unresolved_col_width + 4 + 2);
176
177 } else {
178 symlen = unresolved_col_width + 4 + 2;
179 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
180 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
181 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 }
183
184 hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
185 hists__new_col_len(hists, HISTC_CPU, 3);
186 hists__new_col_len(hists, HISTC_SOCKET, 6);
187 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
188 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
189 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
190 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
191 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
192 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
193
194 if (h->srcline) {
195 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
196 hists__new_col_len(hists, HISTC_SRCLINE, len);
197 }
198
199 if (h->srcfile)
200 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
201
202 if (h->transaction)
203 hists__new_col_len(hists, HISTC_TRANSACTION,
204 hist_entry__transaction_len());
205
206 if (h->trace_output)
207 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
208}
209
210void hists__output_recalc_col_len(struct hists *hists, int max_rows)
211{
212 struct rb_node *next = rb_first(&hists->entries);
213 struct hist_entry *n;
214 int row = 0;
215
216 hists__reset_col_len(hists);
217
218 while (next && row++ < max_rows) {
219 n = rb_entry(next, struct hist_entry, rb_node);
220 if (!n->filtered)
221 hists__calc_col_len(hists, n);
222 next = rb_next(&n->rb_node);
223 }
224}
225
226static void he_stat__add_cpumode_period(struct he_stat *he_stat,
227 unsigned int cpumode, u64 period)
228{
229 switch (cpumode) {
230 case PERF_RECORD_MISC_KERNEL:
231 he_stat->period_sys += period;
232 break;
233 case PERF_RECORD_MISC_USER:
234 he_stat->period_us += period;
235 break;
236 case PERF_RECORD_MISC_GUEST_KERNEL:
237 he_stat->period_guest_sys += period;
238 break;
239 case PERF_RECORD_MISC_GUEST_USER:
240 he_stat->period_guest_us += period;
241 break;
242 default:
243 break;
244 }
245}
246
247static void he_stat__add_period(struct he_stat *he_stat, u64 period,
248 u64 weight)
249{
250
251 he_stat->period += period;
252 he_stat->weight += weight;
253 he_stat->nr_events += 1;
254}
255
256static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
257{
258 dest->period += src->period;
259 dest->period_sys += src->period_sys;
260 dest->period_us += src->period_us;
261 dest->period_guest_sys += src->period_guest_sys;
262 dest->period_guest_us += src->period_guest_us;
263 dest->nr_events += src->nr_events;
264 dest->weight += src->weight;
265}
266
267static void he_stat__decay(struct he_stat *he_stat)
268{
269 he_stat->period = (he_stat->period * 7) / 8;
270 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
271 /* XXX need decay for weight too? */
272}
273
274static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
275
276static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
277{
278 u64 prev_period = he->stat.period;
279 u64 diff;
280
281 if (prev_period == 0)
282 return true;
283
284 he_stat__decay(&he->stat);
285 if (symbol_conf.cumulate_callchain)
286 he_stat__decay(he->stat_acc);
287 decay_callchain(he->callchain);
288
289 diff = prev_period - he->stat.period;
290
291 if (!he->depth) {
292 hists->stats.total_period -= diff;
293 if (!he->filtered)
294 hists->stats.total_non_filtered_period -= diff;
295 }
296
297 if (!he->leaf) {
298 struct hist_entry *child;
299 struct rb_node *node = rb_first(&he->hroot_out);
300 while (node) {
301 child = rb_entry(node, struct hist_entry, rb_node);
302 node = rb_next(node);
303
304 if (hists__decay_entry(hists, child))
305 hists__delete_entry(hists, child);
306 }
307 }
308
309 return he->stat.period == 0;
310}
311
312static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
313{
314 struct rb_root *root_in;
315 struct rb_root *root_out;
316
317 if (he->parent_he) {
318 root_in = &he->parent_he->hroot_in;
319 root_out = &he->parent_he->hroot_out;
320 } else {
321 if (hists__has(hists, need_collapse))
322 root_in = &hists->entries_collapsed;
323 else
324 root_in = hists->entries_in;
325 root_out = &hists->entries;
326 }
327
328 rb_erase(&he->rb_node_in, root_in);
329 rb_erase(&he->rb_node, root_out);
330
331 --hists->nr_entries;
332 if (!he->filtered)
333 --hists->nr_non_filtered_entries;
334
335 hist_entry__delete(he);
336}
337
338void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
339{
340 struct rb_node *next = rb_first(&hists->entries);
341 struct hist_entry *n;
342
343 while (next) {
344 n = rb_entry(next, struct hist_entry, rb_node);
345 next = rb_next(&n->rb_node);
346 if (((zap_user && n->level == '.') ||
347 (zap_kernel && n->level != '.') ||
348 hists__decay_entry(hists, n))) {
349 hists__delete_entry(hists, n);
350 }
351 }
352}
353
354void hists__delete_entries(struct hists *hists)
355{
356 struct rb_node *next = rb_first(&hists->entries);
357 struct hist_entry *n;
358
359 while (next) {
360 n = rb_entry(next, struct hist_entry, rb_node);
361 next = rb_next(&n->rb_node);
362
363 hists__delete_entry(hists, n);
364 }
365}
366
367/*
368 * histogram, sorted on item, collects periods
369 */
370
371static int hist_entry__init(struct hist_entry *he,
372 struct hist_entry *template,
373 bool sample_self,
374 size_t callchain_size)
375{
376 *he = *template;
377 he->callchain_size = callchain_size;
378
379 if (symbol_conf.cumulate_callchain) {
380 he->stat_acc = malloc(sizeof(he->stat));
381 if (he->stat_acc == NULL)
382 return -ENOMEM;
383 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
384 if (!sample_self)
385 memset(&he->stat, 0, sizeof(he->stat));
386 }
387
388 map__get(he->ms.map);
389
390 if (he->branch_info) {
391 /*
392 * This branch info is (a part of) allocated from
393 * sample__resolve_bstack() and will be freed after
394 * adding new entries. So we need to save a copy.
395 */
396 he->branch_info = malloc(sizeof(*he->branch_info));
397 if (he->branch_info == NULL) {
398 map__zput(he->ms.map);
399 free(he->stat_acc);
400 return -ENOMEM;
401 }
402
403 memcpy(he->branch_info, template->branch_info,
404 sizeof(*he->branch_info));
405
406 map__get(he->branch_info->from.map);
407 map__get(he->branch_info->to.map);
408 }
409
410 if (he->mem_info) {
411 map__get(he->mem_info->iaddr.map);
412 map__get(he->mem_info->daddr.map);
413 }
414
415 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
416 callchain_init(he->callchain);
417
418 if (he->raw_data) {
419 he->raw_data = memdup(he->raw_data, he->raw_size);
420
421 if (he->raw_data == NULL) {
422 map__put(he->ms.map);
423 if (he->branch_info) {
424 map__put(he->branch_info->from.map);
425 map__put(he->branch_info->to.map);
426 free(he->branch_info);
427 }
428 if (he->mem_info) {
429 map__put(he->mem_info->iaddr.map);
430 map__put(he->mem_info->daddr.map);
431 }
432 free(he->stat_acc);
433 return -ENOMEM;
434 }
435 }
436 INIT_LIST_HEAD(&he->pairs.node);
437 thread__get(he->thread);
438 he->hroot_in = RB_ROOT;
439 he->hroot_out = RB_ROOT;
440
441 if (!symbol_conf.report_hierarchy)
442 he->leaf = true;
443
444 return 0;
445}
446
447static void *hist_entry__zalloc(size_t size)
448{
449 return zalloc(size + sizeof(struct hist_entry));
450}
451
452static void hist_entry__free(void *ptr)
453{
454 free(ptr);
455}
456
457static struct hist_entry_ops default_ops = {
458 .new = hist_entry__zalloc,
459 .free = hist_entry__free,
460};
461
462static struct hist_entry *hist_entry__new(struct hist_entry *template,
463 bool sample_self)
464{
465 struct hist_entry_ops *ops = template->ops;
466 size_t callchain_size = 0;
467 struct hist_entry *he;
468 int err = 0;
469
470 if (!ops)
471 ops = template->ops = &default_ops;
472
473 if (symbol_conf.use_callchain)
474 callchain_size = sizeof(struct callchain_root);
475
476 he = ops->new(callchain_size);
477 if (he) {
478 err = hist_entry__init(he, template, sample_self, callchain_size);
479 if (err) {
480 ops->free(he);
481 he = NULL;
482 }
483 }
484
485 return he;
486}
487
488static u8 symbol__parent_filter(const struct symbol *parent)
489{
490 if (symbol_conf.exclude_other && parent == NULL)
491 return 1 << HIST_FILTER__PARENT;
492 return 0;
493}
494
495static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
496{
497 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
498 return;
499
500 he->hists->callchain_period += period;
501 if (!he->filtered)
502 he->hists->callchain_non_filtered_period += period;
503}
504
505static struct hist_entry *hists__findnew_entry(struct hists *hists,
506 struct hist_entry *entry,
507 struct addr_location *al,
508 bool sample_self)
509{
510 struct rb_node **p;
511 struct rb_node *parent = NULL;
512 struct hist_entry *he;
513 int64_t cmp;
514 u64 period = entry->stat.period;
515 u64 weight = entry->stat.weight;
516
517 p = &hists->entries_in->rb_node;
518
519 while (*p != NULL) {
520 parent = *p;
521 he = rb_entry(parent, struct hist_entry, rb_node_in);
522
523 /*
524 * Make sure that it receives arguments in a same order as
525 * hist_entry__collapse() so that we can use an appropriate
526 * function when searching an entry regardless which sort
527 * keys were used.
