blob: 21f867a543e0286729195704baa7543d3c6c94da [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include "callchain.h"
7#include "debug.h"
8#include "event.h"
9#include "evsel.h"
10#include "hist.h"
11#include "machine.h"
12#include "map.h"
13#include "sort.h"
14#include "strlist.h"
15#include "thread.h"
16#include "vdso.h"
17#include <stdbool.h>
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <unistd.h>
21#include "unwind.h"
22#include "linux/hash.h"
23#include "asm/bug.h"
24
25#include "sane_ctype.h"
26#include <symbol/kallsyms.h>
27#include <linux/mman.h>
28
29static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
30
31static void dsos__init(struct dsos *dsos)
32{
33 INIT_LIST_HEAD(&dsos->head);
34 dsos->root = RB_ROOT;
35 init_rwsem(&dsos->lock);
36}
37
38static void machine__threads_init(struct machine *machine)
39{
40 int i;
41
42 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
43 struct threads *threads = &machine->threads[i];
44 threads->entries = RB_ROOT;
45 init_rwsem(&threads->lock);
46 threads->nr = 0;
47 INIT_LIST_HEAD(&threads->dead);
48 threads->last_match = NULL;
49 }
50}
51
52static int machine__set_mmap_name(struct machine *machine)
53{
54 if (machine__is_host(machine))
55 machine->mmap_name = strdup("[kernel.kallsyms]");
56 else if (machine__is_default_guest(machine))
57 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 machine->pid) < 0)
60 machine->mmap_name = NULL;
61
62 return machine->mmap_name ? 0 : -ENOMEM;
63}
64
65int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
66{
67 int err = -ENOMEM;
68
69 memset(machine, 0, sizeof(*machine));
70 map_groups__init(&machine->kmaps, machine);
71 RB_CLEAR_NODE(&machine->rb_node);
72 dsos__init(&machine->dsos);
73
74 machine__threads_init(machine);
75
76 machine->vdso_info = NULL;
77 machine->env = NULL;
78
79 machine->pid = pid;
80
81 machine->id_hdr_size = 0;
82 machine->kptr_restrict_warned = false;
83 machine->comm_exec = false;
84 machine->kernel_start = 0;
85 machine->vmlinux_map = NULL;
86
87 machine->root_dir = strdup(root_dir);
88 if (machine->root_dir == NULL)
89 return -ENOMEM;
90
91 if (machine__set_mmap_name(machine))
92 goto out;
93
94 if (pid != HOST_KERNEL_ID) {
95 struct thread *thread = machine__findnew_thread(machine, -1,
96 pid);
97 char comm[64];
98
99 if (thread == NULL)
100 goto out;
101
102 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 thread__set_comm(thread, comm, 0);
104 thread__put(thread);
105 }
106
107 machine->current_tid = NULL;
108 err = 0;
109
110out:
111 if (err) {
112 zfree(&machine->root_dir);
113 zfree(&machine->mmap_name);
114 }
115 return 0;
116}
117
118struct machine *machine__new_host(void)
119{
120 struct machine *machine = malloc(sizeof(*machine));
121
122 if (machine != NULL) {
123 machine__init(machine, "", HOST_KERNEL_ID);
124
125 if (machine__create_kernel_maps(machine) < 0)
126 goto out_delete;
127 }
128
129 return machine;
130out_delete:
131 free(machine);
132 return NULL;
133}
134
135struct machine *machine__new_kallsyms(void)
136{
137 struct machine *machine = machine__new_host();
138 /*
139 * FIXME:
140 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141 * ask for not using the kcore parsing code, once this one is fixed
142 * to create a map per module.
143 */
144 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 machine__delete(machine);
146 machine = NULL;
147 }
148
149 return machine;
150}
151
152static void dsos__purge(struct dsos *dsos)
153{
154 struct dso *pos, *n;
155
156 down_write(&dsos->lock);
157
158 list_for_each_entry_safe(pos, n, &dsos->head, node) {
159 RB_CLEAR_NODE(&pos->rb_node);
160 pos->root = NULL;
161 list_del_init(&pos->node);
162 dso__put(pos);
163 }
164
165 up_write(&dsos->lock);
166}
167
168static void dsos__exit(struct dsos *dsos)
169{
170 dsos__purge(dsos);
171 exit_rwsem(&dsos->lock);
172}
173
174void machine__delete_threads(struct machine *machine)
175{
176 struct rb_node *nd;
177 int i;
178
179 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
180 struct threads *threads = &machine->threads[i];
181 down_write(&threads->lock);
182 nd = rb_first(&threads->entries);
183 while (nd) {
184 struct thread *t = rb_entry(nd, struct thread, rb_node);
185
186 nd = rb_next(nd);
187 __machine__remove_thread(machine, t, false);
188 }
189 up_write(&threads->lock);
190 }
191}
192
193void machine__exit(struct machine *machine)
194{
195 int i;
196
197 if (machine == NULL)
198 return;
199
200 machine__destroy_kernel_maps(machine);
201 map_groups__exit(&machine->kmaps);
202 dsos__exit(&machine->dsos);
203 machine__exit_vdso(machine);
204 zfree(&machine->root_dir);
205 zfree(&machine->mmap_name);
206 zfree(&machine->current_tid);
207
208 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
209 struct threads *threads = &machine->threads[i];
210 exit_rwsem(&threads->lock);
211 }
212}
213
214void machine__delete(struct machine *machine)
215{
216 if (machine) {
217 machine__exit(machine);
218 free(machine);
219 }
220}
221
222void machines__init(struct machines *machines)
223{
224 machine__init(&machines->host, "", HOST_KERNEL_ID);
225 machines->guests = RB_ROOT;
226}
227
228void machines__exit(struct machines *machines)
229{
230 machine__exit(&machines->host);
231 /* XXX exit guest */
232}
233
234struct machine *machines__add(struct machines *machines, pid_t pid,
235 const char *root_dir)
236{
237 struct rb_node **p = &machines->guests.rb_node;
238 struct rb_node *parent = NULL;
239 struct machine *pos, *machine = malloc(sizeof(*machine));
240
241 if (machine == NULL)
242 return NULL;
243
244 if (machine__init(machine, root_dir, pid) != 0) {
245 free(machine);
246 return NULL;
247 }
248
249 while (*p != NULL) {
250 parent = *p;
251 pos = rb_entry(parent, struct machine, rb_node);
252 if (pid < pos->pid)
253 p = &(*p)->rb_left;
254 else
255 p = &(*p)->rb_right;
256 }
257
258 rb_link_node(&machine->rb_node, parent, p);
259 rb_insert_color(&machine->rb_node, &machines->guests);
260
261 return machine;
262}
263
264void machines__set_comm_exec(struct machines *machines, bool comm_exec)
265{
266 struct rb_node *nd;
267
268 machines->host.comm_exec = comm_exec;
269
270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
271 struct machine *machine = rb_entry(nd, struct machine, rb_node);
272
273 machine->comm_exec = comm_exec;
274 }
275}
276
277struct machine *machines__find(struct machines *machines, pid_t pid)
278{
279 struct rb_node **p = &machines->guests.rb_node;
280 struct rb_node *parent = NULL;
281 struct machine *machine;
282 struct machine *default_machine = NULL;
283
284 if (pid == HOST_KERNEL_ID)
285 return &machines->host;
286
287 while (*p != NULL) {
288 parent = *p;
289 machine = rb_entry(parent, struct machine, rb_node);
290 if (pid < machine->pid)
291 p = &(*p)->rb_left;
292 else if (pid > machine->pid)
293 p = &(*p)->rb_right;
294 else
295 return machine;
296 if (!machine->pid)
297 default_machine = machine;
298 }
299
300 return default_machine;
301}
302
303struct machine *machines__findnew(struct machines *machines, pid_t pid)
304{
305 char path[PATH_MAX];
306 const char *root_dir = "";
307 struct machine *machine = machines__find(machines, pid);
308
309 if (machine && (machine->pid == pid))
310 goto out;
311
312 if ((pid != HOST_KERNEL_ID) &&
313 (pid != DEFAULT_GUEST_KERNEL_ID) &&
314 (symbol_conf.guestmount)) {
315 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
316 if (access(path, R_OK)) {
317 static struct strlist *seen;
318
319 if (!seen)
320 seen = strlist__new(NULL, NULL);
321
322 if (!strlist__has_entry(seen, path)) {
323 pr_err("Can't access file %s\n", path);
324 strlist__add(seen, path);
325 }
326 machine = NULL;
327 goto out;
328 }
329 root_dir = path;
330 }
331
332 machine = machines__add(machines, pid, root_dir);
333out:
334 return machine;
335}
336
337void machines__process_guests(struct machines *machines,
338 machine__process_t process, void *data)
339{
340 struct rb_node *nd;
341
342 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 struct machine *pos = rb_entry(nd, struct machine, rb_node);
344 process(pos, data);
345 }
346}
347
348void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349{
350 struct rb_node *node;
351 struct machine *machine;
352
353 machines->host.id_hdr_size = id_hdr_size;
354
355 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 machine = rb_entry(node, struct machine, rb_node);
357 machine->id_hdr_size = id_hdr_size;
358 }
359
360 return;
361}
362
363static void machine__update_thread_pid(struct machine *machine,
364 struct thread *th, pid_t pid)
365{
366 struct thread *leader;
367
368 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
369 return;
370
371 th->pid_ = pid;
372
373 if (th->pid_ == th->tid)
374 return;
375
376 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 if (!leader)
378 goto out_err;
379
380 if (!leader->mg)
381 leader->mg = map_groups__new(machine);
382
383 if (!leader->mg)
384 goto out_err;
385
386 if (th->mg == leader->mg)
387 return;
388
389 if (th->mg) {
390 /*
391 * Maps are created from MMAP events which provide the pid and
392 * tid. Consequently there never should be any maps on a thread
393 * with an unknown pid. Just print an error if there are.
