| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Copyright (C) 2015 - 2016 Cavium, Inc. | 
|  | 4 | */ | 
|  | 5 |  | 
|  | 6 | #include <linux/bitfield.h> | 
|  | 7 | #include <linux/kernel.h> | 
|  | 8 | #include <linux/init.h> | 
|  | 9 | #include <linux/of_address.h> | 
|  | 10 | #include <linux/of_pci.h> | 
|  | 11 | #include <linux/pci-acpi.h> | 
|  | 12 | #include <linux/pci-ecam.h> | 
|  | 13 | #include <linux/platform_device.h> | 
|  | 14 | #include "../pci.h" | 
|  | 15 |  | 
|  | 16 | #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)) | 
|  | 17 |  | 
|  | 18 | #define PEM_CFG_WR 0x28 | 
|  | 19 | #define PEM_CFG_RD 0x30 | 
|  | 20 |  | 
|  | 21 | struct thunder_pem_pci { | 
|  | 22 | u32		ea_entry[3]; | 
|  | 23 | void __iomem	*pem_reg_base; | 
|  | 24 | }; | 
|  | 25 |  | 
|  | 26 | static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn, | 
|  | 27 | int where, int size, u32 *val) | 
|  | 28 | { | 
|  | 29 | u64 read_val, tmp_val; | 
|  | 30 | struct pci_config_window *cfg = bus->sysdata; | 
|  | 31 | struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv; | 
|  | 32 |  | 
|  | 33 | if (devfn != 0 || where >= 2048) { | 
|  | 34 | *val = ~0; | 
|  | 35 | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  | 36 | } | 
|  | 37 |  | 
|  | 38 | /* | 
|  | 39 | * 32-bit accesses only.  Write the address to the low order | 
|  | 40 | * bits of PEM_CFG_RD, then trigger the read by reading back. | 
|  | 41 | * The config data lands in the upper 32-bits of PEM_CFG_RD. | 
|  | 42 | */ | 
|  | 43 | read_val = where & ~3ull; | 
|  | 44 | writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 45 | read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 46 | read_val >>= 32; | 
|  | 47 |  | 
|  | 48 | /* | 
|  | 49 | * The config space contains some garbage, fix it up.  Also | 
|  | 50 | * synthesize an EA capability for the BAR used by MSI-X. | 
|  | 51 | */ | 
|  | 52 | switch (where & ~3) { | 
|  | 53 | case 0x40: | 
|  | 54 | read_val &= 0xffff00ff; | 
|  | 55 | read_val |= 0x00007000; /* Skip MSI CAP */ | 
|  | 56 | break; | 
|  | 57 | case 0x70: /* Express Cap */ | 
|  | 58 | /* | 
|  | 59 | * Change PME interrupt to vector 2 on T88 where it | 
|  | 60 | * reads as 0, else leave it alone. | 
|  | 61 | */ | 
|  | 62 | if (!(read_val & (0x1f << 25))) | 
|  | 63 | read_val |= (2u << 25); | 
|  | 64 | break; | 
|  | 65 | case 0xb0: /* MSI-X Cap */ | 
|  | 66 | /* TableSize=2 or 4, Next Cap is EA */ | 
|  | 67 | read_val &= 0xc00000ff; | 
|  | 68 | /* | 
|  | 69 | * If Express Cap(0x70) raw PME vector reads as 0 we are on | 
|  | 70 | * T88 and TableSize is reported as 4, else TableSize | 
|  | 71 | * is 2. | 
|  | 72 | */ | 
|  | 73 | writeq(0x70, pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 74 | tmp_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 75 | tmp_val >>= 32; | 
|  | 76 | if (!(tmp_val & (0x1f << 25))) | 
|  | 77 | read_val |= 0x0003bc00; | 
|  | 78 | else | 
|  | 79 | read_val |= 0x0001bc00; | 