528 */
529 cmp = hist_entry__cmp(he, entry);
530
531 if (!cmp) {
532 if (sample_self) {
533 he_stat__add_period(&he->stat, period, weight);
534 hist_entry__add_callchain_period(he, period);
535 }
536 if (symbol_conf.cumulate_callchain)
537 he_stat__add_period(he->stat_acc, period, weight);
538
539 /*
540 * This mem info was allocated from sample__resolve_mem
541 * and will not be used anymore.
542 */
543 mem_info__zput(entry->mem_info);
544
545 /* If the map of an existing hist_entry has
546 * become out-of-date due to an exec() or
547 * similar, update it. Otherwise we will
548 * mis-adjust symbol addresses when computing
549 * the history counter to increment.
550 */
551 if (he->ms.map != entry->ms.map) {
552 map__put(he->ms.map);
553 he->ms.map = map__get(entry->ms.map);
554 }
555 goto out;
556 }
557
558 if (cmp < 0)
559 p = &(*p)->rb_left;
560 else
561 p = &(*p)->rb_right;
562 }
563
564 he = hist_entry__new(entry, sample_self);
565 if (!he)
566 return NULL;
567
568 if (sample_self)
569 hist_entry__add_callchain_period(he, period);
570 hists->nr_entries++;
571
572 rb_link_node(&he->rb_node_in, parent, p);
573 rb_insert_color(&he->rb_node_in, hists->entries_in);
574out:
575 if (sample_self)
576 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
577 if (symbol_conf.cumulate_callchain)
578 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
579 return he;
580}
581
582static struct hist_entry*
583__hists__add_entry(struct hists *hists,
584 struct addr_location *al,
585 struct symbol *sym_parent,
586 struct branch_info *bi,
587 struct mem_info *mi,
588 struct perf_sample *sample,
589 bool sample_self,
590 struct hist_entry_ops *ops)
591{
592 struct namespaces *ns = thread__namespaces(al->thread);
593 struct hist_entry entry = {
594 .thread = al->thread,
595 .comm = thread__comm(al->thread),
596 .cgroup_id = {
597 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
598 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
599 },
600 .ms = {
601 .map = al->map,
602 .sym = al->sym,
603 },
604 .srcline = al->srcline ? strdup(al->srcline) : NULL,
605 .socket = al->socket,
606 .cpu = al->cpu,
607 .cpumode = al->cpumode,
608 .ip = al->addr,
609 .level = al->level,
610 .stat = {
611 .nr_events = 1,
612 .period = sample->period,
613 .weight = sample->weight,
614 },
615 .parent = sym_parent,
616 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
617 .hists = hists,
618 .branch_info = bi,
619 .mem_info = mi,
620 .transaction = sample->transaction,
621 .raw_data = sample->raw_data,
622 .raw_size = sample->raw_size,
623 .ops = ops,
624 }, *he = hists__findnew_entry(hists, &entry, al, sample_self);
625
626 if (!hists->has_callchains && he && he->callchain_size != 0)
627 hists->has_callchains = true;
628 return he;
629}
630
631struct hist_entry *hists__add_entry(struct hists *hists,
632 struct addr_location *al,
633 struct symbol *sym_parent,
634 struct branch_info *bi,
635 struct mem_info *mi,
636 struct perf_sample *sample,
637 bool sample_self)
638{
639 return __hists__add_entry(hists, al, sym_parent, bi, mi,
640 sample, sample_self, NULL);
641}
642
643struct hist_entry *hists__add_entry_ops(struct hists *hists,
644 struct hist_entry_ops *ops,
645 struct addr_location *al,
646 struct symbol *sym_parent,
647 struct branch_info *bi,
648 struct mem_info *mi,
649 struct perf_sample *sample,
650 bool sample_self)
651{
652 return __hists__add_entry(hists, al, sym_parent, bi, mi,
653 sample, sample_self, ops);
654}
655
656static int
657iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
658 struct addr_location *al __maybe_unused)
659{
660 return 0;
661}
662
663static int
664iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
665 struct addr_location *al __maybe_unused)
666{
667 return 0;
668}
669
670static int
671iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
672{
673 struct perf_sample *sample = iter->sample;
674 struct mem_info *mi;
675
676 mi = sample__resolve_mem(sample, al);
677 if (mi == NULL)
678 return -ENOMEM;
679
680 iter->priv = mi;
681 return 0;
682}
683
684static int
685iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
686{
687 u64 cost;
688 struct mem_info *mi = iter->priv;
689 struct hists *hists = evsel__hists(iter->evsel);
690 struct perf_sample *sample = iter->sample;
691 struct hist_entry *he;
692
693 if (mi == NULL)
694 return -EINVAL;
695
696 cost = sample->weight;
697 if (!cost)
698 cost = 1;
699
700 /*
701 * must pass period=weight in order to get the correct
702 * sorting from hists__collapse_resort() which is solely
703 * based on periods. We want sorting be done on nr_events * weight
704 * and this is indirectly achieved by passing period=weight here
705 * and the he_stat__add_period() function.
706 */
707 sample->period = cost;
708
709 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
710 sample, true);
711 if (!he)
712 return -ENOMEM;
713
714 iter->he = he;
715 return 0;
716}
717
718static int
719iter_finish_mem_entry(struct hist_entry_iter *iter,
720 struct addr_location *al __maybe_unused)
721{
722 struct perf_evsel *evsel = iter->evsel;
723 struct hists *hists = evsel__hists(evsel);
724 struct hist_entry *he = iter->he;
725 int err = -EINVAL;
726
727 if (he == NULL)
728 goto out;
729
730 hists__inc_nr_samples(hists, he->filtered);
731
732 err = hist_entry__append_callchain(he, iter->sample);
733
734out:
735 /*
736 * We don't need to free iter->priv (mem_info) here since the mem info
737 * was either already freed in hists__findnew_entry() or passed to a
738 * new hist entry by hist_entry__new().
739 */
740 iter->priv = NULL;
741
742 iter->he = NULL;
743 return err;
744}
745
746static int
747iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
748{
749 struct branch_info *bi;
750 struct perf_sample *sample = iter->sample;
751
752 bi = sample__resolve_bstack(sample, al);
753 if (!bi)
754 return -ENOMEM;
755
756 iter->curr = 0;
757 iter->total = sample->branch_stack->nr;
758
759 iter->priv = bi;
760 return 0;
761}
762
763static int
764iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
765 struct addr_location *al __maybe_unused)
766{
767 return 0;
768}
769
770static int
771iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
772{
773 struct branch_info *bi = iter->priv;
774 int i = iter->curr;
775
776 if (bi == NULL)
777 return 0;
778
779 if (iter->curr >= iter->total)
780 return 0;
781
782 al->map = bi[i].to.map;
783 al->sym = bi[i].to.sym;
784 al->addr = bi[i].to.addr;
785 return 1;
786}
787
788static int
789iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
790{
791 struct branch_info *bi;
792 struct perf_evsel *evsel = iter->evsel;
793 struct hists *hists = evsel__hists(evsel);
794 struct perf_sample *sample = iter->sample;
795 struct hist_entry *he = NULL;
796 int i = iter->curr;
797 int err = 0;
798
799 bi = iter->priv;
800
801 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
802 goto out;
803
804 /*
805 * The report shows the percentage of total branches captured
806 * and not events sampled. Thus we use a pseudo period of 1.
