| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
 | 2 | /* | 
 | 3 |  * Machine specific setup for xen | 
 | 4 |  * | 
 | 5 |  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
 | 6 |  */ | 
 | 7 |  | 
 | 8 | #include <linux/init.h> | 
 | 9 | #include <linux/sched.h> | 
 | 10 | #include <linux/mm.h> | 
 | 11 | #include <linux/pm.h> | 
 | 12 | #include <linux/memblock.h> | 
 | 13 | #include <linux/cpuidle.h> | 
 | 14 | #include <linux/cpufreq.h> | 
 | 15 |  | 
 | 16 | #include <asm/elf.h> | 
 | 17 | #include <asm/vdso.h> | 
 | 18 | #include <asm/e820/api.h> | 
 | 19 | #include <asm/setup.h> | 
 | 20 | #include <asm/acpi.h> | 
 | 21 | #include <asm/numa.h> | 
 | 22 | #include <asm/xen/hypervisor.h> | 
 | 23 | #include <asm/xen/hypercall.h> | 
 | 24 |  | 
 | 25 | #include <xen/xen.h> | 
 | 26 | #include <xen/page.h> | 
 | 27 | #include <xen/interface/callback.h> | 
 | 28 | #include <xen/interface/memory.h> | 
 | 29 | #include <xen/interface/physdev.h> | 
 | 30 | #include <xen/features.h> | 
 | 31 | #include <xen/hvc-console.h> | 
 | 32 | #include "xen-ops.h" | 
 | 33 | #include "vdso.h" | 
 | 34 | #include "mmu.h" | 
 | 35 |  | 
 | 36 | #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024) | 
 | 37 |  | 
 | 38 | /* Amount of extra memory space we add to the e820 ranges */ | 
 | 39 | struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; | 
 | 40 |  | 
 | 41 | /* Number of pages released from the initial allocation. */ | 
 | 42 | unsigned long xen_released_pages; | 
 | 43 |  | 
 | 44 | /* E820 map used during setting up memory. */ | 
 | 45 | static struct e820_table xen_e820_table __initdata; | 
 | 46 |  | 
 | 47 | /* | 
 | 48 |  * Buffer used to remap identity mapped pages. We only need the virtual space. | 
 | 49 |  * The physical page behind this address is remapped as needed to different | 
 | 50 |  * buffer pages. | 
 | 51 |  */ | 
 | 52 | #define REMAP_SIZE	(P2M_PER_PAGE - 3) | 
 | 53 | static struct { | 
 | 54 | 	unsigned long	next_area_mfn; | 
 | 55 | 	unsigned long	target_pfn; | 
 | 56 | 	unsigned long	size; | 
 | 57 | 	unsigned long	mfns[REMAP_SIZE]; | 
 | 58 | } xen_remap_buf __initdata __aligned(PAGE_SIZE); | 
 | 59 | static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; | 
 | 60 |  | 
 | 61 | /*  | 
 | 62 |  * The maximum amount of extra memory compared to the base size.  The | 
 | 63 |  * main scaling factor is the size of struct page.  At extreme ratios | 
 | 64 |  * of base:extra, all the base memory can be filled with page | 
 | 65 |  * structures for the extra memory, leaving no space for anything | 
 | 66 |  * else. | 
 | 67 |  *  | 
 | 68 |  * 10x seems like a reasonable balance between scaling flexibility and | 
 | 69 |  * leaving a practically usable system. | 
 | 70 |  */ | 
 | 71 | #define EXTRA_MEM_RATIO		(10) | 
 | 72 |  | 
 | 73 | static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB); | 
 | 74 |  | 
 | 75 | static void __init xen_parse_512gb(void) | 
 | 76 | { | 
 | 77 | 	bool val = false; | 
 | 78 | 	char *arg; | 
 | 79 |  | 
 | 80 | 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit"); | 
 | 81 | 	if (!arg) | 
 | 82 | 		return; | 
 | 83 |  | 
 | 84 | 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit="); | 
 | 85 | 	if (!arg) | 
 | 86 | 		val = true; | 
 | 87 | 	else if (strtobool(arg + strlen("xen_512gb_limit="), &val)) | 
 | 88 | 		return; | 
 | 89 |  | 
 | 90 | 	xen_512gb_limit = val; | 
 | 91 | } | 
 | 92 |  | 
 | 93 | static void __init xen_add_extra_mem(unsigned long start_pfn, | 
 | 94 | 				     unsigned long n_pfns) | 
 | 95 | { | 
 | 96 | 	int i; | 
 | 97 |  | 
 | 98 | 	/* | 
 | 99 | 	 * No need to check for zero size, should happen rarely and will only | 
 | 100 | 	 * write a new entry regarded to be unused due to zero size. | 
 | 101 | 	 */ | 
 | 102 | 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
 | 103 | 		/* Add new region. */ | 
 | 104 | 		if (xen_extra_mem[i].n_pfns == 0) { | 
 | 105 | 			xen_extra_mem[i].start_pfn = start_pfn; | 
 | 106 | 			xen_extra_mem[i].n_pfns = n_pfns; | 
 | 107 | 			break; | 
 | 108 | 		} | 
 | 109 | 		/* Append to existing region. */ | 
 | 110 | 		if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns == | 
 | 111 | 		    start_pfn) { | 
 | 112 | 			xen_extra_mem[i].n_pfns += n_pfns; | 
 | 113 | 			break; | 
 | 114 | 		} | 
 | 115 | 	} | 
 | 116 | 	if (i == XEN_EXTRA_MEM_MAX_REGIONS) | 
 | 117 | 		printk(KERN_WARNING "Warning: not enough extra memory regions\n"); | 
 | 118 |  | 
 | 119 | 	memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); | 
 | 120 | } | 
 | 121 |  | 
 | 122 | static void __init xen_del_extra_mem(unsigned long start_pfn, | 
 | 123 | 				     unsigned long n_pfns) | 
 | 124 | { | 
 | 125 | 	int i; | 
 | 126 | 	unsigned long start_r, size_r; | 
 | 127 |  | 
 | 128 | 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
 | 129 | 		start_r = xen_extra_mem[i].start_pfn; | 
