| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | 4 | * All Rights Reserved. | 
|  | 5 | */ | 
|  | 6 | #include "xfs.h" | 
|  | 7 | #include "xfs_fs.h" | 
|  | 8 | #include "xfs_format.h" | 
|  | 9 | #include "xfs_log_format.h" | 
|  | 10 | #include "xfs_trans_resv.h" | 
|  | 11 | #include "xfs_sb.h" | 
|  | 12 | #include "xfs_mount.h" | 
|  | 13 | #include "xfs_inode.h" | 
|  | 14 | #include "xfs_error.h" | 
|  | 15 | #include "xfs_trans.h" | 
|  | 16 | #include "xfs_trans_priv.h" | 
|  | 17 | #include "xfs_inode_item.h" | 
|  | 18 | #include "xfs_quota.h" | 
|  | 19 | #include "xfs_trace.h" | 
|  | 20 | #include "xfs_icache.h" | 
|  | 21 | #include "xfs_bmap_util.h" | 
|  | 22 | #include "xfs_dquot_item.h" | 
|  | 23 | #include "xfs_dquot.h" | 
|  | 24 | #include "xfs_reflink.h" | 
|  | 25 |  | 
|  | 26 | #include <linux/kthread.h> | 
|  | 27 | #include <linux/freezer.h> | 
|  | 28 | #include <linux/iversion.h> | 
|  | 29 |  | 
|  | 30 | /* | 
|  | 31 | * Allocate and initialise an xfs_inode. | 
|  | 32 | */ | 
|  | 33 | struct xfs_inode * | 
|  | 34 | xfs_inode_alloc( | 
|  | 35 | struct xfs_mount	*mp, | 
|  | 36 | xfs_ino_t		ino) | 
|  | 37 | { | 
|  | 38 | struct xfs_inode	*ip; | 
|  | 39 |  | 
|  | 40 | /* | 
|  | 41 | * if this didn't occur in transactions, we could use | 
|  | 42 | * KM_MAYFAIL and return NULL here on ENOMEM. Set the | 
|  | 43 | * code up to do this anyway. | 
|  | 44 | */ | 
|  | 45 | ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); | 
|  | 46 | if (!ip) | 
|  | 47 | return NULL; | 
|  | 48 | if (inode_init_always(mp->m_super, VFS_I(ip))) { | 
|  | 49 | kmem_zone_free(xfs_inode_zone, ip); | 
|  | 50 | return NULL; | 
|  | 51 | } | 
|  | 52 |  | 
|  | 53 | /* VFS doesn't initialise i_mode! */ | 
|  | 54 | VFS_I(ip)->i_mode = 0; | 
|  | 55 |  | 
|  | 56 | XFS_STATS_INC(mp, vn_active); | 
|  | 57 | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | 58 | ASSERT(!xfs_isiflocked(ip)); | 
|  | 59 | ASSERT(ip->i_ino == 0); | 
|  | 60 |  | 
|  | 61 | /* initialise the xfs inode */ | 
|  | 62 | ip->i_ino = ino; | 
|  | 63 | ip->i_mount = mp; | 
|  | 64 | memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); | 
|  | 65 | ip->i_afp = NULL; | 
|  | 66 | ip->i_cowfp = NULL; | 
|  | 67 | ip->i_cnextents = 0; | 
|  | 68 | ip->i_cformat = XFS_DINODE_FMT_EXTENTS; | 
|  | 69 | memset(&ip->i_df, 0, sizeof(ip->i_df)); | 
|  | 70 | ip->i_flags = 0; | 
|  | 71 | ip->i_delayed_blks = 0; | 
|  | 72 | memset(&ip->i_d, 0, sizeof(ip->i_d)); | 
|  | 73 |  | 
|  | 74 | return ip; | 
|  | 75 | } | 
|  | 76 |  | 
|  | 77 | STATIC void | 
|  | 78 | xfs_inode_free_callback( | 
|  | 79 | struct rcu_head		*head) | 
|  | 80 | { | 
|  | 81 | struct inode		*inode = container_of(head, struct inode, i_rcu); | 
|  | 82 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 83 |  | 
|  | 84 | switch (VFS_I(ip)->i_mode & S_IFMT) { | 
|  | 85 | case S_IFREG: | 
|  | 86 | case S_IFDIR: | 
|  | 87 | case S_IFLNK: | 
|  | 88 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
|  | 89 | break; | 
|  | 90 | } | 
|  | 91 |  | 
|  | 92 | if (ip->i_afp) | 
|  | 93 | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
|  | 94 | if (ip->i_cowfp) | 
|  | 95 | xfs_idestroy_fork(ip, XFS_COW_FORK); | 
|  | 96 |  | 
|  | 97 | if (ip->i_itemp) { | 
|  | 98 | ASSERT(!test_bit(XFS_LI_IN_AIL, | 
|  | 99 | &ip->i_itemp->ili_item.li_flags)); | 
|  | 100 | xfs_inode_item_destroy(ip); | 
|  | 101 | ip->i_itemp = NULL; | 
|  | 102 | } | 
|  | 103 |  | 
|  | 104 | kmem_zone_free(xfs_inode_zone, ip); | 
|  | 105 | } | 
|  | 106 |  | 
|  | 107 | static void | 
|  | 108 | __xfs_inode_free( | 
|  | 109 | struct xfs_inode	*ip) | 
|  | 110 | { | 
|  | 111 | /* asserts to verify all state is correct here */ | 
|  | 112 | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | 113 | XFS_STATS_DEC(ip->i_mount, vn_active); | 
|  | 114 |  | 
|  | 115 | call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | void | 
|  | 119 | xfs_inode_free( | 
|  | 120 | struct xfs_inode	*ip) | 
|  | 121 | { | 
|  | 122 | ASSERT(!xfs_isiflocked(ip)); | 
|  | 123 |  | 
|  | 124 | /* | 
|  | 125 | * Because we use RCU freeing we need to ensure the inode always | 
|  | 126 | * appears to be reclaimed with an invalid inode number when in the | 
|  | 127 | * free state. The ip->i_flags_lock provides the barrier against lookup | 
|  | 128 | * races. | 
|  | 129 | */ | 
|  | 130 | spin_lock(&ip->i_flags_lock); | 
|  | 131 | ip->i_flags = XFS_IRECLAIM; | 
|  | 132 | ip->i_ino = 0; | 
|  | 133 | spin_unlock(&ip->i_flags_lock); | 
|  | 134 |  | 
|  | 135 | __xfs_inode_free(ip); | 
|  | 136 | } | 
|  | 137 |  | 
|  | 138 | /* | 
|  | 139 | * Queue a new inode reclaim pass if there are reclaimable inodes and there | 
|  | 140 | * isn't a reclaim pass already in progress. By default it runs every 5s based | 
|  | 141 | * on the xfs periodic sync default of 30s. Perhaps this should have it's own | 
|  | 142 | * tunable, but that can be done if this method proves to be ineffective or too | 
|  | 143 | * aggressive. | 
|  | 144 | */ | 
|  | 145 | static void | 
|  | 146 | xfs_reclaim_work_queue( | 
|  | 147 | struct xfs_mount        *mp) | 
|  | 148 | { | 
|  | 149 |  | 
|  | 150 | rcu_read_lock(); | 
|  | 151 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | 
|  | 152 | queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, | 
|  | 153 | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | 
|  | 154 | } | 
|  | 155 | rcu_read_unlock(); | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | /* | 
|  | 159 | * This is a fast pass over the inode cache to try to get reclaim moving on as | 
|  | 160 | * many inodes as possible in a short period of time. It kicks itself every few | 
|  | 161 | * seconds, as well as being kicked by the inode cache shrinker when memory | 
|  | 162 | * goes low. It scans as quickly as possible avoiding locked inodes or those | 
|  | 163 | * already being flushed, and once done schedules a future pass. | 
|  | 164 | */ | 
|  | 165 | void | 
|  | 166 | xfs_reclaim_worker( | 
|  | 167 | struct work_struct *work) | 
|  | 168 | { | 
|  | 169 | struct xfs_mount *mp = container_of(to_delayed_work(work), | 
|  | 170 | struct xfs_mount, m_reclaim_work); | 
|  | 171 |  | 
|  | 172 | xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | 
|  | 173 | xfs_reclaim_work_queue(mp); | 
|  | 174 | } | 
|  | 175 |  | 
|  | 176 | static void | 
|  | 177 | xfs_perag_set_reclaim_tag( | 
|  | 178 | struct xfs_perag	*pag) | 
|  | 179 | { | 
|  | 180 | struct xfs_mount	*mp = pag->pag_mount; | 
|  | 181 |  | 
|  | 182 | lockdep_assert_held(&pag->pag_ici_lock); | 
|  | 183 | if (pag->pag_ici_reclaimable++) | 
|  | 184 | return; | 
|  | 185 |  | 
|  | 186 | /* propagate the reclaim tag up into the perag radix tree */ | 
|  | 187 | spin_lock(&mp->m_perag_lock); | 
|  | 188 | radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, | 
|  | 189 | XFS_ICI_RECLAIM_TAG); | 
|  | 190 | spin_unlock(&mp->m_perag_lock); | 
|  | 191 |  | 
|  | 192 | /* schedule periodic background inode reclaim */ | 
|  | 193 | xfs_reclaim_work_queue(mp); | 
|  | 194 |  | 
|  | 195 | trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); | 
|  | 196 | } | 
|  | 197 |  | 
|  | 198 | static void | 
|  | 199 | xfs_perag_clear_reclaim_tag( | 
|  | 200 | struct xfs_perag	*pag) | 
|  | 201 | { | 
|  | 202 | struct xfs_mount	*mp = pag->pag_mount; | 
|  | 203 |  | 
|  | 204 | lockdep_assert_held(&pag->pag_ici_lock); | 
|  | 205 | if (--pag->pag_ici_reclaimable) | 
|  | 206 | return; | 
|  | 207 |  | 
|  | 208 | /* clear the reclaim tag from the perag radix tree */ | 
|  | 209 | spin_lock(&mp->m_perag_lock); | 
|  | 210 | radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, | 
|  | 211 | XFS_ICI_RECLAIM_TAG); | 
|  | 212 | spin_unlock(&mp->m_perag_lock); | 
|  | 213 | trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); | 
|  | 214 | } | 
|  | 215 |  | 
|  | 216 |  | 
|  | 217 | /* | 
|  | 218 | * We set the inode flag atomically with the radix tree tag. | 
|  | 219 | * Once we get tag lookups on the radix tree, this inode flag | 
|  | 220 | * can go away. | 
|  | 221 | */ | 
|  | 222 | void | 
|  | 223 | xfs_inode_set_reclaim_tag( | 
|  | 224 | struct xfs_inode	*ip) | 
|  | 225 | { | 
|  | 226 | struct xfs_mount	*mp = ip->i_mount; | 
|  | 227 | struct xfs_perag	*pag; | 
|  | 228 |  | 
|  | 229 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | 230 | spin_lock(&pag->pag_ici_lock); | 
|  | 231 | spin_lock(&ip->i_flags_lock); | 
|  | 232 |  | 
|  | 233 | radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
|  | 234 | XFS_ICI_RECLAIM_TAG); | 
|  | 235 | xfs_perag_set_reclaim_tag(pag); | 
|  | 236 | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); | 
|  | 237 |  | 
|  | 238 | spin_unlock(&ip->i_flags_lock); | 
|  | 239 | spin_unlock(&pag->pag_ici_lock); | 
|  | 240 | xfs_perag_put(pag); | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | STATIC void | 
