| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* Common code for 32 and 64-bit NUMA */ | 
 | 2 | #include <linux/acpi.h> | 
 | 3 | #include <linux/kernel.h> | 
 | 4 | #include <linux/mm.h> | 
 | 5 | #include <linux/string.h> | 
 | 6 | #include <linux/init.h> | 
 | 7 | #include <linux/bootmem.h> | 
 | 8 | #include <linux/memblock.h> | 
 | 9 | #include <linux/mmzone.h> | 
 | 10 | #include <linux/ctype.h> | 
 | 11 | #include <linux/nodemask.h> | 
 | 12 | #include <linux/sched.h> | 
 | 13 | #include <linux/topology.h> | 
 | 14 |  | 
 | 15 | #include <asm/e820/api.h> | 
 | 16 | #include <asm/proto.h> | 
 | 17 | #include <asm/dma.h> | 
 | 18 | #include <asm/amd_nb.h> | 
 | 19 |  | 
 | 20 | #include "numa_internal.h" | 
 | 21 |  | 
 | 22 | int numa_off; | 
 | 23 | nodemask_t numa_nodes_parsed __initdata; | 
 | 24 |  | 
 | 25 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 
 | 26 | EXPORT_SYMBOL(node_data); | 
 | 27 |  | 
 | 28 | static struct numa_meminfo numa_meminfo | 
 | 29 | #ifndef CONFIG_MEMORY_HOTPLUG | 
 | 30 | __initdata | 
 | 31 | #endif | 
 | 32 | ; | 
 | 33 |  | 
 | 34 | static int numa_distance_cnt; | 
 | 35 | static u8 *numa_distance; | 
 | 36 |  | 
 | 37 | static __init int numa_setup(char *opt) | 
 | 38 | { | 
 | 39 | 	if (!opt) | 
 | 40 | 		return -EINVAL; | 
 | 41 | 	if (!strncmp(opt, "off", 3)) | 
 | 42 | 		numa_off = 1; | 
 | 43 | #ifdef CONFIG_NUMA_EMU | 
 | 44 | 	if (!strncmp(opt, "fake=", 5)) | 
 | 45 | 		numa_emu_cmdline(opt + 5); | 
 | 46 | #endif | 
 | 47 | #ifdef CONFIG_ACPI_NUMA | 
 | 48 | 	if (!strncmp(opt, "noacpi", 6)) | 
 | 49 | 		acpi_numa = -1; | 
 | 50 | #endif | 
 | 51 | 	return 0; | 
 | 52 | } | 
 | 53 | early_param("numa", numa_setup); | 
 | 54 |  | 
 | 55 | /* | 
 | 56 |  * apicid, cpu, node mappings | 
 | 57 |  */ | 
 | 58 | s16 __apicid_to_node[MAX_LOCAL_APIC] = { | 
 | 59 | 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE | 
 | 60 | }; | 
 | 61 |  | 
 | 62 | int numa_cpu_node(int cpu) | 
 | 63 | { | 
 | 64 | 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); | 
 | 65 |  | 
 | 66 | 	if (apicid != BAD_APICID) | 
 | 67 | 		return __apicid_to_node[apicid]; | 
 | 68 | 	return NUMA_NO_NODE; | 
 | 69 | } | 
 | 70 |  | 
 | 71 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; | 
 | 72 | EXPORT_SYMBOL(node_to_cpumask_map); | 
 | 73 |  | 
 | 74 | /* | 
 | 75 |  * Map cpu index to node index | 
 | 76 |  */ | 
 | 77 | DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); | 
 | 78 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); | 
 | 79 |  | 
 | 80 | void numa_set_node(int cpu, int node) | 
 | 81 | { | 
 | 82 | 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); | 
 | 83 |  | 
 | 84 | 	/* early setting, no percpu area yet */ | 
 | 85 | 	if (cpu_to_node_map) { | 
 | 86 | 		cpu_to_node_map[cpu] = node; | 
 | 87 | 		return; | 
 | 88 | 	} | 
 | 89 |  | 
 | 90 | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | 
 | 91 | 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { | 
 | 92 | 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); | 
 | 93 | 		dump_stack(); | 
 | 94 | 		return; | 
 | 95 | 	} | 
 | 96 | #endif | 
 | 97 | 	per_cpu(x86_cpu_to_node_map, cpu) = node; | 
 | 98 |  | 
 | 99 | 	set_cpu_numa_node(cpu, node); | 
 | 100 | } | 
 | 101 |  | 
 | 102 | void numa_clear_node(int cpu) | 
 | 103 | { | 
 | 104 | 	numa_set_node(cpu, NUMA_NO_NODE); | 
 | 105 | } | 
 | 106 |  | 
 | 107 | /* | 
 | 108 |  * Allocate node_to_cpumask_map based on number of available nodes | 
 | 109 |  * Requires node_possible_map to be valid. | 
 | 110 |  * | 
 | 111 |  * Note: cpumask_of_node() is not valid until after this is done. | 
 | 112 |  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) | 
 | 113 |  */ | 
 | 114 | void __init setup_node_to_cpumask_map(void) | 
 | 115 | { | 
 | 116 | 	unsigned int node; | 
 | 117 |  | 
 | 118 | 	/* setup nr_node_ids if not done yet */ | 
 | 119 | 	if (nr_node_ids == MAX_NUMNODES) | 
 | 120 | 		setup_nr_node_ids(); | 
 | 121 |  | 
 | 122 | 	/* allocate the map */ | 
 | 123 | 	for (node = 0; node < nr_node_ids; node++) | 
 | 124 | 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); | 
 | 125 |  | 
 | 126 | 	/* cpumask_of_node() will now work */ | 