394 */
395 if (!map_groups__empty(th->mg))
396 pr_err("Discarding thread maps for %d:%d\n",
397 th->pid_, th->tid);
398 map_groups__put(th->mg);
399 }
400
401 th->mg = map_groups__get(leader->mg);
402out_put:
403 thread__put(leader);
404 return;
405out_err:
406 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407 goto out_put;
408}
409
410/*
411 * Front-end cache - TID lookups come in blocks,
412 * so most of the time we dont have to look up
413 * the full rbtree:
414 */
415static struct thread*
416__threads__get_last_match(struct threads *threads, struct machine *machine,
417 int pid, int tid)
418{
419 struct thread *th;
420
421 th = threads->last_match;
422 if (th != NULL) {
423 if (th->tid == tid) {
424 machine__update_thread_pid(machine, th, pid);
425 return thread__get(th);
426 }
427
428 threads->last_match = NULL;
429 }
430
431 return NULL;
432}
433
434static struct thread*
435threads__get_last_match(struct threads *threads, struct machine *machine,
436 int pid, int tid)
437{
438 struct thread *th = NULL;
439
440 if (perf_singlethreaded)
441 th = __threads__get_last_match(threads, machine, pid, tid);
442
443 return th;
444}
445
446static void
447__threads__set_last_match(struct threads *threads, struct thread *th)
448{
449 threads->last_match = th;
450}
451
452static void
453threads__set_last_match(struct threads *threads, struct thread *th)
454{
455 if (perf_singlethreaded)
456 __threads__set_last_match(threads, th);
457}
458
459/*
460 * Caller must eventually drop thread->refcnt returned with a successful
461 * lookup/new thread inserted.
462 */
463static struct thread *____machine__findnew_thread(struct machine *machine,
464 struct threads *threads,
465 pid_t pid, pid_t tid,
466 bool create)
467{
468 struct rb_node **p = &threads->entries.rb_node;
469 struct rb_node *parent = NULL;
470 struct thread *th;
471
472 th = threads__get_last_match(threads, machine, pid, tid);
473 if (th)
474 return th;
475
476 while (*p != NULL) {
477 parent = *p;
478 th = rb_entry(parent, struct thread, rb_node);
479
480 if (th->tid == tid) {
481 threads__set_last_match(threads, th);
482 machine__update_thread_pid(machine, th, pid);
483 return thread__get(th);
484 }
485
486 if (tid < th->tid)
487 p = &(*p)->rb_left;
488 else
489 p = &(*p)->rb_right;
490 }
491
492 if (!create)
493 return NULL;
494
495 th = thread__new(pid, tid);
496 if (th != NULL) {
497 rb_link_node(&th->rb_node, parent, p);
498 rb_insert_color(&th->rb_node, &threads->entries);
499
500 /*
501 * We have to initialize map_groups separately
502 * after rb tree is updated.
503 *
504 * The reason is that we call machine__findnew_thread
505 * within thread__init_map_groups to find the thread
506 * leader and that would screwed the rb tree.
507 */
508 if (thread__init_map_groups(th, machine)) {
509 rb_erase_init(&th->rb_node, &threads->entries);
510 RB_CLEAR_NODE(&th->rb_node);
511 thread__put(th);
512 return NULL;
513 }
514 /*
515 * It is now in the rbtree, get a ref
516 */
517 thread__get(th);
518 threads__set_last_match(threads, th);
519 ++threads->nr;
520 }
521
522 return th;
523}
524
525struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
526{
527 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
528}
529
530struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
531 pid_t tid)
532{
533 struct threads *threads = machine__threads(machine, tid);
534 struct thread *th;
535
536 down_write(&threads->lock);
537 th = __machine__findnew_thread(machine, pid, tid);
538 up_write(&threads->lock);
539 return th;
540}
541
542struct thread *machine__find_thread(struct machine *machine, pid_t pid,
543 pid_t tid)
544{
545 struct threads *threads = machine__threads(machine, tid);
546 struct thread *th;
547
548 down_read(&threads->lock);
549 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
550 up_read(&threads->lock);
551 return th;
552}
553
554struct comm *machine__thread_exec_comm(struct machine *machine,
555 struct thread *thread)
556{
557 if (machine->comm_exec)
558 return thread__exec_comm(thread);
559 else
560 return thread__comm(thread);
561}
562
563int machine__process_comm_event(struct machine *machine, union perf_event *event,
564 struct perf_sample *sample)
565{
566 struct thread *thread = machine__findnew_thread(machine,
567 event->comm.pid,
568 event->comm.tid);
569 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
570 int err = 0;
571
572 if (exec)
573 machine->comm_exec = true;
574
575 if (dump_trace)
576 perf_event__fprintf_comm(event, stdout);
577
578 if (thread == NULL ||
579 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
580 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
581 err = -1;
582 }
583
584 thread__put(thread);
585
586 return err;
587}
588
589int machine__process_namespaces_event(struct machine *machine __maybe_unused,
590 union perf_event *event,
591 struct perf_sample *sample __maybe_unused)
592{
593 struct thread *thread = machine__findnew_thread(machine,
594 event->namespaces.pid,
595 event->namespaces.tid);
596 int err = 0;
597
598 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
599 "\nWARNING: kernel seems to support more namespaces than perf"
600 " tool.\nTry updating the perf tool..\n\n");
601
602 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
603 "\nWARNING: perf tool seems to support more namespaces than"
604 " the kernel.\nTry updating the kernel..\n\n");
605
606 if (dump_trace)
607 perf_event__fprintf_namespaces(event, stdout);
608
609 if (thread == NULL ||
610 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
611 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
612 err = -1;
613 }
614
615 thread__put(thread);
616
617 return err;
618}
619
620int machine__process_lost_event(struct machine *machine __maybe_unused,
621 union perf_event *event, struct perf_sample *sample __maybe_unused)
622{
623 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
624 event->lost.id, event->lost.lost);
625 return 0;
626}
627
628int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
629 union perf_event *event, struct perf_sample *sample)
630{
631 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
632 sample->id, event->lost_samples.lost);
633 return 0;
634}
635
636static struct dso *machine__findnew_module_dso(struct machine *machine,
637 struct kmod_path *m,
638 const char *filename)
639{
640 struct dso *dso;
641
642 down_write(&machine->dsos.lock);
643
644 dso = __dsos__find(&machine->dsos, m->name, true);
645 if (!dso) {
646 dso = __dsos__addnew(&machine->dsos, m->name);
647 if (dso == NULL)
648 goto out_unlock;
649
650 dso__set_module_info(dso, m, machine);
651 dso__set_long_name(dso, strdup(filename), true);
652 }
653
654 dso__get(dso);
655out_unlock:
656 up_write(&machine->dsos.lock);
657 return dso;
658}
659
660int machine__process_aux_event(struct machine *machine __maybe_unused,
661 union perf_event *event)
662{
663 if (dump_trace)
664 perf_event__fprintf_aux(event, stdout);
665 return 0;
666}
667
668int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
669 union perf_event *event)
670{
671 if (dump_trace)
672 perf_event__fprintf_itrace_start(event, stdout);
673 return 0;
674}
675
676int machine__process_switch_event(struct machine *machine __maybe_unused,
677 union perf_event *event)
678{
679 if (dump_trace)
680 perf_event__fprintf_switch(event, stdout);
681 return 0;
682}
683
684static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
685{
686 const char *dup_filename;
687
688 if (!filename || !dso || !dso->long_name)
689 return;
690 if (dso->long_name[0] != '[')
691 return;
692 if (!strchr(filename, '/'))
693 return;
694
695 dup_filename = strdup(filename);
696 if (!dup_filename)
697 return;
698
699 dso__set_long_name(dso, dup_filename, true);
700}
701
702struct map *machine__findnew_module_map(struct machine *machine, u64 start,
703 const char *filename)
704{
705 struct map *map = NULL;
706 struct dso *dso = NULL;
707 struct kmod_path m;
708
709 if (kmod_path__parse_name(&m, filename))
710 return NULL;
711
712 map = map_groups__find_by_name(&machine->kmaps, m.name);
713 if (map) {
714 /*
715 * If the map's dso is an offline module, give dso__load()
716 * a chance to find the file path of that module by fixing
717 * long_name.