807 */
808 sample->period = 1;
809 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
810
811 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
812 sample, true);
813 if (he == NULL)
814 return -ENOMEM;
815
816 hists__inc_nr_samples(hists, he->filtered);
817
818out:
819 iter->he = he;
820 iter->curr++;
821 return err;
822}
823
824static int
825iter_finish_branch_entry(struct hist_entry_iter *iter,
826 struct addr_location *al __maybe_unused)
827{
828 zfree(&iter->priv);
829 iter->he = NULL;
830
831 return iter->curr >= iter->total ? 0 : -1;
832}
833
834static int
835iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
836 struct addr_location *al __maybe_unused)
837{
838 return 0;
839}
840
841static int
842iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
843{
844 struct perf_evsel *evsel = iter->evsel;
845 struct perf_sample *sample = iter->sample;
846 struct hist_entry *he;
847
848 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
849 sample, true);
850 if (he == NULL)
851 return -ENOMEM;
852
853 iter->he = he;
854 return 0;
855}
856
857static int
858iter_finish_normal_entry(struct hist_entry_iter *iter,
859 struct addr_location *al __maybe_unused)
860{
861 struct hist_entry *he = iter->he;
862 struct perf_evsel *evsel = iter->evsel;
863 struct perf_sample *sample = iter->sample;
864
865 if (he == NULL)
866 return 0;
867
868 iter->he = NULL;
869
870 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
871
872 return hist_entry__append_callchain(he, sample);
873}
874
875static int
876iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
877 struct addr_location *al __maybe_unused)
878{
879 struct hist_entry **he_cache;
880
881 callchain_cursor_commit(&callchain_cursor);
882
883 /*
884 * This is for detecting cycles or recursions so that they're
885 * cumulated only one time to prevent entries more than 100%
886 * overhead.
887 */
888 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
889 if (he_cache == NULL)
890 return -ENOMEM;
891
892 iter->priv = he_cache;
893 iter->curr = 0;
894
895 return 0;
896}
897
898static int
899iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
900 struct addr_location *al)
901{
902 struct perf_evsel *evsel = iter->evsel;
903 struct hists *hists = evsel__hists(evsel);
904 struct perf_sample *sample = iter->sample;
905 struct hist_entry **he_cache = iter->priv;
906 struct hist_entry *he;
907 int err = 0;
908
909 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
910 sample, true);
911 if (he == NULL)
912 return -ENOMEM;
913
914 iter->he = he;
915 he_cache[iter->curr++] = he;
916
917 hist_entry__append_callchain(he, sample);
918
919 /*
920 * We need to re-initialize the cursor since callchain_append()
921 * advanced the cursor to the end.
922 */
923 callchain_cursor_commit(&callchain_cursor);
924
925 hists__inc_nr_samples(hists, he->filtered);
926
927 return err;
928}
929
930static int
931iter_next_cumulative_entry(struct hist_entry_iter *iter,
932 struct addr_location *al)
933{
934 struct callchain_cursor_node *node;
935
936 node = callchain_cursor_current(&callchain_cursor);
937 if (node == NULL)
938 return 0;
939
940 return fill_callchain_info(al, node, iter->hide_unresolved);
941}
942
943static int
944iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
945 struct addr_location *al)
946{
947 struct perf_evsel *evsel = iter->evsel;
948 struct perf_sample *sample = iter->sample;
949 struct hist_entry **he_cache = iter->priv;
950 struct hist_entry *he;
951 struct hist_entry he_tmp = {
952 .hists = evsel__hists(evsel),
953 .cpu = al->cpu,
954 .thread = al->thread,
955 .comm = thread__comm(al->thread),
956 .ip = al->addr,
957 .ms = {
958 .map = al->map,
959 .sym = al->sym,
960 },
961 .srcline = al->srcline ? strdup(al->srcline) : NULL,
962 .parent = iter->parent,
963 .raw_data = sample->raw_data,
964 .raw_size = sample->raw_size,
965 };
966 int i;
967 struct callchain_cursor cursor;
968
969 callchain_cursor_snapshot(&cursor, &callchain_cursor);
970
971 callchain_cursor_advance(&callchain_cursor);
972
973 /*
974 * Check if there's duplicate entries in the callchain.
975 * It's possible that it has cycles or recursive calls.
976 */
977 for (i = 0; i < iter->curr; i++) {
978 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
979 /* to avoid calling callback function */
980 iter->he = NULL;
981 return 0;
982 }
983 }
984
985 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
986 sample, false);
987 if (he == NULL)
988 return -ENOMEM;
989
990 iter->he = he;
991 he_cache[iter->curr++] = he;
992
993 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
994 callchain_append(he->callchain, &cursor, sample->period);
995 return 0;
996}
997
998static int
999iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1000 struct addr_location *al __maybe_unused)
1001{
1002 zfree(&iter->priv);
1003 iter->he = NULL;
1004
1005 return 0;
1006}
1007
1008const struct hist_iter_ops hist_iter_mem = {
1009 .prepare_entry = iter_prepare_mem_entry,
1010 .add_single_entry = iter_add_single_mem_entry,
1011 .next_entry = iter_next_nop_entry,
1012 .add_next_entry = iter_add_next_nop_entry,
1013 .finish_entry = iter_finish_mem_entry,
1014};
1015
1016const struct hist_iter_ops hist_iter_branch = {
1017 .prepare_entry = iter_prepare_branch_entry,
1018 .add_single_entry = iter_add_single_branch_entry,
1019 .next_entry = iter_next_branch_entry,
1020 .add_next_entry = iter_add_next_branch_entry,
1021 .finish_entry = iter_finish_branch_entry,
1022};
1023
1024const struct hist_iter_ops hist_iter_normal = {
1025 .prepare_entry = iter_prepare_normal_entry,
1026 .add_single_entry = iter_add_single_normal_entry,
1027 .next_entry = iter_next_nop_entry,
1028 .add_next_entry = iter_add_next_nop_entry,
1029 .finish_entry = iter_finish_normal_entry,
1030};
1031
1032const struct hist_iter_ops hist_iter_cumulative = {
1033 .prepare_entry = iter_prepare_cumulative_entry,
1034 .add_single_entry = iter_add_single_cumulative_entry,
1035 .next_entry = iter_next_cumulative_entry,
1036 .add_next_entry = iter_add_next_cumulative_entry,
1037 .finish_entry = iter_finish_cumulative_entry,
1038};
1039
1040int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1041 int max_stack_depth, void *arg)
1042{
1043 int err, err2;
1044 struct map *alm = NULL;
1045
1046 if (al)
1047 alm = map__get(al->map);
1048
1049 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1050 iter->evsel, al, max_stack_depth);
1051 if (err) {
1052 map__put(alm);
1053 return err;
1054 }
1055
1056 err = iter->ops->prepare_entry(iter, al);
1057 if (err)
1058 goto out;
1059
1060 err = iter->ops->add_single_entry(iter, al);
1061 if (err)
1062 goto out;
1063
1064 if (iter->he && iter->add_entry_cb) {
1065 err = iter->add_entry_cb(iter, al, true, arg);
1066 if (err)
1067 goto out;
1068 }
1069
1070 while (iter->ops->next_entry(iter, al)) {
1071 err = iter->ops->add_next_entry(iter, al);
1072 if (err)
1073 break;
1074
1075 if (iter->he && iter->add_entry_cb) {
1076 err = iter->add_entry_cb(iter, al, false, arg);
1077 if (err)
1078 goto out;
1079 }
1080 }
1081
1082out:
1083 err2 = iter->ops->finish_entry(iter, al);
1084 if (!err)
1085 err = err2;
1086
1087 map__put(alm);
1088
1089 return err;
1090}
1091
1092int64_t
1093hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1094{
1095 struct hists *hists = left->hists;
1096 struct perf_hpp_fmt *fmt;
1097 int64_t cmp = 0;
1098
1099 hists__for_each_sort_list(hists, fmt) {
1100 if (perf_hpp__is_dynamic_entry(fmt) &&
1101 !perf_hpp__defined_dynamic_entry(fmt, hists))
1102 continue;
1103
1104 cmp = fmt->cmp(fmt, left, right);
1105 if (cmp)
1106 break;
1107 }
1108
1109 return cmp;
1110}
1111
1112int64_t
1113hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1114{
1115 struct hists *hists = left->hists;
1116 struct perf_hpp_fmt *fmt;
1117 int64_t cmp = 0;
1118
1119 hists__for_each_sort_list(hists, fmt) {
1120 if (perf_hpp__is_dynamic_entry(fmt) &&
1121 !perf_hpp__defined_dynamic_entry(fmt, hists))
1122 continue;
1123
1124 cmp = fmt->collapse(fmt, left, right);
1125 if (cmp)
1126 break;
1127 }
1128
1129 return cmp;
1130}
1131
1132void hist_entry__delete(struct hist_entry *he)
1133{
1134 struct hist_entry_ops *ops = he->ops;
1135
1136 thread__zput(he->thread);
1137 map__zput(he->ms.map);
1138
1139 if (he->branch_info) {
1140 map__zput(he->branch_info->from.map);
1141 map__zput(he->branch_info->to.map);
1142 free_srcline(he->branch_info->srcline_from);
1143 free_srcline(he->branch_info->srcline_to);
1144 zfree(&he->branch_info);
1145 }
1146
1147 if (he->mem_info) {
1148 map__zput(he->mem_info->iaddr.map);
1149 map__zput(he->mem_info->daddr.map);
1150 mem_info__zput(he->mem_info);
1151 }
1152
1153 zfree(&he->stat_acc);
1154 free_srcline(he->srcline);
1155 if (he->srcfile && he->srcfile[0])
1156 free(he->srcfile);
1157 free_callchain(he->callchain);
1158 free(he->trace_output);
1159 free(he->raw_data);
1160 ops->free(he);
1161}
1162
1163/*
1164 * If this is not the last column, then we need to pad it according to the
1165 * pre-calculated max lenght for this column, otherwise don't bother adding
1166 * spaces because that would break viewing this with, for instance, 'less',
1167 * that would show tons of trailing spaces when a long C++ demangled method
1168 * names is sampled.