 | 127 | 	pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids); | 
 | 128 | } | 
 | 129 |  | 
 | 130 | static int __init numa_add_memblk_to(int nid, u64 start, u64 end, | 
 | 131 | 				     struct numa_meminfo *mi) | 
 | 132 | { | 
 | 133 | 	/* ignore zero length blks */ | 
 | 134 | 	if (start == end) | 
 | 135 | 		return 0; | 
 | 136 |  | 
 | 137 | 	/* whine about and ignore invalid blks */ | 
 | 138 | 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) { | 
 | 139 | 		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", | 
 | 140 | 			nid, start, end - 1); | 
 | 141 | 		return 0; | 
 | 142 | 	} | 
 | 143 |  | 
 | 144 | 	if (mi->nr_blks >= NR_NODE_MEMBLKS) { | 
 | 145 | 		pr_err("too many memblk ranges\n"); | 
 | 146 | 		return -EINVAL; | 
 | 147 | 	} | 
 | 148 |  | 
 | 149 | 	mi->blk[mi->nr_blks].start = start; | 
 | 150 | 	mi->blk[mi->nr_blks].end = end; | 
 | 151 | 	mi->blk[mi->nr_blks].nid = nid; | 
 | 152 | 	mi->nr_blks++; | 
 | 153 | 	return 0; | 
 | 154 | } | 
 | 155 |  | 
 | 156 | /** | 
 | 157 |  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo | 
 | 158 |  * @idx: Index of memblk to remove | 
 | 159 |  * @mi: numa_meminfo to remove memblk from | 
 | 160 |  * | 
 | 161 |  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and | 
 | 162 |  * decrementing @mi->nr_blks. | 
 | 163 |  */ | 
 | 164 | void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) | 
 | 165 | { | 
 | 166 | 	mi->nr_blks--; | 
 | 167 | 	memmove(&mi->blk[idx], &mi->blk[idx + 1], | 
 | 168 | 		(mi->nr_blks - idx) * sizeof(mi->blk[0])); | 
 | 169 | } | 
 | 170 |  | 
 | 171 | /** | 
 | 172 |  * numa_add_memblk - Add one numa_memblk to numa_meminfo | 
 | 173 |  * @nid: NUMA node ID of the new memblk | 
 | 174 |  * @start: Start address of the new memblk | 
 | 175 |  * @end: End address of the new memblk | 
 | 176 |  * | 
 | 177 |  * Add a new memblk to the default numa_meminfo. | 
 | 178 |  * | 
 | 179 |  * RETURNS: | 
 | 180 |  * 0 on success, -errno on failure. | 
 | 181 |  */ | 
 | 182 | int __init numa_add_memblk(int nid, u64 start, u64 end) | 
 | 183 | { | 
 | 184 | 	return numa_add_memblk_to(nid, start, end, &numa_meminfo); | 
 | 185 | } | 
 | 186 |  | 
 | 187 | /* Allocate NODE_DATA for a node on the local memory */ | 
 | 188 | static void __init alloc_node_data(int nid) | 
 | 189 | { | 
 | 190 | 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); | 
 | 191 | 	u64 nd_pa; | 
 | 192 | 	void *nd; | 
 | 193 | 	int tnid; | 
 | 194 |  | 
 | 195 | 	/* | 
 | 196 | 	 * Allocate node data.  Try node-local memory and then any node. | 
 | 197 | 	 * Never allocate in DMA zone. | 
 | 198 | 	 */ | 
 | 199 | 	nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid); | 
 | 200 | 	if (!nd_pa) { | 
 | 201 | 		nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES, | 
 | 202 | 					      MEMBLOCK_ALLOC_ACCESSIBLE); | 
 | 203 | 		if (!nd_pa) { | 
 | 204 | 			pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", | 
 | 205 | 			       nd_size, nid); | 
 | 206 | 			return; | 
 | 207 | 		} | 
 | 208 | 	} | 
 | 209 | 	nd = __va(nd_pa); | 
 | 210 |  | 
 | 211 | 	/* report and initialize */ | 
 | 212 | 	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, | 
 | 213 | 	       nd_pa, nd_pa + nd_size - 1); | 
 | 214 | 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); | 
 | 215 | 	if (tnid != nid) | 
 | 216 | 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid); | 
 | 217 |  | 
 | 218 | 	node_data[nid] = nd; | 
 | 219 | 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); | 
 | 220 |  | 
 | 221 | 	node_set_online(nid); | 
 | 222 | } | 
 | 223 |  | 
 | 224 | /** | 
 | 225 |  * numa_cleanup_meminfo - Cleanup a numa_meminfo | 
 | 226 |  * @mi: numa_meminfo to clean up | 
 | 227 |  * | 
 | 228 |  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for | 
 | 229 |  * conflicts and clear unused memblks. | 
 | 230 |  * | 
 | 231 |  * RETURNS: | 
 | 232 |  * 0 on success, -errno on failure. | 
 | 233 |  */ | 
 | 234 | int __init numa_cleanup_meminfo(struct numa_meminfo *mi) | 
 | 235 | { | 
 | 236 | 	const u64 low = 0; | 
 | 237 | 	const u64 high = PFN_PHYS(max_pfn); | 
 | 238 | 	int i, j, k; | 
 | 239 |  | 