718 */
719 dso__adjust_kmod_long_name(map->dso, filename);
720 goto out;
721 }
722
723 dso = machine__findnew_module_dso(machine, &m, filename);
724 if (dso == NULL)
725 goto out;
726
727 map = map__new2(start, dso);
728 if (map == NULL)
729 goto out;
730
731 map_groups__insert(&machine->kmaps, map);
732
733 /* Put the map here because map_groups__insert alread got it */
734 map__put(map);
735out:
736 /* put the dso here, corresponding to machine__findnew_module_dso */
737 dso__put(dso);
738 free(m.name);
739 return map;
740}
741
742size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
743{
744 struct rb_node *nd;
745 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
746
747 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
748 struct machine *pos = rb_entry(nd, struct machine, rb_node);
749 ret += __dsos__fprintf(&pos->dsos.head, fp);
750 }
751
752 return ret;
753}
754
755size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
756 bool (skip)(struct dso *dso, int parm), int parm)
757{
758 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
759}
760
761size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
762 bool (skip)(struct dso *dso, int parm), int parm)
763{
764 struct rb_node *nd;
765 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
766
767 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
768 struct machine *pos = rb_entry(nd, struct machine, rb_node);
769 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
770 }
771 return ret;
772}
773
774size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
775{
776 int i;
777 size_t printed = 0;
778 struct dso *kdso = machine__kernel_map(machine)->dso;
779
780 if (kdso->has_build_id) {
781 char filename[PATH_MAX];
782 if (dso__build_id_filename(kdso, filename, sizeof(filename),
783 false))
784 printed += fprintf(fp, "[0] %s\n", filename);
785 }
786
787 for (i = 0; i < vmlinux_path__nr_entries; ++i)
788 printed += fprintf(fp, "[%d] %s\n",
789 i + kdso->has_build_id, vmlinux_path[i]);
790
791 return printed;
792}
793
794size_t machine__fprintf(struct machine *machine, FILE *fp)
795{
796 struct rb_node *nd;
797 size_t ret;
798 int i;
799
800 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
801 struct threads *threads = &machine->threads[i];
802
803 down_read(&threads->lock);
804
805 ret = fprintf(fp, "Threads: %u\n", threads->nr);
806
807 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
808 struct thread *pos = rb_entry(nd, struct thread, rb_node);
809
810 ret += thread__fprintf(pos, fp);
811 }
812
813 up_read(&threads->lock);
814 }
815 return ret;
816}
817
818static struct dso *machine__get_kernel(struct machine *machine)
819{
820 const char *vmlinux_name = machine->mmap_name;
821 struct dso *kernel;
822
823 if (machine__is_host(machine)) {
824 if (symbol_conf.vmlinux_name)
825 vmlinux_name = symbol_conf.vmlinux_name;
826
827 kernel = machine__findnew_kernel(machine, vmlinux_name,
828 "[kernel]", DSO_TYPE_KERNEL);
829 } else {
830 if (symbol_conf.default_guest_vmlinux_name)
831 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
832
833 kernel = machine__findnew_kernel(machine, vmlinux_name,
834 "[guest.kernel]",
835 DSO_TYPE_GUEST_KERNEL);
836 }
837
838 if (kernel != NULL && (!kernel->has_build_id))
839 dso__read_running_kernel_build_id(kernel, machine);
840
841 return kernel;
842}
843
844struct process_args {
845 u64 start;
846};
847
848void machine__get_kallsyms_filename(struct machine *machine, char *buf,
849 size_t bufsz)
850{
851 if (machine__is_default_guest(machine))
852 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
853 else
854 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
855}
856
857const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
858
859/* Figure out the start address of kernel map from /proc/kallsyms.
860 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
861 * symbol_name if it's not that important.
862 */
863static int machine__get_running_kernel_start(struct machine *machine,
864 const char **symbol_name, u64 *start)
865{
866 char filename[PATH_MAX];
867 int i, err = -1;
868 const char *name;
869 u64 addr = 0;
870
871 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
872
873 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
874 return 0;
875
876 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
877 err = kallsyms__get_function_start(filename, name, &addr);
878 if (!err)
879 break;
880 }
881
882 if (err)
883 return -1;
884
885 if (symbol_name)
886 *symbol_name = name;
887
888 *start = addr;
889 return 0;
890}
891
892int machine__create_extra_kernel_map(struct machine *machine,
893 struct dso *kernel,
894 struct extra_kernel_map *xm)
895{
896 struct kmap *kmap;
897 struct map *map;
898
899 map = map__new2(xm->start, kernel);
900 if (!map)
901 return -1;
902
903 map->end = xm->end;
904 map->pgoff = xm->pgoff;
905
906 kmap = map__kmap(map);
907
908 kmap->kmaps = &machine->kmaps;
909 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
910
911 map_groups__insert(&machine->kmaps, map);
912
913 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
914 kmap->name, map->start, map->end);
915
916 map__put(map);
917
918 return 0;
919}
920
921static u64 find_entry_trampoline(struct dso *dso)
922{
923 /* Duplicates are removed so lookup all aliases */
924 const char *syms[] = {
925 "_entry_trampoline",
926 "__entry_trampoline_start",
927 "entry_SYSCALL_64_trampoline",
928 };
929 struct symbol *sym = dso__first_symbol(dso);
930 unsigned int i;
931
932 for (; sym; sym = dso__next_symbol(sym)) {
933 if (sym->binding != STB_GLOBAL)
934 continue;
935 for (i = 0; i < ARRAY_SIZE(syms); i++) {
936 if (!strcmp(sym->name, syms[i]))
937 return sym->start;
938 }
939 }
940
941 return 0;
942}
943
944/*
945 * These values can be used for kernels that do not have symbols for the entry
946 * trampolines in kallsyms.
947 */
948#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
949#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
950#define X86_64_ENTRY_TRAMPOLINE 0x6000
951
952/* Map x86_64 PTI entry trampolines */
953int machine__map_x86_64_entry_trampolines(struct machine *machine,
954 struct dso *kernel)
955{
956 struct map_groups *kmaps = &machine->kmaps;
957 struct maps *maps = &kmaps->maps;
958 int nr_cpus_avail, cpu;
959 bool found = false;
960 struct map *map;
961 u64 pgoff;
962
963 /*
964 * In the vmlinux case, pgoff is a virtual address which must now be
965 * mapped to a vmlinux offset.
966 */
967 for (map = maps__first(maps); map; map = map__next(map)) {
968 struct kmap *kmap = __map__kmap(map);
969 struct map *dest_map;
970
971 if (!kmap || !is_entry_trampoline(kmap->name))
972 continue;
973
974 dest_map = map_groups__find(kmaps, map->pgoff);
975 if (dest_map != map)
976 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
977 found = true;
978 }
979 if (found || machine->trampolines_mapped)
980 return 0;
981
982 pgoff = find_entry_trampoline(kernel);
983 if (!pgoff)
984 return 0;
985
986 nr_cpus_avail = machine__nr_cpus_avail(machine);
987
988 /* Add a 1 page map for each CPU's entry trampoline */
989 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
990 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
991 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
992 X86_64_ENTRY_TRAMPOLINE;
993 struct extra_kernel_map xm = {
994 .start = va,
995 .end = va + page_size,
996 .pgoff = pgoff,
997 };
998
999 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1000
1001 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1002 return -1;
1003 }
1004
1005 machine->trampolines_mapped = nr_cpus_avail;
1006
1007 return 0;
1008}
1009
1010int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1011 struct dso *kernel __maybe_unused)
1012{
1013 return 0;
1014}
1015
1016static int
1017__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1018{
1019 struct kmap *kmap;
1020 struct map *map;
1021
1022 /* In case of renewal the kernel map, destroy previous one */
1023 machine__destroy_kernel_maps(machine);
1024
1025 machine->vmlinux_map = map__new2(0, kernel);
1026 if (machine->vmlinux_map == NULL)
1027 return -1;
1028
1029 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1030 map = machine__kernel_map(machine);
1031 kmap = map__kmap(map);
1032 if (!kmap)
1033 return -1;
1034
1035 kmap->kmaps = &machine->kmaps;
1036 map_groups__insert(&machine->kmaps, map);
1037
1038 return 0;
1039}
1040
1041void machine__destroy_kernel_maps(struct machine *machine)
1042{
1043 struct kmap *kmap;
1044 struct map *map = machine__kernel_map(machine);
1045
1046 if (map == NULL)
1047 return;
1048
1049 kmap = map__kmap(map);
1050 map_groups__remove(&machine->kmaps, map);
1051 if (kmap && kmap->ref_reloc_sym) {
1052 zfree((char **)&kmap->ref_reloc_sym->name);
1053 zfree(&kmap->ref_reloc_sym);
1054 }
1055
1056 map__zput(machine->vmlinux_map);
1057}
1058
1059int machines__create_guest_kernel_maps(struct machines *machines)
1060{
1061 int ret = 0;
1062 struct dirent **namelist = NULL;
1063 int i, items = 0;
1064 char path[PATH_MAX];
1065 pid_t pid;
1066 char *endp;
1067
1068 if (symbol_conf.default_guest_vmlinux_name ||
1069 symbol_conf.default_guest_modules ||
1070 symbol_conf.default_guest_kallsyms) {
1071 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1072 }
1073
1074 if (symbol_conf.guestmount) {
1075 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1076 if (items <= 0)
1077 return -ENOENT;
1078 for (i = 0; i < items; i++) {
1079 if (!isdigit(namelist[i]->d_name[0])) {
1080 /* Filter out . and .. */
1081 continue;
1082 }
1083 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1084 if ((*endp != '\0') ||
1085 (endp == namelist[i]->d_name) ||
1086 (errno == ERANGE)) {
1087 pr_debug("invalid directory (%s). Skipping.\n",
1088 namelist[i]->d_name);
1089 continue;
1090 }
1091 sprintf(path, "%s/%s/proc/kallsyms",
1092 symbol_conf.guestmount,
1093 namelist[i]->d_name);
1094 ret = access(path, R_OK);
1095 if (ret) {
1096 pr_debug("Can't access file %s\n", path);
1097 goto failure;
1098 }
1099 machines__create_kernel_maps(machines, pid);
1100 }
1101failure:
1102 free(namelist);
1103 }
1104
1105 return ret;
1106}
1107
1108void machines__destroy_kernel_maps(struct machines *machines)
1109{
1110 struct rb_node *next = rb_first(&machines->guests);
1111
1112 machine__destroy_kernel_maps(&machines->host);
1113
1114 while (next) {
1115 struct machine *pos = rb_entry(next, struct machine, rb_node);
1116
1117 next = rb_next(&pos->rb_node);
1118 rb_erase(&pos->rb_node, &machines->guests);
1119 machine__delete(pos);
1120 }
1121}
1122
1123int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1124{
1125 struct machine *machine = machines__findnew(machines, pid);
1126
1127 if (machine == NULL)
1128 return -1;
1129
1130 return machine__create_kernel_maps(machine);
1131}
1132
1133int machine__load_kallsyms(struct machine *machine, const char *filename)
1134{
1135 struct map *map = machine__kernel_map(machine);
1136 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1137
1138 if (ret > 0) {
1139 dso__set_loaded(map->dso);
1140 /*
1141 * Since /proc/kallsyms will have multiple sessions for the
1142 * kernel, with modules between them, fixup the end of all
1143 * sections.