|  | 244 | xfs_inode_clear_reclaim_tag( | 
|  | 245 | struct xfs_perag	*pag, | 
|  | 246 | xfs_ino_t		ino) | 
|  | 247 | { | 
|  | 248 | radix_tree_tag_clear(&pag->pag_ici_root, | 
|  | 249 | XFS_INO_TO_AGINO(pag->pag_mount, ino), | 
|  | 250 | XFS_ICI_RECLAIM_TAG); | 
|  | 251 | xfs_perag_clear_reclaim_tag(pag); | 
|  | 252 | } | 
|  | 253 |  | 
|  | 254 | static void | 
|  | 255 | xfs_inew_wait( | 
|  | 256 | struct xfs_inode	*ip) | 
|  | 257 | { | 
|  | 258 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); | 
|  | 259 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); | 
|  | 260 |  | 
|  | 261 | do { | 
|  | 262 | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
|  | 263 | if (!xfs_iflags_test(ip, XFS_INEW)) | 
|  | 264 | break; | 
|  | 265 | schedule(); | 
|  | 266 | } while (true); | 
|  | 267 | finish_wait(wq, &wait.wq_entry); | 
|  | 268 | } | 
|  | 269 |  | 
|  | 270 | /* | 
|  | 271 | * When we recycle a reclaimable inode, we need to re-initialise the VFS inode | 
|  | 272 | * part of the structure. This is made more complex by the fact we store | 
|  | 273 | * information about the on-disk values in the VFS inode and so we can't just | 
|  | 274 | * overwrite the values unconditionally. Hence we save the parameters we | 
|  | 275 | * need to retain across reinitialisation, and rewrite them into the VFS inode | 
|  | 276 | * after reinitialisation even if it fails. | 
|  | 277 | */ | 
|  | 278 | static int | 
|  | 279 | xfs_reinit_inode( | 
|  | 280 | struct xfs_mount	*mp, | 
|  | 281 | struct inode		*inode) | 
|  | 282 | { | 
|  | 283 | int		error; | 
|  | 284 | uint32_t	nlink = inode->i_nlink; | 
|  | 285 | uint32_t	generation = inode->i_generation; | 
|  | 286 | uint64_t	version = inode_peek_iversion(inode); | 
|  | 287 | umode_t		mode = inode->i_mode; | 
|  | 288 | dev_t		dev = inode->i_rdev; | 
|  | 289 |  | 
|  | 290 | error = inode_init_always(mp->m_super, inode); | 
|  | 291 |  | 
|  | 292 | set_nlink(inode, nlink); | 
|  | 293 | inode->i_generation = generation; | 
|  | 294 | inode_set_iversion_queried(inode, version); | 
|  | 295 | inode->i_mode = mode; | 
|  | 296 | inode->i_rdev = dev; | 
|  | 297 | return error; | 
|  | 298 | } | 
|  | 299 |  | 
|  | 300 | /* | 
|  | 301 | * If we are allocating a new inode, then check what was returned is | 
|  | 302 | * actually a free, empty inode. If we are not allocating an inode, | 
|  | 303 | * then check we didn't find a free inode. | 
|  | 304 | * | 
|  | 305 | * Returns: | 
|  | 306 | *	0		if the inode free state matches the lookup context | 
|  | 307 | *	-ENOENT		if the inode is free and we are not allocating | 
|  | 308 | *	-EFSCORRUPTED	if there is any state mismatch at all | 
|  | 309 | */ | 
|  | 310 | static int | 
|  | 311 | xfs_iget_check_free_state( | 
|  | 312 | struct xfs_inode	*ip, | 
|  | 313 | int			flags) | 
|  | 314 | { | 
|  | 315 | if (flags & XFS_IGET_CREATE) { | 
|  | 316 | /* should be a free inode */ | 
|  | 317 | if (VFS_I(ip)->i_mode != 0) { | 
|  | 318 | xfs_warn(ip->i_mount, | 
|  | 319 | "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", | 
|  | 320 | ip->i_ino, VFS_I(ip)->i_mode); | 
|  | 321 | return -EFSCORRUPTED; | 
|  | 322 | } | 
|  | 323 |  | 
|  | 324 | if (ip->i_d.di_nblocks != 0) { | 
|  | 325 | xfs_warn(ip->i_mount, | 
|  | 326 | "Corruption detected! Free inode 0x%llx has blocks allocated!", | 
|  | 327 | ip->i_ino); | 
|  | 328 | return -EFSCORRUPTED; | 
|  | 329 | } | 
|  | 330 | return 0; | 
|  | 331 | } | 
|  | 332 |  | 
|  | 333 | /* should be an allocated inode */ | 
|  | 334 | if (VFS_I(ip)->i_mode == 0) | 
|  | 335 | return -ENOENT; | 
|  | 336 |  | 
|  | 337 | return 0; | 
|  | 338 | } | 
|  | 339 |  | 
|  | 340 | /* | 
|  | 341 | * Check the validity of the inode we just found it the cache | 
|  | 342 | */ | 
|  | 343 | static int | 
|  | 344 | xfs_iget_cache_hit( | 
|  | 345 | struct xfs_perag	*pag, | 
|  | 346 | struct xfs_inode	*ip, | 
|  | 347 | xfs_ino_t		ino, | 
|  | 348 | int			flags, | 
|  | 349 | int			lock_flags) __releases(RCU) | 
|  | 350 | { | 
|  | 351 | struct inode		*inode = VFS_I(ip); | 
|  | 352 | struct xfs_mount	*mp = ip->i_mount; | 
|  | 353 | int			error; | 
|  | 354 |  | 
|  | 355 | /* | 
|  | 356 | * check for re-use of an inode within an RCU grace period due to the | 
|  | 357 | * radix tree nodes not being updated yet. We monitor for this by | 
|  | 358 | * setting the inode number to zero before freeing the inode structure. | 
|  | 359 | * If the inode has been reallocated and set up, then the inode number | 
|  | 360 | * will not match, so check for that, too. | 
|  | 361 | */ | 
|  | 362 | spin_lock(&ip->i_flags_lock); | 
|  | 363 | if (ip->i_ino != ino) { | 
|  | 364 | trace_xfs_iget_skip(ip); | 
|  | 365 | XFS_STATS_INC(mp, xs_ig_frecycle); | 
|  | 366 | error = -EAGAIN; | 
|  | 367 | goto out_error; | 
|  | 368 | } | 
|  | 369 |  | 
|  | 370 |  | 
|  | 371 | /* | 
|  | 372 | * If we are racing with another cache hit that is currently | 
|  | 373 | * instantiating this inode or currently recycling it out of | 
|  | 374 | * reclaimabe state, wait for the initialisation to complete | 
|  | 375 | * before continuing. | 
|  | 376 | * | 
|  | 377 | * XXX(hch): eventually we should do something equivalent to | 
|  | 378 | *	     wait_on_inode to wait for these flags to be cleared | 
|  | 379 | *	     instead of polling for it. | 
|  | 380 | */ | 
|  | 381 | if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { | 
|  | 382 | trace_xfs_iget_skip(ip); | 
|  | 383 | XFS_STATS_INC(mp, xs_ig_frecycle); | 
|  | 384 | error = -EAGAIN; | 
|  | 385 | goto out_error; | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | /* | 
|  | 389 | * Check the inode free state is valid. This also detects lookup | 
|  | 390 | * racing with unlinks. | 
|  | 391 | */ | 
|  | 392 | error = xfs_iget_check_free_state(ip, flags); | 
|  | 393 | if (error) | 
|  | 394 | goto out_error; | 
|  | 395 |  | 
|  | 396 | /* | 
|  | 397 | * If IRECLAIMABLE is set, we've torn down the VFS inode already. | 
|  | 398 | * Need to carefully get it back into useable state. | 
|  | 399 | */ | 
|  | 400 | if (ip->i_flags & XFS_IRECLAIMABLE) { | 
|  | 401 | trace_xfs_iget_reclaim(ip); | 
|  | 402 |  | 
|  | 403 | if (flags & XFS_IGET_INCORE) { | 
|  | 404 | error = -EAGAIN; | 
|  | 405 | goto out_error; | 
|  | 406 | } | 
|  | 407 |  | 
|  | 408 | /* | 
|  | 409 | * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode | 
|  | 410 | * from stomping over us while we recycle the inode.  We can't | 
|  | 411 | * clear the radix tree reclaimable tag yet as it requires | 
|  | 412 | * pag_ici_lock to be held exclusive. | 
|  | 413 | */ | 
|  | 414 | ip->i_flags |= XFS_IRECLAIM; | 
|  | 415 |  | 
|  | 416 | spin_unlock(&ip->i_flags_lock); | 
|  | 417 | rcu_read_unlock(); | 
|  | 418 |  | 
|  | 419 | error = xfs_reinit_inode(mp, inode); | 
|  | 420 | if (error) { | 
|  | 421 | bool wake; | 
|  | 422 | /* | 
|  | 423 | * Re-initializing the inode failed, and we are in deep | 
|  | 424 | * trouble.  Try to re-add it to the reclaim list. | 
|  | 425 | */ | 
|  | 426 | rcu_read_lock(); | 
|  | 427 | spin_lock(&ip->i_flags_lock); | 
|  | 428 | wake = !!__xfs_iflags_test(ip, XFS_INEW); | 
|  | 429 | ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); | 
|  | 430 | if (wake) | 
|  | 431 | wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); | 
|  | 432 | ASSERT(ip->i_flags & XFS_IRECLAIMABLE); | 
|  | 433 | trace_xfs_iget_reclaim_fail(ip); | 
|  | 434 | goto out_error; | 
|  | 435 | } | 
|  | 436 |  | 
|  | 437 | spin_lock(&pag->pag_ici_lock); | 
|  | 438 | spin_lock(&ip->i_flags_lock); | 
|  | 439 |  | 
|  | 440 | /* | 
|  | 441 | * Clear the per-lifetime state in the inode as we are now | 
|  | 442 | * effectively a new inode and need to return to the initial | 
|  | 443 | * state before reuse occurs. | 
|  | 444 | */ | 
|  | 445 | ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; | 
|  | 446 | ip->i_flags |= XFS_INEW; | 
|  | 447 | xfs_inode_clear_reclaim_tag(pag, ip->i_ino); | 
|  | 448 | inode->i_state = I_NEW; | 
|  | 449 |  | 
|  | 450 | ASSERT(!rwsem_is_locked(&inode->i_rwsem)); | 
|  | 451 | init_rwsem(&inode->i_rwsem); | 
|  | 452 |  | 
|  | 453 | spin_unlock(&ip->i_flags_lock); | 
|  | 454 | spin_unlock(&pag->pag_ici_lock); | 
|  | 455 | } else { | 
|  | 456 | /* If the VFS inode is being torn down, pause and try again. */ | 
|  | 457 | if (!igrab(inode)) { | 
|  | 458 | trace_xfs_iget_skip(ip); | 
|  | 459 | error = -EAGAIN; | 
|  | 460 | goto out_error; | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | /* We've got a live one. */ | 
|  | 464 | spin_unlock(&ip->i_flags_lock); | 
|  | 465 | rcu_read_unlock(); | 
|  | 466 | trace_xfs_iget_hit(ip); | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | if (lock_flags != 0) | 
|  | 470 | xfs_ilock(ip, lock_flags); | 
|  | 471 |  | 