 | 130 | 		size_r = xen_extra_mem[i].n_pfns; | 
 | 131 |  | 
 | 132 | 		/* Start of region. */ | 
 | 133 | 		if (start_r == start_pfn) { | 
 | 134 | 			BUG_ON(n_pfns > size_r); | 
 | 135 | 			xen_extra_mem[i].start_pfn += n_pfns; | 
 | 136 | 			xen_extra_mem[i].n_pfns -= n_pfns; | 
 | 137 | 			break; | 
 | 138 | 		} | 
 | 139 | 		/* End of region. */ | 
 | 140 | 		if (start_r + size_r == start_pfn + n_pfns) { | 
 | 141 | 			BUG_ON(n_pfns > size_r); | 
 | 142 | 			xen_extra_mem[i].n_pfns -= n_pfns; | 
 | 143 | 			break; | 
 | 144 | 		} | 
 | 145 | 		/* Mid of region. */ | 
 | 146 | 		if (start_pfn > start_r && start_pfn < start_r + size_r) { | 
 | 147 | 			BUG_ON(start_pfn + n_pfns > start_r + size_r); | 
 | 148 | 			xen_extra_mem[i].n_pfns = start_pfn - start_r; | 
 | 149 | 			/* Calling memblock_reserve() again is okay. */ | 
 | 150 | 			xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r - | 
 | 151 | 					  (start_pfn + n_pfns)); | 
 | 152 | 			break; | 
 | 153 | 		} | 
 | 154 | 	} | 
 | 155 | 	memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); | 
 | 156 | } | 
 | 157 |  | 
 | 158 | /* | 
 | 159 |  * Called during boot before the p2m list can take entries beyond the | 
 | 160 |  * hypervisor supplied p2m list. Entries in extra mem are to be regarded as | 
 | 161 |  * invalid. | 
 | 162 |  */ | 
 | 163 | unsigned long __ref xen_chk_extra_mem(unsigned long pfn) | 
 | 164 | { | 
 | 165 | 	int i; | 
 | 166 |  | 
 | 167 | 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
 | 168 | 		if (pfn >= xen_extra_mem[i].start_pfn && | 
 | 169 | 		    pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns) | 
 | 170 | 			return INVALID_P2M_ENTRY; | 
 | 171 | 	} | 
 | 172 |  | 
 | 173 | 	return IDENTITY_FRAME(pfn); | 
 | 174 | } | 
 | 175 |  | 
 | 176 | /* | 
 | 177 |  * Mark all pfns of extra mem as invalid in p2m list. | 
 | 178 |  */ | 
 | 179 | void __init xen_inv_extra_mem(void) | 
 | 180 | { | 
 | 181 | 	unsigned long pfn, pfn_s, pfn_e; | 
 | 182 | 	int i; | 
 | 183 |  | 
 | 184 | 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
 | 185 | 		if (!xen_extra_mem[i].n_pfns) | 
 | 186 | 			continue; | 
 | 187 | 		pfn_s = xen_extra_mem[i].start_pfn; | 
 | 188 | 		pfn_e = pfn_s + xen_extra_mem[i].n_pfns; | 
 | 189 | 		for (pfn = pfn_s; pfn < pfn_e; pfn++) | 
 | 190 | 			set_phys_to_machine(pfn, INVALID_P2M_ENTRY); | 
 | 191 | 	} | 
 | 192 | } | 
 | 193 |  | 
 | 194 | /* | 
 | 195 |  * Finds the next RAM pfn available in the E820 map after min_pfn. | 
 | 196 |  * This function updates min_pfn with the pfn found and returns | 
 | 197 |  * the size of that range or zero if not found. | 
 | 198 |  */ | 
 | 199 | static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn) | 
 | 200 | { | 
 | 201 | 	const struct e820_entry *entry = xen_e820_table.entries; | 
 | 202 | 	unsigned int i; | 
 | 203 | 	unsigned long done = 0; | 
 | 204 |  | 
 | 205 | 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { | 
 | 206 | 		unsigned long s_pfn; | 
 | 207 | 		unsigned long e_pfn; | 
 | 208 |  | 
 | 209 | 		if (entry->type != E820_TYPE_RAM) | 
 | 210 | 			continue; | 
 | 211 |  | 
 | 212 | 		e_pfn = PFN_DOWN(entry->addr + entry->size); | 
 | 213 |  | 
 | 214 | 		/* We only care about E820 after this */ | 
 | 215 | 		if (e_pfn <= *min_pfn) | 
 | 216 | 			continue; | 
 | 217 |  | 
 | 218 | 		s_pfn = PFN_UP(entry->addr); | 
 | 219 |  | 
 | 220 | 		/* If min_pfn falls within the E820 entry, we want to start | 
 | 221 | 		 * at the min_pfn PFN. | 
 | 222 | 		 */ | 
 | 223 | 		if (s_pfn <= *min_pfn) { | 
 | 224 | 			done = e_pfn - *min_pfn; | 
 | 225 | 		} else { | 
 | 226 | 			done = e_pfn - s_pfn; | 
 | 227 | 			*min_pfn = s_pfn; | 
 | 228 | 		} | 
 | 229 | 		break; | 
 | 230 | 	} | 
 | 231 |  | 
 | 232 | 	return done; | 
 | 233 | } | 
 | 234 |  | 
 | 235 | static int __init xen_free_mfn(unsigned long mfn) | 
 | 236 | { | 
 | 237 | 	struct xen_memory_reservation reservation = { | 
 | 238 | 		.address_bits = 0, | 
 | 239 | 		.extent_order = 0, | 
 | 240 | 		.domid        = DOMID_SELF | 
 | 241 | 	}; | 
 | 242 |  | 
 | 243 | 	set_xen_guest_handle(reservation.extent_start, &mfn); | 
 | 244 | 	reservation.nr_extents = 1; | 
 | 245 |  | 
 | 246 | 	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); | 
 | 247 | } | 
 | 248 |  | 
 | 249 | /* | 
 | 250 |  * This releases a chunk of memory and then does the identity map. It's used | 
 | 251 |  * as a fallback if the remapping fails. | 
 | 252 |  */ | 
 | 253 | static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, | 
 | 254 | 			unsigned long end_pfn, unsigned long nr_pages) | 
 | 255 | { | 
 | 256 | 	unsigned long pfn, end; | 
 | 257 | 	int ret; | 
 | 258 |  | 
 | 259 | 	WARN_ON(start_pfn > end_pfn); | 
 | 260 |  | 
 | 261 | 	/* Release pages first. */ | 
 | 262 | 	end = min(end_pfn, nr_pages); | 
 | 263 | 	for (pfn = start_pfn; pfn < end; pfn++) { | 
 | 264 | 		unsigned long mfn = pfn_to_mfn(pfn); | 