1169*/
1170int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1171 struct perf_hpp_fmt *fmt, int printed)
1172{
1173 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1174 const int width = fmt->width(fmt, hpp, he->hists);
1175 if (printed < width) {
1176 advance_hpp(hpp, printed);
1177 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1178 }
1179 }
1180
1181 return printed;
1182}
1183
1184/*
1185 * collapse the histogram
1186 */
1187
1188static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1189static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1190 enum hist_filter type);
1191
1192typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1193
1194static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1195{
1196 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1197}
1198
1199static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1200 enum hist_filter type,
1201 fmt_chk_fn check)
1202{
1203 struct perf_hpp_fmt *fmt;
1204 bool type_match = false;
1205 struct hist_entry *parent = he->parent_he;
1206
1207 switch (type) {
1208 case HIST_FILTER__THREAD:
1209 if (symbol_conf.comm_list == NULL &&
1210 symbol_conf.pid_list == NULL &&
1211 symbol_conf.tid_list == NULL)
1212 return;
1213 break;
1214 case HIST_FILTER__DSO:
1215 if (symbol_conf.dso_list == NULL)
1216 return;
1217 break;
1218 case HIST_FILTER__SYMBOL:
1219 if (symbol_conf.sym_list == NULL)
1220 return;
1221 break;
1222 case HIST_FILTER__PARENT:
1223 case HIST_FILTER__GUEST:
1224 case HIST_FILTER__HOST:
1225 case HIST_FILTER__SOCKET:
1226 case HIST_FILTER__C2C:
1227 default:
1228 return;
1229 }
1230
1231 /* if it's filtered by own fmt, it has to have filter bits */
1232 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1233 if (check(fmt)) {
1234 type_match = true;
1235 break;
1236 }
1237 }
1238
1239 if (type_match) {
1240 /*
1241 * If the filter is for current level entry, propagate
1242 * filter marker to parents. The marker bit was
1243 * already set by default so it only needs to clear
1244 * non-filtered entries.
1245 */
1246 if (!(he->filtered & (1 << type))) {
1247 while (parent) {
1248 parent->filtered &= ~(1 << type);
1249 parent = parent->parent_he;
1250 }
1251 }
1252 } else {
1253 /*
1254 * If current entry doesn't have matching formats, set
1255 * filter marker for upper level entries. it will be
1256 * cleared if its lower level entries is not filtered.
1257 *
1258 * For lower-level entries, it inherits parent's
1259 * filter bit so that lower level entries of a
1260 * non-filtered entry won't set the filter marker.
1261 */
1262 if (parent == NULL)
1263 he->filtered |= (1 << type);
1264 else
1265 he->filtered |= (parent->filtered & (1 << type));
1266 }
1267}
1268
1269static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1270{
1271 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1272 check_thread_entry);
1273
1274 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1275 perf_hpp__is_dso_entry);
1276
1277 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1278 perf_hpp__is_sym_entry);
1279
1280 hists__apply_filters(he->hists, he);
1281}
1282
1283static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1284 struct rb_root *root,
1285 struct hist_entry *he,
1286 struct hist_entry *parent_he,
1287 struct perf_hpp_list *hpp_list)
1288{
1289 struct rb_node **p = &root->rb_node;
1290 struct rb_node *parent = NULL;
1291 struct hist_entry *iter, *new;
1292 struct perf_hpp_fmt *fmt;
1293 int64_t cmp;
1294
1295 while (*p != NULL) {
1296 parent = *p;
1297 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1298
1299 cmp = 0;
1300 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1301 cmp = fmt->collapse(fmt, iter, he);
1302 if (cmp)
1303 break;
1304 }
1305
1306 if (!cmp) {
1307 he_stat__add_stat(&iter->stat, &he->stat);
1308 return iter;
1309 }
1310
1311 if (cmp < 0)
1312 p = &parent->rb_left;
1313 else
1314 p = &parent->rb_right;
1315 }
1316
1317 new = hist_entry__new(he, true);
1318 if (new == NULL)
1319 return NULL;
1320
1321 hists->nr_entries++;
1322
1323 /* save related format list for output */
1324 new->hpp_list = hpp_list;
1325 new->parent_he = parent_he;
1326
1327 hist_entry__apply_hierarchy_filters(new);
1328
1329 /* some fields are now passed to 'new' */
1330 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1331 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1332 he->trace_output = NULL;
1333 else
1334 new->trace_output = NULL;
1335
1336 if (perf_hpp__is_srcline_entry(fmt))
1337 he->srcline = NULL;
1338 else
1339 new->srcline = NULL;
1340
1341 if (perf_hpp__is_srcfile_entry(fmt))
1342 he->srcfile = NULL;
1343 else
1344 new->srcfile = NULL;
1345 }
1346
1347 rb_link_node(&new->rb_node_in, parent, p);
1348 rb_insert_color(&new->rb_node_in, root);
1349 return new;
1350}
1351
1352static int hists__hierarchy_insert_entry(struct hists *hists,
1353 struct rb_root *root,
1354 struct hist_entry *he)
1355{
1356 struct perf_hpp_list_node *node;
1357 struct hist_entry *new_he = NULL;
1358 struct hist_entry *parent = NULL;
1359 int depth = 0;
1360 int ret = 0;
1361
1362 list_for_each_entry(node, &hists->hpp_formats, list) {
1363 /* skip period (overhead) and elided columns */
1364 if (node->level == 0 || node->skip)
1365 continue;
1366
1367 /* insert copy of 'he' for each fmt into the hierarchy */
1368 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1369 if (new_he == NULL) {
1370 ret = -1;
1371 break;
1372 }
1373
1374 root = &new_he->hroot_in;
1375 new_he->depth = depth++;
1376 parent = new_he;
1377 }
1378
1379 if (new_he) {
1380 new_he->leaf = true;
1381
1382 if (hist_entry__has_callchains(new_he) &&
1383 symbol_conf.use_callchain) {
1384 callchain_cursor_reset(&callchain_cursor);
1385 if (callchain_merge(&callchain_cursor,
1386 new_he->callchain,
1387 he->callchain) < 0)
1388 ret = -1;
1389 }
1390 }
1391
1392 /* 'he' is no longer used */
1393 hist_entry__delete(he);
1394
1395 /* return 0 (or -1) since it already applied filters */
1396 return ret;
1397}
1398
1399static int hists__collapse_insert_entry(struct hists *hists,
1400 struct rb_root *root,
1401 struct hist_entry *he)
1402{
1403 struct rb_node **p = &root->rb_node;
1404 struct rb_node *parent = NULL;
1405 struct hist_entry *iter;
1406 int64_t cmp;
1407
1408 if (symbol_conf.report_hierarchy)
1409 return hists__hierarchy_insert_entry(hists, root, he);
1410
1411 while (*p != NULL) {
1412 parent = *p;
1413 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1414
1415 cmp = hist_entry__collapse(iter, he);
1416
1417 if (!cmp) {
1418 int ret = 0;
1419
1420 he_stat__add_stat(&iter->stat, &he->stat);
1421 if (symbol_conf.cumulate_callchain)
1422 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1423
1424 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1425 callchain_cursor_reset(&callchain_cursor);
1426 if (callchain_merge(&callchain_cursor,
1427 iter->callchain,
1428 he->callchain) < 0)
1429 ret = -1;
1430 }
1431 hist_entry__delete(he);
1432 return ret;
1433 }
1434
1435 if (cmp < 0)
1436 p = &(*p)->rb_left;
1437 else
1438 p = &(*p)->rb_right;
1439 }
1440 hists->nr_entries++;
1441
1442 rb_link_node(&he->rb_node_in, parent, p);
1443 rb_insert_color(&he->rb_node_in, root);
1444 return 1;
1445}
1446
1447struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1448{
1449 struct rb_root *root;
1450
1451 pthread_mutex_lock(&hists->lock);
1452
1453 root = hists->entries_in;
1454 if (++hists->entries_in > &hists->entries_in_array[1])
1455 hists->entries_in = &hists->entries_in_array[0];
1456
1457 pthread_mutex_unlock(&hists->lock);
1458
1459 return root;
1460}
1461
1462static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1463{
1464 hists__filter_entry_by_dso(hists, he);
1465 hists__filter_entry_by_thread(hists, he);
1466 hists__filter_entry_by_symbol(hists, he);
1467 hists__filter_entry_by_socket(hists, he);
1468}
1469
1470int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1471{
1472 struct rb_root *root;
1473 struct rb_node *next;
1474 struct hist_entry *n;
1475 int ret;
1476
1477 if (!hists__has(hists, need_collapse))
1478 return 0;
1479
1480 hists->nr_entries = 0;
1481
1482 root = hists__get_rotate_entries_in(hists);
1483
1484 next = rb_first(root);
1485
1486 while (next) {
1487 if (session_done())
1488 break;
1489 n = rb_entry(next, struct hist_entry, rb_node_in);
1490 next = rb_next(&n->rb_node_in);
1491
1492 rb_erase(&n->rb_node_in, root);
1493 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1494 if (ret < 0)
1495 return -1;
1496
1497 if (ret) {
1498 /*
1499 * If it wasn't combined with one of the entries already
1500 * collapsed, we need to apply the filters that may have
1501 * been set by, say, the hist_browser.
