blob: 2c9110fee1cc233e1da75ca7b5b1078d66787450 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Freescale eSDHC controller driver.
3 *
4 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
5 * Copyright (c) 2009 MontaVista Software, Inc.
6 *
7 * Authors: Xiaobo Xie <X.Xie@freescale.com>
8 * Anton Vorontsov <avorontsov@ru.mvista.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 */
15
16#include <linux/err.h>
17#include <linux/io.h>
18#include <linux/of.h>
19#include <linux/of_address.h>
20#include <linux/delay.h>
21#include <linux/module.h>
22#include <linux/sys_soc.h>
23#include <linux/clk.h>
24#include <linux/ktime.h>
25#include <linux/dma-mapping.h>
26#include <linux/mmc/host.h>
27#include "sdhci-pltfm.h"
28#include "sdhci-esdhc.h"
29
30#define VENDOR_V_22 0x12
31#define VENDOR_V_23 0x13
32
33#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
34
35struct esdhc_clk_fixup {
36 const unsigned int sd_dflt_max_clk;
37 const unsigned int max_clk[MMC_TIMING_NUM];
38};
39
40static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
41 .sd_dflt_max_clk = 25000000,
42 .max_clk[MMC_TIMING_MMC_HS] = 46500000,
43 .max_clk[MMC_TIMING_SD_HS] = 46500000,
44};
45
46static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
47 .sd_dflt_max_clk = 25000000,
48 .max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
49 .max_clk[MMC_TIMING_MMC_HS200] = 167000000,
50};
51
52static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
53 .sd_dflt_max_clk = 25000000,
54 .max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
55 .max_clk[MMC_TIMING_MMC_HS200] = 125000000,
56};
57
58static const struct esdhc_clk_fixup p1010_esdhc_clk = {
59 .sd_dflt_max_clk = 20000000,
60 .max_clk[MMC_TIMING_LEGACY] = 20000000,
61 .max_clk[MMC_TIMING_MMC_HS] = 42000000,
62 .max_clk[MMC_TIMING_SD_HS] = 40000000,
63};
64
65static const struct of_device_id sdhci_esdhc_of_match[] = {
66 { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
67 { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
68 { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
69 { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk},
70 { .compatible = "fsl,mpc8379-esdhc" },
71 { .compatible = "fsl,mpc8536-esdhc" },
72 { .compatible = "fsl,esdhc" },
73 { }
74};
75MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
76
77struct sdhci_esdhc {
78 u8 vendor_ver;
79 u8 spec_ver;
80 bool quirk_incorrect_hostver;
81 unsigned int peripheral_clock;
82 const struct esdhc_clk_fixup *clk_fixup;
83};
84
85/**
86 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
87 * to make it compatible with SD spec.
88 *
89 * @host: pointer to sdhci_host
90 * @spec_reg: SD spec register address
91 * @value: 32bit eSDHC register value on spec_reg address
92 *
93 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
94 * registers are 32 bits. There are differences in register size, register
95 * address, register function, bit position and function between eSDHC spec
96 * and SD spec.
97 *
98 * Return a fixed up register value
99 */
100static u32 esdhc_readl_fixup(struct sdhci_host *host,
101 int spec_reg, u32 value)
102{
103 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
104 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
105 u32 ret;
106
107 /*
108 * The bit of ADMA flag in eSDHC is not compatible with standard
109 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
110 * supported by eSDHC.
111 * And for many FSL eSDHC controller, the reset value of field
112 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
113 * only these vendor version is greater than 2.2/0x12 support ADMA.
114 */
115 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
116 if (esdhc->vendor_ver > VENDOR_V_22) {
117 ret = value | SDHCI_CAN_DO_ADMA2;
118 return ret;
119 }
120 }
121 /*
122 * The DAT[3:0] line signal levels and the CMD line signal level are
123 * not compatible with standard SDHC register. The line signal levels
124 * DAT[7:0] are at bits 31:24 and the command line signal level is at
125 * bit 23. All other bits are the same as in the standard SDHC
126 * register.
