blob: b169e580bf8298026c8ae5791193adef3bbef342 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001# SPDX-License-Identifier: GPL-2.0
2comment "Processor Type"
3
4# Select CPU types depending on the architecture selected. This selects
5# which CPUs we support in the kernel image, and the compiler instruction
6# optimiser behaviour.
7
8# ARM7TDMI
9config CPU_ARM7TDMI
10 bool
11 depends on !MMU
12 select CPU_32v4T
13 select CPU_ABRT_LV4T
14 select CPU_CACHE_V4
15 select CPU_PABRT_LEGACY
16 help
17 A 32-bit RISC microprocessor based on the ARM7 processor core
18 which has no memory control unit and cache.
19
20 Say Y if you want support for the ARM7TDMI processor.
21 Otherwise, say N.
22
23# ARM720T
24config CPU_ARM720T
25 bool
26 select CPU_32v4T
27 select CPU_ABRT_LV4T
28 select CPU_CACHE_V4
29 select CPU_CACHE_VIVT
30 select CPU_COPY_V4WT if MMU
31 select CPU_CP15_MMU
32 select CPU_PABRT_LEGACY
33 select CPU_THUMB_CAPABLE
34 select CPU_TLB_V4WT if MMU
35 help
36 A 32-bit RISC processor with 8kByte Cache, Write Buffer and
37 MMU built around an ARM7TDMI core.
38
39 Say Y if you want support for the ARM720T processor.
40 Otherwise, say N.
41
42# ARM740T
43config CPU_ARM740T
44 bool
45 depends on !MMU
46 select CPU_32v4T
47 select CPU_ABRT_LV4T
48 select CPU_CACHE_V4
49 select CPU_CP15_MPU
50 select CPU_PABRT_LEGACY
51 select CPU_THUMB_CAPABLE
52 help
53 A 32-bit RISC processor with 8KB cache or 4KB variants,
54 write buffer and MPU(Protection Unit) built around
55 an ARM7TDMI core.
56
57 Say Y if you want support for the ARM740T processor.
58 Otherwise, say N.
59
60# ARM9TDMI
61config CPU_ARM9TDMI
62 bool
63 depends on !MMU
64 select CPU_32v4T
65 select CPU_ABRT_NOMMU
66 select CPU_CACHE_V4
67 select CPU_PABRT_LEGACY
68 help
69 A 32-bit RISC microprocessor based on the ARM9 processor core
70 which has no memory control unit and cache.
71
72 Say Y if you want support for the ARM9TDMI processor.
73 Otherwise, say N.
74
75# ARM920T
76config CPU_ARM920T
77 bool
78 select CPU_32v4T
79 select CPU_ABRT_EV4T
80 select CPU_CACHE_V4WT
81 select CPU_CACHE_VIVT
82 select CPU_COPY_V4WB if MMU
83 select CPU_CP15_MMU
84 select CPU_PABRT_LEGACY
85 select CPU_THUMB_CAPABLE
86 select CPU_TLB_V4WBI if MMU
87 help
88 The ARM920T is licensed to be produced by numerous vendors,
89 and is used in the Cirrus EP93xx and the Samsung S3C2410.
90
91 Say Y if you want support for the ARM920T processor.
92 Otherwise, say N.
93
94# ARM922T
95config CPU_ARM922T
96 bool
97 select CPU_32v4T
98 select CPU_ABRT_EV4T
99 select CPU_CACHE_V4WT
100 select CPU_CACHE_VIVT
101 select CPU_COPY_V4WB if MMU
102 select CPU_CP15_MMU
103 select CPU_PABRT_LEGACY
104 select CPU_THUMB_CAPABLE
105 select CPU_TLB_V4WBI if MMU
106 help
107 The ARM922T is a version of the ARM920T, but with smaller
108 instruction and data caches. It is used in Altera's
109 Excalibur XA device family and Micrel's KS8695 Centaur.
110
111 Say Y if you want support for the ARM922T processor.
112 Otherwise, say N.
113
114# ARM925T
115config CPU_ARM925T
116 bool
117 select CPU_32v4T
118 select CPU_ABRT_EV4T
119 select CPU_CACHE_V4WT
120 select CPU_CACHE_VIVT
121 select CPU_COPY_V4WB if MMU
122 select CPU_CP15_MMU
123 select CPU_PABRT_LEGACY
124 select CPU_THUMB_CAPABLE
125 select CPU_TLB_V4WBI if MMU
126 help
127 The ARM925T is a mix between the ARM920T and ARM926T, but with
128 different instruction and data caches. It is used in TI's OMAP
129 device family.