|  | 472 | if (!(flags & XFS_IGET_INCORE)) | 
|  | 473 | xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); | 
|  | 474 | XFS_STATS_INC(mp, xs_ig_found); | 
|  | 475 |  | 
|  | 476 | return 0; | 
|  | 477 |  | 
|  | 478 | out_error: | 
|  | 479 | spin_unlock(&ip->i_flags_lock); | 
|  | 480 | rcu_read_unlock(); | 
|  | 481 | return error; | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 |  | 
|  | 485 | static int | 
|  | 486 | xfs_iget_cache_miss( | 
|  | 487 | struct xfs_mount	*mp, | 
|  | 488 | struct xfs_perag	*pag, | 
|  | 489 | xfs_trans_t		*tp, | 
|  | 490 | xfs_ino_t		ino, | 
|  | 491 | struct xfs_inode	**ipp, | 
|  | 492 | int			flags, | 
|  | 493 | int			lock_flags) | 
|  | 494 | { | 
|  | 495 | struct xfs_inode	*ip; | 
|  | 496 | int			error; | 
|  | 497 | xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino); | 
|  | 498 | int			iflags; | 
|  | 499 |  | 
|  | 500 | ip = xfs_inode_alloc(mp, ino); | 
|  | 501 | if (!ip) | 
|  | 502 | return -ENOMEM; | 
|  | 503 |  | 
|  | 504 | error = xfs_iread(mp, tp, ip, flags); | 
|  | 505 | if (error) | 
|  | 506 | goto out_destroy; | 
|  | 507 |  | 
|  | 508 | if (!xfs_inode_verify_forks(ip)) { | 
|  | 509 | error = -EFSCORRUPTED; | 
|  | 510 | goto out_destroy; | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | trace_xfs_iget_miss(ip); | 
|  | 514 |  | 
|  | 515 |  | 
|  | 516 | /* | 
|  | 517 | * Check the inode free state is valid. This also detects lookup | 
|  | 518 | * racing with unlinks. | 
|  | 519 | */ | 
|  | 520 | error = xfs_iget_check_free_state(ip, flags); | 
|  | 521 | if (error) | 
|  | 522 | goto out_destroy; | 
|  | 523 |  | 
|  | 524 | /* | 
|  | 525 | * Preload the radix tree so we can insert safely under the | 
|  | 526 | * write spinlock. Note that we cannot sleep inside the preload | 
|  | 527 | * region. Since we can be called from transaction context, don't | 
|  | 528 | * recurse into the file system. | 
|  | 529 | */ | 
|  | 530 | if (radix_tree_preload(GFP_NOFS)) { | 
|  | 531 | error = -EAGAIN; | 
|  | 532 | goto out_destroy; | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | /* | 
|  | 536 | * Because the inode hasn't been added to the radix-tree yet it can't | 
|  | 537 | * be found by another thread, so we can do the non-sleeping lock here. | 
|  | 538 | */ | 
|  | 539 | if (lock_flags) { | 
|  | 540 | if (!xfs_ilock_nowait(ip, lock_flags)) | 
|  | 541 | BUG(); | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | /* | 
|  | 545 | * These values must be set before inserting the inode into the radix | 
|  | 546 | * tree as the moment it is inserted a concurrent lookup (allowed by the | 
|  | 547 | * RCU locking mechanism) can find it and that lookup must see that this | 
|  | 548 | * is an inode currently under construction (i.e. that XFS_INEW is set). | 
|  | 549 | * The ip->i_flags_lock that protects the XFS_INEW flag forms the | 
|  | 550 | * memory barrier that ensures this detection works correctly at lookup | 
|  | 551 | * time. | 
|  | 552 | */ | 
|  | 553 | iflags = XFS_INEW; | 
|  | 554 | if (flags & XFS_IGET_DONTCACHE) | 
|  | 555 | iflags |= XFS_IDONTCACHE; | 
|  | 556 | ip->i_udquot = NULL; | 
|  | 557 | ip->i_gdquot = NULL; | 
|  | 558 | ip->i_pdquot = NULL; | 
|  | 559 | xfs_iflags_set(ip, iflags); | 
|  | 560 |  | 
|  | 561 | /* insert the new inode */ | 
|  | 562 | spin_lock(&pag->pag_ici_lock); | 
|  | 563 | error = radix_tree_insert(&pag->pag_ici_root, agino, ip); | 
|  | 564 | if (unlikely(error)) { | 
|  | 565 | WARN_ON(error != -EEXIST); | 
|  | 566 | XFS_STATS_INC(mp, xs_ig_dup); | 
|  | 567 | error = -EAGAIN; | 
|  | 568 | goto out_preload_end; | 
|  | 569 | } | 
|  | 570 | spin_unlock(&pag->pag_ici_lock); | 
|  | 571 | radix_tree_preload_end(); | 
|  | 572 |  | 
|  | 573 | *ipp = ip; | 
|  | 574 | return 0; | 
|  | 575 |  | 
|  | 576 | out_preload_end: | 
|  | 577 | spin_unlock(&pag->pag_ici_lock); | 
|  | 578 | radix_tree_preload_end(); | 
|  | 579 | if (lock_flags) | 
|  | 580 | xfs_iunlock(ip, lock_flags); | 
|  | 581 | out_destroy: | 
|  | 582 | __destroy_inode(VFS_I(ip)); | 
|  | 583 | xfs_inode_free(ip); | 
|  | 584 | return error; | 
|  | 585 | } | 
|  | 586 |  | 
|  | 587 | /* | 
|  | 588 | * Look up an inode by number in the given file system. | 
|  | 589 | * The inode is looked up in the cache held in each AG. | 
|  | 590 | * If the inode is found in the cache, initialise the vfs inode | 
|  | 591 | * if necessary. | 
|  | 592 | * | 
|  | 593 | * If it is not in core, read it in from the file system's device, | 
|  | 594 | * add it to the cache and initialise the vfs inode. | 
|  | 595 | * | 
|  | 596 | * The inode is locked according to the value of the lock_flags parameter. | 
|  | 597 | * This flag parameter indicates how and if the inode's IO lock and inode lock | 
|  | 598 | * should be taken. | 
|  | 599 | * | 
|  | 600 | * mp -- the mount point structure for the current file system.  It points | 
|  | 601 | *       to the inode hash table. | 
|  | 602 | * tp -- a pointer to the current transaction if there is one.  This is | 
|  | 603 | *       simply passed through to the xfs_iread() call. | 
|  | 604 | * ino -- the number of the inode desired.  This is the unique identifier | 
|  | 605 | *        within the file system for the inode being requested. | 
|  | 606 | * lock_flags -- flags indicating how to lock the inode.  See the comment | 
|  | 607 | *		 for xfs_ilock() for a list of valid values. | 
|  | 608 | */ | 
|  | 609 | int | 
|  | 610 | xfs_iget( | 
|  | 611 | xfs_mount_t	*mp, | 
|  | 612 | xfs_trans_t	*tp, | 
|  | 613 | xfs_ino_t	ino, | 
|  | 614 | uint		flags, | 
|  | 615 | uint		lock_flags, | 
|  | 616 | xfs_inode_t	**ipp) | 
|  | 617 | { | 
|  | 618 | xfs_inode_t	*ip; | 
|  | 619 | int		error; | 
|  | 620 | xfs_perag_t	*pag; | 
|  | 621 | xfs_agino_t	agino; | 
|  | 622 |  | 
|  | 623 | /* | 
|  | 624 | * xfs_reclaim_inode() uses the ILOCK to ensure an inode | 
|  | 625 | * doesn't get freed while it's being referenced during a | 
|  | 626 | * radix tree traversal here.  It assumes this function | 
|  | 627 | * aqcuires only the ILOCK (and therefore it has no need to | 
|  | 628 | * involve the IOLOCK in this synchronization). | 
|  | 629 | */ | 
|  | 630 | ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); | 
|  | 631 |  | 
|  | 632 | /* reject inode numbers outside existing AGs */ | 
|  | 633 | if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) | 
|  | 634 | return -EINVAL; | 
|  | 635 |  | 
|  | 636 | XFS_STATS_INC(mp, xs_ig_attempts); | 
|  | 637 |  | 
|  | 638 | /* get the perag structure and ensure that it's inode capable */ | 
|  | 639 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); | 
|  | 640 | agino = XFS_INO_TO_AGINO(mp, ino); | 
|  | 641 |  | 
|  | 642 | again: | 
|  | 643 | error = 0; | 
|  | 644 | rcu_read_lock(); | 
|  | 645 | ip = radix_tree_lookup(&pag->pag_ici_root, agino); | 
|  | 646 |  | 
|  | 647 | if (ip) { | 
|  | 648 | error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); | 
|  | 649 | if (error) | 
|  | 650 | goto out_error_or_again; | 
|  | 651 | } else { | 
|  | 652 | rcu_read_unlock(); | 
|  | 653 | if (flags & XFS_IGET_INCORE) { | 
|  | 654 | error = -ENODATA; | 
|  | 655 | goto out_error_or_again; | 
|  | 656 | } | 
|  | 657 | XFS_STATS_INC(mp, xs_ig_missed); | 
|  | 658 |  | 
|  | 659 | error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, | 
|  | 660 | flags, lock_flags); | 
|  | 661 | if (error) | 
|  | 662 | goto out_error_or_again; | 
|  | 663 | } | 
|  | 664 | xfs_perag_put(pag); | 
|  | 665 |  | 
|  | 666 | *ipp = ip; | 
|  | 667 |  | 
|  | 668 | /* | 
|  | 669 | * If we have a real type for an on-disk inode, we can setup the inode | 
|  | 670 | * now.	 If it's a new inode being created, xfs_ialloc will handle it. | 
|  | 671 | */ | 
|  | 672 | if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) | 
|  | 673 | xfs_setup_existing_inode(ip); | 
|  | 674 | return 0; | 
|  | 675 |  | 
|  | 676 | out_error_or_again: | 
|  | 677 | if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { | 
|  | 678 | delay(1); | 
|  | 679 | goto again; | 
|  | 680 | } | 
|  | 681 | xfs_perag_put(pag); | 
|  | 682 | return error; | 
|  | 683 | } | 
|  | 684 |  | 
|  | 685 | /* | 
|  | 686 | * "Is this a cached inode that's also allocated?" | 
|  | 687 | * | 
|  | 688 | * Look up an inode by number in the given file system.  If the inode is | 
|  | 689 | * in cache and isn't in purgatory, return 1 if the inode is allocated | 
|  | 690 | * and 0 if it is not.  For all other cases (not in cache, being torn | 
|  | 691 | * down, etc.), return a negative error code. | 
|  | 692 | * | 
|  | 693 | * The caller has to prevent inode allocation and freeing activity, | 
|  | 694 | * presumably by locking the AGI buffer.   This is to ensure that an | 
|  | 695 | * inode cannot transition from allocated to freed until the caller is | 