127 */
128 if (spec_reg == SDHCI_PRESENT_STATE) {
129 ret = value & 0x000fffff;
130 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
131 ret |= (value << 1) & SDHCI_CMD_LVL;
132 return ret;
133 }
134
135 /*
136 * DTS properties of mmc host are used to enable each speed mode
137 * according to soc and board capability. So clean up
138 * SDR50/SDR104/DDR50 support bits here.
139 */
140 if (spec_reg == SDHCI_CAPABILITIES_1) {
141 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
142 SDHCI_SUPPORT_DDR50);
143 return ret;
144 }
145
146 ret = value;
147 return ret;
148}
149
150static u16 esdhc_readw_fixup(struct sdhci_host *host,
151 int spec_reg, u32 value)
152{
153 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
154 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
155 u16 ret;
156 int shift = (spec_reg & 0x2) * 8;
157
158 if (spec_reg == SDHCI_HOST_VERSION)
159 ret = value & 0xffff;
160 else
161 ret = (value >> shift) & 0xffff;
162 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
163 * vendor version and spec version information.
164 */
165 if ((spec_reg == SDHCI_HOST_VERSION) &&
166 (esdhc->quirk_incorrect_hostver))
167 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
168 return ret;
169}
170
171static u8 esdhc_readb_fixup(struct sdhci_host *host,
172 int spec_reg, u32 value)
173{
174 u8 ret;
175 u8 dma_bits;
176 int shift = (spec_reg & 0x3) * 8;
177
178 ret = (value >> shift) & 0xff;
179
180 /*
181 * "DMA select" locates at offset 0x28 in SD specification, but on
182 * P5020 or P3041, it locates at 0x29.
183 */
184 if (spec_reg == SDHCI_HOST_CONTROL) {
185 /* DMA select is 22,23 bits in Protocol Control Register */
186 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
187 /* fixup the result */
188 ret &= ~SDHCI_CTRL_DMA_MASK;
189 ret |= dma_bits;
190 }
191 return ret;
192}
193
194/**
195 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
196 * written into eSDHC register.
197 *
198 * @host: pointer to sdhci_host
199 * @spec_reg: SD spec register address
200 * @value: 8/16/32bit SD spec register value that would be written
201 * @old_value: 32bit eSDHC register value on spec_reg address
202 *
203 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
204 * registers are 32 bits. There are differences in register size, register
205 * address, register function, bit position and function between eSDHC spec
206 * and SD spec.
207 *
208 * Return a fixed up register value
209 */
210static u32 esdhc_writel_fixup(struct sdhci_host *host,
211 int spec_reg, u32 value, u32 old_value)
212{
213 u32 ret;
214
215 /*
216 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
217 * when SYSCTL[RSTD] is set for some special operations.
218 * No any impact on other operation.
219 */
220 if (spec_reg == SDHCI_INT_ENABLE)
221 ret = value | SDHCI_INT_BLK_GAP;
222 else
223 ret = value;
224
225 return ret;
226}
227
228static u32 esdhc_writew_fixup(struct sdhci_host *host,
229 int spec_reg, u16 value, u32 old_value)
230{
231 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
232 int shift = (spec_reg & 0x2) * 8;
233 u32 ret;
234
235 switch (spec_reg) {
236 case SDHCI_TRANSFER_MODE:
237 /*
238 * Postpone this write, we must do it together with a
239 * command write that is down below. Return old value.
240 */
241 pltfm_host->xfer_mode_shadow = value;
242 return old_value;
243 case SDHCI_COMMAND:
244 ret = (value << 16) | pltfm_host->xfer_mode_shadow;
245 return ret;
246 }
247
248 ret = old_value & (~(0xffff << shift));
249 ret |= (value << shift);
250
251 if (spec_reg == SDHCI_BLOCK_SIZE) {
252 /*
253 * Two last DMA bits are reserved, and first one is used for
254 * non-standard blksz of 4096 bytes that we don't support
255 * yet. So clear the DMA boundary bits.
256 */
257 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
258 }
259 return ret;
260}
261
262static u32 esdhc_writeb_fixup(struct sdhci_host *host,
263 int spec_reg, u8 value, u32 old_value)
264{
265 u32 ret;
266 u32 dma_bits;
267 u8 tmp;
268 int shift = (spec_reg & 0x3) * 8;
269
270 /*
271 * eSDHC doesn't have a standard power control register, so we do
272 * nothing here to avoid incorrect operation.