1502 */
1503 hists__apply_filters(hists, n);
1504 }
1505 if (prog)
1506 ui_progress__update(prog, 1);
1507 }
1508 return 0;
1509}
1510
1511static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1512{
1513 struct hists *hists = a->hists;
1514 struct perf_hpp_fmt *fmt;
1515 int64_t cmp = 0;
1516
1517 hists__for_each_sort_list(hists, fmt) {
1518 if (perf_hpp__should_skip(fmt, a->hists))
1519 continue;
1520
1521 cmp = fmt->sort(fmt, a, b);
1522 if (cmp)
1523 break;
1524 }
1525
1526 return cmp;
1527}
1528
1529static void hists__reset_filter_stats(struct hists *hists)
1530{
1531 hists->nr_non_filtered_entries = 0;
1532 hists->stats.total_non_filtered_period = 0;
1533}
1534
1535void hists__reset_stats(struct hists *hists)
1536{
1537 hists->nr_entries = 0;
1538 hists->stats.total_period = 0;
1539
1540 hists__reset_filter_stats(hists);
1541}
1542
1543static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1544{
1545 hists->nr_non_filtered_entries++;
1546 hists->stats.total_non_filtered_period += h->stat.period;
1547}
1548
1549void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1550{
1551 if (!h->filtered)
1552 hists__inc_filter_stats(hists, h);
1553
1554 hists->nr_entries++;
1555 hists->stats.total_period += h->stat.period;
1556}
1557
1558static void hierarchy_recalc_total_periods(struct hists *hists)
1559{
1560 struct rb_node *node;
1561 struct hist_entry *he;
1562
1563 node = rb_first(&hists->entries);
1564
1565 hists->stats.total_period = 0;
1566 hists->stats.total_non_filtered_period = 0;
1567
1568 /*
1569 * recalculate total period using top-level entries only
1570 * since lower level entries only see non-filtered entries
1571 * but upper level entries have sum of both entries.
1572 */
1573 while (node) {
1574 he = rb_entry(node, struct hist_entry, rb_node);
1575 node = rb_next(node);
1576
1577 hists->stats.total_period += he->stat.period;
1578 if (!he->filtered)
1579 hists->stats.total_non_filtered_period += he->stat.period;
1580 }
1581}
1582
1583static void hierarchy_insert_output_entry(struct rb_root *root,
1584 struct hist_entry *he)
1585{
1586 struct rb_node **p = &root->rb_node;
1587 struct rb_node *parent = NULL;
1588 struct hist_entry *iter;
1589 struct perf_hpp_fmt *fmt;
1590
1591 while (*p != NULL) {
1592 parent = *p;
1593 iter = rb_entry(parent, struct hist_entry, rb_node);
1594
1595 if (hist_entry__sort(he, iter) > 0)
1596 p = &parent->rb_left;
1597 else
1598 p = &parent->rb_right;
1599 }
1600
1601 rb_link_node(&he->rb_node, parent, p);
1602 rb_insert_color(&he->rb_node, root);
1603
1604 /* update column width of dynamic entry */
1605 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1606 if (perf_hpp__is_dynamic_entry(fmt))
1607 fmt->sort(fmt, he, NULL);
1608 }
1609}
1610
1611static void hists__hierarchy_output_resort(struct hists *hists,
1612 struct ui_progress *prog,
1613 struct rb_root *root_in,
1614 struct rb_root *root_out,
1615 u64 min_callchain_hits,
1616 bool use_callchain)
1617{
1618 struct rb_node *node;
1619 struct hist_entry *he;
1620
1621 *root_out = RB_ROOT;
1622 node = rb_first(root_in);
1623
1624 while (node) {
1625 he = rb_entry(node, struct hist_entry, rb_node_in);
1626 node = rb_next(node);
1627
1628 hierarchy_insert_output_entry(root_out, he);
1629
1630 if (prog)
1631 ui_progress__update(prog, 1);
1632
1633 hists->nr_entries++;
1634 if (!he->filtered) {
1635 hists->nr_non_filtered_entries++;
1636 hists__calc_col_len(hists, he);
1637 }
1638
1639 if (!he->leaf) {
1640 hists__hierarchy_output_resort(hists, prog,
1641 &he->hroot_in,
1642 &he->hroot_out,
1643 min_callchain_hits,
1644 use_callchain);
1645 continue;
1646 }
1647
1648 if (!use_callchain)
1649 continue;
1650
1651 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1652 u64 total = he->stat.period;
1653
1654 if (symbol_conf.cumulate_callchain)
1655 total = he->stat_acc->period;
1656
1657 min_callchain_hits = total * (callchain_param.min_percent / 100);
1658 }
1659
1660 callchain_param.sort(&he->sorted_chain, he->callchain,
1661 min_callchain_hits, &callchain_param);
1662 }
1663}
1664
1665static void __hists__insert_output_entry(struct rb_root *entries,
1666 struct hist_entry *he,
1667 u64 min_callchain_hits,
1668 bool use_callchain)
1669{
1670 struct rb_node **p = &entries->rb_node;
1671 struct rb_node *parent = NULL;
1672 struct hist_entry *iter;
1673 struct perf_hpp_fmt *fmt;
1674
1675 if (use_callchain) {
1676 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1677 u64 total = he->stat.period;
1678
1679 if (symbol_conf.cumulate_callchain)
1680 total = he->stat_acc->period;
1681
1682 min_callchain_hits = total * (callchain_param.min_percent / 100);
1683 }
1684 callchain_param.sort(&he->sorted_chain, he->callchain,
1685 min_callchain_hits, &callchain_param);
1686 }
1687
1688 while (*p != NULL) {
1689 parent = *p;
1690 iter = rb_entry(parent, struct hist_entry, rb_node);
1691
1692 if (hist_entry__sort(he, iter) > 0)
1693 p = &(*p)->rb_left;
1694 else
1695 p = &(*p)->rb_right;
1696 }
1697
1698 rb_link_node(&he->rb_node, parent, p);
1699 rb_insert_color(&he->rb_node, entries);
1700
1701 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1702 if (perf_hpp__is_dynamic_entry(fmt) &&
1703 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1704 fmt->sort(fmt, he, NULL); /* update column width */
1705 }
1706}
1707
1708static void output_resort(struct hists *hists, struct ui_progress *prog,
1709 bool use_callchain, hists__resort_cb_t cb)
1710{
1711 struct rb_root *root;
1712 struct rb_node *next;
1713 struct hist_entry *n;
1714 u64 callchain_total;
1715 u64 min_callchain_hits;
1716
1717 callchain_total = hists->callchain_period;
1718 if (symbol_conf.filter_relative)
1719 callchain_total = hists->callchain_non_filtered_period;
1720
1721 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1722
1723 hists__reset_stats(hists);
1724 hists__reset_col_len(hists);
1725
1726 if (symbol_conf.report_hierarchy) {
1727 hists__hierarchy_output_resort(hists, prog,
1728 &hists->entries_collapsed,
1729 &hists->entries,
1730 min_callchain_hits,
1731 use_callchain);
1732 hierarchy_recalc_total_periods(hists);
1733 return;
1734 }
1735
1736 if (hists__has(hists, need_collapse))
1737 root = &hists->entries_collapsed;
1738 else
1739 root = hists->entries_in;
1740
1741 next = rb_first(root);
1742 hists->entries = RB_ROOT;
1743
1744 while (next) {
1745 n = rb_entry(next, struct hist_entry, rb_node_in);
1746 next = rb_next(&n->rb_node_in);
1747
1748 if (cb && cb(n))
1749 continue;
1750
1751 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1752 hists__inc_stats(hists, n);
1753
1754 if (!n->filtered)
1755 hists__calc_col_len(hists, n);
1756
1757 if (prog)
1758 ui_progress__update(prog, 1);
1759 }
1760}
1761
1762void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1763{
1764 bool use_callchain;
1765
1766 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1767 use_callchain = evsel__has_callchain(evsel);
1768 else
1769 use_callchain = symbol_conf.use_callchain;
1770
1771 use_callchain |= symbol_conf.show_branchflag_count;
1772
1773 output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1774}
1775
1776void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1777{