1144 */
1145 map_groups__fixup_end(&machine->kmaps);
1146 }
1147
1148 return ret;
1149}
1150
1151int machine__load_vmlinux_path(struct machine *machine)
1152{
1153 struct map *map = machine__kernel_map(machine);
1154 int ret = dso__load_vmlinux_path(map->dso, map);
1155
1156 if (ret > 0)
1157 dso__set_loaded(map->dso);
1158
1159 return ret;
1160}
1161
1162static char *get_kernel_version(const char *root_dir)
1163{
1164 char version[PATH_MAX];
1165 FILE *file;
1166 char *name, *tmp;
1167 const char *prefix = "Linux version ";
1168
1169 sprintf(version, "%s/proc/version", root_dir);
1170 file = fopen(version, "r");
1171 if (!file)
1172 return NULL;
1173
1174 version[0] = '\0';
1175 tmp = fgets(version, sizeof(version), file);
1176 fclose(file);
1177
1178 name = strstr(version, prefix);
1179 if (!name)
1180 return NULL;
1181 name += strlen(prefix);
1182 tmp = strchr(name, ' ');
1183 if (tmp)
1184 *tmp = '\0';
1185
1186 return strdup(name);
1187}
1188
1189static bool is_kmod_dso(struct dso *dso)
1190{
1191 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1192 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1193}
1194
1195static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1196 struct kmod_path *m)
1197{
1198 char *long_name;
1199 struct map *map = map_groups__find_by_name(mg, m->name);
1200
1201 if (map == NULL)
1202 return 0;
1203
1204 long_name = strdup(path);
1205 if (long_name == NULL)
1206 return -ENOMEM;
1207
1208 dso__set_long_name(map->dso, long_name, true);
1209 dso__kernel_module_get_build_id(map->dso, "");
1210
1211 /*
1212 * Full name could reveal us kmod compression, so
1213 * we need to update the symtab_type if needed.
1214 */
1215 if (m->comp && is_kmod_dso(map->dso)) {
1216 map->dso->symtab_type++;
1217 map->dso->comp = m->comp;
1218 }
1219
1220 return 0;
1221}
1222
1223static int map_groups__set_modules_path_dir(struct map_groups *mg,
1224 const char *dir_name, int depth)
1225{
1226 struct dirent *dent;
1227 DIR *dir = opendir(dir_name);
1228 int ret = 0;
1229
1230 if (!dir) {
1231 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1232 return -1;
1233 }
1234
1235 while ((dent = readdir(dir)) != NULL) {
1236 char path[PATH_MAX];
1237 struct stat st;
1238
1239 /*sshfs might return bad dent->d_type, so we have to stat*/
1240 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1241 if (stat(path, &st))
1242 continue;
1243
1244 if (S_ISDIR(st.st_mode)) {
1245 if (!strcmp(dent->d_name, ".") ||
1246 !strcmp(dent->d_name, ".."))
1247 continue;
1248
1249 /* Do not follow top-level source and build symlinks */
1250 if (depth == 0) {
1251 if (!strcmp(dent->d_name, "source") ||
1252 !strcmp(dent->d_name, "build"))
1253 continue;
1254 }
1255
1256 ret = map_groups__set_modules_path_dir(mg, path,
1257 depth + 1);
1258 if (ret < 0)
1259 goto out;
1260 } else {
1261 struct kmod_path m;
1262
1263 ret = kmod_path__parse_name(&m, dent->d_name);
1264 if (ret)
1265 goto out;
1266
1267 if (m.kmod)
1268 ret = map_groups__set_module_path(mg, path, &m);
1269
1270 free(m.name);
1271
1272 if (ret)
1273 goto out;
1274 }
1275 }
1276
1277out:
1278 closedir(dir);
1279 return ret;
1280}
1281
1282static int machine__set_modules_path(struct machine *machine)
1283{
1284 char *version;
1285 char modules_path[PATH_MAX];
1286
1287 version = get_kernel_version(machine->root_dir);
1288 if (!version)
1289 return -1;
1290
1291 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1292 machine->root_dir, version);
1293 free(version);
1294
1295 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1296}
1297int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1298 u64 *size __maybe_unused,
1299 const char *name __maybe_unused)
1300{
1301 return 0;
1302}
1303
1304static int machine__create_module(void *arg, const char *name, u64 start,
1305 u64 size)
1306{
1307 struct machine *machine = arg;
1308 struct map *map;
1309
1310 if (arch__fix_module_text_start(&start, &size, name) < 0)
1311 return -1;
1312
1313 map = machine__findnew_module_map(machine, start, name);
1314 if (map == NULL)
1315 return -1;
1316 map->end = start + size;
1317
1318 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1319
1320 return 0;
1321}
1322
1323static int machine__create_modules(struct machine *machine)
1324{
1325 const char *modules;
1326 char path[PATH_MAX];
1327
1328 if (machine__is_default_guest(machine)) {
1329 modules = symbol_conf.default_guest_modules;
1330 } else {
1331 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1332 modules = path;
1333 }
1334
1335 if (symbol__restricted_filename(modules, "/proc/modules"))
1336 return -1;
1337
1338 if (modules__parse(modules, machine, machine__create_module))
1339 return -1;
1340
1341 if (!machine__set_modules_path(machine))
1342 return 0;
1343
1344 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1345
1346 return 0;
1347}
1348
1349static void machine__set_kernel_mmap(struct machine *machine,
1350 u64 start, u64 end)
1351{
1352 machine->vmlinux_map->start = start;
1353 machine->vmlinux_map->end = end;
1354 /*
1355 * Be a bit paranoid here, some perf.data file came with
1356 * a zero sized synthesized MMAP event for the kernel.