130
131 Say Y if you want support for the ARM925T processor.
132 Otherwise, say N.
133
134# ARM926T
135config CPU_ARM926T
136 bool
137 select CPU_32v5
138 select CPU_ABRT_EV5TJ
139 select CPU_CACHE_VIVT
140 select CPU_COPY_V4WB if MMU
141 select CPU_CP15_MMU
142 select CPU_PABRT_LEGACY
143 select CPU_THUMB_CAPABLE
144 select CPU_TLB_V4WBI if MMU
145 help
146 This is a variant of the ARM920. It has slightly different
147 instruction sequences for cache and TLB operations. Curiously,
148 there is no documentation on it at the ARM corporate website.
149
150 Say Y if you want support for the ARM926T processor.
151 Otherwise, say N.
152
153# FA526
154config CPU_FA526
155 bool
156 select CPU_32v4
157 select CPU_ABRT_EV4
158 select CPU_CACHE_FA
159 select CPU_CACHE_VIVT
160 select CPU_COPY_FA if MMU
161 select CPU_CP15_MMU
162 select CPU_PABRT_LEGACY
163 select CPU_TLB_FA if MMU
164 help
165 The FA526 is a version of the ARMv4 compatible processor with
166 Branch Target Buffer, Unified TLB and cache line size 16.
167
168 Say Y if you want support for the FA526 processor.
169 Otherwise, say N.
170
171# ARM940T
172config CPU_ARM940T
173 bool
174 depends on !MMU
175 select CPU_32v4T
176 select CPU_ABRT_NOMMU
177 select CPU_CACHE_VIVT
178 select CPU_CP15_MPU
179 select CPU_PABRT_LEGACY
180 select CPU_THUMB_CAPABLE
181 help
182 ARM940T is a member of the ARM9TDMI family of general-
183 purpose microprocessors with MPU and separate 4KB
184 instruction and 4KB data cases, each with a 4-word line
185 length.
186
187 Say Y if you want support for the ARM940T processor.
188 Otherwise, say N.
189
190# ARM946E-S
191config CPU_ARM946E
192 bool
193 depends on !MMU
194 select CPU_32v5
195 select CPU_ABRT_NOMMU
196 select CPU_CACHE_VIVT
197 select CPU_CP15_MPU
198 select CPU_PABRT_LEGACY
199 select CPU_THUMB_CAPABLE
200 help
201 ARM946E-S is a member of the ARM9E-S family of high-
202 performance, 32-bit system-on-chip processor solutions.
203 The TCM and ARMv5TE 32-bit instruction set is supported.
204
205 Say Y if you want support for the ARM946E-S processor.
206 Otherwise, say N.
207
208# ARM1020 - needs validating
209config CPU_ARM1020
210 bool
211 select CPU_32v5
212 select CPU_ABRT_EV4T
213 select CPU_CACHE_V4WT
214 select CPU_CACHE_VIVT
215 select CPU_COPY_V4WB if MMU
216 select CPU_CP15_MMU
217 select CPU_PABRT_LEGACY
218 select CPU_THUMB_CAPABLE
219 select CPU_TLB_V4WBI if MMU
220 help
221 The ARM1020 is the 32K cached version of the ARM10 processor,
222 with an addition of a floating-point unit.
223
224 Say Y if you want support for the ARM1020 processor.
225 Otherwise, say N.
226
227# ARM1020E - needs validating
228config CPU_ARM1020E
229 bool
230 depends on n
231 select CPU_32v5
232 select CPU_ABRT_EV4T
233 select CPU_CACHE_V4WT
234 select CPU_CACHE_VIVT
235 select CPU_COPY_V4WB if MMU
236 select CPU_CP15_MMU
237 select CPU_PABRT_LEGACY
238 select CPU_THUMB_CAPABLE
239 select CPU_TLB_V4WBI if MMU
240
241# ARM1022E
242config CPU_ARM1022
243 bool
244 select CPU_32v5
245 select CPU_ABRT_EV4T
246 select CPU_CACHE_VIVT
247 select CPU_COPY_V4WB if MMU # can probably do better
248 select CPU_CP15_MMU
249 select CPU_PABRT_LEGACY
250 select CPU_THUMB_CAPABLE
251 select CPU_TLB_V4WBI if MMU
252 help
253 The ARM1022E is an implementation of the ARMv5TE architecture
254 based upon the ARM10 integer core with a 16KiB L1 Harvard cache,
255 embedded trace macrocell, and a floating-point unit.
256
257 Say Y if you want support for the ARM1022E processor.
258 Otherwise, say N.
259
260# ARM1026EJ-S
261config CPU_ARM1026
262 bool
263 select CPU_32v5
264 select CPU_ABRT_EV5T # But need Jazelle, but EV5TJ ignores bit 10
265 select CPU_CACHE_VIVT
266 select CPU_COPY_V4WB if MMU # can probably do better
267 select CPU_CP15_MMU
268 select CPU_PABRT_LEGACY
269 select CPU_THUMB_CAPABLE
270 select CPU_TLB_V4WBI if MMU
271 help
272 The ARM1026EJ-S is an implementation of the ARMv5TEJ architecture
273 based upon the ARM10 integer core.