 | 265 |  | 
 | 266 | 		/* Make sure pfn exists to start with */ | 
 | 267 | 		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) | 
 | 268 | 			continue; | 
 | 269 |  | 
 | 270 | 		ret = xen_free_mfn(mfn); | 
 | 271 | 		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); | 
 | 272 |  | 
 | 273 | 		if (ret == 1) { | 
 | 274 | 			xen_released_pages++; | 
 | 275 | 			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) | 
 | 276 | 				break; | 
 | 277 | 		} else | 
 | 278 | 			break; | 
 | 279 | 	} | 
 | 280 |  | 
 | 281 | 	set_phys_range_identity(start_pfn, end_pfn); | 
 | 282 | } | 
 | 283 |  | 
 | 284 | /* | 
 | 285 |  * Helper function to update the p2m and m2p tables and kernel mapping. | 
 | 286 |  */ | 
 | 287 | static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) | 
 | 288 | { | 
 | 289 | 	struct mmu_update update = { | 
 | 290 | 		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, | 
 | 291 | 		.val = pfn | 
 | 292 | 	}; | 
 | 293 |  | 
 | 294 | 	/* Update p2m */ | 
 | 295 | 	if (!set_phys_to_machine(pfn, mfn)) { | 
 | 296 | 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", | 
 | 297 | 		     pfn, mfn); | 
 | 298 | 		BUG(); | 
 | 299 | 	} | 
 | 300 |  | 
 | 301 | 	/* Update m2p */ | 
 | 302 | 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { | 
 | 303 | 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", | 
 | 304 | 		     mfn, pfn); | 
 | 305 | 		BUG(); | 
 | 306 | 	} | 
 | 307 |  | 
 | 308 | 	/* Update kernel mapping, but not for highmem. */ | 
 | 309 | 	if (pfn >= PFN_UP(__pa(high_memory - 1))) | 
 | 310 | 		return; | 
 | 311 |  | 
 | 312 | 	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), | 
 | 313 | 					 mfn_pte(mfn, PAGE_KERNEL), 0)) { | 
 | 314 | 		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", | 
 | 315 | 		      mfn, pfn); | 
 | 316 | 		BUG(); | 
 | 317 | 	} | 
 | 318 | } | 
 | 319 |  | 
 | 320 | /* | 
 | 321 |  * This function updates the p2m and m2p tables with an identity map from | 
 | 322 |  * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the | 
 | 323 |  * original allocation at remap_pfn. The information needed for remapping is | 
 | 324 |  * saved in the memory itself to avoid the need for allocating buffers. The | 
 | 325 |  * complete remap information is contained in a list of MFNs each containing | 
 | 326 |  * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. | 
 | 327 |  * This enables us to preserve the original mfn sequence while doing the | 
 | 328 |  * remapping at a time when the memory management is capable of allocating | 
 | 329 |  * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and | 
 | 330 |  * its callers. | 
 | 331 |  */ | 
 | 332 | static void __init xen_do_set_identity_and_remap_chunk( | 
 | 333 |         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) | 
 | 334 | { | 
 | 335 | 	unsigned long buf = (unsigned long)&xen_remap_buf; | 
 | 336 | 	unsigned long mfn_save, mfn; | 
 | 337 | 	unsigned long ident_pfn_iter, remap_pfn_iter; | 
 | 338 | 	unsigned long ident_end_pfn = start_pfn + size; | 
 | 339 | 	unsigned long left = size; | 
 | 340 | 	unsigned int i, chunk; | 
 | 341 |  | 
 | 342 | 	WARN_ON(size == 0); | 
 | 343 |  | 
 | 344 | 	mfn_save = virt_to_mfn(buf); | 
 | 345 |  | 
 | 346 | 	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; | 
 | 347 | 	     ident_pfn_iter < ident_end_pfn; | 
 | 348 | 	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { | 
 | 349 | 		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; | 
 | 350 |  | 
 | 351 | 		/* Map first pfn to xen_remap_buf */ | 
 | 352 | 		mfn = pfn_to_mfn(ident_pfn_iter); | 
 | 353 | 		set_pte_mfn(buf, mfn, PAGE_KERNEL); | 
 | 354 |  | 
 | 355 | 		/* Save mapping information in page */ | 
 | 356 | 		xen_remap_buf.next_area_mfn = xen_remap_mfn; | 
 | 357 | 		xen_remap_buf.target_pfn = remap_pfn_iter; | 
 | 358 | 		xen_remap_buf.size = chunk; | 
 | 359 | 		for (i = 0; i < chunk; i++) | 
 | 360 | 			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); | 
 | 361 |  | 
 | 362 | 		/* Put remap buf into list. */ | 
 | 363 | 		xen_remap_mfn = mfn; | 
 | 364 |  | 
 | 365 | 		/* Set identity map */ | 
 | 366 | 		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); | 
 | 367 |  | 
 | 368 | 		left -= chunk; | 
 | 369 | 	} | 
 | 370 |  | 
 | 371 | 	/* Restore old xen_remap_buf mapping */ | 
 | 372 | 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL); | 
 | 373 | } | 
 | 374 |  | 
 | 375 | /* | 
 | 376 |  * This function takes a contiguous pfn range that needs to be identity mapped | 
 | 377 |  * and: | 
 | 378 |  * | 
 | 379 |  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. | 
 | 380 |  *  2) Calls the do_ function to actually do the mapping/remapping work. | 
 | 381 |  * | 
 | 382 |  * The goal is to not allocate additional memory but to remap the existing | 
 | 383 |  * pages. In the case of an error the underlying memory is simply released back | 