273 */
274 if (spec_reg == SDHCI_POWER_CONTROL)
275 return old_value;
276 /*
277 * "DMA select" location is offset 0x28 in SD specification, but on
278 * P5020 or P3041, it's located at 0x29.
279 */
280 if (spec_reg == SDHCI_HOST_CONTROL) {
281 /*
282 * If host control register is not standard, exit
283 * this function
284 */
285 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
286 return old_value;
287
288 /* DMA select is 22,23 bits in Protocol Control Register */
289 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
290 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
291 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
292 (old_value & SDHCI_CTRL_DMA_MASK);
293 ret = (ret & (~0xff)) | tmp;
294
295 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
296 ret &= ~ESDHC_HOST_CONTROL_RES;
297 return ret;
298 }
299
300 ret = (old_value & (~(0xff << shift))) | (value << shift);
301 return ret;
302}
303
304static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
305{
306 u32 ret;
307 u32 value;
308
309 if (reg == SDHCI_CAPABILITIES_1)
310 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
311 else
312 value = ioread32be(host->ioaddr + reg);
313
314 ret = esdhc_readl_fixup(host, reg, value);
315
316 return ret;
317}
318
319static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
320{
321 u32 ret;
322 u32 value;
323
324 if (reg == SDHCI_CAPABILITIES_1)
325 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
326 else
327 value = ioread32(host->ioaddr + reg);
328
329 ret = esdhc_readl_fixup(host, reg, value);
330
331 return ret;
332}
333
334static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
335{
336 u16 ret;
337 u32 value;
338 int base = reg & ~0x3;
339
340 value = ioread32be(host->ioaddr + base);
341 ret = esdhc_readw_fixup(host, reg, value);
342 return ret;
343}
344
345static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
346{
347 u16 ret;
348 u32 value;
349 int base = reg & ~0x3;
350
351 value = ioread32(host->ioaddr + base);
352 ret = esdhc_readw_fixup(host, reg, value);
353 return ret;
354}
355
356static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
357{
358 u8 ret;
359 u32 value;
360 int base = reg & ~0x3;
361
362 value = ioread32be(host->ioaddr + base);
363 ret = esdhc_readb_fixup(host, reg, value);
364 return ret;
365}
366
367static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
368{
369 u8 ret;
370 u32 value;
371 int base = reg & ~0x3;
372
373 value = ioread32(host->ioaddr + base);
374 ret = esdhc_readb_fixup(host, reg, value);
375 return ret;
376}
377
378static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
379{
380 u32 value;
381
382 value = esdhc_writel_fixup(host, reg, val, 0);
383 iowrite32be(value, host->ioaddr + reg);
384}
385
386static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
387{
388 u32 value;
389
390 value = esdhc_writel_fixup(host, reg, val, 0);
391 iowrite32(value, host->ioaddr + reg);
392}
393
394static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
395{
396 int base = reg & ~0x3;
397 u32 value;
398 u32 ret;
399
400 value = ioread32be(host->ioaddr + base);
401 ret = esdhc_writew_fixup(host, reg, val, value);
402 if (reg != SDHCI_TRANSFER_MODE)
403 iowrite32be(ret, host->ioaddr + base);
404}
405
406static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
407{
408 int base = reg & ~0x3;
409 u32 value;
410 u32 ret;
411
412 value = ioread32(host->ioaddr + base);
413 ret = esdhc_writew_fixup(host, reg, val, value);
414 if (reg != SDHCI_TRANSFER_MODE)
415 iowrite32(ret, host->ioaddr + base);
416}
417
418static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
419{
420 int base = reg & ~0x3;
421 u32 value;
422 u32 ret;
423
424 value = ioread32be(host->ioaddr + base);
425 ret = esdhc_writeb_fixup(host, reg, val, value);
426 iowrite32be(ret, host->ioaddr + base);
427}
428
429static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
430{
431 int base = reg & ~0x3;
432 u32 value;
433 u32 ret;
434
435 value = ioread32(host->ioaddr + base);
436 ret = esdhc_writeb_fixup(host, reg, val, value);
437 iowrite32(ret, host->ioaddr + base);
438}
439
440/*
441 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
442 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
443 * and Block Gap Event(IRQSTAT[BGE]) are also set.