1357 */
1358 if (start == 0 && end == 0)
1359 machine->vmlinux_map->end = ~0ULL;
1360}
1361
1362static void machine__update_kernel_mmap(struct machine *machine,
1363 u64 start, u64 end)
1364{
1365 struct map *map = machine__kernel_map(machine);
1366
1367 map__get(map);
1368 map_groups__remove(&machine->kmaps, map);
1369
1370 machine__set_kernel_mmap(machine, start, end);
1371
1372 map_groups__insert(&machine->kmaps, map);
1373 map__put(map);
1374}
1375
1376int machine__create_kernel_maps(struct machine *machine)
1377{
1378 struct dso *kernel = machine__get_kernel(machine);
1379 const char *name = NULL;
1380 struct map *map;
1381 u64 addr = 0;
1382 int ret;
1383
1384 if (kernel == NULL)
1385 return -1;
1386
1387 ret = __machine__create_kernel_maps(machine, kernel);
1388 if (ret < 0)
1389 goto out_put;
1390
1391 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1392 if (machine__is_host(machine))
1393 pr_debug("Problems creating module maps, "
1394 "continuing anyway...\n");
1395 else
1396 pr_debug("Problems creating module maps for guest %d, "
1397 "continuing anyway...\n", machine->pid);
1398 }
1399
1400 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1401 if (name &&
1402 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1403 machine__destroy_kernel_maps(machine);
1404 ret = -1;
1405 goto out_put;
1406 }
1407
1408 /*
1409 * we have a real start address now, so re-order the kmaps
1410 * assume it's the last in the kmaps
1411 */
1412 machine__update_kernel_mmap(machine, addr, ~0ULL);
1413 }
1414
1415 if (machine__create_extra_kernel_maps(machine, kernel))
1416 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1417
1418 /* update end address of the kernel map using adjacent module address */
1419 map = map__next(machine__kernel_map(machine));
1420 if (map)
1421 machine__set_kernel_mmap(machine, addr, map->start);
1422out_put:
1423 dso__put(kernel);
1424 return ret;
1425}
1426
1427static bool machine__uses_kcore(struct machine *machine)
1428{
1429 struct dso *dso;
1430
1431 list_for_each_entry(dso, &machine->dsos.head, node) {
1432 if (dso__is_kcore(dso))
1433 return true;
1434 }
1435
1436 return false;
1437}
1438
1439static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1440 union perf_event *event)
1441{
1442 return machine__is(machine, "x86_64") &&
1443 is_entry_trampoline(event->mmap.filename);
1444}
1445
1446static int machine__process_extra_kernel_map(struct machine *machine,
1447 union perf_event *event)
1448{
1449 struct map *kernel_map = machine__kernel_map(machine);
1450 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1451 struct extra_kernel_map xm = {
1452 .start = event->mmap.start,
1453 .end = event->mmap.start + event->mmap.len,
1454 .pgoff = event->mmap.pgoff,
1455 };
1456
1457 if (kernel == NULL)
1458 return -1;
1459
1460 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1461
1462 return machine__create_extra_kernel_map(machine, kernel, &xm);
1463}
1464
1465static int machine__process_kernel_mmap_event(struct machine *machine,
1466 union perf_event *event)
1467{
1468 struct map *map;
1469 enum dso_kernel_type kernel_type;
1470 bool is_kernel_mmap;
1471
1472 /* If we have maps from kcore then we do not need or want any others */
1473 if (machine__uses_kcore(machine))
1474 return 0;
1475
1476 if (machine__is_host(machine))
1477 kernel_type = DSO_TYPE_KERNEL;
1478 else
1479 kernel_type = DSO_TYPE_GUEST_KERNEL;
1480
1481 is_kernel_mmap = memcmp(event->mmap.filename,
1482 machine->mmap_name,
1483 strlen(machine->mmap_name) - 1) == 0;
1484 if (event->mmap.filename[0] == '/' ||
1485 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1486 map = machine__findnew_module_map(machine, event->mmap.start,
1487 event->mmap.filename);
1488 if (map == NULL)
1489 goto out_problem;
1490
1491 map->end = map->start + event->mmap.len;
1492 } else if (is_kernel_mmap) {
1493 const char *symbol_name = (event->mmap.filename +
1494 strlen(machine->mmap_name));
1495 /*
1496 * Should be there already, from the build-id table in
1497 * the header.
1498 */
1499 struct dso *kernel = NULL;
1500 struct dso *dso;
1501
1502 down_read(&machine->dsos.lock);
1503
1504 list_for_each_entry(dso, &machine->dsos.head, node) {
1505
1506 /*
1507 * The cpumode passed to is_kernel_module is not the
1508 * cpumode of *this* event. If we insist on passing
1509 * correct cpumode to is_kernel_module, we should
1510 * record the cpumode when we adding this dso to the
1511 * linked list.
1512 *
1513 * However we don't really need passing correct
1514 * cpumode. We know the correct cpumode must be kernel
1515 * mode (if not, we should not link it onto kernel_dsos
1516 * list).
1517 *
1518 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1519 * is_kernel_module() treats it as a kernel cpumode.
1520 */
1521
1522 if (!dso->kernel ||
1523 is_kernel_module(dso->long_name,
1524 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1525 continue;
1526
1527
1528 kernel = dso;
1529 break;
1530 }
1531
1532 up_read(&machine->dsos.lock);
1533
1534 if (kernel == NULL)
1535 kernel = machine__findnew_dso(machine, machine->mmap_name);
1536 if (kernel == NULL)
1537 goto out_problem;
1538
1539 kernel->kernel = kernel_type;
1540 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1541 dso__put(kernel);
1542 goto out_problem;
1543 }
1544
1545 if (strstr(kernel->long_name, "vmlinux"))
1546 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1547
1548 machine__update_kernel_mmap(machine, event->mmap.start,
1549 event->mmap.start + event->mmap.len);
1550
1551 /*
1552 * Avoid using a zero address (kptr_restrict) for the ref reloc
1553 * symbol. Effectively having zero here means that at record
1554 * time /proc/sys/kernel/kptr_restrict was non zero.
1555 */
1556 if (event->mmap.pgoff != 0) {
1557 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1558 symbol_name,
1559 event->mmap.pgoff);
1560 }
1561
1562 if (machine__is_default_guest(machine)) {
1563 /*
1564 * preload dso of guest kernel and modules
1565 */
1566 dso__load(kernel, machine__kernel_map(machine));
1567 }
1568 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1569 return machine__process_extra_kernel_map(machine, event);
1570 }
1571 return 0;
1572out_problem:
1573 return -1;
1574}
1575
1576int machine__process_mmap2_event(struct machine *machine,
1577 union perf_event *event,
1578 struct perf_sample *sample)
1579{
1580 struct thread *thread;
1581 struct map *map;
1582 int ret = 0;
1583
1584 if (dump_trace)
1585 perf_event__fprintf_mmap2(event, stdout);
1586
1587 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1588 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1589 ret = machine__process_kernel_mmap_event(machine, event);
1590 if (ret < 0)
1591 goto out_problem;
1592 return 0;
1593 }
1594
1595 thread = machine__findnew_thread(machine, event->mmap2.pid,
1596 event->mmap2.tid);
1597 if (thread == NULL)
1598 goto out_problem;
1599
1600 map = map__new(machine, event->mmap2.start,
1601 event->mmap2.len, event->mmap2.pgoff,
1602 event->mmap2.maj,
1603 event->mmap2.min, event->mmap2.ino,
1604 event->mmap2.ino_generation,
1605 event->mmap2.prot,
1606 event->mmap2.flags,
1607 event->mmap2.filename, thread);
1608
1609 if (map == NULL)
1610 goto out_problem_map;
1611
1612 ret = thread__insert_map(thread, map);
1613 if (ret)
1614 goto out_problem_insert;
1615
1616 thread__put(thread);
1617 map__put(map);
1618 return 0;
1619
1620out_problem_insert:
1621 map__put(map);
1622out_problem_map:
1623 thread__put(thread);
1624out_problem:
1625 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1626 return 0;
1627}
1628
1629int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1630 struct perf_sample *sample)
1631{
1632 struct thread *thread;
1633 struct map *map;
1634 u32 prot = 0;
1635 int ret = 0;
1636
1637 if (dump_trace)
1638 perf_event__fprintf_mmap(event, stdout);
1639
1640 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1641 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1642 ret = machine__process_kernel_mmap_event(machine, event);
1643 if (ret < 0)
1644 goto out_problem;
1645 return 0;
1646 }
1647
1648 thread = machine__findnew_thread(machine, event->mmap.pid,
1649 event->mmap.tid);
1650 if (thread == NULL)
1651 goto out_problem;
1652
1653 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1654 prot = PROT_EXEC;
1655
1656 map = map__new(machine, event->mmap.start,
1657 event->mmap.len, event->mmap.pgoff,
1658 0, 0, 0, 0, prot, 0,
1659 event->mmap.filename,
1660 thread);
1661
1662 if (map == NULL)
1663 goto out_problem_map;
1664
1665 ret = thread__insert_map(thread, map);
1666 if (ret)
1667 goto out_problem_insert;
1668
1669 thread__put(thread);
1670 map__put(map);
1671 return 0;
1672
1673out_problem_insert:
1674 map__put(map);
1675out_problem_map:
1676 thread__put(thread);
1677out_problem:
1678 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1679 return 0;
1680}
1681
1682static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1683{
1684 struct threads *threads = machine__threads(machine, th->tid);
1685
1686 if (threads->last_match == th)
1687 threads__set_last_match(threads, NULL);
1688
1689 BUG_ON(refcount_read(&th->refcnt) == 0);
1690 if (lock)
1691 down_write(&threads->lock);
1692 rb_erase_init(&th->rb_node, &threads->entries);
1693 RB_CLEAR_NODE(&th->rb_node);
1694 --threads->nr;
1695 /*
1696 * Move it first to the dead_threads list, then drop the reference,
1697 * if this is the last reference, then the thread__delete destructor
1698 * will be called and we will remove it from the dead_threads list.
1699 */
1700 list_add_tail(&th->node, &threads->dead);
1701 if (lock)
1702 up_write(&threads->lock);
1703 thread__put(th);
1704}
1705
1706void machine__remove_thread(struct machine *machine, struct thread *th)
1707{
1708 return __machine__remove_thread(machine, th, true);
1709}
1710
1711int machine__process_fork_event(struct machine *machine, union perf_event *event,
1712 struct perf_sample *sample)
1713{
1714 struct thread *thread = machine__find_thread(machine,
1715 event->fork.pid,
1716 event->fork.tid);
1717 struct thread *parent = machine__findnew_thread(machine,
1718 event->fork.ppid,
1719 event->fork.ptid);
1720 int err = 0;
1721
1722 if (dump_trace)
1723 perf_event__fprintf_task(event, stdout);
1724
1725 /*
1726 * There may be an existing thread that is not actually the parent,
1727 * either because we are processing events out of order, or because the
1728 * (fork) event that would have removed the thread was lost. Assume the
1729 * latter case and continue on as best we can.