 | 384 |  * to Xen and not remapped. | 
 | 385 |  */ | 
 | 386 | static unsigned long __init xen_set_identity_and_remap_chunk( | 
 | 387 | 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, | 
 | 388 | 	unsigned long remap_pfn) | 
 | 389 | { | 
 | 390 | 	unsigned long pfn; | 
 | 391 | 	unsigned long i = 0; | 
 | 392 | 	unsigned long n = end_pfn - start_pfn; | 
 | 393 |  | 
 | 394 | 	if (remap_pfn == 0) | 
 | 395 | 		remap_pfn = nr_pages; | 
 | 396 |  | 
 | 397 | 	while (i < n) { | 
 | 398 | 		unsigned long cur_pfn = start_pfn + i; | 
 | 399 | 		unsigned long left = n - i; | 
 | 400 | 		unsigned long size = left; | 
 | 401 | 		unsigned long remap_range_size; | 
 | 402 |  | 
 | 403 | 		/* Do not remap pages beyond the current allocation */ | 
 | 404 | 		if (cur_pfn >= nr_pages) { | 
 | 405 | 			/* Identity map remaining pages */ | 
 | 406 | 			set_phys_range_identity(cur_pfn, cur_pfn + size); | 
 | 407 | 			break; | 
 | 408 | 		} | 
 | 409 | 		if (cur_pfn + size > nr_pages) | 
 | 410 | 			size = nr_pages - cur_pfn; | 
 | 411 |  | 
 | 412 | 		remap_range_size = xen_find_pfn_range(&remap_pfn); | 
 | 413 | 		if (!remap_range_size) { | 
 | 414 | 			pr_warning("Unable to find available pfn range, not remapping identity pages\n"); | 
 | 415 | 			xen_set_identity_and_release_chunk(cur_pfn, | 
 | 416 | 						cur_pfn + left, nr_pages); | 
 | 417 | 			break; | 
 | 418 | 		} | 
 | 419 | 		/* Adjust size to fit in current e820 RAM region */ | 
 | 420 | 		if (size > remap_range_size) | 
 | 421 | 			size = remap_range_size; | 
 | 422 |  | 
 | 423 | 		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); | 
 | 424 |  | 
 | 425 | 		/* Update variables to reflect new mappings. */ | 
 | 426 | 		i += size; | 
 | 427 | 		remap_pfn += size; | 
 | 428 | 	} | 
 | 429 |  | 
 | 430 | 	/* | 
 | 431 | 	 * If the PFNs are currently mapped, the VA mapping also needs | 
 | 432 | 	 * to be updated to be 1:1. | 
 | 433 | 	 */ | 
 | 434 | 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) | 
 | 435 | 		(void)HYPERVISOR_update_va_mapping( | 
 | 436 | 			(unsigned long)__va(pfn << PAGE_SHIFT), | 
 | 437 | 			mfn_pte(pfn, PAGE_KERNEL_IO), 0); | 
 | 438 |  | 
 | 439 | 	return remap_pfn; | 
 | 440 | } | 
 | 441 |  | 
 | 442 | static unsigned long __init xen_count_remap_pages( | 
 | 443 | 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, | 
 | 444 | 	unsigned long remap_pages) | 
 | 445 | { | 
 | 446 | 	if (start_pfn >= nr_pages) | 
 | 447 | 		return remap_pages; | 
 | 448 |  | 
 | 449 | 	return remap_pages + min(end_pfn, nr_pages) - start_pfn; | 
 | 450 | } | 
 | 451 |  | 
 | 452 | static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, | 
 | 453 | 	unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn, | 
 | 454 | 			      unsigned long nr_pages, unsigned long last_val)) | 
 | 455 | { | 
 | 456 | 	phys_addr_t start = 0; | 
 | 457 | 	unsigned long ret_val = 0; | 
 | 458 | 	const struct e820_entry *entry = xen_e820_table.entries; | 
 | 459 | 	int i; | 
 | 460 |  | 
 | 461 | 	/* | 
 | 462 | 	 * Combine non-RAM regions and gaps until a RAM region (or the | 
 | 463 | 	 * end of the map) is reached, then call the provided function | 
 | 464 | 	 * to perform its duty on the non-RAM region. | 
 | 465 | 	 * | 
 | 466 | 	 * The combined non-RAM regions are rounded to a whole number | 
 | 467 | 	 * of pages so any partial pages are accessible via the 1:1 | 
 | 468 | 	 * mapping.  This is needed for some BIOSes that put (for | 
 | 469 | 	 * example) the DMI tables in a reserved region that begins on | 
 | 470 | 	 * a non-page boundary. | 
 | 471 | 	 */ | 
 | 472 | 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { | 
 | 473 | 		phys_addr_t end = entry->addr + entry->size; | 
 | 474 | 		if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) { | 
 | 475 | 			unsigned long start_pfn = PFN_DOWN(start); | 
 | 476 | 			unsigned long end_pfn = PFN_UP(end); | 
 | 477 |  | 
 | 478 | 			if (entry->type == E820_TYPE_RAM) | 
 | 479 | 				end_pfn = PFN_UP(entry->addr); | 
 | 480 |  | 
 | 481 | 			if (start_pfn < end_pfn) | 
 | 482 | 				ret_val = func(start_pfn, end_pfn, nr_pages, | 
 | 483 | 					       ret_val); | 
 | 484 | 			start = end; | 
 | 485 | 		} | 
 | 486 | 	} | 
 | 487 |  | 
 | 488 | 	return ret_val; | 
 | 489 | } | 
 | 490 |  | 
 | 491 | /* | 
 | 492 |  * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). | 
 | 493 |  * The remap information (which mfn remap to which pfn) is contained in the | 
 | 494 |  * to be remapped memory itself in a linked list anchored at xen_remap_mfn. | 
 | 495 |  * This scheme allows to remap the different chunks in arbitrary order while | 
 | 496 |  * the resulting mapping will be independant from the order. | 
 | 497 |  */ | 
 | 498 | void __init xen_remap_memory(void) | 
 | 499 | { | 
 | 500 | 	unsigned long buf = (unsigned long)&xen_remap_buf; | 