444 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
445 * and re-issue the entire read transaction from beginning.
446 */
447static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
448{
449 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
450 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
451 bool applicable;
452 dma_addr_t dmastart;
453 dma_addr_t dmanow;
454
455 applicable = (intmask & SDHCI_INT_DATA_END) &&
456 (intmask & SDHCI_INT_BLK_GAP) &&
457 (esdhc->vendor_ver == VENDOR_V_23);
458 if (!applicable)
459 return;
460
461 host->data->error = 0;
462 dmastart = sg_dma_address(host->data->sg);
463 dmanow = dmastart + host->data->bytes_xfered;
464 /*
465 * Force update to the next DMA block boundary.
466 */
467 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
468 SDHCI_DEFAULT_BOUNDARY_SIZE;
469 host->data->bytes_xfered = dmanow - dmastart;
470 sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
471}
472
473static int esdhc_of_enable_dma(struct sdhci_host *host)
474{
475 u32 value;
476 struct device *dev = mmc_dev(host->mmc);
477
478 if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
479 of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
480 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
481
482 value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
483
484 if (of_dma_is_coherent(dev->of_node))
485 value |= ESDHC_DMA_SNOOP;
486 else
487 value &= ~ESDHC_DMA_SNOOP;
488
489 sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
490 return 0;
491}
492
493static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
494{
495 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
496 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
497
498 if (esdhc->peripheral_clock)
499 return esdhc->peripheral_clock;
500 else
501 return pltfm_host->clock;
502}
503
504static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
505{
506 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
507 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
508 unsigned int clock;
509
510 if (esdhc->peripheral_clock)
511 clock = esdhc->peripheral_clock;
512 else
513 clock = pltfm_host->clock;
514 return clock / 256 / 16;
515}
516
517static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
518{
519 u32 val;
520 ktime_t timeout;
521
522 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
523
524 if (enable)
525 val |= ESDHC_CLOCK_SDCLKEN;
526 else
527 val &= ~ESDHC_CLOCK_SDCLKEN;
528
529 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
530
531 /* Wait max 20 ms */
532 timeout = ktime_add_ms(ktime_get(), 20);
533 val = ESDHC_CLOCK_STABLE;
534 while (1) {
535 bool timedout = ktime_after(ktime_get(), timeout);
536
537 if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
538 break;
539 if (timedout) {
540 pr_err("%s: Internal clock never stabilised.\n",
541 mmc_hostname(host->mmc));
542 break;
543 }
544 udelay(10);
545 }
546}
547
548static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
549{
550 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
551 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
552 int pre_div = 1;
553 int div = 1;
554 ktime_t timeout;
555 long fixup = 0;
556 u32 temp;
557
558 host->mmc->actual_clock = 0;
559
560 if (clock == 0) {
561 esdhc_clock_enable(host, false);
562 return;
563 }
564
565 /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
566 if (esdhc->vendor_ver < VENDOR_V_23)
567 pre_div = 2;
568
569 if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
570 esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
571 fixup = esdhc->clk_fixup->sd_dflt_max_clk;
572 else if (esdhc->clk_fixup)
573 fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
574
575 if (fixup && clock > fixup)
576 clock = fixup;
577
578 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
579 temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
580 ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
581 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
582
583 while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
584 pre_div *= 2;
585