1730 */
1731 if (parent->pid_ != (pid_t)event->fork.ppid) {
1732 dump_printf("removing erroneous parent thread %d/%d\n",
1733 parent->pid_, parent->tid);
1734 machine__remove_thread(machine, parent);
1735 thread__put(parent);
1736 parent = machine__findnew_thread(machine, event->fork.ppid,
1737 event->fork.ptid);
1738 }
1739
1740 /* if a thread currently exists for the thread id remove it */
1741 if (thread != NULL) {
1742 machine__remove_thread(machine, thread);
1743 thread__put(thread);
1744 }
1745
1746 thread = machine__findnew_thread(machine, event->fork.pid,
1747 event->fork.tid);
1748
1749 if (thread == NULL || parent == NULL ||
1750 thread__fork(thread, parent, sample->time) < 0) {
1751 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1752 err = -1;
1753 }
1754 thread__put(thread);
1755 thread__put(parent);
1756
1757 return err;
1758}
1759
1760int machine__process_exit_event(struct machine *machine, union perf_event *event,
1761 struct perf_sample *sample __maybe_unused)
1762{
1763 struct thread *thread = machine__find_thread(machine,
1764 event->fork.pid,
1765 event->fork.tid);
1766
1767 if (dump_trace)
1768 perf_event__fprintf_task(event, stdout);
1769
1770 if (thread != NULL) {
1771 thread__exited(thread);
1772 thread__put(thread);
1773 }
1774
1775 return 0;
1776}
1777
1778int machine__process_event(struct machine *machine, union perf_event *event,
1779 struct perf_sample *sample)
1780{
1781 int ret;
1782
1783 switch (event->header.type) {
1784 case PERF_RECORD_COMM:
1785 ret = machine__process_comm_event(machine, event, sample); break;
1786 case PERF_RECORD_MMAP:
1787 ret = machine__process_mmap_event(machine, event, sample); break;
1788 case PERF_RECORD_NAMESPACES:
1789 ret = machine__process_namespaces_event(machine, event, sample); break;
1790 case PERF_RECORD_MMAP2:
1791 ret = machine__process_mmap2_event(machine, event, sample); break;
1792 case PERF_RECORD_FORK:
1793 ret = machine__process_fork_event(machine, event, sample); break;
1794 case PERF_RECORD_EXIT:
1795 ret = machine__process_exit_event(machine, event, sample); break;
1796 case PERF_RECORD_LOST:
1797 ret = machine__process_lost_event(machine, event, sample); break;
1798 case PERF_RECORD_AUX:
1799 ret = machine__process_aux_event(machine, event); break;
1800 case PERF_RECORD_ITRACE_START:
1801 ret = machine__process_itrace_start_event(machine, event); break;
1802 case PERF_RECORD_LOST_SAMPLES:
1803 ret = machine__process_lost_samples_event(machine, event, sample); break;
1804 case PERF_RECORD_SWITCH:
1805 case PERF_RECORD_SWITCH_CPU_WIDE:
1806 ret = machine__process_switch_event(machine, event); break;
1807 default:
1808 ret = -1;
1809 break;
1810 }
1811
1812 return ret;
1813}
1814
1815static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1816{
1817 if (!regexec(regex, sym->name, 0, NULL, 0))
1818 return 1;
1819 return 0;
1820}
1821
1822static void ip__resolve_ams(struct thread *thread,
1823 struct addr_map_symbol *ams,
1824 u64 ip)
1825{
1826 struct addr_location al;
1827
1828 memset(&al, 0, sizeof(al));
1829 /*
1830 * We cannot use the header.misc hint to determine whether a
1831 * branch stack address is user, kernel, guest, hypervisor.
1832 * Branches may straddle the kernel/user/hypervisor boundaries.
1833 * Thus, we have to try consecutively until we find a match
1834 * or else, the symbol is unknown
1835 */
1836 thread__find_cpumode_addr_location(thread, ip, &al);
1837
1838 ams->addr = ip;
1839 ams->al_addr = al.addr;
1840 ams->sym = al.sym;
1841 ams->map = al.map;
1842 ams->phys_addr = 0;
1843}
1844
1845static void ip__resolve_data(struct thread *thread,
1846 u8 m, struct addr_map_symbol *ams,
1847 u64 addr, u64 phys_addr)
1848{
1849 struct addr_location al;
1850
1851 memset(&al, 0, sizeof(al));
1852
1853 thread__find_symbol(thread, m, addr, &al);
1854
1855 ams->addr = addr;
1856 ams->al_addr = al.addr;
1857 ams->sym = al.sym;
1858 ams->map = al.map;
1859 ams->phys_addr = phys_addr;
1860}
1861
1862struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1863 struct addr_location *al)
1864{
1865 struct mem_info *mi = mem_info__new();
1866
1867 if (!mi)
1868 return NULL;
1869
1870 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1871 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1872 sample->addr, sample->phys_addr);
1873 mi->data_src.val = sample->data_src;
1874
1875 return mi;
1876}
1877
1878static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1879{
1880 char *srcline = NULL;
1881
1882 if (!map || callchain_param.key == CCKEY_FUNCTION)
1883 return srcline;
1884
1885 srcline = srcline__tree_find(&map->dso->srclines, ip);
1886 if (!srcline) {
1887 bool show_sym = false;
1888 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1889
1890 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1891 sym, show_sym, show_addr, ip);
1892 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1893 }
1894
1895 return srcline;
1896}
1897
1898struct iterations {
1899 int nr_loop_iter;
1900 u64 cycles;
1901};
1902
1903static int add_callchain_ip(struct thread *thread,
1904 struct callchain_cursor *cursor,
1905 struct symbol **parent,
1906 struct addr_location *root_al,
1907 u8 *cpumode,
1908 u64 ip,
1909 bool branch,
1910 struct branch_flags *flags,
1911 struct iterations *iter,
1912 u64 branch_from)
1913{
1914 struct addr_location al;
1915 int nr_loop_iter = 0;
1916 u64 iter_cycles = 0;
1917 const char *srcline = NULL;
1918
1919 al.filtered = 0;
1920 al.sym = NULL;
1921 if (!cpumode) {
1922 thread__find_cpumode_addr_location(thread, ip, &al);
1923 } else {
1924 if (ip >= PERF_CONTEXT_MAX) {
1925 switch (ip) {
1926 case PERF_CONTEXT_HV:
1927 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1928 break;
1929 case PERF_CONTEXT_KERNEL:
1930 *cpumode = PERF_RECORD_MISC_KERNEL;
1931 break;
1932 case PERF_CONTEXT_USER:
1933 *cpumode = PERF_RECORD_MISC_USER;
1934 break;
1935 default:
1936 pr_debug("invalid callchain context: "
1937 "%"PRId64"\n", (s64) ip);
1938 /*
1939 * It seems the callchain is corrupted.
1940 * Discard all.
1941 */
1942 callchain_cursor_reset(cursor);
1943 return 1;
1944 }
1945 return 0;
1946 }
1947 thread__find_symbol(thread, *cpumode, ip, &al);
1948 }
1949
1950 if (al.sym != NULL) {
1951 if (perf_hpp_list.parent && !*parent &&
1952 symbol__match_regex(al.sym, &parent_regex))
1953 *parent = al.sym;
1954 else if (have_ignore_callees && root_al &&
1955 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1956 /* Treat this symbol as the root,
1957 forgetting its callees. */
1958 *root_al = al;
1959 callchain_cursor_reset(cursor);
1960 }
1961 }
1962
1963 if (symbol_conf.hide_unresolved && al.sym == NULL)
1964 return 0;
1965
1966 if (iter) {
1967 nr_loop_iter = iter->nr_loop_iter;
1968 iter_cycles = iter->cycles;
1969 }
1970
1971 srcline = callchain_srcline(al.map, al.sym, al.addr);
1972 return callchain_cursor_append(cursor, ip, al.map, al.sym,
1973 branch, flags, nr_loop_iter,
1974 iter_cycles, branch_from, srcline);
1975}
1976
1977struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1978 struct addr_location *al)
1979{
1980 unsigned int i;
1981 const struct branch_stack *bs = sample->branch_stack;
1982 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1983
1984 if (!bi)
1985 return NULL;
1986
1987 for (i = 0; i < bs->nr; i++) {
1988 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1989 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1990 bi[i].flags = bs->entries[i].flags;
1991 }
1992 return bi;
1993}
1994
1995static void save_iterations(struct iterations *iter,
1996 struct branch_entry *be, int nr)
1997{
1998 int i;
1999
2000 iter->nr_loop_iter++;
2001 iter->cycles = 0;
2002
2003 for (i = 0; i < nr; i++)
2004 iter->cycles += be[i].flags.cycles;
2005}
2006
2007#define CHASHSZ 127
2008#define CHASHBITS 7
2009#define NO_ENTRY 0xff
2010
2011#define PERF_MAX_BRANCH_DEPTH 127
2012
2013/* Remove loops. */
2014static int remove_loops(struct branch_entry *l, int nr,
2015 struct iterations *iter)
2016{
2017 int i, j, off;
2018 unsigned char chash[CHASHSZ];
2019
2020 memset(chash, NO_ENTRY, sizeof(chash));
2021
2022 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2023
2024 for (i = 0; i < nr; i++) {
2025 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2026
2027 /* no collision handling for now */
2028 if (chash[h] == NO_ENTRY) {
2029 chash[h] = i;
2030 } else if (l[chash[h]].from == l[i].from) {
2031 bool is_loop = true;
2032 /* check if it is a real loop */
2033 off = 0;
2034 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2035 if (l[j].from != l[i + off].from) {
2036 is_loop = false;
2037 break;
2038 }
2039 if (is_loop) {
2040 j = nr - (i + off);
2041 if (j > 0) {
2042 save_iterations(iter + i + off,
2043 l + i, off);
2044
2045 memmove(iter + i, iter + i + off,
2046 j * sizeof(*iter));
2047
2048 memmove(l + i, l + i + off,
2049 j * sizeof(*l));
2050 }
2051
2052 nr -= off;
2053 }
2054 }
2055 }
2056 return nr;
2057}
2058
2059/*
2060 * Recolve LBR callstack chain sample
2061 * Return:
2062 * 1 on success get LBR callchain information
2063 * 0 no available LBR callchain information, should try fp
2064 * negative error code on other errors.