274
275 Say Y if you want support for the ARM1026EJ-S processor.
276 Otherwise, say N.
277
278# SA110
279config CPU_SA110
280 bool
281 select CPU_32v3 if ARCH_RPC
282 select CPU_32v4 if !ARCH_RPC
283 select CPU_ABRT_EV4
284 select CPU_CACHE_V4WB
285 select CPU_CACHE_VIVT
286 select CPU_COPY_V4WB if MMU
287 select CPU_CP15_MMU
288 select CPU_PABRT_LEGACY
289 select CPU_TLB_V4WB if MMU
290 help
291 The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and
292 is available at five speeds ranging from 100 MHz to 233 MHz.
293 More information is available at
294 <http://developer.intel.com/design/strong/sa110.htm>.
295
296 Say Y if you want support for the SA-110 processor.
297 Otherwise, say N.
298
299# SA1100
300config CPU_SA1100
301 bool
302 select CPU_32v4
303 select CPU_ABRT_EV4
304 select CPU_CACHE_V4WB
305 select CPU_CACHE_VIVT
306 select CPU_CP15_MMU
307 select CPU_PABRT_LEGACY
308 select CPU_TLB_V4WB if MMU
309
310# XScale
311config CPU_XSCALE
312 bool
313 select CPU_32v5
314 select CPU_ABRT_EV5T
315 select CPU_CACHE_VIVT
316 select CPU_CP15_MMU
317 select CPU_PABRT_LEGACY
318 select CPU_THUMB_CAPABLE
319 select CPU_TLB_V4WBI if MMU
320
321# XScale Core Version 3
322config CPU_XSC3
323 bool
324 select CPU_32v5
325 select CPU_ABRT_EV5T
326 select CPU_CACHE_VIVT
327 select CPU_CP15_MMU
328 select CPU_PABRT_LEGACY
329 select CPU_THUMB_CAPABLE
330 select CPU_TLB_V4WBI if MMU
331 select IO_36
332
333# Marvell PJ1 (Mohawk)
334config CPU_MOHAWK
335 bool
336 select CPU_32v5
337 select CPU_ABRT_EV5T
338 select CPU_CACHE_VIVT
339 select CPU_COPY_V4WB if MMU
340 select CPU_CP15_MMU
341 select CPU_PABRT_LEGACY
342 select CPU_THUMB_CAPABLE
343 select CPU_TLB_V4WBI if MMU
344
345# Feroceon
346config CPU_FEROCEON
347 bool
348 select CPU_32v5
349 select CPU_ABRT_EV5T
350 select CPU_CACHE_VIVT
351 select CPU_COPY_FEROCEON if MMU
352 select CPU_CP15_MMU
353 select CPU_PABRT_LEGACY
354 select CPU_THUMB_CAPABLE
355 select CPU_TLB_FEROCEON if MMU
356
357config CPU_FEROCEON_OLD_ID
358 bool "Accept early Feroceon cores with an ARM926 ID"
359 depends on CPU_FEROCEON && !CPU_ARM926T
360 default y
361 help
362 This enables the usage of some old Feroceon cores
363 for which the CPU ID is equal to the ARM926 ID.
364 Relevant for Feroceon-1850 and early Feroceon-2850.
365
366# Marvell PJ4
367config CPU_PJ4
368 bool
369 select ARM_THUMBEE
370 select CPU_V7
371
372config CPU_PJ4B
373 bool
374 select CPU_V7
375
376# ARMv6
377config CPU_V6
378 bool
379 select CPU_32v6
380 select CPU_ABRT_EV6
381 select CPU_CACHE_V6
382 select CPU_CACHE_VIPT
383 select CPU_COPY_V6 if MMU
384 select CPU_CP15_MMU
385 select CPU_HAS_ASID if MMU
386 select CPU_PABRT_V6
387 select CPU_THUMB_CAPABLE
388 select CPU_TLB_V6 if MMU
389
390# ARMv6k
391config CPU_V6K
392 bool
393 select CPU_32v6
394 select CPU_32v6K
395 select CPU_ABRT_EV6
396 select CPU_CACHE_V6
397 select CPU_CACHE_VIPT
398 select CPU_COPY_V6 if MMU
399 select CPU_CP15_MMU
400 select CPU_HAS_ASID if MMU
401 select CPU_PABRT_V6
402 select CPU_THUMB_CAPABLE
403 select CPU_TLB_V6 if MMU
404
405# ARMv7
406config CPU_V7
407 bool
408 select CPU_32v6K
409 select CPU_32v7
410 select CPU_ABRT_EV7
411 select CPU_CACHE_V7
412 select CPU_CACHE_VIPT
413 select CPU_COPY_V6 if MMU
414 select CPU_CP15_MMU if MMU
415 select CPU_CP15_MPU if !MMU
416 select CPU_HAS_ASID if MMU
417 select CPU_PABRT_V7
418 select CPU_SPECTRE if MMU
419 select CPU_THUMB_CAPABLE
420 select CPU_TLB_V7 if MMU
421
422# ARMv7M
423config CPU_V7M
424 bool
425 select CPU_32v7M
426 select CPU_ABRT_NOMMU
427 select CPU_CACHE_V7M
428 select CPU_CACHE_NOP
429 select CPU_PABRT_LEGACY
430 select CPU_THUMBONLY
431
432config CPU_THUMBONLY
433 bool
434 select CPU_THUMB_CAPABLE
435 # There are no CPUs available with MMU that don't implement an ARM ISA:
436 depends on !MMU
437 help
438 Select this if your CPU doesn't support the 32 bit ARM instructions.
439
440config CPU_THUMB_CAPABLE
441 bool
442 help
443 Select this if your CPU can support Thumb mode.
444
445# Figure out what processor architecture version we should be using.
446# This defines the compiler instruction set which depends on the machine type.
447config CPU_32v3
448 bool
449 select CPU_USE_DOMAINS if MMU
450 select NEED_KUSER_HELPERS
451 select TLS_REG_EMUL if SMP || !MMU
452 select CPU_NO_EFFICIENT_FFS
453
454config CPU_32v4
455 bool
456 select CPU_USE_DOMAINS if MMU
457 select NEED_KUSER_HELPERS
458 select TLS_REG_EMUL if SMP || !MMU
459 select CPU_NO_EFFICIENT_FFS
460
461config CPU_32v4T
462 bool
463 select CPU_USE_DOMAINS if MMU
464 select NEED_KUSER_HELPERS
465 select TLS_REG_EMUL if SMP || !MMU
466 select CPU_NO_EFFICIENT_FFS
467
468config CPU_32v5
469 bool
470 select CPU_USE_DOMAINS if MMU
471 select NEED_KUSER_HELPERS
472 select TLS_REG_EMUL if SMP || !MMU
473
474config CPU_32v6
475 bool
476 select TLS_REG_EMUL if !CPU_32v6K && !MMU
477
478config CPU_32v6K
479 bool
480
481config CPU_32v7
482 bool
483
484config CPU_32v7M
485 bool
486
487# The abort model
488config CPU_ABRT_NOMMU
489 bool
490
491config CPU_ABRT_EV4
492 bool
493
494config CPU_ABRT_EV4T
495 bool
496
497config CPU_ABRT_LV4T
498 bool
499
500config CPU_ABRT_EV5T
501 bool
502
503config CPU_ABRT_EV5TJ
504 bool
505
506config CPU_ABRT_EV6
507 bool
508
509config CPU_ABRT_EV7
510 bool
511
512config CPU_PABRT_LEGACY
513 bool
514
515config CPU_PABRT_V6
516 bool
517
518config CPU_PABRT_V7
519 bool
520
521# The cache model
522config CPU_CACHE_V4
523 bool
524
525config CPU_CACHE_V4WT
526 bool
527
528config CPU_CACHE_V4WB
529 bool
530
531config CPU_CACHE_V6
532 bool
533
534config CPU_CACHE_V7
535 bool
536
537config CPU_CACHE_NOP
538 bool
539
540config CPU_CACHE_VIVT
541 bool
542
543config CPU_CACHE_VIPT
544 bool
545
546config CPU_CACHE_FA
547 bool
548
549config CPU_CACHE_V7M
550 bool
551
552if MMU
553# The copy-page model
554config CPU_COPY_V4WT
555 bool
556
557config CPU_COPY_V4WB
558 bool
559
560config CPU_COPY_FEROCEON
561 bool
562
563config CPU_COPY_FA
564 bool
565
566config CPU_COPY_V6
567 bool
568
569# This selects the TLB model
570config CPU_TLB_V4WT
571 bool
572 help
573 ARM Architecture Version 4 TLB with writethrough cache.
574
575config CPU_TLB_V4WB
576 bool
577 help
578 ARM Architecture Version 4 TLB with writeback cache.
579
580config CPU_TLB_V4WBI
581 bool
582 help
583 ARM Architecture Version 4 TLB with writeback cache and invalidate
584 instruction cache entry.
585
586config CPU_TLB_FEROCEON
587 bool
588 help
589 Feroceon TLB (v4wbi with non-outer-cachable page table walks).
590
591config CPU_TLB_FA
592 bool
593 help
594 Faraday ARM FA526 architecture, unified TLB with writeback cache
595 and invalidate instruction cache entry. Branch target buffer is
596 also supported.
597
598config CPU_TLB_V6
599 bool
600
601config CPU_TLB_V7
602 bool
603
604config VERIFY_PERMISSION_FAULT
605 bool
606endif
607
608config CPU_HAS_ASID
609 bool
610 help
611 This indicates whether the CPU has the ASID register; used to
612 tag TLB and possibly cache entries.