|  | 696 | * ready to allow that.  If the inode is in an intermediate state (new, | 
|  | 697 | * reclaimable, or being reclaimed), -EAGAIN will be returned; if the | 
|  | 698 | * inode is not in the cache, -ENOENT will be returned.  The caller must | 
|  | 699 | * deal with these scenarios appropriately. | 
|  | 700 | * | 
|  | 701 | * This is a specialized use case for the online scrubber; if you're | 
|  | 702 | * reading this, you probably want xfs_iget. | 
|  | 703 | */ | 
|  | 704 | int | 
|  | 705 | xfs_icache_inode_is_allocated( | 
|  | 706 | struct xfs_mount	*mp, | 
|  | 707 | struct xfs_trans	*tp, | 
|  | 708 | xfs_ino_t		ino, | 
|  | 709 | bool			*inuse) | 
|  | 710 | { | 
|  | 711 | struct xfs_inode	*ip; | 
|  | 712 | int			error; | 
|  | 713 |  | 
|  | 714 | error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); | 
|  | 715 | if (error) | 
|  | 716 | return error; | 
|  | 717 |  | 
|  | 718 | *inuse = !!(VFS_I(ip)->i_mode); | 
|  | 719 | xfs_irele(ip); | 
|  | 720 | return 0; | 
|  | 721 | } | 
|  | 722 |  | 
|  | 723 | /* | 
|  | 724 | * The inode lookup is done in batches to keep the amount of lock traffic and | 
|  | 725 | * radix tree lookups to a minimum. The batch size is a trade off between | 
|  | 726 | * lookup reduction and stack usage. This is in the reclaim path, so we can't | 
|  | 727 | * be too greedy. | 
|  | 728 | */ | 
|  | 729 | #define XFS_LOOKUP_BATCH	32 | 
|  | 730 |  | 
|  | 731 | STATIC int | 
|  | 732 | xfs_inode_ag_walk_grab( | 
|  | 733 | struct xfs_inode	*ip, | 
|  | 734 | int			flags) | 
|  | 735 | { | 
|  | 736 | struct inode		*inode = VFS_I(ip); | 
|  | 737 | bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT); | 
|  | 738 |  | 
|  | 739 | ASSERT(rcu_read_lock_held()); | 
|  | 740 |  | 
|  | 741 | /* | 
|  | 742 | * check for stale RCU freed inode | 
|  | 743 | * | 
|  | 744 | * If the inode has been reallocated, it doesn't matter if it's not in | 
|  | 745 | * the AG we are walking - we are walking for writeback, so if it | 
|  | 746 | * passes all the "valid inode" checks and is dirty, then we'll write | 
|  | 747 | * it back anyway.  If it has been reallocated and still being | 
|  | 748 | * initialised, the XFS_INEW check below will catch it. | 
|  | 749 | */ | 
|  | 750 | spin_lock(&ip->i_flags_lock); | 
|  | 751 | if (!ip->i_ino) | 
|  | 752 | goto out_unlock_noent; | 
|  | 753 |  | 
|  | 754 | /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | 
|  | 755 | if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || | 
|  | 756 | __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) | 
|  | 757 | goto out_unlock_noent; | 
|  | 758 | spin_unlock(&ip->i_flags_lock); | 
|  | 759 |  | 
|  | 760 | /* nothing to sync during shutdown */ | 
|  | 761 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | 762 | return -EFSCORRUPTED; | 
|  | 763 |  | 
|  | 764 | /* If we can't grab the inode, it must on it's way to reclaim. */ | 
|  | 765 | if (!igrab(inode)) | 
|  | 766 | return -ENOENT; | 
|  | 767 |  | 
|  | 768 | /* inode is valid */ | 
|  | 769 | return 0; | 
|  | 770 |  | 
|  | 771 | out_unlock_noent: | 
|  | 772 | spin_unlock(&ip->i_flags_lock); | 
|  | 773 | return -ENOENT; | 
|  | 774 | } | 
|  | 775 |  | 
|  | 776 | STATIC int | 
|  | 777 | xfs_inode_ag_walk( | 
|  | 778 | struct xfs_mount	*mp, | 
|  | 779 | struct xfs_perag	*pag, | 
|  | 780 | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | 781 | void *args), | 
|  | 782 | int			flags, | 
|  | 783 | void			*args, | 
|  | 784 | int			tag, | 
|  | 785 | int			iter_flags) | 
|  | 786 | { | 
|  | 787 | uint32_t		first_index; | 
|  | 788 | int			last_error = 0; | 
|  | 789 | int			skipped; | 
|  | 790 | int			done; | 
|  | 791 | int			nr_found; | 
|  | 792 |  | 
|  | 793 | restart: | 
|  | 794 | done = 0; | 
|  | 795 | skipped = 0; | 
|  | 796 | first_index = 0; | 
|  | 797 | nr_found = 0; | 
|  | 798 | do { | 
|  | 799 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
|  | 800 | int		error = 0; | 
|  | 801 | int		i; | 
|  | 802 |  | 
|  | 803 | rcu_read_lock(); | 
|  | 804 |  | 
|  | 805 | if (tag == -1) | 
|  | 806 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | 
|  | 807 | (void **)batch, first_index, | 
|  | 808 | XFS_LOOKUP_BATCH); | 
|  | 809 | else | 
|  | 810 | nr_found = radix_tree_gang_lookup_tag( | 
|  | 811 | &pag->pag_ici_root, | 
|  | 812 | (void **) batch, first_index, | 
|  | 813 | XFS_LOOKUP_BATCH, tag); | 
|  | 814 |  | 
|  | 815 | if (!nr_found) { | 
|  | 816 | rcu_read_unlock(); | 
|  | 817 | break; | 
|  | 818 | } | 
|  | 819 |  | 
|  | 820 | /* | 
|  | 821 | * Grab the inodes before we drop the lock. if we found | 
|  | 822 | * nothing, nr == 0 and the loop will be skipped. | 
|  | 823 | */ | 
|  | 824 | for (i = 0; i < nr_found; i++) { | 
|  | 825 | struct xfs_inode *ip = batch[i]; | 
|  | 826 |  | 
|  | 827 | if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) | 
|  | 828 | batch[i] = NULL; | 
|  | 829 |  | 
|  | 830 | /* | 
|  | 831 | * Update the index for the next lookup. Catch | 
|  | 832 | * overflows into the next AG range which can occur if | 
|  | 833 | * we have inodes in the last block of the AG and we | 
|  | 834 | * are currently pointing to the last inode. | 
|  | 835 | * | 
|  | 836 | * Because we may see inodes that are from the wrong AG | 
|  | 837 | * due to RCU freeing and reallocation, only update the | 
|  | 838 | * index if it lies in this AG. It was a race that lead | 
|  | 839 | * us to see this inode, so another lookup from the | 
|  | 840 | * same index will not find it again. | 
|  | 841 | */ | 
|  | 842 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) | 
|  | 843 | continue; | 
|  | 844 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
|  | 845 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
|  | 846 | done = 1; | 
|  | 847 | } | 
|  | 848 |  | 
|  | 849 | /* unlock now we've grabbed the inodes. */ | 
|  | 850 | rcu_read_unlock(); | 
|  | 851 |  | 
|  | 852 | for (i = 0; i < nr_found; i++) { | 
|  | 853 | if (!batch[i]) | 
|  | 854 | continue; | 
|  | 855 | if ((iter_flags & XFS_AGITER_INEW_WAIT) && | 
|  | 856 | xfs_iflags_test(batch[i], XFS_INEW)) | 
|  | 857 | xfs_inew_wait(batch[i]); | 
|  | 858 | error = execute(batch[i], flags, args); | 
|  | 859 | xfs_irele(batch[i]); | 
|  | 860 | if (error == -EAGAIN) { | 
|  | 861 | skipped++; | 
|  | 862 | continue; | 
|  | 863 | } | 
|  | 864 | if (error && last_error != -EFSCORRUPTED) | 
|  | 865 | last_error = error; | 
|  | 866 | } | 
|  | 867 |  | 
|  | 868 | /* bail out if the filesystem is corrupted.  */ | 
|  | 869 | if (error == -EFSCORRUPTED) | 
|  | 870 | break; | 
|  | 871 |  | 
|  | 872 | cond_resched(); | 
|  | 873 |  | 
|  | 874 | } while (nr_found && !done); | 
|  | 875 |  | 
|  | 876 | if (skipped) { | 
|  | 877 | delay(1); | 
|  | 878 | goto restart; | 
|  | 879 | } | 
|  | 880 | return last_error; | 
|  | 881 | } | 
|  | 882 |  | 
|  | 883 | /* | 
|  | 884 | * Background scanning to trim post-EOF preallocated space. This is queued | 
|  | 885 | * based on the 'speculative_prealloc_lifetime' tunable (5m by default). | 
|  | 886 | */ | 
|  | 887 | void | 
|  | 888 | xfs_queue_eofblocks( | 
|  | 889 | struct xfs_mount *mp) | 
|  | 890 | { | 
|  | 891 | rcu_read_lock(); | 
|  | 892 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) | 
|  | 893 | queue_delayed_work(mp->m_eofblocks_workqueue, | 
|  | 894 | &mp->m_eofblocks_work, | 
|  | 895 | msecs_to_jiffies(xfs_eofb_secs * 1000)); | 
|  | 896 | rcu_read_unlock(); | 
|  | 897 | } | 
|  | 898 |  | 
|  | 899 | void | 
|  | 900 | xfs_eofblocks_worker( | 
|  | 901 | struct work_struct *work) | 
|  | 902 | { | 
|  | 903 | struct xfs_mount *mp = container_of(to_delayed_work(work), | 
|  | 904 | struct xfs_mount, m_eofblocks_work); | 
|  | 905 | xfs_icache_free_eofblocks(mp, NULL); | 
|  | 906 | xfs_queue_eofblocks(mp); | 
|  | 907 | } | 
|  | 908 |  | 
|  | 909 | /* | 
|  | 910 | * Background scanning to trim preallocated CoW space. This is queued | 
|  | 911 | * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). | 
|  | 912 | * (We'll just piggyback on the post-EOF prealloc space workqueue.) | 
|  | 913 | */ | 
|  | 914 | void | 
|  | 915 | xfs_queue_cowblocks( | 
|  | 916 | struct xfs_mount *mp) | 
|  | 917 | { | 
|  | 918 | rcu_read_lock(); | 
|  | 919 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) | 
|  | 920 | queue_delayed_work(mp->m_eofblocks_workqueue, | 
|  | 921 | &mp->m_cowblocks_work, | 
|  | 922 | msecs_to_jiffies(xfs_cowb_secs * 1000)); | 
|  | 923 | rcu_read_unlock(); | 
|  | 924 | } | 
|  | 925 |  | 
|  | 926 | void | 
|  | 927 | xfs_cowblocks_worker( | 
|  | 928 | struct work_struct *work) | 
|  | 929 | { | 
|  | 930 | struct xfs_mount *mp = container_of(to_delayed_work(work), | 
|  | 931 | struct xfs_mount, m_cowblocks_work); | 
|  | 932 | xfs_icache_free_cowblocks(mp, NULL); | 
|  | 933 | xfs_queue_cowblocks(mp); | 
|  | 934 | } | 
|  | 935 |  | 