 | 501 | 	unsigned long mfn_save, pfn; | 
 | 502 | 	unsigned long remapped = 0; | 
 | 503 | 	unsigned int i; | 
 | 504 | 	unsigned long pfn_s = ~0UL; | 
 | 505 | 	unsigned long len = 0; | 
 | 506 |  | 
 | 507 | 	mfn_save = virt_to_mfn(buf); | 
 | 508 |  | 
 | 509 | 	while (xen_remap_mfn != INVALID_P2M_ENTRY) { | 
 | 510 | 		/* Map the remap information */ | 
 | 511 | 		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); | 
 | 512 |  | 
 | 513 | 		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); | 
 | 514 |  | 
 | 515 | 		pfn = xen_remap_buf.target_pfn; | 
 | 516 | 		for (i = 0; i < xen_remap_buf.size; i++) { | 
 | 517 | 			xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]); | 
 | 518 | 			remapped++; | 
 | 519 | 			pfn++; | 
 | 520 | 		} | 
 | 521 | 		if (pfn_s == ~0UL || pfn == pfn_s) { | 
 | 522 | 			pfn_s = xen_remap_buf.target_pfn; | 
 | 523 | 			len += xen_remap_buf.size; | 
 | 524 | 		} else if (pfn_s + len == xen_remap_buf.target_pfn) { | 
 | 525 | 			len += xen_remap_buf.size; | 
 | 526 | 		} else { | 
 | 527 | 			xen_del_extra_mem(pfn_s, len); | 
 | 528 | 			pfn_s = xen_remap_buf.target_pfn; | 
 | 529 | 			len = xen_remap_buf.size; | 
 | 530 | 		} | 
 | 531 | 		xen_remap_mfn = xen_remap_buf.next_area_mfn; | 
 | 532 | 	} | 
 | 533 |  | 
 | 534 | 	if (pfn_s != ~0UL && len) | 
 | 535 | 		xen_del_extra_mem(pfn_s, len); | 
 | 536 |  | 
 | 537 | 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL); | 
 | 538 |  | 
 | 539 | 	pr_info("Remapped %ld page(s)\n", remapped); | 
 | 540 | } | 
 | 541 |  | 
 | 542 | static unsigned long __init xen_get_pages_limit(void) | 
 | 543 | { | 
 | 544 | 	unsigned long limit; | 
 | 545 |  | 
 | 546 | #ifdef CONFIG_X86_32 | 
 | 547 | 	limit = GB(64) / PAGE_SIZE; | 
 | 548 | #else | 
 | 549 | 	limit = MAXMEM / PAGE_SIZE; | 
 | 550 | 	if (!xen_initial_domain() && xen_512gb_limit) | 
 | 551 | 		limit = GB(512) / PAGE_SIZE; | 
 | 552 | #endif | 
 | 553 | 	return limit; | 
 | 554 | } | 
 | 555 |  | 
 | 556 | static unsigned long __init xen_get_max_pages(void) | 
 | 557 | { | 
 | 558 | 	unsigned long max_pages, limit; | 
 | 559 | 	domid_t domid = DOMID_SELF; | 
 | 560 | 	long ret; | 
 | 561 |  | 
 | 562 | 	limit = xen_get_pages_limit(); | 
 | 563 | 	max_pages = limit; | 
 | 564 |  | 
 | 565 | 	/* | 
 | 566 | 	 * For the initial domain we use the maximum reservation as | 
 | 567 | 	 * the maximum page. | 
 | 568 | 	 * | 
 | 569 | 	 * For guest domains the current maximum reservation reflects | 
 | 570 | 	 * the current maximum rather than the static maximum. In this | 
 | 571 | 	 * case the e820 map provided to us will cover the static | 
 | 572 | 	 * maximum region. | 
 | 573 | 	 */ | 
 | 574 | 	if (xen_initial_domain()) { | 
 | 575 | 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); | 
 | 576 | 		if (ret > 0) | 
 | 577 | 			max_pages = ret; | 
 | 578 | 	} | 
 | 579 |  | 
 | 580 | 	return min(max_pages, limit); | 
 | 581 | } | 
 | 582 |  | 
 | 583 | static void __init xen_align_and_add_e820_region(phys_addr_t start, | 
 | 584 | 						 phys_addr_t size, int type) | 
 | 585 | { | 
 | 586 | 	phys_addr_t end = start + size; | 
 | 587 |  | 
 | 588 | 	/* Align RAM regions to page boundaries. */ | 
 | 589 | 	if (type == E820_TYPE_RAM) { | 
 | 590 | 		start = PAGE_ALIGN(start); | 
 | 591 | 		end &= ~((phys_addr_t)PAGE_SIZE - 1); | 
 | 592 | 	} | 
 | 593 |  | 
 | 594 | 	e820__range_add(start, end - start, type); | 
 | 595 | } | 
 | 596 |  | 
 | 597 | static void __init xen_ignore_unusable(void) | 
 | 598 | { | 
 | 599 | 	struct e820_entry *entry = xen_e820_table.entries; | 
 | 600 | 	unsigned int i; | 
 | 601 |  | 
 | 602 | 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { | 
 | 603 | 		if (entry->type == E820_TYPE_UNUSABLE) | 
 | 604 | 			entry->type = E820_TYPE_RAM; | 
 | 605 | 	} | 
 | 606 | } | 
 | 607 |  | 
 | 608 | bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size) | 
 | 609 | { | 
 | 610 | 	struct e820_entry *entry; | 
 | 611 | 	unsigned mapcnt; | 
 | 612 | 	phys_addr_t end; | 
 | 613 |  | 
 | 614 | 	if (!size) | 
 | 615 | 		return false; | 
 | 616 |  | 
 | 617 | 	end = start + size; | 
 | 618 | 	entry = xen_e820_table.entries; | 
 | 619 |  | 
 | 620 | 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) { | 
 | 621 | 		if (entry->type == E820_TYPE_RAM && entry->addr <= start && | 
 | 622 | 		    (entry->addr + entry->size) >= end) | 
 | 623 | 			return false; | 
 | 624 |  | 
 | 625 | 		entry++; | 
 | 626 | 	} | 
 | 627 |  | 
 | 628 | 	return true; | 
 | 629 | } | 
 | 630 |  | 
 | 631 | /* | 
 | 632 |  * Find a free area in physical memory not yet reserved and compliant with | 
 | 633 |  * E820 map. | 
 | 634 |  * Used to relocate pre-allocated areas like initrd or p2m list which are in | 
 | 635 |  * conflict with the to be used E820 map. | 
 | 636 |  * In case no area is found, return 0. Otherwise return the physical address | 