613
614config CPU_CP15
615 bool
616 help
617 Processor has the CP15 register.
618
619config CPU_CP15_MMU
620 bool
621 select CPU_CP15
622 help
623 Processor has the CP15 register, which has MMU related registers.
624
625config CPU_CP15_MPU
626 bool
627 select CPU_CP15
628 help
629 Processor has the CP15 register, which has MPU related registers.
630
631config CPU_USE_DOMAINS
632 bool
633 help
634 This option enables or disables the use of domain switching
635 via the set_fs() function.
636
637config CPU_V7M_NUM_IRQ
638 int "Number of external interrupts connected to the NVIC"
639 depends on CPU_V7M
640 default 90 if ARCH_STM32
641 default 38 if ARCH_EFM32
642 default 112 if SOC_VF610
643 default 240
644 help
645 This option indicates the number of interrupts connected to the NVIC.
646 The value can be larger than the real number of interrupts supported
647 by the system, but must not be lower.
648 The default value is 240, corresponding to the maximum number of
649 interrupts supported by the NVIC on Cortex-M family.
650
651 If unsure, keep default value.
652
653#
654# CPU supports 36-bit I/O
655#
656config IO_36
657 bool
658
659comment "Processor Features"
660
661config ARM_LPAE
662 bool "Support for the Large Physical Address Extension"
663 depends on MMU && CPU_32v7 && !CPU_32v6 && !CPU_32v5 && \
664 !CPU_32v4 && !CPU_32v3
665 select PHYS_ADDR_T_64BIT
666 help
667 Say Y if you have an ARMv7 processor supporting the LPAE page
668 table format and you would like to access memory beyond the
669 4GB limit. The resulting kernel image will not run on
670 processors without the LPA extension.
671
672 If unsure, say N.
673
674config ARM_PV_FIXUP
675 def_bool y
676 depends on ARM_LPAE && ARM_PATCH_PHYS_VIRT && ARCH_KEYSTONE
677
678config ARM_THUMB
679 bool "Support Thumb user binaries" if !CPU_THUMBONLY && EXPERT
680 depends on CPU_THUMB_CAPABLE
681 default y
682 help
683 Say Y if you want to include kernel support for running user space
684 Thumb binaries.
685
686 The Thumb instruction set is a compressed form of the standard ARM
687 instruction set resulting in smaller binaries at the expense of
688 slightly less efficient code.
689
690 If this option is disabled, and you run userspace that switches to
691 Thumb mode, signal handling will not work correctly, resulting in
692 segmentation faults or illegal instruction aborts.
693
694 If you don't know what this all is, saying Y is a safe choice.
695
696config ARM_THUMBEE
697 bool "Enable ThumbEE CPU extension"
698 depends on CPU_V7
699 help
700 Say Y here if you have a CPU with the ThumbEE extension and code to
701 make use of it. Say N for code that can run on CPUs without ThumbEE.
702
703config ARM_VIRT_EXT
704 bool
705 default y if CPU_V7
706 help
707 Enable the kernel to make use of the ARM Virtualization
708 Extensions to install hypervisors without run-time firmware
709 assistance.
710
711 A compliant bootloader is required in order to make maximum
712 use of this feature. Refer to Documentation/arm/Booting for
713 details.
714
715config SWP_EMULATE
716 bool "Emulate SWP/SWPB instructions" if !SMP
717 depends on CPU_V7
718 default y if SMP
719 select HAVE_PROC_CPU if PROC_FS
720 help
721 ARMv6 architecture deprecates use of the SWP/SWPB instructions.
722 ARMv7 multiprocessing extensions introduce the ability to disable
723 these instructions, triggering an undefined instruction exception
724 when executed. Say Y here to enable software emulation of these
725 instructions for userspace (not kernel) using LDREX/STREX.
726 Also creates /proc/cpu/swp_emulation for statistics.
727
728 In some older versions of glibc [<=2.8] SWP is used during futex
729 trylock() operations with the assumption that the code will not
730 be preempted. This invalid assumption may be more likely to fail
731 with SWP emulation enabled, leading to deadlock of the user
732 application.
733
734 NOTE: when accessing uncached shared regions, LDREX/STREX rely
735 on an external transaction monitoring block called a global
736 monitor to maintain update atomicity. If your system does not
737 implement a global monitor, this option can cause programs that
738 perform SWP operations to uncached memory to deadlock.
739
740 If unsure, say Y.
741
742config CPU_BIG_ENDIAN
743 bool "Build big-endian kernel"
744 depends on ARCH_SUPPORTS_BIG_ENDIAN
745 help
746 Say Y if you plan on running a kernel in big-endian mode.
747 Note that your board must be properly built and your board
748 port must properly enable any big-endian related features
749 of your chipset/board/processor.