586 while (host->max_clk / pre_div / div > clock && div < 16)
587 div++;
588
589 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
590 clock, host->max_clk / pre_div / div);
591 host->mmc->actual_clock = host->max_clk / pre_div / div;
592 pre_div >>= 1;
593 div--;
594
595 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
596 temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
597 | (div << ESDHC_DIVIDER_SHIFT)
598 | (pre_div << ESDHC_PREDIV_SHIFT));
599 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
600
601 /* Wait max 20 ms */
602 timeout = ktime_add_ms(ktime_get(), 20);
603 while (1) {
604 bool timedout = ktime_after(ktime_get(), timeout);
605
606 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
607 break;
608 if (timedout) {
609 pr_err("%s: Internal clock never stabilised.\n",
610 mmc_hostname(host->mmc));
611 return;
612 }
613 udelay(10);
614 }
615
616 temp |= ESDHC_CLOCK_SDCLKEN;
617 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
618}
619
620static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
621{
622 u32 ctrl;
623
624 ctrl = sdhci_readl(host, ESDHC_PROCTL);
625 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
626 switch (width) {
627 case MMC_BUS_WIDTH_8:
628 ctrl |= ESDHC_CTRL_8BITBUS;
629 break;
630
631 case MMC_BUS_WIDTH_4:
632 ctrl |= ESDHC_CTRL_4BITBUS;
633 break;
634
635 default:
636 break;
637 }
638
639 sdhci_writel(host, ctrl, ESDHC_PROCTL);
640}
641
642static void esdhc_reset(struct sdhci_host *host, u8 mask)
643{
644 u32 val;
645
646 sdhci_reset(host, mask);
647
648 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
649 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
650
651 if (mask & SDHCI_RESET_ALL) {
652 val = sdhci_readl(host, ESDHC_TBCTL);
653 val &= ~ESDHC_TB_EN;
654 sdhci_writel(host, val, ESDHC_TBCTL);
655 }
656}
657
658/* The SCFG, Supplemental Configuration Unit, provides SoC specific
659 * configuration and status registers for the device. There is a
660 * SDHC IO VSEL control register on SCFG for some platforms. It's
661 * used to support SDHC IO voltage switching.
662 */
663static const struct of_device_id scfg_device_ids[] = {
664 { .compatible = "fsl,t1040-scfg", },
665 { .compatible = "fsl,ls1012a-scfg", },
666 { .compatible = "fsl,ls1046a-scfg", },
667 {}
668};
669
670/* SDHC IO VSEL control register definition */
671#define SCFG_SDHCIOVSELCR 0x408
672#define SDHCIOVSELCR_TGLEN 0x80000000
673#define SDHCIOVSELCR_VSELVAL 0x60000000
674#define SDHCIOVSELCR_SDHC_VS 0x00000001
675
676static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
677 struct mmc_ios *ios)
678{
679 struct sdhci_host *host = mmc_priv(mmc);
680 struct device_node *scfg_node;
681 void __iomem *scfg_base = NULL;
682 u32 sdhciovselcr;
683 u32 val;
684
685 /*
686 * Signal Voltage Switching is only applicable for Host Controllers
687 * v3.00 and above.
688 */
689 if (host->version < SDHCI_SPEC_300)
690 return 0;
691
692 val = sdhci_readl(host, ESDHC_PROCTL);
693
694 switch (ios->signal_voltage) {
695 case MMC_SIGNAL_VOLTAGE_330:
696 val &= ~ESDHC_VOLT_SEL;
697 sdhci_writel(host, val, ESDHC_PROCTL);
698 return 0;
699 case MMC_SIGNAL_VOLTAGE_180:
700 scfg_node = of_find_matching_node(NULL, scfg_device_ids);
701 if (scfg_node)
702 scfg_base = of_iomap(scfg_node, 0);
703 if (scfg_base) {
704 sdhciovselcr = SDHCIOVSELCR_TGLEN |
705 SDHCIOVSELCR_VSELVAL;
706 iowrite32be(sdhciovselcr,
707 scfg_base + SCFG_SDHCIOVSELCR);
708
709 val |= ESDHC_VOLT_SEL;
710 sdhci_writel(host, val, ESDHC_PROCTL);
711 mdelay(5);
712
713 sdhciovselcr = SDHCIOVSELCR_TGLEN |
714 SDHCIOVSELCR_SDHC_VS;
715 iowrite32be(sdhciovselcr,
716 scfg_base + SCFG_SDHCIOVSELCR);
717 iounmap(scfg_base);
718 } else {
719 val |= ESDHC_VOLT_SEL;
720 sdhci_writel(host, val, ESDHC_PROCTL);
721 }
722 return 0;
723 default:
724 return 0;
725 }
726}
727
728static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
729{
730 struct sdhci_host *host = mmc_priv(mmc);
731 u32 val;
732
733 /* Use tuning block for tuning procedure */
734 esdhc_clock_enable(host, false);
735 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