|  | 936 | int | 
|  | 937 | xfs_inode_ag_iterator_flags( | 
|  | 938 | struct xfs_mount	*mp, | 
|  | 939 | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | 940 | void *args), | 
|  | 941 | int			flags, | 
|  | 942 | void			*args, | 
|  | 943 | int			iter_flags) | 
|  | 944 | { | 
|  | 945 | struct xfs_perag	*pag; | 
|  | 946 | int			error = 0; | 
|  | 947 | int			last_error = 0; | 
|  | 948 | xfs_agnumber_t		ag; | 
|  | 949 |  | 
|  | 950 | ag = 0; | 
|  | 951 | while ((pag = xfs_perag_get(mp, ag))) { | 
|  | 952 | ag = pag->pag_agno + 1; | 
|  | 953 | error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, | 
|  | 954 | iter_flags); | 
|  | 955 | xfs_perag_put(pag); | 
|  | 956 | if (error) { | 
|  | 957 | last_error = error; | 
|  | 958 | if (error == -EFSCORRUPTED) | 
|  | 959 | break; | 
|  | 960 | } | 
|  | 961 | } | 
|  | 962 | return last_error; | 
|  | 963 | } | 
|  | 964 |  | 
|  | 965 | int | 
|  | 966 | xfs_inode_ag_iterator( | 
|  | 967 | struct xfs_mount	*mp, | 
|  | 968 | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | 969 | void *args), | 
|  | 970 | int			flags, | 
|  | 971 | void			*args) | 
|  | 972 | { | 
|  | 973 | return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); | 
|  | 974 | } | 
|  | 975 |  | 
|  | 976 | int | 
|  | 977 | xfs_inode_ag_iterator_tag( | 
|  | 978 | struct xfs_mount	*mp, | 
|  | 979 | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | 980 | void *args), | 
|  | 981 | int			flags, | 
|  | 982 | void			*args, | 
|  | 983 | int			tag) | 
|  | 984 | { | 
|  | 985 | struct xfs_perag	*pag; | 
|  | 986 | int			error = 0; | 
|  | 987 | int			last_error = 0; | 
|  | 988 | xfs_agnumber_t		ag; | 
|  | 989 |  | 
|  | 990 | ag = 0; | 
|  | 991 | while ((pag = xfs_perag_get_tag(mp, ag, tag))) { | 
|  | 992 | ag = pag->pag_agno + 1; | 
|  | 993 | error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, | 
|  | 994 | 0); | 
|  | 995 | xfs_perag_put(pag); | 
|  | 996 | if (error) { | 
|  | 997 | last_error = error; | 
|  | 998 | if (error == -EFSCORRUPTED) | 
|  | 999 | break; | 
|  | 1000 | } | 
|  | 1001 | } | 
|  | 1002 | return last_error; | 
|  | 1003 | } | 
|  | 1004 |  | 
|  | 1005 | /* | 
|  | 1006 | * Grab the inode for reclaim exclusively. | 
|  | 1007 | * Return 0 if we grabbed it, non-zero otherwise. | 
|  | 1008 | */ | 
|  | 1009 | STATIC int | 
|  | 1010 | xfs_reclaim_inode_grab( | 
|  | 1011 | struct xfs_inode	*ip, | 
|  | 1012 | int			flags) | 
|  | 1013 | { | 
|  | 1014 | ASSERT(rcu_read_lock_held()); | 
|  | 1015 |  | 
|  | 1016 | /* quick check for stale RCU freed inode */ | 
|  | 1017 | if (!ip->i_ino) | 
|  | 1018 | return 1; | 
|  | 1019 |  | 
|  | 1020 | /* | 
|  | 1021 | * If we are asked for non-blocking operation, do unlocked checks to | 
|  | 1022 | * see if the inode already is being flushed or in reclaim to avoid | 
|  | 1023 | * lock traffic. | 
|  | 1024 | */ | 
|  | 1025 | if ((flags & SYNC_TRYLOCK) && | 
|  | 1026 | __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) | 
|  | 1027 | return 1; | 
|  | 1028 |  | 
|  | 1029 | /* | 
|  | 1030 | * The radix tree lock here protects a thread in xfs_iget from racing | 
|  | 1031 | * with us starting reclaim on the inode.  Once we have the | 
|  | 1032 | * XFS_IRECLAIM flag set it will not touch us. | 
|  | 1033 | * | 
|  | 1034 | * Due to RCU lookup, we may find inodes that have been freed and only | 
|  | 1035 | * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that | 
|  | 1036 | * aren't candidates for reclaim at all, so we must check the | 
|  | 1037 | * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | 
|  | 1038 | */ | 
|  | 1039 | spin_lock(&ip->i_flags_lock); | 
|  | 1040 | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || | 
|  | 1041 | __xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
|  | 1042 | /* not a reclaim candidate. */ | 
|  | 1043 | spin_unlock(&ip->i_flags_lock); | 
|  | 1044 | return 1; | 
|  | 1045 | } | 
|  | 1046 | __xfs_iflags_set(ip, XFS_IRECLAIM); | 
|  | 1047 | spin_unlock(&ip->i_flags_lock); | 
|  | 1048 | return 0; | 
|  | 1049 | } | 
|  | 1050 |  | 
|  | 1051 | /* | 
|  | 1052 | * Inodes in different states need to be treated differently. The following | 
|  | 1053 | * table lists the inode states and the reclaim actions necessary: | 
|  | 1054 | * | 
|  | 1055 | *	inode state	     iflush ret		required action | 
|  | 1056 | *      ---------------      ----------         --------------- | 
|  | 1057 | *	bad			-		reclaim | 
|  | 1058 | *	shutdown		EIO		unpin and reclaim | 
|  | 1059 | *	clean, unpinned		0		reclaim | 
|  | 1060 | *	stale, unpinned		0		reclaim | 
|  | 1061 | *	clean, pinned(*)	0		requeue | 
|  | 1062 | *	stale, pinned		EAGAIN		requeue | 
|  | 1063 | *	dirty, async		-		requeue | 
|  | 1064 | *	dirty, sync		0		reclaim | 
|  | 1065 | * | 
|  | 1066 | * (*) dgc: I don't think the clean, pinned state is possible but it gets | 
|  | 1067 | * handled anyway given the order of checks implemented. | 
|  | 1068 | * | 
|  | 1069 | * Also, because we get the flush lock first, we know that any inode that has | 
|  | 1070 | * been flushed delwri has had the flush completed by the time we check that | 
|  | 1071 | * the inode is clean. | 
|  | 1072 | * | 
|  | 1073 | * Note that because the inode is flushed delayed write by AIL pushing, the | 
|  | 1074 | * flush lock may already be held here and waiting on it can result in very | 
|  | 1075 | * long latencies.  Hence for sync reclaims, where we wait on the flush lock, | 
|  | 1076 | * the caller should push the AIL first before trying to reclaim inodes to | 
|  | 1077 | * minimise the amount of time spent waiting.  For background relaim, we only | 
|  | 1078 | * bother to reclaim clean inodes anyway. | 
|  | 1079 | * | 
|  | 1080 | * Hence the order of actions after gaining the locks should be: | 
|  | 1081 | *	bad		=> reclaim | 
|  | 1082 | *	shutdown	=> unpin and reclaim | 
|  | 1083 | *	pinned, async	=> requeue | 
|  | 1084 | *	pinned, sync	=> unpin | 
|  | 1085 | *	stale		=> reclaim | 
|  | 1086 | *	clean		=> reclaim | 
|  | 1087 | *	dirty, async	=> requeue | 
|  | 1088 | *	dirty, sync	=> flush, wait and reclaim | 
|  | 1089 | */ | 
|  | 1090 | STATIC int | 
|  | 1091 | xfs_reclaim_inode( | 
|  | 1092 | struct xfs_inode	*ip, | 
|  | 1093 | struct xfs_perag	*pag, | 
|  | 1094 | int			sync_mode) | 
|  | 1095 | { | 
|  | 1096 | struct xfs_buf		*bp = NULL; | 
|  | 1097 | xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */ | 
|  | 1098 | int			error; | 
|  | 1099 |  | 
|  | 1100 | restart: | 
|  | 1101 | error = 0; | 
|  | 1102 | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | 1103 | if (!xfs_iflock_nowait(ip)) { | 
|  | 1104 | if (!(sync_mode & SYNC_WAIT)) | 
|  | 1105 | goto out; | 
|  | 1106 | xfs_iflock(ip); | 
|  | 1107 | } | 
|  | 1108 |  | 
|  | 1109 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
|  | 1110 | xfs_iunpin_wait(ip); | 
|  | 1111 | /* xfs_iflush_abort() drops the flush lock */ | 
|  | 1112 | xfs_iflush_abort(ip, false); | 
|  | 1113 | goto reclaim; | 
|  | 1114 | } | 
|  | 1115 | if (xfs_ipincount(ip)) { | 
|  | 1116 | if (!(sync_mode & SYNC_WAIT)) | 
|  | 1117 | goto out_ifunlock; | 
|  | 1118 | xfs_iunpin_wait(ip); | 
|  | 1119 | } | 
|  | 1120 | if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { | 
|  | 1121 | xfs_ifunlock(ip); | 
|  | 1122 | goto reclaim; | 
|  | 1123 | } | 
|  | 1124 |  | 
|  | 1125 | /* | 
|  | 1126 | * Never flush out dirty data during non-blocking reclaim, as it would | 
|  | 1127 | * just contend with AIL pushing trying to do the same job. | 
|  | 1128 | */ | 
|  | 1129 | if (!(sync_mode & SYNC_WAIT)) | 
|  | 1130 | goto out_ifunlock; | 
|  | 1131 |  | 
|  | 1132 | /* | 
|  | 1133 | * Now we have an inode that needs flushing. | 
|  | 1134 | * | 
|  | 1135 | * Note that xfs_iflush will never block on the inode buffer lock, as | 
|  | 1136 | * xfs_ifree_cluster() can lock the inode buffer before it locks the | 
|  | 1137 | * ip->i_lock, and we are doing the exact opposite here.  As a result, | 
|  | 1138 | * doing a blocking xfs_imap_to_bp() to get the cluster buffer would | 
|  | 1139 | * result in an ABBA deadlock with xfs_ifree_cluster(). | 
|  | 1140 | * | 
|  | 1141 | * As xfs_ifree_cluser() must gather all inodes that are active in the | 
|  | 1142 | * cache to mark them stale, if we hit this case we don't actually want | 
|  | 1143 | * to do IO here - we want the inode marked stale so we can simply | 
|  | 1144 | * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the | 
|  | 1145 | * inode, back off and try again.  Hopefully the next pass through will | 
|  | 1146 | * see the stale flag set on the inode. | 
|  | 1147 | */ | 
|  | 1148 | error = xfs_iflush(ip, &bp); | 
|  | 1149 | if (error == -EAGAIN) { | 
|  | 1150 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 1151 | /* backoff longer than in xfs_ifree_cluster */ | 
|  | 1152 | delay(2); | 