 | 240 | 	/* first, trim all entries */ | 
 | 241 | 	for (i = 0; i < mi->nr_blks; i++) { | 
 | 242 | 		struct numa_memblk *bi = &mi->blk[i]; | 
 | 243 |  | 
 | 244 | 		/* make sure all blocks are inside the limits */ | 
 | 245 | 		bi->start = max(bi->start, low); | 
 | 246 | 		bi->end = min(bi->end, high); | 
 | 247 |  | 
 | 248 | 		/* and there's no empty or non-exist block */ | 
 | 249 | 		if (bi->start >= bi->end || | 
 | 250 | 		    !memblock_overlaps_region(&memblock.memory, | 
 | 251 | 			bi->start, bi->end - bi->start)) | 
 | 252 | 			numa_remove_memblk_from(i--, mi); | 
 | 253 | 	} | 
 | 254 |  | 
 | 255 | 	/* merge neighboring / overlapping entries */ | 
 | 256 | 	for (i = 0; i < mi->nr_blks; i++) { | 
 | 257 | 		struct numa_memblk *bi = &mi->blk[i]; | 
 | 258 |  | 
 | 259 | 		for (j = i + 1; j < mi->nr_blks; j++) { | 
 | 260 | 			struct numa_memblk *bj = &mi->blk[j]; | 
 | 261 | 			u64 start, end; | 
 | 262 |  | 
 | 263 | 			/* | 
 | 264 | 			 * See whether there are overlapping blocks.  Whine | 
 | 265 | 			 * about but allow overlaps of the same nid.  They | 
 | 266 | 			 * will be merged below. | 
 | 267 | 			 */ | 
 | 268 | 			if (bi->end > bj->start && bi->start < bj->end) { | 
 | 269 | 				if (bi->nid != bj->nid) { | 
 | 270 | 					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", | 
 | 271 | 					       bi->nid, bi->start, bi->end - 1, | 
 | 272 | 					       bj->nid, bj->start, bj->end - 1); | 
 | 273 | 					return -EINVAL; | 
 | 274 | 				} | 
 | 275 | 				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", | 
 | 276 | 					bi->nid, bi->start, bi->end - 1, | 
 | 277 | 					bj->start, bj->end - 1); | 
 | 278 | 			} | 
 | 279 |  | 
 | 280 | 			/* | 
 | 281 | 			 * Join together blocks on the same node, holes | 
 | 282 | 			 * between which don't overlap with memory on other | 
 | 283 | 			 * nodes. | 
 | 284 | 			 */ | 
 | 285 | 			if (bi->nid != bj->nid) | 
 | 286 | 				continue; | 
 | 287 | 			start = min(bi->start, bj->start); | 
 | 288 | 			end = max(bi->end, bj->end); | 
 | 289 | 			for (k = 0; k < mi->nr_blks; k++) { | 
 | 290 | 				struct numa_memblk *bk = &mi->blk[k]; | 
 | 291 |  | 
 | 292 | 				if (bi->nid == bk->nid) | 
 | 293 | 					continue; | 
 | 294 | 				if (start < bk->end && end > bk->start) | 
 | 295 | 					break; | 
 | 296 | 			} | 
 | 297 | 			if (k < mi->nr_blks) | 
 | 298 | 				continue; | 
 | 299 | 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", | 
 | 300 | 			       bi->nid, bi->start, bi->end - 1, bj->start, | 
 | 301 | 			       bj->end - 1, start, end - 1); | 
 | 302 | 			bi->start = start; | 
 | 303 | 			bi->end = end; | 
 | 304 | 			numa_remove_memblk_from(j--, mi); | 
 | 305 | 		} | 
 | 306 | 	} | 
 | 307 |  | 
 | 308 | 	/* clear unused ones */ | 
 | 309 | 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { | 
 | 310 | 		mi->blk[i].start = mi->blk[i].end = 0; | 
 | 311 | 		mi->blk[i].nid = NUMA_NO_NODE; | 
 | 312 | 	} | 
 | 313 |  | 
 | 314 | 	return 0; | 
 | 315 | } | 
 | 316 |  | 
 | 317 | /* | 
 | 318 |  * Set nodes, which have memory in @mi, in *@nodemask. | 
 | 319 |  */ | 
 | 320 | static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, | 
 | 321 | 					      const struct numa_meminfo *mi) | 
 | 322 | { | 
 | 323 | 	int i; | 
 | 324 |  | 
 | 325 | 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++) | 
 | 326 | 		if (mi->blk[i].start != mi->blk[i].end && | 
 | 327 | 		    mi->blk[i].nid != NUMA_NO_NODE) | 
 | 328 | 			node_set(mi->blk[i].nid, *nodemask); | 
 | 329 | } | 
 | 330 |  | 
 | 331 | /** | 
 | 332 |  * numa_reset_distance - Reset NUMA distance table | 
 | 333 |  * | 
 | 334 |  * The current table is freed.  The next numa_set_distance() call will | 
 | 335 |  * create a new one. | 
 | 336 |  */ | 
 | 337 | void __init numa_reset_distance(void) | 
 | 338 | { | 
 | 339 | 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); | 
 | 340 |  | 
 | 341 | 	/* numa_distance could be 1LU marking allocation failure, test cnt */ | 
 | 342 | 	if (numa_distance_cnt) | 
 | 343 | 		memblock_free(__pa(numa_distance), size); | 
 | 344 | 	numa_distance_cnt = 0; | 
 | 345 | 	numa_distance = NULL;	/* enable table creation */ | 
 | 346 | } | 
 | 347 |  | 