 | 637 |  * of the area which is already reserved for convenience. | 
 | 638 |  */ | 
 | 639 | phys_addr_t __init xen_find_free_area(phys_addr_t size) | 
 | 640 | { | 
 | 641 | 	unsigned mapcnt; | 
 | 642 | 	phys_addr_t addr, start; | 
 | 643 | 	struct e820_entry *entry = xen_e820_table.entries; | 
 | 644 |  | 
 | 645 | 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) { | 
 | 646 | 		if (entry->type != E820_TYPE_RAM || entry->size < size) | 
 | 647 | 			continue; | 
 | 648 | 		start = entry->addr; | 
 | 649 | 		for (addr = start; addr < start + size; addr += PAGE_SIZE) { | 
 | 650 | 			if (!memblock_is_reserved(addr)) | 
 | 651 | 				continue; | 
 | 652 | 			start = addr + PAGE_SIZE; | 
 | 653 | 			if (start + size > entry->addr + entry->size) | 
 | 654 | 				break; | 
 | 655 | 		} | 
 | 656 | 		if (addr >= start + size) { | 
 | 657 | 			memblock_reserve(start, size); | 
 | 658 | 			return start; | 
 | 659 | 		} | 
 | 660 | 	} | 
 | 661 |  | 
 | 662 | 	return 0; | 
 | 663 | } | 
 | 664 |  | 
 | 665 | /* | 
 | 666 |  * Like memcpy, but with physical addresses for dest and src. | 
 | 667 |  */ | 
 | 668 | static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src, | 
 | 669 | 				   phys_addr_t n) | 
 | 670 | { | 
 | 671 | 	phys_addr_t dest_off, src_off, dest_len, src_len, len; | 
 | 672 | 	void *from, *to; | 
 | 673 |  | 
 | 674 | 	while (n) { | 
 | 675 | 		dest_off = dest & ~PAGE_MASK; | 
 | 676 | 		src_off = src & ~PAGE_MASK; | 
 | 677 | 		dest_len = n; | 
 | 678 | 		if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off) | 
 | 679 | 			dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off; | 
 | 680 | 		src_len = n; | 
 | 681 | 		if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off) | 
 | 682 | 			src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off; | 
 | 683 | 		len = min(dest_len, src_len); | 
 | 684 | 		to = early_memremap(dest - dest_off, dest_len + dest_off); | 
 | 685 | 		from = early_memremap(src - src_off, src_len + src_off); | 
 | 686 | 		memcpy(to, from, len); | 
 | 687 | 		early_memunmap(to, dest_len + dest_off); | 
 | 688 | 		early_memunmap(from, src_len + src_off); | 
 | 689 | 		n -= len; | 
 | 690 | 		dest += len; | 
 | 691 | 		src += len; | 
 | 692 | 	} | 
 | 693 | } | 
 | 694 |  | 
 | 695 | /* | 
 | 696 |  * Reserve Xen mfn_list. | 
 | 697 |  */ | 
 | 698 | static void __init xen_reserve_xen_mfnlist(void) | 
 | 699 | { | 
 | 700 | 	phys_addr_t start, size; | 
 | 701 |  | 
 | 702 | 	if (xen_start_info->mfn_list >= __START_KERNEL_map) { | 
 | 703 | 		start = __pa(xen_start_info->mfn_list); | 
 | 704 | 		size = PFN_ALIGN(xen_start_info->nr_pages * | 
 | 705 | 				 sizeof(unsigned long)); | 
 | 706 | 	} else { | 
 | 707 | 		start = PFN_PHYS(xen_start_info->first_p2m_pfn); | 
 | 708 | 		size = PFN_PHYS(xen_start_info->nr_p2m_frames); | 
 | 709 | 	} | 
 | 710 |  | 
 | 711 | 	memblock_reserve(start, size); | 
 | 712 | 	if (!xen_is_e820_reserved(start, size)) | 
 | 713 | 		return; | 
 | 714 |  | 
 | 715 | #ifdef CONFIG_X86_32 | 
 | 716 | 	/* | 
 | 717 | 	 * Relocating the p2m on 32 bit system to an arbitrary virtual address | 
 | 718 | 	 * is not supported, so just give up. | 
 | 719 | 	 */ | 
 | 720 | 	xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n"); | 
 | 721 | 	BUG(); | 
 | 722 | #else | 
 | 723 | 	xen_relocate_p2m(); | 
 | 724 | 	memblock_free(start, size); | 
 | 725 | #endif | 
 | 726 | } | 
 | 727 |  | 
 | 728 | /** | 
 | 729 |  * machine_specific_memory_setup - Hook for machine specific memory setup. | 
 | 730 |  **/ | 
 | 731 | char * __init xen_memory_setup(void) | 
 | 732 | { | 
 | 733 | 	unsigned long max_pfn, pfn_s, n_pfns; | 
 | 734 | 	phys_addr_t mem_end, addr, size, chunk_size; | 
 | 735 | 	u32 type; | 
 | 736 | 	int rc; | 
 | 737 | 	struct xen_memory_map memmap; | 
 | 738 | 	unsigned long max_pages; | 
 | 739 | 	unsigned long extra_pages = 0; | 
 | 740 | 	int i; | 
 | 741 | 	int op; | 
 | 742 |  | 
 | 743 | 	xen_parse_512gb(); | 
 | 744 | 	max_pfn = xen_get_pages_limit(); | 
 | 745 | 	max_pfn = min(max_pfn, xen_start_info->nr_pages); | 
 | 746 | 	mem_end = PFN_PHYS(max_pfn); | 
 | 747 |  | 
 | 748 | 	memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries); | 
 | 749 | 	set_xen_guest_handle(memmap.buffer, xen_e820_table.entries); | 
 | 750 |  | 
 | 751 | 	op = xen_initial_domain() ? | 
 | 752 | 		XENMEM_machine_memory_map : | 
 | 753 | 		XENMEM_memory_map; | 
 | 754 | 	rc = HYPERVISOR_memory_op(op, &memmap); | 
 | 755 | 	if (rc == -ENOSYS) { | 
 | 756 | 		BUG_ON(xen_initial_domain()); | 
 | 757 | 		memmap.nr_entries = 1; | 
 | 758 | 		xen_e820_table.entries[0].addr = 0ULL; | 
 | 759 | 		xen_e820_table.entries[0].size = mem_end; | 
 | 760 | 		/* 8MB slack (to balance backend allocations). */ | 
 | 761 | 		xen_e820_table.entries[0].size += 8ULL << 20; | 
 | 762 | 		xen_e820_table.entries[0].type = E820_TYPE_RAM; | 
 | 763 | 		rc = 0; | 
 | 764 | 	} | 
 | 765 | 	BUG_ON(rc); | 