|  | 1153 | goto restart; | 
|  | 1154 | } | 
|  | 1155 |  | 
|  | 1156 | if (!error) { | 
|  | 1157 | error = xfs_bwrite(bp); | 
|  | 1158 | xfs_buf_relse(bp); | 
|  | 1159 | } | 
|  | 1160 |  | 
|  | 1161 | reclaim: | 
|  | 1162 | ASSERT(!xfs_isiflocked(ip)); | 
|  | 1163 |  | 
|  | 1164 | /* | 
|  | 1165 | * Because we use RCU freeing we need to ensure the inode always appears | 
|  | 1166 | * to be reclaimed with an invalid inode number when in the free state. | 
|  | 1167 | * We do this as early as possible under the ILOCK so that | 
|  | 1168 | * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to | 
|  | 1169 | * detect races with us here. By doing this, we guarantee that once | 
|  | 1170 | * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that | 
|  | 1171 | * it will see either a valid inode that will serialise correctly, or it | 
|  | 1172 | * will see an invalid inode that it can skip. | 
|  | 1173 | */ | 
|  | 1174 | spin_lock(&ip->i_flags_lock); | 
|  | 1175 | ip->i_flags = XFS_IRECLAIM; | 
|  | 1176 | ip->i_ino = 0; | 
|  | 1177 | spin_unlock(&ip->i_flags_lock); | 
|  | 1178 |  | 
|  | 1179 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 1180 |  | 
|  | 1181 | XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); | 
|  | 1182 | /* | 
|  | 1183 | * Remove the inode from the per-AG radix tree. | 
|  | 1184 | * | 
|  | 1185 | * Because radix_tree_delete won't complain even if the item was never | 
|  | 1186 | * added to the tree assert that it's been there before to catch | 
|  | 1187 | * problems with the inode life time early on. | 
|  | 1188 | */ | 
|  | 1189 | spin_lock(&pag->pag_ici_lock); | 
|  | 1190 | if (!radix_tree_delete(&pag->pag_ici_root, | 
|  | 1191 | XFS_INO_TO_AGINO(ip->i_mount, ino))) | 
|  | 1192 | ASSERT(0); | 
|  | 1193 | xfs_perag_clear_reclaim_tag(pag); | 
|  | 1194 | spin_unlock(&pag->pag_ici_lock); | 
|  | 1195 |  | 
|  | 1196 | /* | 
|  | 1197 | * Here we do an (almost) spurious inode lock in order to coordinate | 
|  | 1198 | * with inode cache radix tree lookups.  This is because the lookup | 
|  | 1199 | * can reference the inodes in the cache without taking references. | 
|  | 1200 | * | 
|  | 1201 | * We make that OK here by ensuring that we wait until the inode is | 
|  | 1202 | * unlocked after the lookup before we go ahead and free it. | 
|  | 1203 | */ | 
|  | 1204 | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | 1205 | xfs_qm_dqdetach(ip); | 
|  | 1206 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 1207 |  | 
|  | 1208 | __xfs_inode_free(ip); | 
|  | 1209 | return error; | 
|  | 1210 |  | 
|  | 1211 | out_ifunlock: | 
|  | 1212 | xfs_ifunlock(ip); | 
|  | 1213 | out: | 
|  | 1214 | xfs_iflags_clear(ip, XFS_IRECLAIM); | 
|  | 1215 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 1216 | /* | 
|  | 1217 | * We could return -EAGAIN here to make reclaim rescan the inode tree in | 
|  | 1218 | * a short while. However, this just burns CPU time scanning the tree | 
|  | 1219 | * waiting for IO to complete and the reclaim work never goes back to | 
|  | 1220 | * the idle state. Instead, return 0 to let the next scheduled | 
|  | 1221 | * background reclaim attempt to reclaim the inode again. | 
|  | 1222 | */ | 
|  | 1223 | return 0; | 
|  | 1224 | } | 
|  | 1225 |  | 
|  | 1226 | /* | 
|  | 1227 | * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | 
|  | 1228 | * corrupted, we still want to try to reclaim all the inodes. If we don't, | 
|  | 1229 | * then a shut down during filesystem unmount reclaim walk leak all the | 
|  | 1230 | * unreclaimed inodes. | 
|  | 1231 | */ | 
|  | 1232 | STATIC int | 
|  | 1233 | xfs_reclaim_inodes_ag( | 
|  | 1234 | struct xfs_mount	*mp, | 
|  | 1235 | int			flags, | 
|  | 1236 | int			*nr_to_scan) | 
|  | 1237 | { | 
|  | 1238 | struct xfs_perag	*pag; | 
|  | 1239 | int			error = 0; | 
|  | 1240 | int			last_error = 0; | 
|  | 1241 | xfs_agnumber_t		ag; | 
|  | 1242 | int			trylock = flags & SYNC_TRYLOCK; | 
|  | 1243 | int			skipped; | 
|  | 1244 |  | 
|  | 1245 | restart: | 
|  | 1246 | ag = 0; | 
|  | 1247 | skipped = 0; | 
|  | 1248 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
|  | 1249 | unsigned long	first_index = 0; | 
|  | 1250 | int		done = 0; | 
|  | 1251 | int		nr_found = 0; | 
|  | 1252 |  | 
|  | 1253 | ag = pag->pag_agno + 1; | 
|  | 1254 |  | 
|  | 1255 | if (trylock) { | 
|  | 1256 | if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | 
|  | 1257 | skipped++; | 
|  | 1258 | xfs_perag_put(pag); | 
|  | 1259 | continue; | 
|  | 1260 | } | 
|  | 1261 | first_index = pag->pag_ici_reclaim_cursor; | 
|  | 1262 | } else | 
|  | 1263 | mutex_lock(&pag->pag_ici_reclaim_lock); | 
|  | 1264 |  | 
|  | 1265 | do { | 
|  | 1266 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
|  | 1267 | int	i; | 
|  | 1268 |  | 
|  | 1269 | rcu_read_lock(); | 
|  | 1270 | nr_found = radix_tree_gang_lookup_tag( | 
|  | 1271 | &pag->pag_ici_root, | 
|  | 1272 | (void **)batch, first_index, | 
|  | 1273 | XFS_LOOKUP_BATCH, | 
|  | 1274 | XFS_ICI_RECLAIM_TAG); | 
|  | 1275 | if (!nr_found) { | 
|  | 1276 | done = 1; | 
|  | 1277 | rcu_read_unlock(); | 
|  | 1278 | break; | 
|  | 1279 | } | 
|  | 1280 |  | 
|  | 1281 | /* | 
|  | 1282 | * Grab the inodes before we drop the lock. if we found | 
|  | 1283 | * nothing, nr == 0 and the loop will be skipped. | 
|  | 1284 | */ | 
|  | 1285 | for (i = 0; i < nr_found; i++) { | 
|  | 1286 | struct xfs_inode *ip = batch[i]; | 
|  | 1287 |  | 
|  | 1288 | if (done || xfs_reclaim_inode_grab(ip, flags)) | 
|  | 1289 | batch[i] = NULL; | 
|  | 1290 |  | 
|  | 1291 | /* | 
|  | 1292 | * Update the index for the next lookup. Catch | 
|  | 1293 | * overflows into the next AG range which can | 
|  | 1294 | * occur if we have inodes in the last block of | 
|  | 1295 | * the AG and we are currently pointing to the | 
|  | 1296 | * last inode. | 
|  | 1297 | * | 
|  | 1298 | * Because we may see inodes that are from the | 
|  | 1299 | * wrong AG due to RCU freeing and | 
|  | 1300 | * reallocation, only update the index if it | 
|  | 1301 | * lies in this AG. It was a race that lead us | 
|  | 1302 | * to see this inode, so another lookup from | 
|  | 1303 | * the same index will not find it again. | 
|  | 1304 | */ | 
|  | 1305 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != | 
|  | 1306 | pag->pag_agno) | 
|  | 1307 | continue; | 
|  | 1308 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
|  | 1309 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
|  | 1310 | done = 1; | 
|  | 1311 | } | 
|  | 1312 |  | 
|  | 1313 | /* unlock now we've grabbed the inodes. */ | 
|  | 1314 | rcu_read_unlock(); | 
|  | 1315 |  | 
|  | 1316 | for (i = 0; i < nr_found; i++) { | 
|  | 1317 | if (!batch[i]) | 
|  | 1318 | continue; | 
|  | 1319 | error = xfs_reclaim_inode(batch[i], pag, flags); | 
|  | 1320 | if (error && last_error != -EFSCORRUPTED) | 
|  | 1321 | last_error = error; | 
|  | 1322 | } | 
|  | 1323 |  | 
|  | 1324 | *nr_to_scan -= XFS_LOOKUP_BATCH; | 
|  | 1325 |  | 
|  | 1326 | cond_resched(); | 
|  | 1327 |  | 
|  | 1328 | } while (nr_found && !done && *nr_to_scan > 0); | 
|  | 1329 |  | 
|  | 1330 | if (trylock && !done) | 
|  | 1331 | pag->pag_ici_reclaim_cursor = first_index; | 
|  | 1332 | else | 
|  | 1333 | pag->pag_ici_reclaim_cursor = 0; | 
|  | 1334 | mutex_unlock(&pag->pag_ici_reclaim_lock); | 
|  | 1335 | xfs_perag_put(pag); | 
|  | 1336 | } | 
|  | 1337 |  | 
|  | 1338 | /* | 
|  | 1339 | * if we skipped any AG, and we still have scan count remaining, do | 
|  | 1340 | * another pass this time using blocking reclaim semantics (i.e | 
|  | 1341 | * waiting on the reclaim locks and ignoring the reclaim cursors). This | 
|  | 1342 | * ensure that when we get more reclaimers than AGs we block rather | 
|  | 1343 | * than spin trying to execute reclaim. | 
|  | 1344 | */ | 
|  | 1345 | if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { | 
|  | 1346 | trylock = 0; | 
|  | 1347 | goto restart; | 
|  | 1348 | } | 
|  | 1349 | return last_error; | 
|  | 1350 | } | 
|  | 1351 |  | 
|  | 1352 | int | 
|  | 1353 | xfs_reclaim_inodes( | 
|  | 1354 | xfs_mount_t	*mp, | 
|  | 1355 | int		mode) | 
|  | 1356 | { | 
|  | 1357 | int		nr_to_scan = INT_MAX; | 
|  | 1358 |  | 
|  | 1359 | return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | 
|  | 1360 | } | 
|  | 1361 |  | 
|  | 1362 | /* | 
|  | 1363 | * Scan a certain number of inodes for reclaim. | 
|  | 1364 | * | 
|  | 1365 | * When called we make sure that there is a background (fast) inode reclaim in | 
|  | 1366 | * progress, while we will throttle the speed of reclaim via doing synchronous | 
|  | 1367 | * reclaim of inodes. That means if we come across dirty inodes, we wait for | 
|  | 1368 | * them to be cleaned, which we hope will not be very long due to the | 
|  | 1369 | * background walker having already kicked the IO off on those dirty inodes. | 