 | 348 | static int __init numa_alloc_distance(void) | 
 | 349 | { | 
 | 350 | 	nodemask_t nodes_parsed; | 
 | 351 | 	size_t size; | 
 | 352 | 	int i, j, cnt = 0; | 
 | 353 | 	u64 phys; | 
 | 354 |  | 
 | 355 | 	/* size the new table and allocate it */ | 
 | 356 | 	nodes_parsed = numa_nodes_parsed; | 
 | 357 | 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); | 
 | 358 |  | 
 | 359 | 	for_each_node_mask(i, nodes_parsed) | 
 | 360 | 		cnt = i; | 
 | 361 | 	cnt++; | 
 | 362 | 	size = cnt * cnt * sizeof(numa_distance[0]); | 
 | 363 |  | 
 | 364 | 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), | 
 | 365 | 				      size, PAGE_SIZE); | 
 | 366 | 	if (!phys) { | 
 | 367 | 		pr_warn("Warning: can't allocate distance table!\n"); | 
 | 368 | 		/* don't retry until explicitly reset */ | 
 | 369 | 		numa_distance = (void *)1LU; | 
 | 370 | 		return -ENOMEM; | 
 | 371 | 	} | 
 | 372 | 	memblock_reserve(phys, size); | 
 | 373 |  | 
 | 374 | 	numa_distance = __va(phys); | 
 | 375 | 	numa_distance_cnt = cnt; | 
 | 376 |  | 
 | 377 | 	/* fill with the default distances */ | 
 | 378 | 	for (i = 0; i < cnt; i++) | 
 | 379 | 		for (j = 0; j < cnt; j++) | 
 | 380 | 			numa_distance[i * cnt + j] = i == j ? | 
 | 381 | 				LOCAL_DISTANCE : REMOTE_DISTANCE; | 
 | 382 | 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); | 
 | 383 |  | 
 | 384 | 	return 0; | 
 | 385 | } | 
 | 386 |  | 
 | 387 | /** | 
 | 388 |  * numa_set_distance - Set NUMA distance from one NUMA to another | 
 | 389 |  * @from: the 'from' node to set distance | 
 | 390 |  * @to: the 'to'  node to set distance | 
 | 391 |  * @distance: NUMA distance | 
 | 392 |  * | 
 | 393 |  * Set the distance from node @from to @to to @distance.  If distance table | 
 | 394 |  * doesn't exist, one which is large enough to accommodate all the currently | 
 | 395 |  * known nodes will be created. | 
 | 396 |  * | 
 | 397 |  * If such table cannot be allocated, a warning is printed and further | 
 | 398 |  * calls are ignored until the distance table is reset with | 
 | 399 |  * numa_reset_distance(). | 
 | 400 |  * | 
 | 401 |  * If @from or @to is higher than the highest known node or lower than zero | 
 | 402 |  * at the time of table creation or @distance doesn't make sense, the call | 
 | 403 |  * is ignored. | 
 | 404 |  * This is to allow simplification of specific NUMA config implementations. | 
 | 405 |  */ | 
 | 406 | void __init numa_set_distance(int from, int to, int distance) | 
 | 407 | { | 
 | 408 | 	if (!numa_distance && numa_alloc_distance() < 0) | 
 | 409 | 		return; | 
 | 410 |  | 
 | 411 | 	if (from >= numa_distance_cnt || to >= numa_distance_cnt || | 
 | 412 | 			from < 0 || to < 0) { | 
 | 413 | 		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", | 
 | 414 | 			     from, to, distance); | 
 | 415 | 		return; | 
 | 416 | 	} | 
 | 417 |  | 
 | 418 | 	if ((u8)distance != distance || | 
 | 419 | 	    (from == to && distance != LOCAL_DISTANCE)) { | 
 | 420 | 		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", | 
 | 421 | 			     from, to, distance); | 
 | 422 | 		return; | 
 | 423 | 	} | 
 | 424 |  | 
 | 425 | 	numa_distance[from * numa_distance_cnt + to] = distance; | 
 | 426 | } | 
 | 427 |  | 
 | 428 | int __node_distance(int from, int to) | 
 | 429 | { | 
 | 430 | 	if (from >= numa_distance_cnt || to >= numa_distance_cnt) | 
 | 431 | 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; | 
 | 432 | 	return numa_distance[from * numa_distance_cnt + to]; | 
 | 433 | } | 
 | 434 | EXPORT_SYMBOL(__node_distance); | 
 | 435 |  | 
 | 436 | /* | 
 | 437 |  * Sanity check to catch more bad NUMA configurations (they are amazingly | 
 | 438 |  * common).  Make sure the nodes cover all memory. | 
 | 439 |  */ | 
 | 440 | static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) | 
 | 441 | { | 
 | 442 | 	u64 numaram, e820ram; | 
 | 443 | 	int i; | 
 | 444 |  | 
 | 445 | 	numaram = 0; | 
 | 446 | 	for (i = 0; i < mi->nr_blks; i++) { | 
 | 447 | 		u64 s = mi->blk[i].start >> PAGE_SHIFT; | 
 | 448 | 		u64 e = mi->blk[i].end >> PAGE_SHIFT; | 
 | 449 | 		numaram += e - s; | 
 | 450 | 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); | 