|  | 80 | break; | 
|  | 81 | case 0xb4: | 
|  | 82 | /* Table offset=0, BIR=0 */ | 
|  | 83 | read_val = 0x00000000; | 
|  | 84 | break; | 
|  | 85 | case 0xb8: | 
|  | 86 | /* BPA offset=0xf0000, BIR=0 */ | 
|  | 87 | read_val = 0x000f0000; | 
|  | 88 | break; | 
|  | 89 | case 0xbc: | 
|  | 90 | /* EA, 1 entry, no next Cap */ | 
|  | 91 | read_val = 0x00010014; | 
|  | 92 | break; | 
|  | 93 | case 0xc0: | 
|  | 94 | /* DW2 for type-1 */ | 
|  | 95 | read_val = 0x00000000; | 
|  | 96 | break; | 
|  | 97 | case 0xc4: | 
|  | 98 | /* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */ | 
|  | 99 | read_val = 0x80ff0003; | 
|  | 100 | break; | 
|  | 101 | case 0xc8: | 
|  | 102 | read_val = pem_pci->ea_entry[0]; | 
|  | 103 | break; | 
|  | 104 | case 0xcc: | 
|  | 105 | read_val = pem_pci->ea_entry[1]; | 
|  | 106 | break; | 
|  | 107 | case 0xd0: | 
|  | 108 | read_val = pem_pci->ea_entry[2]; | 
|  | 109 | break; | 
|  | 110 | default: | 
|  | 111 | break; | 
|  | 112 | } | 
|  | 113 | read_val >>= (8 * (where & 3)); | 
|  | 114 | switch (size) { | 
|  | 115 | case 1: | 
|  | 116 | read_val &= 0xff; | 
|  | 117 | break; | 
|  | 118 | case 2: | 
|  | 119 | read_val &= 0xffff; | 
|  | 120 | break; | 
|  | 121 | default: | 
|  | 122 | break; | 
|  | 123 | } | 
|  | 124 | *val = read_val; | 
|  | 125 | return PCIBIOS_SUCCESSFUL; | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn, | 
|  | 129 | int where, int size, u32 *val) | 
|  | 130 | { | 
|  | 131 | struct pci_config_window *cfg = bus->sysdata; | 
|  | 132 |  | 
|  | 133 | if (bus->number < cfg->busr.start || | 
|  | 134 | bus->number > cfg->busr.end) | 
|  | 135 | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  | 136 |  | 
|  | 137 | /* | 
|  | 138 | * The first device on the bus is the PEM PCIe bridge. | 
|  | 139 | * Special case its config access. | 
|  | 140 | */ | 
|  | 141 | if (bus->number == cfg->busr.start) | 
|  | 142 | return thunder_pem_bridge_read(bus, devfn, where, size, val); | 
|  | 143 |  | 
|  | 144 | return pci_generic_config_read(bus, devfn, where, size, val); | 
|  | 145 | } | 
|  | 146 |  | 
|  | 147 | /* | 
|  | 148 | * Some of the w1c_bits below also include read-only or non-writable | 
|  | 149 | * reserved bits, this makes the code simpler and is OK as the bits | 
|  | 150 | * are not affected by writing zeros to them. | 
|  | 151 | */ | 
|  | 152 | static u32 thunder_pem_bridge_w1c_bits(u64 where_aligned) | 
|  | 153 | { | 
|  | 154 | u32 w1c_bits = 0; | 
|  | 155 |  | 
|  | 156 | switch (where_aligned) { | 
|  | 157 | case 0x04: /* Command/Status */ | 
|  | 158 | case 0x1c: /* Base and I/O Limit/Secondary Status */ | 
|  | 159 | w1c_bits = 0xff000000; | 
|  | 160 | break; | 
|  | 161 | case 0x44: /* Power Management Control and Status */ | 
|  | 162 | w1c_bits = 0xfffffe00; | 
|  | 163 | break; | 
|  | 164 | case 0x78: /* Device Control/Device Status */ | 
|  | 165 | case 0x80: /* Link Control/Link Status */ | 