|  | 1370 | */ | 
|  | 1371 | long | 
|  | 1372 | xfs_reclaim_inodes_nr( | 
|  | 1373 | struct xfs_mount	*mp, | 
|  | 1374 | int			nr_to_scan) | 
|  | 1375 | { | 
|  | 1376 | /* kick background reclaimer and push the AIL */ | 
|  | 1377 | xfs_reclaim_work_queue(mp); | 
|  | 1378 | xfs_ail_push_all(mp->m_ail); | 
|  | 1379 |  | 
|  | 1380 | return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | /* | 
|  | 1384 | * Return the number of reclaimable inodes in the filesystem for | 
|  | 1385 | * the shrinker to determine how much to reclaim. | 
|  | 1386 | */ | 
|  | 1387 | int | 
|  | 1388 | xfs_reclaim_inodes_count( | 
|  | 1389 | struct xfs_mount	*mp) | 
|  | 1390 | { | 
|  | 1391 | struct xfs_perag	*pag; | 
|  | 1392 | xfs_agnumber_t		ag = 0; | 
|  | 1393 | int			reclaimable = 0; | 
|  | 1394 |  | 
|  | 1395 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
|  | 1396 | ag = pag->pag_agno + 1; | 
|  | 1397 | reclaimable += pag->pag_ici_reclaimable; | 
|  | 1398 | xfs_perag_put(pag); | 
|  | 1399 | } | 
|  | 1400 | return reclaimable; | 
|  | 1401 | } | 
|  | 1402 |  | 
|  | 1403 | STATIC int | 
|  | 1404 | xfs_inode_match_id( | 
|  | 1405 | struct xfs_inode	*ip, | 
|  | 1406 | struct xfs_eofblocks	*eofb) | 
|  | 1407 | { | 
|  | 1408 | if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && | 
|  | 1409 | !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | 
|  | 1410 | return 0; | 
|  | 1411 |  | 
|  | 1412 | if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && | 
|  | 1413 | !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | 
|  | 1414 | return 0; | 
|  | 1415 |  | 
|  | 1416 | if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && | 
|  | 1417 | xfs_get_projid(ip) != eofb->eof_prid) | 
|  | 1418 | return 0; | 
|  | 1419 |  | 
|  | 1420 | return 1; | 
|  | 1421 | } | 
|  | 1422 |  | 
|  | 1423 | /* | 
|  | 1424 | * A union-based inode filtering algorithm. Process the inode if any of the | 
|  | 1425 | * criteria match. This is for global/internal scans only. | 
|  | 1426 | */ | 
|  | 1427 | STATIC int | 
|  | 1428 | xfs_inode_match_id_union( | 
|  | 1429 | struct xfs_inode	*ip, | 
|  | 1430 | struct xfs_eofblocks	*eofb) | 
|  | 1431 | { | 
|  | 1432 | if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && | 
|  | 1433 | uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | 
|  | 1434 | return 1; | 
|  | 1435 |  | 
|  | 1436 | if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && | 
|  | 1437 | gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | 
|  | 1438 | return 1; | 
|  | 1439 |  | 
|  | 1440 | if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && | 
|  | 1441 | xfs_get_projid(ip) == eofb->eof_prid) | 
|  | 1442 | return 1; | 
|  | 1443 |  | 
|  | 1444 | return 0; | 
|  | 1445 | } | 
|  | 1446 |  | 
|  | 1447 | STATIC int | 
|  | 1448 | xfs_inode_free_eofblocks( | 
|  | 1449 | struct xfs_inode	*ip, | 
|  | 1450 | int			flags, | 
|  | 1451 | void			*args) | 
|  | 1452 | { | 
|  | 1453 | int ret = 0; | 
|  | 1454 | struct xfs_eofblocks *eofb = args; | 
|  | 1455 | int match; | 
|  | 1456 |  | 
|  | 1457 | if (!xfs_can_free_eofblocks(ip, false)) { | 
|  | 1458 | /* inode could be preallocated or append-only */ | 
|  | 1459 | trace_xfs_inode_free_eofblocks_invalid(ip); | 
|  | 1460 | xfs_inode_clear_eofblocks_tag(ip); | 
|  | 1461 | return 0; | 
|  | 1462 | } | 
|  | 1463 |  | 
|  | 1464 | /* | 
|  | 1465 | * If the mapping is dirty the operation can block and wait for some | 
|  | 1466 | * time. Unless we are waiting, skip it. | 
|  | 1467 | */ | 
|  | 1468 | if (!(flags & SYNC_WAIT) && | 
|  | 1469 | mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) | 
|  | 1470 | return 0; | 
|  | 1471 |  | 
|  | 1472 | if (eofb) { | 
|  | 1473 | if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) | 
|  | 1474 | match = xfs_inode_match_id_union(ip, eofb); | 
|  | 1475 | else | 
|  | 1476 | match = xfs_inode_match_id(ip, eofb); | 
|  | 1477 | if (!match) | 
|  | 1478 | return 0; | 
|  | 1479 |  | 
|  | 1480 | /* skip the inode if the file size is too small */ | 
|  | 1481 | if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && | 
|  | 1482 | XFS_ISIZE(ip) < eofb->eof_min_file_size) | 
|  | 1483 | return 0; | 
|  | 1484 | } | 
|  | 1485 |  | 
|  | 1486 | /* | 
|  | 1487 | * If the caller is waiting, return -EAGAIN to keep the background | 
|  | 1488 | * scanner moving and revisit the inode in a subsequent pass. | 
|  | 1489 | */ | 
|  | 1490 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { | 
|  | 1491 | if (flags & SYNC_WAIT) | 
|  | 1492 | ret = -EAGAIN; | 
|  | 1493 | return ret; | 
|  | 1494 | } | 
|  | 1495 | ret = xfs_free_eofblocks(ip); | 
|  | 1496 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
|  | 1497 |  | 
|  | 1498 | return ret; | 
|  | 1499 | } | 
|  | 1500 |  | 
|  | 1501 | static int | 
|  | 1502 | __xfs_icache_free_eofblocks( | 
|  | 1503 | struct xfs_mount	*mp, | 
|  | 1504 | struct xfs_eofblocks	*eofb, | 
|  | 1505 | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | 1506 | void *args), | 
|  | 1507 | int			tag) | 
|  | 1508 | { | 
|  | 1509 | int flags = SYNC_TRYLOCK; | 
|  | 1510 |  | 
|  | 1511 | if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) | 
|  | 1512 | flags = SYNC_WAIT; | 
|  | 1513 |  | 
|  | 1514 | return xfs_inode_ag_iterator_tag(mp, execute, flags, | 
|  | 1515 | eofb, tag); | 
|  | 1516 | } | 
|  | 1517 |  | 
|  | 1518 | int | 
|  | 1519 | xfs_icache_free_eofblocks( | 
|  | 1520 | struct xfs_mount	*mp, | 
|  | 1521 | struct xfs_eofblocks	*eofb) | 
|  | 1522 | { | 
|  | 1523 | return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, | 
|  | 1524 | XFS_ICI_EOFBLOCKS_TAG); | 
|  | 1525 | } | 
|  | 1526 |  | 
|  | 1527 | /* | 
|  | 1528 | * Run eofblocks scans on the quotas applicable to the inode. For inodes with | 
|  | 1529 | * multiple quotas, we don't know exactly which quota caused an allocation | 
|  | 1530 | * failure. We make a best effort by including each quota under low free space | 
|  | 1531 | * conditions (less than 1% free space) in the scan. | 
|  | 1532 | */ | 
|  | 1533 | static int | 
|  | 1534 | __xfs_inode_free_quota_eofblocks( | 
|  | 1535 | struct xfs_inode	*ip, | 
|  | 1536 | int			(*execute)(struct xfs_mount *mp, | 
|  | 1537 | struct xfs_eofblocks	*eofb)) | 
|  | 1538 | { | 
|  | 1539 | int scan = 0; | 
|  | 1540 | struct xfs_eofblocks eofb = {0}; | 
|  | 1541 | struct xfs_dquot *dq; | 
|  | 1542 |  | 
|  | 1543 | /* | 
|  | 1544 | * Run a sync scan to increase effectiveness and use the union filter to | 
|  | 1545 | * cover all applicable quotas in a single scan. | 
|  | 1546 | */ | 
|  | 1547 | eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; | 
|  | 1548 |  | 
|  | 1549 | if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { | 
|  | 1550 | dq = xfs_inode_dquot(ip, XFS_DQ_USER); | 
|  | 1551 | if (dq && xfs_dquot_lowsp(dq)) { | 
|  | 1552 | eofb.eof_uid = VFS_I(ip)->i_uid; | 
|  | 1553 | eofb.eof_flags |= XFS_EOF_FLAGS_UID; | 
|  | 1554 | scan = 1; | 
|  | 1555 | } | 
|  | 1556 | } | 
|  | 1557 |  | 
|  | 1558 | if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { | 
|  | 1559 | dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); | 
|  | 1560 | if (dq && xfs_dquot_lowsp(dq)) { | 
|  | 1561 | eofb.eof_gid = VFS_I(ip)->i_gid; | 
|  | 1562 | eofb.eof_flags |= XFS_EOF_FLAGS_GID; | 
|  | 1563 | scan = 1; | 
|  | 1564 | } | 
|  | 1565 | } | 
|  | 1566 |  | 
|  | 1567 | if (scan) | 
|  | 1568 | execute(ip->i_mount, &eofb); | 
|  | 1569 |  | 
|  | 1570 | return scan; | 
|  | 1571 | } | 
|  | 1572 |  | 
|  | 1573 | int | 
|  | 1574 | xfs_inode_free_quota_eofblocks( | 
|  | 1575 | struct xfs_inode *ip) | 
|  | 1576 | { | 
|  | 1577 | return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); | 
|  | 1578 | } | 
|  | 1579 |  | 
|  | 1580 | static inline unsigned long | 
|  | 1581 | xfs_iflag_for_tag( | 
|  | 1582 | int		tag) | 
|  | 1583 | { | 
|  | 1584 | switch (tag) { | 
|  | 1585 | case XFS_ICI_EOFBLOCKS_TAG: | 
|  | 1586 | return XFS_IEOFBLOCKS; | 
|  | 1587 | case XFS_ICI_COWBLOCKS_TAG: | 
|  | 1588 | return XFS_ICOWBLOCKS; | 
|  | 1589 | default: | 
|  | 1590 | ASSERT(0); | 
|  | 1591 | return 0; | 
|  | 1592 | } | 
|  | 1593 | } | 
|  | 1594 |  | 
|  | 1595 | static void | 
|  | 1596 | __xfs_inode_set_blocks_tag( | 
|  | 1597 | xfs_inode_t	*ip, | 
|  | 1598 | void		(*execute)(struct xfs_mount *mp), | 
|  | 1599 | void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, | 
|  | 1600 | int error, unsigned long caller_ip), | 
|  | 1601 | int		tag) | 
|  | 1602 | { | 
|  | 1603 | struct xfs_mount *mp = ip->i_mount; | 
|  | 1604 | struct xfs_perag *pag; | 
|  | 1605 | int tagged; | 
|  | 1606 |  | 
|  | 1607 | /* | 
|  | 1608 | * Don't bother locking the AG and looking up in the radix trees | 
|  | 1609 | * if we already know that we have the tag set. | 
|  | 1610 | */ | 