1778 output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1779}
1780
1781void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1782 hists__resort_cb_t cb)
1783{
1784 output_resort(hists, prog, symbol_conf.use_callchain, cb);
1785}
1786
1787static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1788{
1789 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1790 return false;
1791
1792 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1793 return true;
1794
1795 return false;
1796}
1797
1798struct rb_node *rb_hierarchy_last(struct rb_node *node)
1799{
1800 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1801
1802 while (can_goto_child(he, HMD_NORMAL)) {
1803 node = rb_last(&he->hroot_out);
1804 he = rb_entry(node, struct hist_entry, rb_node);
1805 }
1806 return node;
1807}
1808
1809struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1810{
1811 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1812
1813 if (can_goto_child(he, hmd))
1814 node = rb_first(&he->hroot_out);
1815 else
1816 node = rb_next(node);
1817
1818 while (node == NULL) {
1819 he = he->parent_he;
1820 if (he == NULL)
1821 break;
1822
1823 node = rb_next(&he->rb_node);
1824 }
1825 return node;
1826}
1827
1828struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1829{
1830 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1831
1832 node = rb_prev(node);
1833 if (node)
1834 return rb_hierarchy_last(node);
1835
1836 he = he->parent_he;
1837 if (he == NULL)
1838 return NULL;
1839
1840 return &he->rb_node;
1841}
1842
1843bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1844{
1845 struct rb_node *node;
1846 struct hist_entry *child;
1847 float percent;
1848
1849 if (he->leaf)
1850 return false;
1851
1852 node = rb_first(&he->hroot_out);
1853 child = rb_entry(node, struct hist_entry, rb_node);
1854
1855 while (node && child->filtered) {
1856 node = rb_next(node);
1857 child = rb_entry(node, struct hist_entry, rb_node);
1858 }
1859
1860 if (node)
1861 percent = hist_entry__get_percent_limit(child);
1862 else
1863 percent = 0;
1864
1865 return node && percent >= limit;
1866}
1867
1868static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1869 enum hist_filter filter)
1870{
1871 h->filtered &= ~(1 << filter);
1872
1873 if (symbol_conf.report_hierarchy) {
1874 struct hist_entry *parent = h->parent_he;
1875
1876 while (parent) {
1877 he_stat__add_stat(&parent->stat, &h->stat);
1878
1879 parent->filtered &= ~(1 << filter);
1880
1881 if (parent->filtered)
1882 goto next;
1883
1884 /* force fold unfiltered entry for simplicity */
1885 parent->unfolded = false;
1886 parent->has_no_entry = false;
1887 parent->row_offset = 0;
1888 parent->nr_rows = 0;
1889next:
1890 parent = parent->parent_he;
1891 }
1892 }
1893
1894 if (h->filtered)
1895 return;
1896
1897 /* force fold unfiltered entry for simplicity */
1898 h->unfolded = false;
1899 h->has_no_entry = false;
1900 h->row_offset = 0;
1901 h->nr_rows = 0;
1902
1903 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1904
1905 hists__inc_filter_stats(hists, h);
1906 hists__calc_col_len(hists, h);
1907}
1908
1909
1910static bool hists__filter_entry_by_dso(struct hists *hists,
1911 struct hist_entry *he)
1912{
1913 if (hists->dso_filter != NULL &&
1914 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1915 he->filtered |= (1 << HIST_FILTER__DSO);
1916 return true;
1917 }
1918
1919 return false;
1920}
1921
1922static bool hists__filter_entry_by_thread(struct hists *hists,
1923 struct hist_entry *he)
1924{
1925 if (hists->thread_filter != NULL &&
1926 he->thread != hists->thread_filter) {
1927 he->filtered |= (1 << HIST_FILTER__THREAD);
1928 return true;
1929 }
1930
1931 return false;
1932}
1933
1934static bool hists__filter_entry_by_symbol(struct hists *hists,
1935 struct hist_entry *he)
1936{
1937 if (hists->symbol_filter_str != NULL &&
1938 (!he->ms.sym || strstr(he->ms.sym->name,
1939 hists->symbol_filter_str) == NULL)) {
1940 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1941 return true;
1942 }
1943
1944 return false;
1945}
1946
1947static bool hists__filter_entry_by_socket(struct hists *hists,
1948 struct hist_entry *he)
1949{
1950 if ((hists->socket_filter > -1) &&
1951 (he->socket != hists->socket_filter)) {
1952 he->filtered |= (1 << HIST_FILTER__SOCKET);
1953 return true;
1954 }
1955
1956 return false;
1957}
1958
1959typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1960
1961static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1962{
1963 struct rb_node *nd;
1964
1965 hists->stats.nr_non_filtered_samples = 0;
1966
1967 hists__reset_filter_stats(hists);
1968 hists__reset_col_len(hists);
1969
1970 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1971 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1972
1973 if (filter(hists, h))
1974 continue;
1975
1976 hists__remove_entry_filter(hists, h, type);
1977 }
1978}
1979
1980static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1981{
1982 struct rb_node **p = &root->rb_node;
1983 struct rb_node *parent = NULL;
1984 struct hist_entry *iter;
1985 struct rb_root new_root = RB_ROOT;
1986 struct rb_node *nd;
1987
1988 while (*p != NULL) {
1989 parent = *p;
1990 iter = rb_entry(parent, struct hist_entry, rb_node);
1991
1992 if (hist_entry__sort(he, iter) > 0)
1993 p = &(*p)->rb_left;
1994 else
1995 p = &(*p)->rb_right;
1996 }
1997
1998 rb_link_node(&he->rb_node, parent, p);
1999 rb_insert_color(&he->rb_node, root);
2000
2001 if (he->leaf || he->filtered)
2002 return;
2003
2004 nd = rb_first(&he->hroot_out);
2005 while (nd) {
2006 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2007
2008 nd = rb_next(nd);
2009 rb_erase(&h->rb_node, &he->hroot_out);
2010
2011 resort_filtered_entry(&new_root, h);
2012 }
2013
2014 he->hroot_out = new_root;
2015}
2016
2017static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2018{
2019 struct rb_node *nd;
2020 struct rb_root new_root = RB_ROOT;
2021
2022 hists->stats.nr_non_filtered_samples = 0;
2023
2024 hists__reset_filter_stats(hists);
2025 hists__reset_col_len(hists);
2026
2027 nd = rb_first(&hists->entries);
2028 while (nd) {
2029 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2030 int ret;
2031
2032 ret = hist_entry__filter(h, type, arg);
2033
2034 /*
2035 * case 1. non-matching type
2036 * zero out the period, set filter marker and move to child
2037 */
2038 if (ret < 0) {
2039 memset(&h->stat, 0, sizeof(h->stat));
2040 h->filtered |= (1 << type);
2041
2042 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2043 }
2044 /*
2045 * case 2. matched type (filter out)
2046 * set filter marker and move to next
2047 */
2048 else if (ret == 1) {
2049 h->filtered |= (1 << type);
2050
2051 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2052 }
2053 /*
2054 * case 3. ok (not filtered)
2055 * add period to hists and parents, erase the filter marker
2056 * and move to next sibling
2057 */
2058 else {
2059 hists__remove_entry_filter(hists, h, type);
2060
2061 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2062 }
2063 }
2064
2065 hierarchy_recalc_total_periods(hists);
2066
2067 /*
2068 * resort output after applying a new filter since filter in a lower
2069 * hierarchy can change periods in a upper hierarchy.