 | 766 | 	BUG_ON(memmap.nr_entries == 0); | 
 | 767 | 	xen_e820_table.nr_entries = memmap.nr_entries; | 
 | 768 |  | 
 | 769 | 	/* | 
 | 770 | 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE | 
 | 771 | 	 * regions, so if we're using the machine memory map leave the | 
 | 772 | 	 * region as RAM as it is in the pseudo-physical map. | 
 | 773 | 	 * | 
 | 774 | 	 * UNUSABLE regions in domUs are not handled and will need | 
 | 775 | 	 * a patch in the future. | 
 | 776 | 	 */ | 
 | 777 | 	if (xen_initial_domain()) | 
 | 778 | 		xen_ignore_unusable(); | 
 | 779 |  | 
 | 780 | 	/* Make sure the Xen-supplied memory map is well-ordered. */ | 
 | 781 | 	e820__update_table(&xen_e820_table); | 
 | 782 |  | 
 | 783 | 	max_pages = xen_get_max_pages(); | 
 | 784 |  | 
 | 785 | 	/* How many extra pages do we need due to remapping? */ | 
 | 786 | 	max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages); | 
 | 787 |  | 
 | 788 | 	if (max_pages > max_pfn) | 
 | 789 | 		extra_pages += max_pages - max_pfn; | 
 | 790 |  | 
 | 791 | 	/* | 
 | 792 | 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO | 
 | 793 | 	 * factor the base size.  On non-highmem systems, the base | 
 | 794 | 	 * size is the full initial memory allocation; on highmem it | 
 | 795 | 	 * is limited to the max size of lowmem, so that it doesn't | 
 | 796 | 	 * get completely filled. | 
 | 797 | 	 * | 
 | 798 | 	 * Make sure we have no memory above max_pages, as this area | 
 | 799 | 	 * isn't handled by the p2m management. | 
 | 800 | 	 * | 
 | 801 | 	 * In principle there could be a problem in lowmem systems if | 
 | 802 | 	 * the initial memory is also very large with respect to | 
 | 803 | 	 * lowmem, but we won't try to deal with that here. | 
 | 804 | 	 */ | 
 | 805 | 	extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), | 
 | 806 | 			   extra_pages, max_pages - max_pfn); | 
 | 807 | 	i = 0; | 
 | 808 | 	addr = xen_e820_table.entries[0].addr; | 
 | 809 | 	size = xen_e820_table.entries[0].size; | 
 | 810 | 	while (i < xen_e820_table.nr_entries) { | 
 | 811 | 		bool discard = false; | 
 | 812 |  | 
 | 813 | 		chunk_size = size; | 
 | 814 | 		type = xen_e820_table.entries[i].type; | 
 | 815 |  | 
 | 816 | 		if (type == E820_TYPE_RAM) { | 
 | 817 | 			if (addr < mem_end) { | 
 | 818 | 				chunk_size = min(size, mem_end - addr); | 
 | 819 | 			} else if (extra_pages) { | 
 | 820 | 				chunk_size = min(size, PFN_PHYS(extra_pages)); | 
 | 821 | 				pfn_s = PFN_UP(addr); | 
 | 822 | 				n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s; | 
 | 823 | 				extra_pages -= n_pfns; | 
 | 824 | 				xen_add_extra_mem(pfn_s, n_pfns); | 
 | 825 | 				xen_max_p2m_pfn = pfn_s + n_pfns; | 
 | 826 | 			} else | 
 | 827 | 				discard = true; | 
 | 828 | 		} | 
 | 829 |  | 
 | 830 | 		if (!discard) | 
 | 831 | 			xen_align_and_add_e820_region(addr, chunk_size, type); | 
 | 832 |  | 
 | 833 | 		addr += chunk_size; | 
 | 834 | 		size -= chunk_size; | 
 | 835 | 		if (size == 0) { | 
 | 836 | 			i++; | 
 | 837 | 			if (i < xen_e820_table.nr_entries) { | 
 | 838 | 				addr = xen_e820_table.entries[i].addr; | 
 | 839 | 				size = xen_e820_table.entries[i].size; | 
 | 840 | 			} | 
 | 841 | 		} | 
 | 842 | 	} | 
 | 843 |  | 
 | 844 | 	/* | 
 | 845 | 	 * Set the rest as identity mapped, in case PCI BARs are | 
 | 846 | 	 * located here. | 
 | 847 | 	 */ | 
 | 848 | 	set_phys_range_identity(addr / PAGE_SIZE, ~0ul); | 
 | 849 |  | 
 | 850 | 	/* | 
 | 851 | 	 * In domU, the ISA region is normal, usable memory, but we | 
 | 852 | 	 * reserve ISA memory anyway because too many things poke | 
 | 853 | 	 * about in there. | 
 | 854 | 	 */ | 
 | 855 | 	e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED); | 
 | 856 |  | 
 | 857 | 	e820__update_table(e820_table); | 
 | 858 |  | 
 | 859 | 	/* | 
 | 860 | 	 * Check whether the kernel itself conflicts with the target E820 map. | 
 | 861 | 	 * Failing now is better than running into weird problems later due | 
 | 862 | 	 * to relocating (and even reusing) pages with kernel text or data. | 
 | 863 | 	 */ | 
 | 864 | 	if (xen_is_e820_reserved(__pa_symbol(_text), | 
 | 865 | 			__pa_symbol(__bss_stop) - __pa_symbol(_text))) { | 
 | 866 | 		xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n"); | 
 | 867 | 		BUG(); | 
 | 868 | 	} | 
 | 869 |  | 
 | 870 | 	/* | 
 | 871 | 	 * Check for a conflict of the hypervisor supplied page tables with | 
 | 872 | 	 * the target E820 map. | 
 | 873 | 	 */ | 
 | 874 | 	xen_pt_check_e820(); | 
 | 875 |  | 
 | 876 | 	xen_reserve_xen_mfnlist(); | 
 | 877 |  | 
 | 878 | 	/* Check for a conflict of the initrd with the target E820 map. */ | 
 | 879 | 	if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image, | 
 | 880 | 				 boot_params.hdr.ramdisk_size)) { | 
 | 881 | 		phys_addr_t new_area, start, size; | 
 | 882 |  | 
 | 883 | 		new_area = xen_find_free_area(boot_params.hdr.ramdisk_size); | 