 | 451 | 		if ((s64)numaram < 0) | 
 | 452 | 			numaram = 0; | 
 | 453 | 	} | 
 | 454 |  | 
 | 455 | 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn); | 
 | 456 |  | 
 | 457 | 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */ | 
 | 458 | 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { | 
 | 459 | 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", | 
 | 460 | 		       (numaram << PAGE_SHIFT) >> 20, | 
 | 461 | 		       (e820ram << PAGE_SHIFT) >> 20); | 
 | 462 | 		return false; | 
 | 463 | 	} | 
 | 464 | 	return true; | 
 | 465 | } | 
 | 466 |  | 
 | 467 | /* | 
 | 468 |  * Mark all currently memblock-reserved physical memory (which covers the | 
 | 469 |  * kernel's own memory ranges) as hot-unswappable. | 
 | 470 |  */ | 
 | 471 | static void __init numa_clear_kernel_node_hotplug(void) | 
 | 472 | { | 
 | 473 | 	nodemask_t reserved_nodemask = NODE_MASK_NONE; | 
 | 474 | 	struct memblock_region *mb_region; | 
 | 475 | 	int i; | 
 | 476 |  | 
 | 477 | 	/* | 
 | 478 | 	 * We have to do some preprocessing of memblock regions, to | 
 | 479 | 	 * make them suitable for reservation. | 
 | 480 | 	 * | 
 | 481 | 	 * At this time, all memory regions reserved by memblock are | 
 | 482 | 	 * used by the kernel, but those regions are not split up | 
 | 483 | 	 * along node boundaries yet, and don't necessarily have their | 
 | 484 | 	 * node ID set yet either. | 
 | 485 | 	 * | 
 | 486 | 	 * So iterate over all memory known to the x86 architecture, | 
 | 487 | 	 * and use those ranges to set the nid in memblock.reserved. | 
 | 488 | 	 * This will split up the memblock regions along node | 
 | 489 | 	 * boundaries and will set the node IDs as well. | 
 | 490 | 	 */ | 
 | 491 | 	for (i = 0; i < numa_meminfo.nr_blks; i++) { | 
 | 492 | 		struct numa_memblk *mb = numa_meminfo.blk + i; | 
 | 493 | 		int ret; | 
 | 494 |  | 
 | 495 | 		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); | 
 | 496 | 		WARN_ON_ONCE(ret); | 
 | 497 | 	} | 
 | 498 |  | 
 | 499 | 	/* | 
 | 500 | 	 * Now go over all reserved memblock regions, to construct a | 
 | 501 | 	 * node mask of all kernel reserved memory areas. | 
 | 502 | 	 * | 
 | 503 | 	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, | 
 | 504 | 	 *   numa_meminfo might not include all memblock.reserved | 
 | 505 | 	 *   memory ranges, because quirks such as trim_snb_memory() | 
 | 506 | 	 *   reserve specific pages for Sandy Bridge graphics. ] | 
 | 507 | 	 */ | 
 | 508 | 	for_each_memblock(reserved, mb_region) { | 
 | 509 | 		if (mb_region->nid != MAX_NUMNODES) | 
 | 510 | 			node_set(mb_region->nid, reserved_nodemask); | 
 | 511 | 	} | 
 | 512 |  | 
 | 513 | 	/* | 
 | 514 | 	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory | 
 | 515 | 	 * belonging to the reserved node mask. | 
 | 516 | 	 * | 
 | 517 | 	 * Note that this will include memory regions that reside | 
 | 518 | 	 * on nodes that contain kernel memory - entire nodes | 
 | 519 | 	 * become hot-unpluggable: | 
 | 520 | 	 */ | 
 | 521 | 	for (i = 0; i < numa_meminfo.nr_blks; i++) { | 
 | 522 | 		struct numa_memblk *mb = numa_meminfo.blk + i; | 
 | 523 |  | 
 | 524 | 		if (!node_isset(mb->nid, reserved_nodemask)) | 
 | 525 | 			continue; | 
 | 526 |  | 
 | 527 | 		memblock_clear_hotplug(mb->start, mb->end - mb->start); | 
 | 528 | 	} | 
 | 529 | } | 
 | 530 |  | 
 | 531 | static int __init numa_register_memblks(struct numa_meminfo *mi) | 
 | 532 | { | 
 | 533 | 	unsigned long uninitialized_var(pfn_align); | 
 | 534 | 	int i, nid; | 
 | 535 |  | 
 | 536 | 	/* Account for nodes with cpus and no memory */ | 
 | 537 | 	node_possible_map = numa_nodes_parsed; | 
 | 538 | 	numa_nodemask_from_meminfo(&node_possible_map, mi); | 
 | 539 | 	if (WARN_ON(nodes_empty(node_possible_map))) | 
 | 540 | 		return -EINVAL; | 
 | 541 |  | 
 | 542 | 	for (i = 0; i < mi->nr_blks; i++) { | 
 | 543 | 		struct numa_memblk *mb = &mi->blk[i]; | 
 | 544 | 		memblock_set_node(mb->start, mb->end - mb->start, | 
 | 545 | 				  &memblock.memory, mb->nid); | 
 | 546 | 	} | 
 | 547 |  | 
 | 548 | 	/* | 
 | 549 | 	 * At very early time, the kernel have to use some memory such as | 
 | 550 | 	 * loading the kernel image. We cannot prevent this anyway. So any | 