|  | 166 | case 0x88: /* Slot Control/Slot Status */ | 
|  | 167 | case 0x90: /* Root Status */ | 
|  | 168 | case 0xa0: /* Link Control 2 Registers/Link Status 2 */ | 
|  | 169 | w1c_bits = 0xffff0000; | 
|  | 170 | break; | 
|  | 171 | case 0x104: /* Uncorrectable Error Status */ | 
|  | 172 | case 0x110: /* Correctable Error Status */ | 
|  | 173 | case 0x130: /* Error Status */ | 
|  | 174 | case 0x160: /* Link Control 4 */ | 
|  | 175 | w1c_bits = 0xffffffff; | 
|  | 176 | break; | 
|  | 177 | default: | 
|  | 178 | break; | 
|  | 179 | } | 
|  | 180 | return w1c_bits; | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | /* Some bits must be written to one so they appear to be read-only. */ | 
|  | 184 | static u32 thunder_pem_bridge_w1_bits(u64 where_aligned) | 
|  | 185 | { | 
|  | 186 | u32 w1_bits; | 
|  | 187 |  | 
|  | 188 | switch (where_aligned) { | 
|  | 189 | case 0x1c: /* I/O Base / I/O Limit, Secondary Status */ | 
|  | 190 | /* Force 32-bit I/O addressing. */ | 
|  | 191 | w1_bits = 0x0101; | 
|  | 192 | break; | 
|  | 193 | case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */ | 
|  | 194 | /* Force 64-bit addressing */ | 
|  | 195 | w1_bits = 0x00010001; | 
|  | 196 | break; | 
|  | 197 | default: | 
|  | 198 | w1_bits = 0; | 
|  | 199 | break; | 
|  | 200 | } | 
|  | 201 | return w1_bits; | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn, | 
|  | 205 | int where, int size, u32 val) | 
|  | 206 | { | 
|  | 207 | struct pci_config_window *cfg = bus->sysdata; | 
|  | 208 | struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv; | 
|  | 209 | u64 write_val, read_val; | 
|  | 210 | u64 where_aligned = where & ~3ull; | 
|  | 211 | u32 mask = 0; | 
|  | 212 |  | 
|  | 213 |  | 
|  | 214 | if (devfn != 0 || where >= 2048) | 
|  | 215 | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  | 216 |  | 
|  | 217 | /* | 
|  | 218 | * 32-bit accesses only.  If the write is for a size smaller | 
|  | 219 | * than 32-bits, we must first read the 32-bit value and merge | 
|  | 220 | * in the desired bits and then write the whole 32-bits back | 
|  | 221 | * out. | 
|  | 222 | */ | 
|  | 223 | switch (size) { | 
|  | 224 | case 1: | 
|  | 225 | writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 226 | read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 227 | read_val >>= 32; | 
|  | 228 | mask = ~(0xff << (8 * (where & 3))); | 
|  | 229 | read_val &= mask; | 
|  | 230 | val = (val & 0xff) << (8 * (where & 3)); | 
|  | 231 | val |= (u32)read_val; | 
|  | 232 | break; | 
|  | 233 | case 2: | 
|  | 234 | writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 235 | read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); | 
|  | 236 | read_val >>= 32; | 
|  | 237 | mask = ~(0xffff << (8 * (where & 3))); | 
|  | 238 | read_val &= mask; | 
|  | 239 | val = (val & 0xffff) << (8 * (where & 3)); | 
|  | 240 | val |= (u32)read_val; | 
|  | 241 | break; | 
|  | 242 | default: | 
|  | 243 | break; | 
|  | 244 | } | 