2070 */
2071 nd = rb_first(&hists->entries);
2072 while (nd) {
2073 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2074
2075 nd = rb_next(nd);
2076 rb_erase(&h->rb_node, &hists->entries);
2077
2078 resort_filtered_entry(&new_root, h);
2079 }
2080
2081 hists->entries = new_root;
2082}
2083
2084void hists__filter_by_thread(struct hists *hists)
2085{
2086 if (symbol_conf.report_hierarchy)
2087 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2088 hists->thread_filter);
2089 else
2090 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2091 hists__filter_entry_by_thread);
2092}
2093
2094void hists__filter_by_dso(struct hists *hists)
2095{
2096 if (symbol_conf.report_hierarchy)
2097 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2098 hists->dso_filter);
2099 else
2100 hists__filter_by_type(hists, HIST_FILTER__DSO,
2101 hists__filter_entry_by_dso);
2102}
2103
2104void hists__filter_by_symbol(struct hists *hists)
2105{
2106 if (symbol_conf.report_hierarchy)
2107 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2108 hists->symbol_filter_str);
2109 else
2110 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2111 hists__filter_entry_by_symbol);
2112}
2113
2114void hists__filter_by_socket(struct hists *hists)
2115{
2116 if (symbol_conf.report_hierarchy)
2117 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2118 &hists->socket_filter);
2119 else
2120 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2121 hists__filter_entry_by_socket);
2122}
2123
2124void events_stats__inc(struct events_stats *stats, u32 type)
2125{
2126 ++stats->nr_events[0];
2127 ++stats->nr_events[type];
2128}
2129
2130void hists__inc_nr_events(struct hists *hists, u32 type)
2131{
2132 events_stats__inc(&hists->stats, type);
2133}
2134
2135void hists__inc_nr_samples(struct hists *hists, bool filtered)
2136{
2137 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2138 if (!filtered)
2139 hists->stats.nr_non_filtered_samples++;
2140}
2141
2142static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2143 struct hist_entry *pair)
2144{
2145 struct rb_root *root;
2146 struct rb_node **p;
2147 struct rb_node *parent = NULL;
2148 struct hist_entry *he;
2149 int64_t cmp;
2150
2151 if (hists__has(hists, need_collapse))
2152 root = &hists->entries_collapsed;
2153 else
2154 root = hists->entries_in;
2155
2156 p = &root->rb_node;
2157
2158 while (*p != NULL) {
2159 parent = *p;
2160 he = rb_entry(parent, struct hist_entry, rb_node_in);
2161
2162 cmp = hist_entry__collapse(he, pair);
2163
2164 if (!cmp)
2165 goto out;
2166
2167 if (cmp < 0)
2168 p = &(*p)->rb_left;
2169 else
2170 p = &(*p)->rb_right;
2171 }
2172
2173 he = hist_entry__new(pair, true);
2174 if (he) {
2175 memset(&he->stat, 0, sizeof(he->stat));
2176 he->hists = hists;
2177 if (symbol_conf.cumulate_callchain)
2178 memset(he->stat_acc, 0, sizeof(he->stat));
2179 rb_link_node(&he->rb_node_in, parent, p);
2180 rb_insert_color(&he->rb_node_in, root);
2181 hists__inc_stats(hists, he);
2182 he->dummy = true;
2183 }
2184out:
2185 return he;
2186}
2187
2188static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2189 struct rb_root *root,
2190 struct hist_entry *pair)
2191{
2192 struct rb_node **p;
2193 struct rb_node *parent = NULL;
2194 struct hist_entry *he;
2195 struct perf_hpp_fmt *fmt;
2196
2197 p = &root->rb_node;
2198 while (*p != NULL) {
2199 int64_t cmp = 0;
2200
2201 parent = *p;
2202 he = rb_entry(parent, struct hist_entry, rb_node_in);
2203
2204 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2205 cmp = fmt->collapse(fmt, he, pair);
2206 if (cmp)
2207 break;
2208 }
2209 if (!cmp)
2210 goto out;
2211
2212 if (cmp < 0)
2213 p = &parent->rb_left;
2214 else
2215 p = &parent->rb_right;
2216 }
2217
2218 he = hist_entry__new(pair, true);
2219 if (he) {
2220 rb_link_node(&he->rb_node_in, parent, p);
2221 rb_insert_color(&he->rb_node_in, root);
2222
2223 he->dummy = true;
2224 he->hists = hists;
2225 memset(&he->stat, 0, sizeof(he->stat));
2226 hists__inc_stats(hists, he);
2227 }
2228out:
2229 return he;
2230}
2231
2232static struct hist_entry *hists__find_entry(struct hists *hists,
2233 struct hist_entry *he)
2234{
2235 struct rb_node *n;
2236
2237 if (hists__has(hists, need_collapse))
2238 n = hists->entries_collapsed.rb_node;
2239 else
2240 n = hists->entries_in->rb_node;
2241
2242 while (n) {
2243 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2244 int64_t cmp = hist_entry__collapse(iter, he);
2245
2246 if (cmp < 0)
2247 n = n->rb_left;
2248 else if (cmp > 0)
2249 n = n->rb_right;
2250 else
2251 return iter;
2252 }
2253
2254 return NULL;
2255}
2256
2257static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2258 struct hist_entry *he)
2259{
2260 struct rb_node *n = root->rb_node;
2261
2262 while (n) {
2263 struct hist_entry *iter;
2264 struct perf_hpp_fmt *fmt;
2265 int64_t cmp = 0;
2266
2267 iter = rb_entry(n, struct hist_entry, rb_node_in);
2268 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2269 cmp = fmt->collapse(fmt, iter, he);
2270 if (cmp)
2271 break;
2272 }
2273
2274 if (cmp < 0)
2275 n = n->rb_left;
2276 else if (cmp > 0)
2277 n = n->rb_right;
2278 else
2279 return iter;
2280 }
2281
2282 return NULL;
2283}
2284
2285static void hists__match_hierarchy(struct rb_root *leader_root,
2286 struct rb_root *other_root)
2287{
2288 struct rb_node *nd;
2289 struct hist_entry *pos, *pair;
2290
2291 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2292 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2293 pair = hists__find_hierarchy_entry(other_root, pos);
2294
2295 if (pair) {
2296 hist_entry__add_pair(pair, pos);
2297 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2298 }
2299 }
2300}
2301
2302/*
2303 * Look for pairs to link to the leader buckets (hist_entries):
2304 */
2305void hists__match(struct hists *leader, struct hists *other)
2306{
2307 struct rb_root *root;
2308 struct rb_node *nd;
2309 struct hist_entry *pos, *pair;
2310
2311 if (symbol_conf.report_hierarchy) {
2312 /* hierarchy report always collapses entries */
2313 return hists__match_hierarchy(&leader->entries_collapsed,
2314 &other->entries_collapsed);
2315 }
2316
2317 if (hists__has(leader, need_collapse))
2318 root = &leader->entries_collapsed;
2319 else
2320 root = leader->entries_in;
2321
2322 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2323 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2324 pair = hists__find_entry(other, pos);
2325
2326 if (pair)
2327 hist_entry__add_pair(pair, pos);
2328 }
2329}
2330
2331static int hists__link_hierarchy(struct hists *leader_hists,
2332 struct hist_entry *parent,
2333 struct rb_root *leader_root,
2334 struct rb_root *other_root)
2335{
2336 struct rb_node *nd;
2337 struct hist_entry *pos, *leader;
2338
2339 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2340 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2341
2342 if (hist_entry__has_pairs(pos)) {
2343 bool found = false;
2344
2345 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2346 if (leader->hists == leader_hists) {
2347 found = true;
2348 break;
2349 }
2350 }
2351 if (!found)
2352 return -1;
2353 } else {
2354 leader = add_dummy_hierarchy_entry(leader_hists,
2355 leader_root, pos);
2356 if (leader == NULL)
2357 return -1;
2358
2359 /* do not point parent in the pos */
2360 leader->parent_he = parent;
2361
2362 hist_entry__add_pair(pos, leader);
2363 }
2364
2365 if (!pos->leaf) {
2366 if (hists__link_hierarchy(leader_hists, leader,
2367 &leader->hroot_in,
2368 &pos->hroot_in) < 0)
2369 return -1;
2370 }
2371 }
2372 return 0;
2373}
2374
2375/*
2376 * Look for entries in the other hists that are not present in the leader, if
2377 * we find them, just add a dummy entry on the leader hists, with period=0,
2378 * nr_events=0, to serve as the list header.