 | 551 | 	 * node the kernel resides in should be un-hotpluggable. | 
 | 552 | 	 * | 
 | 553 | 	 * And when we come here, alloc node data won't fail. | 
 | 554 | 	 */ | 
 | 555 | 	numa_clear_kernel_node_hotplug(); | 
 | 556 |  | 
 | 557 | 	/* | 
 | 558 | 	 * If sections array is gonna be used for pfn -> nid mapping, check | 
 | 559 | 	 * whether its granularity is fine enough. | 
 | 560 | 	 */ | 
 | 561 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
 | 562 | 	pfn_align = node_map_pfn_alignment(); | 
 | 563 | 	if (pfn_align && pfn_align < PAGES_PER_SECTION) { | 
 | 564 | 		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", | 
 | 565 | 		       PFN_PHYS(pfn_align) >> 20, | 
 | 566 | 		       PFN_PHYS(PAGES_PER_SECTION) >> 20); | 
 | 567 | 		return -EINVAL; | 
 | 568 | 	} | 
 | 569 | #endif | 
 | 570 | 	if (!numa_meminfo_cover_memory(mi)) | 
 | 571 | 		return -EINVAL; | 
 | 572 |  | 
 | 573 | 	/* Finally register nodes. */ | 
 | 574 | 	for_each_node_mask(nid, node_possible_map) { | 
 | 575 | 		u64 start = PFN_PHYS(max_pfn); | 
 | 576 | 		u64 end = 0; | 
 | 577 |  | 
 | 578 | 		for (i = 0; i < mi->nr_blks; i++) { | 
 | 579 | 			if (nid != mi->blk[i].nid) | 
 | 580 | 				continue; | 
 | 581 | 			start = min(mi->blk[i].start, start); | 
 | 582 | 			end = max(mi->blk[i].end, end); | 
 | 583 | 		} | 
 | 584 |  | 
 | 585 | 		if (start >= end) | 
 | 586 | 			continue; | 
 | 587 |  | 
 | 588 | 		/* | 
 | 589 | 		 * Don't confuse VM with a node that doesn't have the | 
 | 590 | 		 * minimum amount of memory: | 
 | 591 | 		 */ | 
 | 592 | 		if (end && (end - start) < NODE_MIN_SIZE) | 
 | 593 | 			continue; | 
 | 594 |  | 
 | 595 | 		alloc_node_data(nid); | 
 | 596 | 	} | 
 | 597 |  | 
 | 598 | 	/* Dump memblock with node info and return. */ | 
 | 599 | 	memblock_dump_all(); | 
 | 600 | 	return 0; | 
 | 601 | } | 
 | 602 |  | 
 | 603 | /* | 
 | 604 |  * There are unfortunately some poorly designed mainboards around that | 
 | 605 |  * only connect memory to a single CPU. This breaks the 1:1 cpu->node | 
 | 606 |  * mapping. To avoid this fill in the mapping for all possible CPUs, | 
 | 607 |  * as the number of CPUs is not known yet. We round robin the existing | 
 | 608 |  * nodes. | 
 | 609 |  */ | 
 | 610 | static void __init numa_init_array(void) | 
 | 611 | { | 
 | 612 | 	int rr, i; | 
 | 613 |  | 
 | 614 | 	rr = first_node(node_online_map); | 
 | 615 | 	for (i = 0; i < nr_cpu_ids; i++) { | 
 | 616 | 		if (early_cpu_to_node(i) != NUMA_NO_NODE) | 
 | 617 | 			continue; | 
 | 618 | 		numa_set_node(i, rr); | 
 | 619 | 		rr = next_node_in(rr, node_online_map); | 
 | 620 | 	} | 
 | 621 | } | 
 | 622 |  | 
 | 623 | static int __init numa_init(int (*init_func)(void)) | 
 | 624 | { | 
 | 625 | 	int i; | 
 | 626 | 	int ret; | 
 | 627 |  | 
 | 628 | 	for (i = 0; i < MAX_LOCAL_APIC; i++) | 
 | 629 | 		set_apicid_to_node(i, NUMA_NO_NODE); | 
 | 630 |  | 
 | 631 | 	nodes_clear(numa_nodes_parsed); | 
 | 632 | 	nodes_clear(node_possible_map); | 
 | 633 | 	nodes_clear(node_online_map); | 
 | 634 | 	memset(&numa_meminfo, 0, sizeof(numa_meminfo)); | 
 | 635 | 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, | 
 | 636 | 				  MAX_NUMNODES)); | 
 | 637 | 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, | 
 | 638 | 				  MAX_NUMNODES)); | 
 | 639 | 	/* In case that parsing SRAT failed. */ | 
 | 640 | 	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); | 
 | 641 | 	numa_reset_distance(); | 
 | 642 |  | 
 | 643 | 	ret = init_func(); | 
 | 644 | 	if (ret < 0) | 
 | 645 | 		return ret; | 
 | 646 |  | 
 | 647 | 	/* | 
 | 648 | 	 * We reset memblock back to the top-down direction | 
 | 649 | 	 * here because if we configured ACPI_NUMA, we have | 
 | 650 | 	 * parsed SRAT in init_func(). It is ok to have the | 
 | 651 | 	 * reset here even if we did't configure ACPI_NUMA | 
 | 652 | 	 * or acpi numa init fails and fallbacks to dummy | 
 | 653 | 	 * numa init. | 
 | 654 | 	 */ | 
 | 655 | 	memblock_set_bottom_up(false); | 
 | 656 |  | 
 | 657 | 	ret = numa_cleanup_meminfo(&numa_meminfo); | 
 | 658 | 	if (ret < 0) | 
 | 659 | 		return ret; | 
 | 660 |  | 
 | 661 | 	numa_emulation(&numa_meminfo, numa_distance_cnt); | 