750
751config CPU_ENDIAN_BE8
752 bool
753 depends on CPU_BIG_ENDIAN
754 default CPU_V6 || CPU_V6K || CPU_V7
755 help
756 Support for the BE-8 (big-endian) mode on ARMv6 and ARMv7 processors.
757
758config CPU_ENDIAN_BE32
759 bool
760 depends on CPU_BIG_ENDIAN
761 default !CPU_ENDIAN_BE8
762 help
763 Support for the BE-32 (big-endian) mode on pre-ARMv6 processors.
764
765config CPU_HIGH_VECTOR
766 depends on !MMU && CPU_CP15 && !CPU_ARM740T
767 bool "Select the High exception vector"
768 help
769 Say Y here to select high exception vector(0xFFFF0000~).
770 The exception vector can vary depending on the platform
771 design in nommu mode. If your platform needs to select
772 high exception vector, say Y.
773 Otherwise or if you are unsure, say N, and the low exception
774 vector (0x00000000~) will be used.
775
776config CPU_ICACHE_DISABLE
777 bool "Disable I-Cache (I-bit)"
778 depends on (CPU_CP15 && !(CPU_ARM720T || CPU_ARM740T || CPU_XSCALE || CPU_XSC3)) || CPU_V7M
779 help
780 Say Y here to disable the processor instruction cache. Unless
781 you have a reason not to or are unsure, say N.
782
783config CPU_DCACHE_DISABLE
784 bool "Disable D-Cache (C-bit)"
785 depends on (CPU_CP15 && !SMP) || CPU_V7M
786 help
787 Say Y here to disable the processor data cache. Unless
788 you have a reason not to or are unsure, say N.
789
790config CPU_DCACHE_SIZE
791 hex
792 depends on CPU_ARM740T || CPU_ARM946E
793 default 0x00001000 if CPU_ARM740T
794 default 0x00002000 # default size for ARM946E-S
795 help
796 Some cores are synthesizable to have various sized cache. For
797 ARM946E-S case, it can vary from 0KB to 1MB.
798 To support such cache operations, it is efficient to know the size
799 before compile time.
800 If your SoC is configured to have a different size, define the value
801 here with proper conditions.
802
803config CPU_DCACHE_WRITETHROUGH
804 bool "Force write through D-cache"
805 depends on (CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_FA526) && !CPU_DCACHE_DISABLE
806 default y if CPU_ARM925T
807 help
808 Say Y here to use the data cache in writethrough mode. Unless you
809 specifically require this or are unsure, say N.
810
811config CPU_CACHE_ROUND_ROBIN
812 bool "Round robin I and D cache replacement algorithm"
813 depends on (CPU_ARM926T || CPU_ARM946E || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE)
814 help
815 Say Y here to use the predictable round-robin cache replacement
816 policy. Unless you specifically require this or are unsure, say N.
817
818config CPU_BPREDICT_DISABLE
819 bool "Disable branch prediction"
820 depends on CPU_ARM1020 || CPU_V6 || CPU_V6K || CPU_MOHAWK || CPU_XSC3 || CPU_V7 || CPU_FA526 || CPU_V7M
821 help
822 Say Y here to disable branch prediction. If unsure, say N.
823
824config CPU_SPECTRE
825 bool
826
827config HARDEN_BRANCH_PREDICTOR
828 bool "Harden the branch predictor against aliasing attacks" if EXPERT
829 depends on CPU_SPECTRE
830 default y
831 help
832 Speculation attacks against some high-performance processors rely
833 on being able to manipulate the branch predictor for a victim
834 context by executing aliasing branches in the attacker context.
835 Such attacks can be partially mitigated against by clearing
836 internal branch predictor state and limiting the prediction
837 logic in some situations.
838
839 This config option will take CPU-specific actions to harden
840 the branch predictor against aliasing attacks and may rely on
841 specific instruction sequences or control bits being set by
842 the system firmware.
843
844 If unsure, say Y.
845
846config TLS_REG_EMUL
847 bool
848 select NEED_KUSER_HELPERS
849 help
850 An SMP system using a pre-ARMv6 processor (there are apparently
851 a few prototypes like that in existence) and therefore access to
852 that required register must be emulated.
853
854config NEED_KUSER_HELPERS
855 bool
856
857config KUSER_HELPERS
858 bool "Enable kuser helpers in vector page" if !NEED_KUSER_HELPERS
859 depends on MMU
860 default y
861 help
862 Warning: disabling this option may break user programs.
863
864 Provide kuser helpers in the vector page. The kernel provides
865 helper code to userspace in read only form at a fixed location
866 in the high vector page to allow userspace to be independent of
867 the CPU type fitted to the system. This permits binaries to be
868 run on ARMv4 through to ARMv7 without modification.
869
870 See Documentation/arm/kernel_user_helpers.txt for details.
871
872 However, the fixed address nature of these helpers can be used
873 by ROP (return orientated programming) authors when creating
874 exploits.