2379 */
2380int hists__link(struct hists *leader, struct hists *other)
2381{
2382 struct rb_root *root;
2383 struct rb_node *nd;
2384 struct hist_entry *pos, *pair;
2385
2386 if (symbol_conf.report_hierarchy) {
2387 /* hierarchy report always collapses entries */
2388 return hists__link_hierarchy(leader, NULL,
2389 &leader->entries_collapsed,
2390 &other->entries_collapsed);
2391 }
2392
2393 if (hists__has(other, need_collapse))
2394 root = &other->entries_collapsed;
2395 else
2396 root = other->entries_in;
2397
2398 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2399 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2400
2401 if (!hist_entry__has_pairs(pos)) {
2402 pair = hists__add_dummy_entry(leader, pos);
2403 if (pair == NULL)
2404 return -1;
2405 hist_entry__add_pair(pos, pair);
2406 }
2407 }
2408
2409 return 0;
2410}
2411
2412void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2413 struct perf_sample *sample, bool nonany_branch_mode)
2414{
2415 struct branch_info *bi;
2416
2417 /* If we have branch cycles always annotate them. */
2418 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2419 int i;
2420
2421 bi = sample__resolve_bstack(sample, al);
2422 if (bi) {
2423 struct addr_map_symbol *prev = NULL;
2424
2425 /*
2426 * Ignore errors, still want to process the
2427 * other entries.
2428 *
2429 * For non standard branch modes always
2430 * force no IPC (prev == NULL)
2431 *
2432 * Note that perf stores branches reversed from
2433 * program order!
2434 */
2435 for (i = bs->nr - 1; i >= 0; i--) {
2436 addr_map_symbol__account_cycles(&bi[i].from,
2437 nonany_branch_mode ? NULL : prev,
2438 bi[i].flags.cycles);
2439 prev = &bi[i].to;
2440 }
2441 free(bi);
2442 }
2443 }
2444}
2445
2446size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2447{
2448 struct perf_evsel *pos;
2449 size_t ret = 0;
2450
2451 evlist__for_each_entry(evlist, pos) {
2452 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2453 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2454 }
2455
2456 return ret;
2457}
2458
2459
2460u64 hists__total_period(struct hists *hists)
2461{
2462 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2463 hists->stats.total_period;
2464}
2465
2466int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2467{
2468 char unit;
2469 int printed;
2470 const struct dso *dso = hists->dso_filter;
2471 const struct thread *thread = hists->thread_filter;
2472 int socket_id = hists->socket_filter;
2473 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2474 u64 nr_events = hists->stats.total_period;
2475 struct perf_evsel *evsel = hists_to_evsel(hists);
2476 const char *ev_name = perf_evsel__name(evsel);
2477 char buf[512], sample_freq_str[64] = "";
2478 size_t buflen = sizeof(buf);
2479 char ref[30] = " show reference callgraph, ";
2480 bool enable_ref = false;
2481
2482 if (symbol_conf.filter_relative) {
2483 nr_samples = hists->stats.nr_non_filtered_samples;
2484 nr_events = hists->stats.total_non_filtered_period;
2485 }
2486
2487 if (perf_evsel__is_group_event(evsel)) {
2488 struct perf_evsel *pos;
2489
2490 perf_evsel__group_desc(evsel, buf, buflen);
2491 ev_name = buf;
2492
2493 for_each_group_member(pos, evsel) {
2494 struct hists *pos_hists = evsel__hists(pos);
2495
2496 if (symbol_conf.filter_relative) {
2497 nr_samples += pos_hists->stats.nr_non_filtered_samples;
2498 nr_events += pos_hists->stats.total_non_filtered_period;
2499 } else {
2500 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2501 nr_events += pos_hists->stats.total_period;
2502 }
2503 }
2504 }
2505
2506 if (symbol_conf.show_ref_callgraph &&
2507 strstr(ev_name, "call-graph=no"))
2508 enable_ref = true;
2509
2510 if (show_freq)
2511 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq);
2512
2513 nr_samples = convert_unit(nr_samples, &unit);
2514 printed = scnprintf(bf, size,
2515 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2516 nr_samples, unit, evsel->nr_members > 1 ? "s" : "",
2517 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2518
2519
2520 if (hists->uid_filter_str)
2521 printed += snprintf(bf + printed, size - printed,
2522 ", UID: %s", hists->uid_filter_str);
2523 if (thread) {
2524 if (hists__has(hists, thread)) {
2525 printed += scnprintf(bf + printed, size - printed,
2526 ", Thread: %s(%d)",
2527 (thread->comm_set ? thread__comm_str(thread) : ""),
2528 thread->tid);
2529 } else {
2530 printed += scnprintf(bf + printed, size - printed,
2531 ", Thread: %s",
2532 (thread->comm_set ? thread__comm_str(thread) : ""));
2533 }
2534 }
2535 if (dso)
2536 printed += scnprintf(bf + printed, size - printed,
2537 ", DSO: %s", dso->short_name);
2538 if (socket_id > -1)
2539 printed += scnprintf(bf + printed, size - printed,
2540 ", Processor Socket: %d", socket_id);
2541
2542 return printed;
2543}
2544
2545int parse_filter_percentage(const struct option *opt __maybe_unused,
2546 const char *arg, int unset __maybe_unused)
2547{
2548 if (!strcmp(arg, "relative"))
2549 symbol_conf.filter_relative = true;
2550 else if (!strcmp(arg, "absolute"))
2551 symbol_conf.filter_relative = false;
2552 else {
2553 pr_debug("Invalid percentage: %s\n", arg);
2554 return -1;
2555 }
2556
2557 return 0;
2558}
2559
2560int perf_hist_config(const char *var, const char *value)
2561{
2562 if (!strcmp(var, "hist.percentage"))
2563 return parse_filter_percentage(NULL, value, 0);
2564
2565 return 0;
2566}
2567
2568int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2569{
2570 memset(hists, 0, sizeof(*hists));
2571 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2572 hists->entries_in = &hists->entries_in_array[0];
2573 hists->entries_collapsed = RB_ROOT;
2574 hists->entries = RB_ROOT;
2575 pthread_mutex_init(&hists->lock, NULL);
2576 hists->socket_filter = -1;
2577 hists->hpp_list = hpp_list;
2578 INIT_LIST_HEAD(&hists->hpp_formats);
2579 return 0;
2580}
2581
2582static void hists__delete_remaining_entries(struct rb_root *root)
2583{
2584 struct rb_node *node;
2585 struct hist_entry *he;
2586
2587 while (!RB_EMPTY_ROOT(root)) {
2588 node = rb_first(root);
2589 rb_erase(node, root);
2590
2591 he = rb_entry(node, struct hist_entry, rb_node_in);
2592 hist_entry__delete(he);
2593 }
2594}
2595
2596static void hists__delete_all_entries(struct hists *hists)
2597{
2598 hists__delete_entries(hists);
2599 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2600 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2601 hists__delete_remaining_entries(&hists->entries_collapsed);
2602}
2603
2604static void hists_evsel__exit(struct perf_evsel *evsel)
2605{
2606 struct hists *hists = evsel__hists(evsel);
2607 struct perf_hpp_fmt *fmt, *pos;
2608 struct perf_hpp_list_node *node, *tmp;
2609
2610 hists__delete_all_entries(hists);
2611
2612 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2613 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2614 list_del(&fmt->list);
2615 free(fmt);
2616 }
2617 list_del(&node->list);
2618 free(node);
2619 }
2620}
2621
2622static int hists_evsel__init(struct perf_evsel *evsel)
2623{
2624 struct hists *hists = evsel__hists(evsel);
2625
2626 __hists__init(hists, &perf_hpp_list);
2627 return 0;
2628}
2629
2630/*
2631 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2632 * stored in the rbtree...
2633 */
2634
2635int hists__init(void)
2636{
2637 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2638 hists_evsel__init,
2639 hists_evsel__exit);
2640 if (err)
2641 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2642
2643 return err;
2644}
2645
2646void perf_hpp_list__init(struct perf_hpp_list *list)
2647{
2648 INIT_LIST_HEAD(&list->fields);
2649 INIT_LIST_HEAD(&list->sorts);
2650}