2065 */
2066static int resolve_lbr_callchain_sample(struct thread *thread,
2067 struct callchain_cursor *cursor,
2068 struct perf_sample *sample,
2069 struct symbol **parent,
2070 struct addr_location *root_al,
2071 int max_stack)
2072{
2073 struct ip_callchain *chain = sample->callchain;
2074 int chain_nr = min(max_stack, (int)chain->nr), i;
2075 u8 cpumode = PERF_RECORD_MISC_USER;
2076 u64 ip, branch_from = 0;
2077
2078 for (i = 0; i < chain_nr; i++) {
2079 if (chain->ips[i] == PERF_CONTEXT_USER)
2080 break;
2081 }
2082
2083 /* LBR only affects the user callchain */
2084 if (i != chain_nr) {
2085 struct branch_stack *lbr_stack = sample->branch_stack;
2086 int lbr_nr = lbr_stack->nr, j, k;
2087 bool branch;
2088 struct branch_flags *flags;
2089 /*
2090 * LBR callstack can only get user call chain.
2091 * The mix_chain_nr is kernel call chain
2092 * number plus LBR user call chain number.
2093 * i is kernel call chain number,
2094 * 1 is PERF_CONTEXT_USER,
2095 * lbr_nr + 1 is the user call chain number.
2096 * For details, please refer to the comments
2097 * in callchain__printf
2098 */
2099 int mix_chain_nr = i + 1 + lbr_nr + 1;
2100
2101 for (j = 0; j < mix_chain_nr; j++) {
2102 int err;
2103 branch = false;
2104 flags = NULL;
2105
2106 if (callchain_param.order == ORDER_CALLEE) {
2107 if (j < i + 1)
2108 ip = chain->ips[j];
2109 else if (j > i + 1) {
2110 k = j - i - 2;
2111 ip = lbr_stack->entries[k].from;
2112 branch = true;
2113 flags = &lbr_stack->entries[k].flags;
2114 } else {
2115 ip = lbr_stack->entries[0].to;
2116 branch = true;
2117 flags = &lbr_stack->entries[0].flags;
2118 branch_from =
2119 lbr_stack->entries[0].from;
2120 }
2121 } else {
2122 if (j < lbr_nr) {
2123 k = lbr_nr - j - 1;
2124 ip = lbr_stack->entries[k].from;
2125 branch = true;
2126 flags = &lbr_stack->entries[k].flags;
2127 }
2128 else if (j > lbr_nr)
2129 ip = chain->ips[i + 1 - (j - lbr_nr)];
2130 else {
2131 ip = lbr_stack->entries[0].to;
2132 branch = true;
2133 flags = &lbr_stack->entries[0].flags;
2134 branch_from =
2135 lbr_stack->entries[0].from;
2136 }
2137 }
2138
2139 err = add_callchain_ip(thread, cursor, parent,
2140 root_al, &cpumode, ip,
2141 branch, flags, NULL,
2142 branch_from);
2143 if (err)
2144 return (err < 0) ? err : 0;
2145 }
2146 return 1;
2147 }
2148
2149 return 0;
2150}
2151
2152static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2153 struct callchain_cursor *cursor,
2154 struct symbol **parent,
2155 struct addr_location *root_al,
2156 u8 *cpumode, int ent)
2157{
2158 int err = 0;
2159
2160 while (--ent >= 0) {
2161 u64 ip = chain->ips[ent];
2162
2163 if (ip >= PERF_CONTEXT_MAX) {
2164 err = add_callchain_ip(thread, cursor, parent,
2165 root_al, cpumode, ip,
2166 false, NULL, NULL, 0);
2167 break;
2168 }
2169 }
2170 return err;
2171}
2172
2173static int thread__resolve_callchain_sample(struct thread *thread,
2174 struct callchain_cursor *cursor,
2175 struct perf_evsel *evsel,
2176 struct perf_sample *sample,
2177 struct symbol **parent,
2178 struct addr_location *root_al,
2179 int max_stack)
2180{
2181 struct branch_stack *branch = sample->branch_stack;
2182 struct ip_callchain *chain = sample->callchain;
2183 int chain_nr = 0;
2184 u8 cpumode = PERF_RECORD_MISC_USER;
2185 int i, j, err, nr_entries;
2186 int skip_idx = -1;
2187 int first_call = 0;
2188
2189 if (chain)
2190 chain_nr = chain->nr;
2191
2192 if (perf_evsel__has_branch_callstack(evsel)) {
2193 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2194 root_al, max_stack);
2195 if (err)
2196 return (err < 0) ? err : 0;
2197 }
2198
2199 /*
2200 * Based on DWARF debug information, some architectures skip
2201 * a callchain entry saved by the kernel.
2202 */
2203 skip_idx = arch_skip_callchain_idx(thread, chain);
2204
2205 /*
2206 * Add branches to call stack for easier browsing. This gives
2207 * more context for a sample than just the callers.
2208 *
2209 * This uses individual histograms of paths compared to the
2210 * aggregated histograms the normal LBR mode uses.
2211 *
2212 * Limitations for now:
2213 * - No extra filters
2214 * - No annotations (should annotate somehow)
2215 */
2216
2217 if (branch && callchain_param.branch_callstack) {
2218 int nr = min(max_stack, (int)branch->nr);
2219 struct branch_entry be[nr];
2220 struct iterations iter[nr];
2221
2222 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2223 pr_warning("corrupted branch chain. skipping...\n");
2224 goto check_calls;
2225 }
2226
2227 for (i = 0; i < nr; i++) {
2228 if (callchain_param.order == ORDER_CALLEE) {
2229 be[i] = branch->entries[i];
2230
2231 if (chain == NULL)
2232 continue;
2233
2234 /*
2235 * Check for overlap into the callchain.
2236 * The return address is one off compared to
2237 * the branch entry. To adjust for this
2238 * assume the calling instruction is not longer
2239 * than 8 bytes.
2240 */
2241 if (i == skip_idx ||
2242 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2243 first_call++;
2244 else if (be[i].from < chain->ips[first_call] &&
2245 be[i].from >= chain->ips[first_call] - 8)
2246 first_call++;
2247 } else
2248 be[i] = branch->entries[branch->nr - i - 1];
2249 }
2250
2251 memset(iter, 0, sizeof(struct iterations) * nr);
2252 nr = remove_loops(be, nr, iter);
2253
2254 for (i = 0; i < nr; i++) {
2255 err = add_callchain_ip(thread, cursor, parent,
2256 root_al,
2257 NULL, be[i].to,
2258 true, &be[i].flags,
2259 NULL, be[i].from);
2260
2261 if (!err)
2262 err = add_callchain_ip(thread, cursor, parent, root_al,
2263 NULL, be[i].from,
2264 true, &be[i].flags,
2265 &iter[i], 0);
2266 if (err == -EINVAL)
2267 break;
2268 if (err)
2269 return err;
2270 }
2271
2272 if (chain_nr == 0)
2273 return 0;
2274
2275 chain_nr -= nr;
2276 }
2277
2278check_calls:
2279 if (chain && callchain_param.order != ORDER_CALLEE) {
2280 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2281 &cpumode, chain->nr - first_call);
2282 if (err)
2283 return (err < 0) ? err : 0;
2284 }
2285 for (i = first_call, nr_entries = 0;
2286 i < chain_nr && nr_entries < max_stack; i++) {
2287 u64 ip;
2288
2289 if (callchain_param.order == ORDER_CALLEE)
2290 j = i;
2291 else
2292 j = chain->nr - i - 1;
2293
2294#ifdef HAVE_SKIP_CALLCHAIN_IDX
2295 if (j == skip_idx)
2296 continue;
2297#endif
2298 ip = chain->ips[j];
2299 if (ip < PERF_CONTEXT_MAX)
2300 ++nr_entries;
2301 else if (callchain_param.order != ORDER_CALLEE) {
2302 err = find_prev_cpumode(chain, thread, cursor, parent,
2303 root_al, &cpumode, j);
2304 if (err)
2305 return (err < 0) ? err : 0;
2306 continue;
2307 }
2308
2309 err = add_callchain_ip(thread, cursor, parent,
2310 root_al, &cpumode, ip,
2311 false, NULL, NULL, 0);
2312
2313 if (err)
2314 return (err < 0) ? err : 0;
2315 }
2316
2317 return 0;
2318}
2319
2320static int append_inlines(struct callchain_cursor *cursor,
2321 struct map *map, struct symbol *sym, u64 ip)
2322{
2323 struct inline_node *inline_node;
2324 struct inline_list *ilist;
2325 u64 addr;
2326 int ret = 1;
2327
2328 if (!symbol_conf.inline_name || !map || !sym)
2329 return ret;
2330
2331 addr = map__map_ip(map, ip);
2332 addr = map__rip_2objdump(map, addr);
2333
2334 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2335 if (!inline_node) {
2336 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2337 if (!inline_node)
2338 return ret;
2339 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2340 }
2341
2342 list_for_each_entry(ilist, &inline_node->val, list) {
2343 ret = callchain_cursor_append(cursor, ip, map,
2344 ilist->symbol, false,
2345 NULL, 0, 0, 0, ilist->srcline);
2346
2347 if (ret != 0)
2348 return ret;
2349 }
2350
2351 return ret;
2352}
2353
2354static int unwind_entry(struct unwind_entry *entry, void *arg)
2355{
2356 struct callchain_cursor *cursor = arg;
2357 const char *srcline = NULL;
2358 u64 addr = entry->ip;
2359
2360 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2361 return 0;
2362
2363 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2364 return 0;
2365
2366 /*
2367 * Convert entry->ip from a virtual address to an offset in
2368 * its corresponding binary.