875
876 If all of the binaries and libraries which run on your platform
877 are built specifically for your platform, and make no use of
878 these helpers, then you can turn this option off to hinder
879 such exploits. However, in that case, if a binary or library
880 relying on those helpers is run, it will receive a SIGILL signal,
881 which will terminate the program.
882
883 Say N here only if you are absolutely certain that you do not
884 need these helpers; otherwise, the safe option is to say Y.
885
886config VDSO
887 bool "Enable VDSO for acceleration of some system calls"
888 depends on AEABI && MMU && CPU_V7
889 default y if ARM_ARCH_TIMER
890 select GENERIC_TIME_VSYSCALL
891 help
892 Place in the process address space an ELF shared object
893 providing fast implementations of gettimeofday and
894 clock_gettime. Systems that implement the ARM architected
895 timer will receive maximum benefit.
896
897 You must have glibc 2.22 or later for programs to seamlessly
898 take advantage of this.
899
900config DMA_CACHE_RWFO
901 bool "Enable read/write for ownership DMA cache maintenance"
902 depends on CPU_V6K && SMP
903 default y
904 help
905 The Snoop Control Unit on ARM11MPCore does not detect the
906 cache maintenance operations and the dma_{map,unmap}_area()
907 functions may leave stale cache entries on other CPUs. By
908 enabling this option, Read or Write For Ownership in the ARMv6
909 DMA cache maintenance functions is performed. These LDR/STR
910 instructions change the cache line state to shared or modified
911 so that the cache operation has the desired effect.
912
913 Note that the workaround is only valid on processors that do
914 not perform speculative loads into the D-cache. For such
915 processors, if cache maintenance operations are not broadcast
916 in hardware, other workarounds are needed (e.g. cache
917 maintenance broadcasting in software via FIQ).
918
919config OUTER_CACHE
920 bool
921
922config OUTER_CACHE_SYNC
923 bool
924 select ARM_HEAVY_MB
925 help
926 The outer cache has a outer_cache_fns.sync function pointer
927 that can be used to drain the write buffer of the outer cache.
928
929config CACHE_B15_RAC
930 bool "Enable the Broadcom Brahma-B15 read-ahead cache controller"
931 depends on ARCH_BRCMSTB
932 default y
933 help
934 This option enables the Broadcom Brahma-B15 read-ahead cache
935 controller. If disabled, the read-ahead cache remains off.
936
937config CACHE_FEROCEON_L2
938 bool "Enable the Feroceon L2 cache controller"
939 depends on ARCH_MV78XX0 || ARCH_MVEBU
940 default y
941 select OUTER_CACHE
942 help
943 This option enables the Feroceon L2 cache controller.
944
945config CACHE_FEROCEON_L2_WRITETHROUGH
946 bool "Force Feroceon L2 cache write through"
947 depends on CACHE_FEROCEON_L2
948 help
949 Say Y here to use the Feroceon L2 cache in writethrough mode.
950 Unless you specifically require this, say N for writeback mode.
951
952config MIGHT_HAVE_CACHE_L2X0
953 bool
954 help
955 This option should be selected by machines which have a L2x0
956 or PL310 cache controller, but where its use is optional.
957
958 The only effect of this option is to make CACHE_L2X0 and
959 related options available to the user for configuration.
960
961 Boards or SoCs which always require the cache controller
962 support to be present should select CACHE_L2X0 directly
963 instead of this option, thus preventing the user from
964 inadvertently configuring a broken kernel.
965
966config CACHE_L2X0
967 bool "Enable the L2x0 outer cache controller" if MIGHT_HAVE_CACHE_L2X0
968 default MIGHT_HAVE_CACHE_L2X0
969 select OUTER_CACHE
970 select OUTER_CACHE_SYNC
971 help
972 This option enables the L2x0 PrimeCell.
973
974config CACHE_L2X0_PMU
975 bool "L2x0 performance monitor support" if CACHE_L2X0
976 depends on PERF_EVENTS
977 help
978 This option enables support for the performance monitoring features
979 of the L220 and PL310 outer cache controllers.
980
981if CACHE_L2X0
982
983config PL310_ERRATA_588369
984 bool "PL310 errata: Clean & Invalidate maintenance operations do not invalidate clean lines"
985 help
986 The PL310 L2 cache controller implements three types of Clean &
987 Invalidate maintenance operations: by Physical Address
988 (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC).
989 They are architecturally defined to behave as the execution of a
990 clean operation followed immediately by an invalidate operation,
991 both performing to the same memory location. This functionality
992 is not correctly implemented in PL310 prior to r2p0 (fixed in r2p0)
993 as clean lines are not invalidated as a result of these operations.
994
995config PL310_ERRATA_727915
996 bool "PL310 errata: Background Clean & Invalidate by Way operation can cause data corruption"
997 help
998 PL310 implements the Clean & Invalidate by Way L2 cache maintenance
999 operation (offset 0x7FC). This operation runs in background so that
1000 PL310 can handle normal accesses while it is in progress. Under very
1001 rare circumstances, due to this erratum, write data can be lost when
1002 PL310 treats a cacheable write transaction during a Clean &
1003 Invalidate by Way operation. Revisions prior to r3p1 are affected by
1004 this errata (fixed in r3p1).