|  | 1611 | if (ip->i_flags & xfs_iflag_for_tag(tag)) | 
|  | 1612 | return; | 
|  | 1613 | spin_lock(&ip->i_flags_lock); | 
|  | 1614 | ip->i_flags |= xfs_iflag_for_tag(tag); | 
|  | 1615 | spin_unlock(&ip->i_flags_lock); | 
|  | 1616 |  | 
|  | 1617 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | 1618 | spin_lock(&pag->pag_ici_lock); | 
|  | 1619 |  | 
|  | 1620 | tagged = radix_tree_tagged(&pag->pag_ici_root, tag); | 
|  | 1621 | radix_tree_tag_set(&pag->pag_ici_root, | 
|  | 1622 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); | 
|  | 1623 | if (!tagged) { | 
|  | 1624 | /* propagate the eofblocks tag up into the perag radix tree */ | 
|  | 1625 | spin_lock(&ip->i_mount->m_perag_lock); | 
|  | 1626 | radix_tree_tag_set(&ip->i_mount->m_perag_tree, | 
|  | 1627 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
|  | 1628 | tag); | 
|  | 1629 | spin_unlock(&ip->i_mount->m_perag_lock); | 
|  | 1630 |  | 
|  | 1631 | /* kick off background trimming */ | 
|  | 1632 | execute(ip->i_mount); | 
|  | 1633 |  | 
|  | 1634 | set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); | 
|  | 1635 | } | 
|  | 1636 |  | 
|  | 1637 | spin_unlock(&pag->pag_ici_lock); | 
|  | 1638 | xfs_perag_put(pag); | 
|  | 1639 | } | 
|  | 1640 |  | 
|  | 1641 | void | 
|  | 1642 | xfs_inode_set_eofblocks_tag( | 
|  | 1643 | xfs_inode_t	*ip) | 
|  | 1644 | { | 
|  | 1645 | trace_xfs_inode_set_eofblocks_tag(ip); | 
|  | 1646 | return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, | 
|  | 1647 | trace_xfs_perag_set_eofblocks, | 
|  | 1648 | XFS_ICI_EOFBLOCKS_TAG); | 
|  | 1649 | } | 
|  | 1650 |  | 
|  | 1651 | static void | 
|  | 1652 | __xfs_inode_clear_blocks_tag( | 
|  | 1653 | xfs_inode_t	*ip, | 
|  | 1654 | void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, | 
|  | 1655 | int error, unsigned long caller_ip), | 
|  | 1656 | int		tag) | 
|  | 1657 | { | 
|  | 1658 | struct xfs_mount *mp = ip->i_mount; | 
|  | 1659 | struct xfs_perag *pag; | 
|  | 1660 |  | 
|  | 1661 | spin_lock(&ip->i_flags_lock); | 
|  | 1662 | ip->i_flags &= ~xfs_iflag_for_tag(tag); | 
|  | 1663 | spin_unlock(&ip->i_flags_lock); | 
|  | 1664 |  | 
|  | 1665 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | 1666 | spin_lock(&pag->pag_ici_lock); | 
|  | 1667 |  | 
|  | 1668 | radix_tree_tag_clear(&pag->pag_ici_root, | 
|  | 1669 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); | 
|  | 1670 | if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { | 
|  | 1671 | /* clear the eofblocks tag from the perag radix tree */ | 
|  | 1672 | spin_lock(&ip->i_mount->m_perag_lock); | 
|  | 1673 | radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | 
|  | 1674 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
|  | 1675 | tag); | 
|  | 1676 | spin_unlock(&ip->i_mount->m_perag_lock); | 
|  | 1677 | clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); | 
|  | 1678 | } | 
|  | 1679 |  | 
|  | 1680 | spin_unlock(&pag->pag_ici_lock); | 
|  | 1681 | xfs_perag_put(pag); | 
|  | 1682 | } | 
|  | 1683 |  | 
|  | 1684 | void | 
|  | 1685 | xfs_inode_clear_eofblocks_tag( | 
|  | 1686 | xfs_inode_t	*ip) | 
|  | 1687 | { | 
|  | 1688 | trace_xfs_inode_clear_eofblocks_tag(ip); | 
|  | 1689 | return __xfs_inode_clear_blocks_tag(ip, | 
|  | 1690 | trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); | 
|  | 1691 | } | 
|  | 1692 |  | 
|  | 1693 | /* | 
|  | 1694 | * Set ourselves up to free CoW blocks from this file.  If it's already clean | 
|  | 1695 | * then we can bail out quickly, but otherwise we must back off if the file | 
|  | 1696 | * is undergoing some kind of write. | 
|  | 1697 | */ | 
|  | 1698 | static bool | 
|  | 1699 | xfs_prep_free_cowblocks( | 
|  | 1700 | struct xfs_inode	*ip) | 
|  | 1701 | { | 
|  | 1702 | /* | 
|  | 1703 | * Just clear the tag if we have an empty cow fork or none at all. It's | 
|  | 1704 | * possible the inode was fully unshared since it was originally tagged. | 
|  | 1705 | */ | 
|  | 1706 | if (!xfs_inode_has_cow_data(ip)) { | 
|  | 1707 | trace_xfs_inode_free_cowblocks_invalid(ip); | 
|  | 1708 | xfs_inode_clear_cowblocks_tag(ip); | 
|  | 1709 | return false; | 
|  | 1710 | } | 
|  | 1711 |  | 
|  | 1712 | /* | 
|  | 1713 | * If the mapping is dirty or under writeback we cannot touch the | 
|  | 1714 | * CoW fork.  Leave it alone if we're in the midst of a directio. | 
|  | 1715 | */ | 
|  | 1716 | if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || | 
|  | 1717 | mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || | 
|  | 1718 | mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || | 
|  | 1719 | atomic_read(&VFS_I(ip)->i_dio_count)) | 
|  | 1720 | return false; | 
|  | 1721 |  | 
|  | 1722 | return true; | 
|  | 1723 | } | 
|  | 1724 |  | 
|  | 1725 | /* | 
|  | 1726 | * Automatic CoW Reservation Freeing | 
|  | 1727 | * | 
|  | 1728 | * These functions automatically garbage collect leftover CoW reservations | 
|  | 1729 | * that were made on behalf of a cowextsize hint when we start to run out | 
|  | 1730 | * of quota or when the reservations sit around for too long.  If the file | 
|  | 1731 | * has dirty pages or is undergoing writeback, its CoW reservations will | 
|  | 1732 | * be retained. | 
|  | 1733 | * | 
|  | 1734 | * The actual garbage collection piggybacks off the same code that runs | 
|  | 1735 | * the speculative EOF preallocation garbage collector. | 
|  | 1736 | */ | 
|  | 1737 | STATIC int | 
|  | 1738 | xfs_inode_free_cowblocks( | 
|  | 1739 | struct xfs_inode	*ip, | 
|  | 1740 | int			flags, | 
|  | 1741 | void			*args) | 
|  | 1742 | { | 
|  | 1743 | struct xfs_eofblocks	*eofb = args; | 
|  | 1744 | int			match; | 
|  | 1745 | int			ret = 0; | 
|  | 1746 |  | 
|  | 1747 | if (!xfs_prep_free_cowblocks(ip)) | 
|  | 1748 | return 0; | 
|  | 1749 |  | 
|  | 1750 | if (eofb) { | 
|  | 1751 | if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) | 
|  | 1752 | match = xfs_inode_match_id_union(ip, eofb); | 
|  | 1753 | else | 
|  | 1754 | match = xfs_inode_match_id(ip, eofb); | 
|  | 1755 | if (!match) | 
|  | 1756 | return 0; | 
|  | 1757 |  | 
|  | 1758 | /* skip the inode if the file size is too small */ | 
|  | 1759 | if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && | 
|  | 1760 | XFS_ISIZE(ip) < eofb->eof_min_file_size) | 
|  | 1761 | return 0; | 
|  | 1762 | } | 
|  | 1763 |  | 
|  | 1764 | /* Free the CoW blocks */ | 
|  | 1765 | xfs_ilock(ip, XFS_IOLOCK_EXCL); | 
|  | 1766 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | 
|  | 1767 |  | 
|  | 1768 | /* | 
|  | 1769 | * Check again, nobody else should be able to dirty blocks or change | 
|  | 1770 | * the reflink iflag now that we have the first two locks held. | 
|  | 1771 | */ | 
|  | 1772 | if (xfs_prep_free_cowblocks(ip)) | 
|  | 1773 | ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); | 
|  | 1774 |  | 
|  | 1775 | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); | 
|  | 1776 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
|  | 1777 |  | 
|  | 1778 | return ret; | 
|  | 1779 | } | 
|  | 1780 |  | 
|  | 1781 | int | 
|  | 1782 | xfs_icache_free_cowblocks( | 
|  | 1783 | struct xfs_mount	*mp, | 
|  | 1784 | struct xfs_eofblocks	*eofb) | 
|  | 1785 | { | 
|  | 1786 | return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, | 
|  | 1787 | XFS_ICI_COWBLOCKS_TAG); | 
|  | 1788 | } | 
|  | 1789 |  | 
|  | 1790 | int | 
|  | 1791 | xfs_inode_free_quota_cowblocks( | 
|  | 1792 | struct xfs_inode *ip) | 
|  | 1793 | { | 
|  | 1794 | return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); | 
|  | 1795 | } | 
|  | 1796 |  | 
|  | 1797 | void | 
|  | 1798 | xfs_inode_set_cowblocks_tag( | 
|  | 1799 | xfs_inode_t	*ip) | 
|  | 1800 | { | 
|  | 1801 | trace_xfs_inode_set_cowblocks_tag(ip); | 
|  | 1802 | return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, | 
|  | 1803 | trace_xfs_perag_set_cowblocks, | 
|  | 1804 | XFS_ICI_COWBLOCKS_TAG); | 
|  | 1805 | } | 
|  | 1806 |  | 
|  | 1807 | void | 
|  | 1808 | xfs_inode_clear_cowblocks_tag( | 
|  | 1809 | xfs_inode_t	*ip) | 
|  | 1810 | { | 
|  | 1811 | trace_xfs_inode_clear_cowblocks_tag(ip); | 
|  | 1812 | return __xfs_inode_clear_blocks_tag(ip, | 
|  | 1813 | trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); | 
|  | 1814 | } | 
|  | 1815 |  | 
|  | 1816 | /* Disable post-EOF and CoW block auto-reclamation. */ | 
|  | 1817 | void | 
|  | 1818 | xfs_icache_disable_reclaim( | 
|  | 1819 | struct xfs_mount	*mp) | 
|  | 1820 | { | 
|  | 1821 | cancel_delayed_work_sync(&mp->m_eofblocks_work); | 
|  | 1822 | cancel_delayed_work_sync(&mp->m_cowblocks_work); | 
|  | 1823 | } | 
|  | 1824 |  | 
|  | 1825 | /* Enable post-EOF and CoW block auto-reclamation. */ | 
|  | 1826 | void | 
|  | 1827 | xfs_icache_enable_reclaim( | 
|  | 1828 | struct xfs_mount	*mp) | 
|  | 1829 | { | 
|  | 1830 | xfs_queue_eofblocks(mp); | 
|  | 1831 | xfs_queue_cowblocks(mp); | 
|  | 1832 | } |