 | 662 |  | 
 | 663 | 	ret = numa_register_memblks(&numa_meminfo); | 
 | 664 | 	if (ret < 0) | 
 | 665 | 		return ret; | 
 | 666 |  | 
 | 667 | 	for (i = 0; i < nr_cpu_ids; i++) { | 
 | 668 | 		int nid = early_cpu_to_node(i); | 
 | 669 |  | 
 | 670 | 		if (nid == NUMA_NO_NODE) | 
 | 671 | 			continue; | 
 | 672 | 		if (!node_online(nid)) | 
 | 673 | 			numa_clear_node(i); | 
 | 674 | 	} | 
 | 675 | 	numa_init_array(); | 
 | 676 |  | 
 | 677 | 	return 0; | 
 | 678 | } | 
 | 679 |  | 
 | 680 | /** | 
 | 681 |  * dummy_numa_init - Fallback dummy NUMA init | 
 | 682 |  * | 
 | 683 |  * Used if there's no underlying NUMA architecture, NUMA initialization | 
 | 684 |  * fails, or NUMA is disabled on the command line. | 
 | 685 |  * | 
 | 686 |  * Must online at least one node and add memory blocks that cover all | 
 | 687 |  * allowed memory.  This function must not fail. | 
 | 688 |  */ | 
 | 689 | static int __init dummy_numa_init(void) | 
 | 690 | { | 
 | 691 | 	printk(KERN_INFO "%s\n", | 
 | 692 | 	       numa_off ? "NUMA turned off" : "No NUMA configuration found"); | 
 | 693 | 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", | 
 | 694 | 	       0LLU, PFN_PHYS(max_pfn) - 1); | 
 | 695 |  | 
 | 696 | 	node_set(0, numa_nodes_parsed); | 
 | 697 | 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); | 
 | 698 |  | 
 | 699 | 	return 0; | 
 | 700 | } | 
 | 701 |  | 
 | 702 | /** | 
 | 703 |  * x86_numa_init - Initialize NUMA | 
 | 704 |  * | 
 | 705 |  * Try each configured NUMA initialization method until one succeeds.  The | 
 | 706 |  * last fallback is dummy single node config encomapssing whole memory and | 
 | 707 |  * never fails. | 
 | 708 |  */ | 
 | 709 | void __init x86_numa_init(void) | 
 | 710 | { | 
 | 711 | 	if (!numa_off) { | 
 | 712 | #ifdef CONFIG_ACPI_NUMA | 
 | 713 | 		if (!numa_init(x86_acpi_numa_init)) | 
 | 714 | 			return; | 
 | 715 | #endif | 
 | 716 | #ifdef CONFIG_AMD_NUMA | 
 | 717 | 		if (!numa_init(amd_numa_init)) | 
 | 718 | 			return; | 
 | 719 | #endif | 
 | 720 | 	} | 
 | 721 |  | 
 | 722 | 	numa_init(dummy_numa_init); | 
 | 723 | } | 
 | 724 |  | 
 | 725 | static void __init init_memory_less_node(int nid) | 
 | 726 | { | 
 | 727 | 	unsigned long zones_size[MAX_NR_ZONES] = {0}; | 
 | 728 | 	unsigned long zholes_size[MAX_NR_ZONES] = {0}; | 
 | 729 |  | 
 | 730 | 	/* Allocate and initialize node data. Memory-less node is now online.*/ | 
 | 731 | 	alloc_node_data(nid); | 
 | 732 | 	free_area_init_node(nid, zones_size, 0, zholes_size); | 
 | 733 |  | 
 | 734 | 	/* | 
 | 735 | 	 * All zonelists will be built later in start_kernel() after per cpu | 
 | 736 | 	 * areas are initialized. | 
 | 737 | 	 */ | 
 | 738 | } | 
 | 739 |  | 
 | 740 | /* | 
 | 741 |  * Setup early cpu_to_node. | 
 | 742 |  * | 
 | 743 |  * Populate cpu_to_node[] only if x86_cpu_to_apicid[], | 
 | 744 |  * and apicid_to_node[] tables have valid entries for a CPU. | 
 | 745 |  * This means we skip cpu_to_node[] initialisation for NUMA | 
 | 746 |  * emulation and faking node case (when running a kernel compiled | 
 | 747 |  * for NUMA on a non NUMA box), which is OK as cpu_to_node[] | 
 | 748 |  * is already initialized in a round robin manner at numa_init_array, | 
 | 749 |  * prior to this call, and this initialization is good enough | 
 | 750 |  * for the fake NUMA cases. | 
 | 751 |  * | 
 | 752 |  * Called before the per_cpu areas are setup. | 
 | 753 |  */ | 
 | 754 | void __init init_cpu_to_node(void) | 
 | 755 | { | 
 | 756 | 	int cpu; | 
 | 757 | 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); | 
 | 758 |  | 
 | 759 | 	BUG_ON(cpu_to_apicid == NULL); | 
 | 760 |  | 
 | 761 | 	for_each_possible_cpu(cpu) { | 
 | 762 | 		int node = numa_cpu_node(cpu); | 
 | 763 |  | 
 | 764 | 		if (node == NUMA_NO_NODE) | 
 | 765 | 			continue; | 
 | 766 |  | 
 | 767 | 		if (!node_online(node)) | 
 | 768 | 			init_memory_less_node(node); | 
 | 769 |  | 
 | 770 | 		numa_set_node(cpu, node); | 
 | 771 | 	} | 
 | 772 | } | 
 | 773 |  | 
 | 774 | #ifndef CONFIG_DEBUG_PER_CPU_MAPS | 
 | 775 |  | 
 | 776 | # ifndef CONFIG_NUMA_EMU | 
 | 777 | void numa_add_cpu(int cpu) | 
 | 778 | { | 
 | 779 | 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