1005
1006config PL310_ERRATA_753970
1007 bool "PL310 errata: cache sync operation may be faulty"
1008 help
1009 This option enables the workaround for the 753970 PL310 (r3p0) erratum.
1010
1011 Under some condition the effect of cache sync operation on
1012 the store buffer still remains when the operation completes.
1013 This means that the store buffer is always asked to drain and
1014 this prevents it from merging any further writes. The workaround
1015 is to replace the normal offset of cache sync operation (0x730)
1016 by another offset targeting an unmapped PL310 register 0x740.
1017 This has the same effect as the cache sync operation: store buffer
1018 drain and waiting for all buffers empty.
1019
1020config PL310_ERRATA_769419
1021 bool "PL310 errata: no automatic Store Buffer drain"
1022 help
1023 On revisions of the PL310 prior to r3p2, the Store Buffer does
1024 not automatically drain. This can cause normal, non-cacheable
1025 writes to be retained when the memory system is idle, leading
1026 to suboptimal I/O performance for drivers using coherent DMA.
1027 This option adds a write barrier to the cpu_idle loop so that,
1028 on systems with an outer cache, the store buffer is drained
1029 explicitly.
1030
1031endif
1032
1033config CACHE_TAUROS2
1034 bool "Enable the Tauros2 L2 cache controller"
1035 depends on (ARCH_DOVE || ARCH_MMP || CPU_PJ4)
1036 default y
1037 select OUTER_CACHE
1038 help
1039 This option enables the Tauros2 L2 cache controller (as
1040 found on PJ1/PJ4).
1041
1042config CACHE_UNIPHIER
1043 bool "Enable the UniPhier outer cache controller"
1044 depends on ARCH_UNIPHIER
1045 select ARM_L1_CACHE_SHIFT_7
1046 select OUTER_CACHE
1047 select OUTER_CACHE_SYNC
1048 help
1049 This option enables the UniPhier outer cache (system cache)
1050 controller.
1051
1052config CACHE_XSC3L2
1053 bool "Enable the L2 cache on XScale3"
1054 depends on CPU_XSC3
1055 default y
1056 select OUTER_CACHE
1057 help
1058 This option enables the L2 cache on XScale3.
1059
1060config ARM_L1_CACHE_SHIFT_6
1061 bool
1062 default y if CPU_V7
1063 help
1064 Setting ARM L1 cache line size to 64 Bytes.
1065
1066config ARM_L1_CACHE_SHIFT_7
1067 bool
1068 help
1069 Setting ARM L1 cache line size to 128 Bytes.
1070
1071config ARM_L1_CACHE_SHIFT
1072 int
1073 default 7 if ARM_L1_CACHE_SHIFT_7
1074 default 6 if ARM_L1_CACHE_SHIFT_6
1075 default 5
1076
1077config ARM_DMA_MEM_BUFFERABLE
1078 bool "Use non-cacheable memory for DMA" if (CPU_V6 || CPU_V6K || CPU_V7M) && !CPU_V7
1079 default y if CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M
1080 help
1081 Historically, the kernel has used strongly ordered mappings to
1082 provide DMA coherent memory. With the advent of ARMv7, mapping
1083 memory with differing types results in unpredictable behaviour,
1084 so on these CPUs, this option is forced on.
1085
1086 Multiple mappings with differing attributes is also unpredictable
1087 on ARMv6 CPUs, but since they do not have aggressive speculative
1088 prefetch, no harm appears to occur.
1089
1090 However, drivers may be missing the necessary barriers for ARMv6,
1091 and therefore turning this on may result in unpredictable driver
1092 behaviour. Therefore, we offer this as an option.
1093
1094 On some of the beefier ARMv7-M machines (with DMA and write
1095 buffers) you likely want this enabled, while those that
1096 didn't need it until now also won't need it in the future.
1097
1098 You are recommended say 'Y' here and debug any affected drivers.
1099
1100config ARM_HEAVY_MB
1101 bool
1102
1103config ARCH_SUPPORTS_BIG_ENDIAN
1104 bool
1105 help
1106 This option specifies the architecture can support big endian
1107 operation.
1108
1109config DEBUG_ALIGN_RODATA
1110 bool "Make rodata strictly non-executable"
1111 depends on STRICT_KERNEL_RWX
1112 default y
1113 help
1114 If this is set, rodata will be made explicitly non-executable. This
1115 provides protection on the rare chance that attackers might find and
1116 use ROP gadgets that exist in the rodata section. This adds an
1117 additional section-aligned split of rodata from kernel text so it
1118 can be made explicitly non-executable. This padding may waste memory
1119 space to gain the additional protection.