736 val |= ESDHC_FLUSH_ASYNC_FIFO;
737 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
738
739 val = sdhci_readl(host, ESDHC_TBCTL);
740 val |= ESDHC_TB_EN;
741 sdhci_writel(host, val, ESDHC_TBCTL);
742 esdhc_clock_enable(host, true);
743
744 return sdhci_execute_tuning(mmc, opcode);
745}
746
747#ifdef CONFIG_PM_SLEEP
748static u32 esdhc_proctl;
749static int esdhc_of_suspend(struct device *dev)
750{
751 struct sdhci_host *host = dev_get_drvdata(dev);
752
753 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
754
755 if (host->tuning_mode != SDHCI_TUNING_MODE_3)
756 mmc_retune_needed(host->mmc);
757
758 return sdhci_suspend_host(host);
759}
760
761static int esdhc_of_resume(struct device *dev)
762{
763 struct sdhci_host *host = dev_get_drvdata(dev);
764 int ret = sdhci_resume_host(host);
765
766 if (ret == 0) {
767 /* Isn't this already done by sdhci_resume_host() ? --rmk */
768 esdhc_of_enable_dma(host);
769 sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
770 }
771 return ret;
772}
773#endif
774
775static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
776 esdhc_of_suspend,
777 esdhc_of_resume);
778
779static const struct sdhci_ops sdhci_esdhc_be_ops = {
780 .read_l = esdhc_be_readl,
781 .read_w = esdhc_be_readw,
782 .read_b = esdhc_be_readb,
783 .write_l = esdhc_be_writel,
784 .write_w = esdhc_be_writew,
785 .write_b = esdhc_be_writeb,
786 .set_clock = esdhc_of_set_clock,
787 .enable_dma = esdhc_of_enable_dma,
788 .get_max_clock = esdhc_of_get_max_clock,
789 .get_min_clock = esdhc_of_get_min_clock,
790 .adma_workaround = esdhc_of_adma_workaround,
791 .set_bus_width = esdhc_pltfm_set_bus_width,
792 .reset = esdhc_reset,
793 .set_uhs_signaling = sdhci_set_uhs_signaling,
794};
795
796static const struct sdhci_ops sdhci_esdhc_le_ops = {
797 .read_l = esdhc_le_readl,
798 .read_w = esdhc_le_readw,
799 .read_b = esdhc_le_readb,
800 .write_l = esdhc_le_writel,
801 .write_w = esdhc_le_writew,
802 .write_b = esdhc_le_writeb,
803 .set_clock = esdhc_of_set_clock,
804 .enable_dma = esdhc_of_enable_dma,
805 .get_max_clock = esdhc_of_get_max_clock,
806 .get_min_clock = esdhc_of_get_min_clock,
807 .adma_workaround = esdhc_of_adma_workaround,
808 .set_bus_width = esdhc_pltfm_set_bus_width,
809 .reset = esdhc_reset,
810 .set_uhs_signaling = sdhci_set_uhs_signaling,
811};
812
813static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
814 .quirks = ESDHC_DEFAULT_QUIRKS |
815#ifdef CONFIG_PPC
816 SDHCI_QUIRK_BROKEN_CARD_DETECTION |
817#endif
818 SDHCI_QUIRK_NO_CARD_NO_RESET |
819 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
820 .ops = &sdhci_esdhc_be_ops,
821};
822
823static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
824 .quirks = ESDHC_DEFAULT_QUIRKS |
825 SDHCI_QUIRK_NO_CARD_NO_RESET |
826 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
827 .ops = &sdhci_esdhc_le_ops,
828};
829
830static struct soc_device_attribute soc_incorrect_hostver[] = {
831 { .family = "QorIQ T4240", .revision = "1.0", },
832 { .family = "QorIQ T4240", .revision = "2.0", },
833 { },
834};
835
836static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
837{
838 const struct of_device_id *match;
839 struct sdhci_pltfm_host *pltfm_host;
840 struct sdhci_esdhc *esdhc;
841 struct device_node *np;
842 struct clk *clk;
843 u32 val;
844 u16 host_ver;
845
846 pltfm_host = sdhci_priv(host);
847 esdhc = sdhci_pltfm_priv(pltfm_host);
848
849 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
850 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
851 SDHCI_VENDOR_VER_SHIFT;
852 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
853 if (soc_device_match(soc_incorrect_hostver))
854 esdhc->quirk_incorrect_hostver = true;
855 else
856 esdhc->quirk_incorrect_hostver = false;
857
858 match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
859 if (match)
860 esdhc->clk_fixup = match->data;
861 np = pdev->dev.of_node;
862 clk = of_clk_get(np, 0);
863 if (!IS_ERR(clk)) {
864 /*
865 * esdhc->peripheral_clock would be assigned with a value
866 * which is eSDHC base clock when use periperal clock.