 | 780 | } | 
 | 781 |  | 
 | 782 | void numa_remove_cpu(int cpu) | 
 | 783 | { | 
 | 784 | 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
 | 785 | } | 
 | 786 | # endif	/* !CONFIG_NUMA_EMU */ | 
 | 787 |  | 
 | 788 | #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */ | 
 | 789 |  | 
 | 790 | int __cpu_to_node(int cpu) | 
 | 791 | { | 
 | 792 | 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) { | 
 | 793 | 		printk(KERN_WARNING | 
 | 794 | 			"cpu_to_node(%d): usage too early!\n", cpu); | 
 | 795 | 		dump_stack(); | 
 | 796 | 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
 | 797 | 	} | 
 | 798 | 	return per_cpu(x86_cpu_to_node_map, cpu); | 
 | 799 | } | 
 | 800 | EXPORT_SYMBOL(__cpu_to_node); | 
 | 801 |  | 
 | 802 | /* | 
 | 803 |  * Same function as cpu_to_node() but used if called before the | 
 | 804 |  * per_cpu areas are setup. | 
 | 805 |  */ | 
 | 806 | int early_cpu_to_node(int cpu) | 
 | 807 | { | 
 | 808 | 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) | 
 | 809 | 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
 | 810 |  | 
 | 811 | 	if (!cpu_possible(cpu)) { | 
 | 812 | 		printk(KERN_WARNING | 
 | 813 | 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu); | 
 | 814 | 		dump_stack(); | 
 | 815 | 		return NUMA_NO_NODE; | 
 | 816 | 	} | 
 | 817 | 	return per_cpu(x86_cpu_to_node_map, cpu); | 
 | 818 | } | 
 | 819 |  | 
 | 820 | void debug_cpumask_set_cpu(int cpu, int node, bool enable) | 
 | 821 | { | 
 | 822 | 	struct cpumask *mask; | 
 | 823 |  | 
 | 824 | 	if (node == NUMA_NO_NODE) { | 
 | 825 | 		/* early_cpu_to_node() already emits a warning and trace */ | 
 | 826 | 		return; | 
 | 827 | 	} | 
 | 828 | 	mask = node_to_cpumask_map[node]; | 
 | 829 | 	if (!mask) { | 
 | 830 | 		pr_err("node_to_cpumask_map[%i] NULL\n", node); | 
 | 831 | 		dump_stack(); | 
 | 832 | 		return; | 
 | 833 | 	} | 
 | 834 |  | 
 | 835 | 	if (enable) | 
 | 836 | 		cpumask_set_cpu(cpu, mask); | 
 | 837 | 	else | 
 | 838 | 		cpumask_clear_cpu(cpu, mask); | 
 | 839 |  | 
 | 840 | 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", | 
 | 841 | 		enable ? "numa_add_cpu" : "numa_remove_cpu", | 
 | 842 | 		cpu, node, cpumask_pr_args(mask)); | 
 | 843 | 	return; | 
 | 844 | } | 
 | 845 |  | 
 | 846 | # ifndef CONFIG_NUMA_EMU | 
 | 847 | static void numa_set_cpumask(int cpu, bool enable) | 
 | 848 | { | 
 | 849 | 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); | 
 | 850 | } | 
 | 851 |  | 
 | 852 | void numa_add_cpu(int cpu) | 
 | 853 | { | 
 | 854 | 	numa_set_cpumask(cpu, true); | 
 | 855 | } | 
 | 856 |  | 
 | 857 | void numa_remove_cpu(int cpu) | 
 | 858 | { | 
 | 859 | 	numa_set_cpumask(cpu, false); | 
 | 860 | } | 
 | 861 | # endif	/* !CONFIG_NUMA_EMU */ | 
 | 862 |  | 
 | 863 | /* | 
 | 864 |  * Returns a pointer to the bitmask of CPUs on Node 'node'. | 
 | 865 |  */ | 
 | 866 | const struct cpumask *cpumask_of_node(int node) | 
 | 867 | { | 
 | 868 | 	if (node >= nr_node_ids) { | 
 | 869 | 		printk(KERN_WARNING | 
 | 870 | 			"cpumask_of_node(%d): node > nr_node_ids(%d)\n", | 
 | 871 | 			node, nr_node_ids); | 
 | 872 | 		dump_stack(); | 
 | 873 | 		return cpu_none_mask; | 
 | 874 | 	} | 
 | 875 | 	if (node_to_cpumask_map[node] == NULL) { | 
 | 876 | 		printk(KERN_WARNING | 
 | 877 | 			"cpumask_of_node(%d): no node_to_cpumask_map!\n", | 
 | 878 | 			node); | 
 | 879 | 		dump_stack(); | 
 | 880 | 		return cpu_online_mask; | 
 | 881 | 	} | 
 | 882 | 	return node_to_cpumask_map[node]; | 
 | 883 | } | 
 | 884 | EXPORT_SYMBOL(cpumask_of_node); | 
 | 885 |  | 
 | 886 | #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */ | 
 | 887 |  | 
 | 888 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | 889 | int memory_add_physaddr_to_nid(u64 start) | 
 | 890 | { | 
 | 891 | 	struct numa_meminfo *mi = &numa_meminfo; | 
 | 892 | 	int nid = mi->blk[0].nid; | 
 | 893 | 	int i; | 
 | 894 |  | 
 | 895 | 	for (i = 0; i < mi->nr_blks; i++) | 
 | 896 | 		if (mi->blk[i].start <= start && mi->blk[i].end > start) | 
 | 897 | 			nid = mi->blk[i].nid; | 
 | 898 | 	return nid; | 
 | 899 | } | 
 | 900 | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | 
 | 901 | #endif |