2369 */
2370 if (entry->map)
2371 addr = map__map_ip(entry->map, entry->ip);
2372
2373 srcline = callchain_srcline(entry->map, entry->sym, addr);
2374 return callchain_cursor_append(cursor, entry->ip,
2375 entry->map, entry->sym,
2376 false, NULL, 0, 0, 0, srcline);
2377}
2378
2379static int thread__resolve_callchain_unwind(struct thread *thread,
2380 struct callchain_cursor *cursor,
2381 struct perf_evsel *evsel,
2382 struct perf_sample *sample,
2383 int max_stack)
2384{
2385 /* Can we do dwarf post unwind? */
2386 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2387 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2388 return 0;
2389
2390 /* Bail out if nothing was captured. */
2391 if ((!sample->user_regs.regs) ||
2392 (!sample->user_stack.size))
2393 return 0;
2394
2395 return unwind__get_entries(unwind_entry, cursor,
2396 thread, sample, max_stack);
2397}
2398
2399int thread__resolve_callchain(struct thread *thread,
2400 struct callchain_cursor *cursor,
2401 struct perf_evsel *evsel,
2402 struct perf_sample *sample,
2403 struct symbol **parent,
2404 struct addr_location *root_al,
2405 int max_stack)
2406{
2407 int ret = 0;
2408
2409 callchain_cursor_reset(cursor);
2410
2411 if (callchain_param.order == ORDER_CALLEE) {
2412 ret = thread__resolve_callchain_sample(thread, cursor,
2413 evsel, sample,
2414 parent, root_al,
2415 max_stack);
2416 if (ret)
2417 return ret;
2418 ret = thread__resolve_callchain_unwind(thread, cursor,
2419 evsel, sample,
2420 max_stack);
2421 } else {
2422 ret = thread__resolve_callchain_unwind(thread, cursor,
2423 evsel, sample,
2424 max_stack);
2425 if (ret)
2426 return ret;
2427 ret = thread__resolve_callchain_sample(thread, cursor,
2428 evsel, sample,
2429 parent, root_al,
2430 max_stack);
2431 }
2432
2433 return ret;
2434}
2435
2436int machine__for_each_thread(struct machine *machine,
2437 int (*fn)(struct thread *thread, void *p),
2438 void *priv)
2439{
2440 struct threads *threads;
2441 struct rb_node *nd;
2442 struct thread *thread;
2443 int rc = 0;
2444 int i;
2445
2446 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2447 threads = &machine->threads[i];
2448 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2449 thread = rb_entry(nd, struct thread, rb_node);
2450 rc = fn(thread, priv);
2451 if (rc != 0)
2452 return rc;
2453 }
2454
2455 list_for_each_entry(thread, &threads->dead, node) {
2456 rc = fn(thread, priv);
2457 if (rc != 0)
2458 return rc;
2459 }
2460 }
2461 return rc;
2462}
2463
2464int machines__for_each_thread(struct machines *machines,
2465 int (*fn)(struct thread *thread, void *p),
2466 void *priv)
2467{
2468 struct rb_node *nd;
2469 int rc = 0;
2470
2471 rc = machine__for_each_thread(&machines->host, fn, priv);
2472 if (rc != 0)
2473 return rc;
2474
2475 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2476 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2477
2478 rc = machine__for_each_thread(machine, fn, priv);
2479 if (rc != 0)
2480 return rc;
2481 }
2482 return rc;
2483}
2484
2485int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2486 struct target *target, struct thread_map *threads,
2487 perf_event__handler_t process, bool data_mmap,
2488 unsigned int proc_map_timeout,
2489 unsigned int nr_threads_synthesize)
2490{
2491 if (target__has_task(target))
2492 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2493 else if (target__has_cpu(target))
2494 return perf_event__synthesize_threads(tool, process,
2495 machine, data_mmap,
2496 proc_map_timeout,
2497 nr_threads_synthesize);
2498 /* command specified */
2499 return 0;
2500}
2501
2502pid_t machine__get_current_tid(struct machine *machine, int cpu)
2503{
2504 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2505 return -1;
2506
2507 return machine->current_tid[cpu];
2508}
2509
2510int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2511 pid_t tid)
2512{
2513 struct thread *thread;
2514
2515 if (cpu < 0)
2516 return -EINVAL;
2517
2518 if (!machine->current_tid) {
2519 int i;
2520
2521 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2522 if (!machine->current_tid)
2523 return -ENOMEM;
2524 for (i = 0; i < MAX_NR_CPUS; i++)
2525 machine->current_tid[i] = -1;
2526 }
2527
2528 if (cpu >= MAX_NR_CPUS) {
2529 pr_err("Requested CPU %d too large. ", cpu);
2530 pr_err("Consider raising MAX_NR_CPUS\n");
2531 return -EINVAL;
2532 }
2533
2534 machine->current_tid[cpu] = tid;
2535
2536 thread = machine__findnew_thread(machine, pid, tid);
2537 if (!thread)
2538 return -ENOMEM;
2539
2540 thread->cpu = cpu;
2541 thread__put(thread);
2542
2543 return 0;
2544}
2545
2546/*
2547 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2548 * normalized arch is needed.
2549 */
2550bool machine__is(struct machine *machine, const char *arch)
2551{
2552 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2553}
2554
2555int machine__nr_cpus_avail(struct machine *machine)
2556{
2557 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2558}
2559
2560int machine__get_kernel_start(struct machine *machine)
2561{
2562 struct map *map = machine__kernel_map(machine);
2563 int err = 0;
2564
2565 /*
2566 * The only addresses above 2^63 are kernel addresses of a 64-bit
2567 * kernel. Note that addresses are unsigned so that on a 32-bit system
2568 * all addresses including kernel addresses are less than 2^32. In
2569 * that case (32-bit system), if the kernel mapping is unknown, all
2570 * addresses will be assumed to be in user space - see
2571 * machine__kernel_ip().
2572 */
2573 machine->kernel_start = 1ULL << 63;
2574 if (map) {
2575 err = map__load(map);
2576 /*
2577 * On x86_64, PTI entry trampolines are less than the
2578 * start of kernel text, but still above 2^63. So leave
2579 * kernel_start = 1ULL << 63 for x86_64.
2580 */
2581 if (!err && !machine__is(machine, "x86_64"))
2582 machine->kernel_start = map->start;
2583 }
2584 return err;
2585}
2586
2587u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2588{
2589 u8 addr_cpumode = cpumode;
2590 bool kernel_ip;
2591
2592 if (!machine->single_address_space)
2593 goto out;
2594
2595 kernel_ip = machine__kernel_ip(machine, addr);
2596 switch (cpumode) {
2597 case PERF_RECORD_MISC_KERNEL:
2598 case PERF_RECORD_MISC_USER:
2599 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2600 PERF_RECORD_MISC_USER;
2601 break;
2602 case PERF_RECORD_MISC_GUEST_KERNEL:
2603 case PERF_RECORD_MISC_GUEST_USER:
2604 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2605 PERF_RECORD_MISC_GUEST_USER;
2606 break;
2607 default:
2608 break;
2609 }
2610out:
2611 return addr_cpumode;
2612}
2613
2614struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2615{
2616 return dsos__findnew(&machine->dsos, filename);
2617}
2618
2619char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2620{
2621 struct machine *machine = vmachine;
2622 struct map *map;
2623 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2624
2625 if (sym == NULL)
2626 return NULL;
2627
2628 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2629 *addrp = map->unmap_ip(map, sym->start);
2630 return sym->name;
2631}