867 * For ls1046a, the clock value got by common clk API is
868 * peripheral clock while the eSDHC base clock is 1/2
869 * peripheral clock.
870 */
871 if (of_device_is_compatible(np, "fsl,ls1046a-esdhc"))
872 esdhc->peripheral_clock = clk_get_rate(clk) / 2;
873 else
874 esdhc->peripheral_clock = clk_get_rate(clk);
875
876 clk_put(clk);
877 }
878
879 if (esdhc->peripheral_clock) {
880 esdhc_clock_enable(host, false);
881 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
882 val |= ESDHC_PERIPHERAL_CLK_SEL;
883 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
884 esdhc_clock_enable(host, true);
885 }
886}
887
888static int sdhci_esdhc_probe(struct platform_device *pdev)
889{
890 struct sdhci_host *host;
891 struct device_node *np;
892 struct sdhci_pltfm_host *pltfm_host;
893 struct sdhci_esdhc *esdhc;
894 int ret;
895
896 np = pdev->dev.of_node;
897
898 if (of_property_read_bool(np, "little-endian"))
899 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
900 sizeof(struct sdhci_esdhc));
901 else
902 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
903 sizeof(struct sdhci_esdhc));
904
905 if (IS_ERR(host))
906 return PTR_ERR(host);
907
908 host->mmc_host_ops.start_signal_voltage_switch =
909 esdhc_signal_voltage_switch;
910 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
911 host->tuning_delay = 1;
912
913 esdhc_init(pdev, host);
914
915 sdhci_get_of_property(pdev);
916
917 pltfm_host = sdhci_priv(host);
918 esdhc = sdhci_pltfm_priv(pltfm_host);
919 if (esdhc->vendor_ver == VENDOR_V_22)
920 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
921
922 if (esdhc->vendor_ver > VENDOR_V_22)
923 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
924
925 if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
926 host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
927 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
928 }
929
930 if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
931 of_device_is_compatible(np, "fsl,p5020-esdhc") ||
932 of_device_is_compatible(np, "fsl,p4080-esdhc") ||
933 of_device_is_compatible(np, "fsl,p1020-esdhc") ||
934 of_device_is_compatible(np, "fsl,t1040-esdhc"))
935 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
936
937 if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
938 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
939
940 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
941 /*
942 * Freescale messed up with P2020 as it has a non-standard
943 * host control register
944 */
945 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
946 }
947
948 /* call to generic mmc_of_parse to support additional capabilities */
949 ret = mmc_of_parse(host->mmc);
950 if (ret)
951 goto err;
952
953 mmc_of_parse_voltage(np, &host->ocr_mask);
954
955 ret = sdhci_add_host(host);
956 if (ret)
957 goto err;
958
959 return 0;
960 err:
961 sdhci_pltfm_free(pdev);
962 return ret;
963}
964
965static struct platform_driver sdhci_esdhc_driver = {
966 .driver = {
967 .name = "sdhci-esdhc",
968 .of_match_table = sdhci_esdhc_of_match,
969 .pm = &esdhc_of_dev_pm_ops,
970 },
971 .probe = sdhci_esdhc_probe,
972 .remove = sdhci_pltfm_unregister,
973};
974
975module_platform_driver(sdhci_esdhc_driver);
976
977MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
978MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
979 "Anton Vorontsov <avorontsov@ru.mvista.com>");
980MODULE_LICENSE("GPL v2");