|  | 245 |  | 
|  | 246 | /* | 
|  | 247 | * By expanding the write width to 32 bits, we may | 
|  | 248 | * inadvertently hit some W1C bits that were not intended to | 
|  | 249 | * be written.  Calculate the mask that must be applied to the | 
|  | 250 | * data to be written to avoid these cases. | 
|  | 251 | */ | 
|  | 252 | if (mask) { | 
|  | 253 | u32 w1c_bits = thunder_pem_bridge_w1c_bits(where); | 
|  | 254 |  | 
|  | 255 | if (w1c_bits) { | 
|  | 256 | mask &= w1c_bits; | 
|  | 257 | val &= ~mask; | 
|  | 258 | } | 
|  | 259 | } | 
|  | 260 |  | 
|  | 261 | /* | 
|  | 262 | * Some bits must be read-only with value of one.  Since the | 
|  | 263 | * access method allows these to be cleared if a zero is | 
|  | 264 | * written, force them to one before writing. | 
|  | 265 | */ | 
|  | 266 | val |= thunder_pem_bridge_w1_bits(where_aligned); | 
|  | 267 |  | 
|  | 268 | /* | 
|  | 269 | * Low order bits are the config address, the high order 32 | 
|  | 270 | * bits are the data to be written. | 
|  | 271 | */ | 
|  | 272 | write_val = (((u64)val) << 32) | where_aligned; | 
|  | 273 | writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR); | 
|  | 274 | return PCIBIOS_SUCCESSFUL; | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn, | 
|  | 278 | int where, int size, u32 val) | 
|  | 279 | { | 
|  | 280 | struct pci_config_window *cfg = bus->sysdata; | 
|  | 281 |  | 
|  | 282 | if (bus->number < cfg->busr.start || | 
|  | 283 | bus->number > cfg->busr.end) | 
|  | 284 | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  | 285 | /* | 
|  | 286 | * The first device on the bus is the PEM PCIe bridge. | 
|  | 287 | * Special case its config access. | 
|  | 288 | */ | 
|  | 289 | if (bus->number == cfg->busr.start) | 
|  | 290 | return thunder_pem_bridge_write(bus, devfn, where, size, val); | 
|  | 291 |  | 
|  | 292 |  | 
|  | 293 | return pci_generic_config_write(bus, devfn, where, size, val); | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | static int thunder_pem_init(struct device *dev, struct pci_config_window *cfg, | 
|  | 297 | struct resource *res_pem) | 
|  | 298 | { | 
|  | 299 | struct thunder_pem_pci *pem_pci; | 
|  | 300 | resource_size_t bar4_start; | 
|  | 301 |  | 
|  | 302 | pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL); | 
|  | 303 | if (!pem_pci) | 
|  | 304 | return -ENOMEM; | 
|  | 305 |  | 
|  | 306 | pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000); | 
|  | 307 | if (!pem_pci->pem_reg_base) | 
|  | 308 | return -ENOMEM; | 
|  | 309 |  | 
|  | 310 | /* | 
|  | 311 | * The MSI-X BAR for the PEM and AER interrupts is located at | 
|  | 312 | * a fixed offset from the PEM register base.  Generate a | 
|  | 313 | * fragment of the synthesized Enhanced Allocation capability | 
|  | 314 | * structure here for the BAR. | 
|  | 315 | */ | 
|  | 316 | bar4_start = res_pem->start + 0xf00000; | 
|  | 317 | pem_pci->ea_entry[0] = (u32)bar4_start | 2; | 