 | 884 | 		if (!new_area) { | 
 | 885 | 			xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n"); | 
 | 886 | 			BUG(); | 
 | 887 | 		} | 
 | 888 |  | 
 | 889 | 		start = boot_params.hdr.ramdisk_image; | 
 | 890 | 		size = boot_params.hdr.ramdisk_size; | 
 | 891 | 		xen_phys_memcpy(new_area, start, size); | 
 | 892 | 		pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n", | 
 | 893 | 			start, start + size, new_area, new_area + size); | 
 | 894 | 		memblock_free(start, size); | 
 | 895 | 		boot_params.hdr.ramdisk_image = new_area; | 
 | 896 | 		boot_params.ext_ramdisk_image = new_area >> 32; | 
 | 897 | 	} | 
 | 898 |  | 
 | 899 | 	/* | 
 | 900 | 	 * Set identity map on non-RAM pages and prepare remapping the | 
 | 901 | 	 * underlying RAM. | 
 | 902 | 	 */ | 
 | 903 | 	xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk); | 
 | 904 |  | 
 | 905 | 	pr_info("Released %ld page(s)\n", xen_released_pages); | 
 | 906 |  | 
 | 907 | 	return "Xen"; | 
 | 908 | } | 
 | 909 |  | 
 | 910 | /* | 
 | 911 |  * Set the bit indicating "nosegneg" library variants should be used. | 
 | 912 |  * We only need to bother in pure 32-bit mode; compat 32-bit processes | 
 | 913 |  * can have un-truncated segments, so wrapping around is allowed. | 
 | 914 |  */ | 
 | 915 | static void __init fiddle_vdso(void) | 
 | 916 | { | 
 | 917 | #ifdef CONFIG_X86_32 | 
 | 918 | 	u32 *mask = vdso_image_32.data + | 
 | 919 | 		vdso_image_32.sym_VDSO32_NOTE_MASK; | 
 | 920 | 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; | 
 | 921 | #endif | 
 | 922 | } | 
 | 923 |  | 
 | 924 | static int register_callback(unsigned type, const void *func) | 
 | 925 | { | 
 | 926 | 	struct callback_register callback = { | 
 | 927 | 		.type = type, | 
 | 928 | 		.address = XEN_CALLBACK(__KERNEL_CS, func), | 
 | 929 | 		.flags = CALLBACKF_mask_events, | 
 | 930 | 	}; | 
 | 931 |  | 
 | 932 | 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); | 
 | 933 | } | 
 | 934 |  | 
 | 935 | void xen_enable_sysenter(void) | 
 | 936 | { | 
 | 937 | 	int ret; | 
 | 938 | 	unsigned sysenter_feature; | 
 | 939 |  | 
 | 940 | #ifdef CONFIG_X86_32 | 
 | 941 | 	sysenter_feature = X86_FEATURE_SEP; | 
 | 942 | #else | 
 | 943 | 	sysenter_feature = X86_FEATURE_SYSENTER32; | 
 | 944 | #endif | 
 | 945 |  | 
 | 946 | 	if (!boot_cpu_has(sysenter_feature)) | 
 | 947 | 		return; | 
 | 948 |  | 
 | 949 | 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); | 
 | 950 | 	if(ret != 0) | 
 | 951 | 		setup_clear_cpu_cap(sysenter_feature); | 
 | 952 | } | 
 | 953 |  | 
 | 954 | void xen_enable_syscall(void) | 
 | 955 | { | 
 | 956 | #ifdef CONFIG_X86_64 | 
 | 957 | 	int ret; | 
 | 958 |  | 
 | 959 | 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); | 
 | 960 | 	if (ret != 0) { | 
 | 961 | 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); | 
 | 962 | 		/* Pretty fatal; 64-bit userspace has no other | 
 | 963 | 		   mechanism for syscalls. */ | 
 | 964 | 	} | 
 | 965 |  | 
 | 966 | 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { | 
 | 967 | 		ret = register_callback(CALLBACKTYPE_syscall32, | 
 | 968 | 					xen_syscall32_target); | 
 | 969 | 		if (ret != 0) | 
 | 970 | 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); | 
 | 971 | 	} | 
 | 972 | #endif /* CONFIG_X86_64 */ | 
 | 973 | } | 
 | 974 |  | 
 | 975 | void __init xen_pvmmu_arch_setup(void) | 
 | 976 | { | 
 | 977 | 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); | 
 | 978 | 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); | 
 | 979 |  | 
 | 980 | 	HYPERVISOR_vm_assist(VMASST_CMD_enable, | 
 | 981 | 			     VMASST_TYPE_pae_extended_cr3); | 
 | 982 |  | 
 | 983 | 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || | 
 | 984 | 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) | 
 | 985 | 		BUG(); | 
 | 986 |  | 
 | 987 | 	xen_enable_sysenter(); | 
 | 988 | 	xen_enable_syscall(); | 
 | 989 | } | 
 | 990 |  | 
 | 991 | /* This function is not called for HVM domains */ | 
 | 992 | void __init xen_arch_setup(void) | 
 | 993 | { | 
 | 994 | 	xen_panic_handler_init(); | 
 | 995 | 	xen_pvmmu_arch_setup(); | 
 | 996 |  | 
 | 997 | #ifdef CONFIG_ACPI | 
 | 998 | 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) { | 
 | 999 | 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); | 
 | 1000 | 		disable_acpi(); | 
 | 1001 | 	} | 
 | 1002 | #endif | 
 | 1003 |  | 
 | 1004 | 	memcpy(boot_command_line, xen_start_info->cmd_line, | 
 | 1005 | 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? | 
 | 1006 | 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); | 
 | 1007 |  | 
 | 1008 | 	/* Set up idle, making sure it calls safe_halt() pvop */ | 
 | 1009 | 	disable_cpuidle(); | 
 | 1010 | 	disable_cpufreq(); | 
 | 1011 | 	WARN_ON(xen_set_default_idle()); | 
 | 1012 | 	fiddle_vdso(); | 
 | 1013 | #ifdef CONFIG_NUMA | 
 | 1014 | 	numa_off = 1; | 
 | 1015 | #endif | 
 | 1016 | } |