|  | 318 | pem_pci->ea_entry[1] = (u32)(res_pem->end - bar4_start) & ~3u; | 
|  | 319 | pem_pci->ea_entry[2] = (u32)(bar4_start >> 32); | 
|  | 320 |  | 
|  | 321 | cfg->priv = pem_pci; | 
|  | 322 | return 0; | 
|  | 323 | } | 
|  | 324 |  | 
|  | 325 | #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS) | 
|  | 326 |  | 
|  | 327 | #define PEM_RES_BASE		0x87e0c0000000UL | 
|  | 328 | #define PEM_NODE_MASK		GENMASK(45, 44) | 
|  | 329 | #define PEM_INDX_MASK		GENMASK(26, 24) | 
|  | 330 | #define PEM_MIN_DOM_IN_NODE	4 | 
|  | 331 | #define PEM_MAX_DOM_IN_NODE	10 | 
|  | 332 |  | 
|  | 333 | static void thunder_pem_reserve_range(struct device *dev, int seg, | 
|  | 334 | struct resource *r) | 
|  | 335 | { | 
|  | 336 | resource_size_t start = r->start, end = r->end; | 
|  | 337 | struct resource *res; | 
|  | 338 | const char *regionid; | 
|  | 339 |  | 
|  | 340 | regionid = kasprintf(GFP_KERNEL, "PEM RC:%d", seg); | 
|  | 341 | if (!regionid) | 
|  | 342 | return; | 
|  | 343 |  | 
|  | 344 | res = request_mem_region(start, end - start + 1, regionid); | 
|  | 345 | if (res) | 
|  | 346 | res->flags &= ~IORESOURCE_BUSY; | 
|  | 347 | else | 
|  | 348 | kfree(regionid); | 
|  | 349 |  | 
|  | 350 | dev_info(dev, "%pR %s reserved\n", r, | 
|  | 351 | res ? "has been" : "could not be"); | 
|  | 352 | } | 
|  | 353 |  | 
|  | 354 | static void thunder_pem_legacy_fw(struct acpi_pci_root *root, | 
|  | 355 | struct resource *res_pem) | 
|  | 356 | { | 
|  | 357 | int node = acpi_get_node(root->device->handle); | 
|  | 358 | int index; | 
|  | 359 |  | 
|  | 360 | if (node == NUMA_NO_NODE) | 
|  | 361 | node = 0; | 
|  | 362 |  | 
|  | 363 | index = root->segment - PEM_MIN_DOM_IN_NODE; | 
|  | 364 | index -= node * PEM_MAX_DOM_IN_NODE; | 
|  | 365 | res_pem->start = PEM_RES_BASE | FIELD_PREP(PEM_NODE_MASK, node) | | 
|  | 366 | FIELD_PREP(PEM_INDX_MASK, index); | 
|  | 367 | res_pem->flags = IORESOURCE_MEM; | 
|  | 368 | } | 
|  | 369 |  | 
|  | 370 | static int thunder_pem_acpi_init(struct pci_config_window *cfg) | 
|  | 371 | { | 
|  | 372 | struct device *dev = cfg->parent; | 
|  | 373 | struct acpi_device *adev = to_acpi_device(dev); | 
|  | 374 | struct acpi_pci_root *root = acpi_driver_data(adev); | 
|  | 375 | struct resource *res_pem; | 
|  | 376 | int ret; | 
|  | 377 |  | 
|  | 378 | res_pem = devm_kzalloc(&adev->dev, sizeof(*res_pem), GFP_KERNEL); | 
|  | 379 | if (!res_pem) | 
|  | 380 | return -ENOMEM; | 
|  | 381 |  | 
|  | 382 | ret = acpi_get_rc_resources(dev, "CAVA02B", root->segment, res_pem); | 
|  | 383 |  | 
|  | 384 | /* | 
|  | 385 | * If we fail to gather resources it means that we run with old | 
|  | 386 | * FW where we need to calculate PEM-specific resources manually. | 
|  | 387 | */ | 
|  | 388 | if (ret) { | 
|  | 389 | thunder_pem_legacy_fw(root, res_pem); | 
|  | 390 | /* | 
|  | 391 | * Reserve 64K size PEM specific resources. The full 16M range | 
|  | 392 | * size is required for thunder_pem_init() call. | 
|  | 393 | */ | 
|  | 394 | res_pem->end = res_pem->start + SZ_64K - 1; | 
|  | 395 | thunder_pem_reserve_range(dev, root->segment, res_pem); | 
|  | 396 | res_pem->end = res_pem->start + SZ_16M - 1; | 
|  | 397 |  | 
|  | 398 | /* Reserve PCI configuration space as well. */ | 
|  | 399 | thunder_pem_reserve_range(dev, root->segment, &cfg->res); | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | return thunder_pem_init(dev, cfg, res_pem); | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | struct pci_ecam_ops thunder_pem_ecam_ops = { | 
|  | 406 | .bus_shift	= 24, | 
|  | 407 | .init		= thunder_pem_acpi_init, | 
|  | 408 | .pci_ops	= { | 
|  | 409 | .map_bus	= pci_ecam_map_bus, | 
|  | 410 | .read		= thunder_pem_config_read, | 
|  | 411 | .write		= thunder_pem_config_write, | 
|  | 412 | } | 
|  | 413 | }; | 
|  | 414 |  | 
|  | 415 | #endif | 
|  | 416 |  | 
|  | 417 | #ifdef CONFIG_PCI_HOST_THUNDER_PEM | 
|  | 418 |  | 
|  | 419 | static int thunder_pem_platform_init(struct pci_config_window *cfg) | 
|  | 420 | { | 
|  | 421 | struct device *dev = cfg->parent; | 
|  | 422 | struct platform_device *pdev = to_platform_device(dev); | 
|  | 423 | struct resource *res_pem; | 
|  | 424 |  | 
|  | 425 | if (!dev->of_node) | 
|  | 426 | return -EINVAL; | 
|  | 427 |  | 
|  | 428 | /* | 
|  | 429 | * The second register range is the PEM bridge to the PCIe | 
|  | 430 | * bus.  It has a different config access method than those | 
|  | 431 | * devices behind the bridge. | 
|  | 432 | */ | 
|  | 433 | res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1); | 
|  | 434 | if (!res_pem) { | 
|  | 435 | dev_err(dev, "missing \"reg[1]\"property\n"); | 
|  | 436 | return -EINVAL; | 
|  | 437 | } | 
|  | 438 |  | 
|  | 439 | return thunder_pem_init(dev, cfg, res_pem); | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | static struct pci_ecam_ops pci_thunder_pem_ops = { | 
|  | 443 | .bus_shift	= 24, | 
|  | 444 | .init		= thunder_pem_platform_init, | 
|  | 445 | .pci_ops	= { | 
|  | 446 | .map_bus	= pci_ecam_map_bus, | 
|  | 447 | .read		= thunder_pem_config_read, | 
|  | 448 | .write		= thunder_pem_config_write, | 
|  | 449 | } | 
|  | 450 | }; | 
|  | 451 |  | 
|  | 452 | static const struct of_device_id thunder_pem_of_match[] = { | 
|  | 453 | { .compatible = "cavium,pci-host-thunder-pem" }, | 
|  | 454 | { }, | 
|  | 455 | }; | 
|  | 456 |  | 
|  | 457 | static int thunder_pem_probe(struct platform_device *pdev) | 
|  | 458 | { | 
|  | 459 | return pci_host_common_probe(pdev, &pci_thunder_pem_ops); | 
|  | 460 | } | 
|  | 461 |  | 
|  | 462 | static struct platform_driver thunder_pem_driver = { | 
|  | 463 | .driver = { | 
|  | 464 | .name = KBUILD_MODNAME, | 
|  | 465 | .of_match_table = thunder_pem_of_match, | 
|  | 466 | .suppress_bind_attrs = true, | 
|  | 467 | }, | 
|  | 468 | .probe = thunder_pem_probe, | 
|  | 469 | }; | 
|  | 470 | builtin_platform_driver(thunder_pem_driver); | 
|  | 471 |  | 
|  | 472 | #endif | 
|  | 473 | #endif |