| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Freescale eSDHC controller driver. |
| 3 | * |
| 4 | * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc. |
| 5 | * Copyright (c) 2009 MontaVista Software, Inc. |
| 6 | * |
| 7 | * Authors: Xiaobo Xie <X.Xie@freescale.com> |
| 8 | * Anton Vorontsov <avorontsov@ru.mvista.com> |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation; either version 2 of the License, or (at |
| 13 | * your option) any later version. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/err.h> |
| 17 | #include <linux/io.h> |
| 18 | #include <linux/of.h> |
| 19 | #include <linux/of_address.h> |
| 20 | #include <linux/delay.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/sys_soc.h> |
| 23 | #include <linux/clk.h> |
| 24 | #include <linux/ktime.h> |
| 25 | #include <linux/dma-mapping.h> |
| 26 | #include <linux/mmc/host.h> |
| 27 | #include "sdhci-pltfm.h" |
| 28 | #include "sdhci-esdhc.h" |
| 29 | |
| 30 | #define VENDOR_V_22 0x12 |
| 31 | #define VENDOR_V_23 0x13 |
| 32 | |
| 33 | #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1) |
| 34 | |
| 35 | struct esdhc_clk_fixup { |
| 36 | const unsigned int sd_dflt_max_clk; |
| 37 | const unsigned int max_clk[MMC_TIMING_NUM]; |
| 38 | }; |
| 39 | |
| 40 | static const struct esdhc_clk_fixup ls1021a_esdhc_clk = { |
| 41 | .sd_dflt_max_clk = 25000000, |
| 42 | .max_clk[MMC_TIMING_MMC_HS] = 46500000, |
| 43 | .max_clk[MMC_TIMING_SD_HS] = 46500000, |
| 44 | }; |
| 45 | |
| 46 | static const struct esdhc_clk_fixup ls1046a_esdhc_clk = { |
| 47 | .sd_dflt_max_clk = 25000000, |
| 48 | .max_clk[MMC_TIMING_UHS_SDR104] = 167000000, |
| 49 | .max_clk[MMC_TIMING_MMC_HS200] = 167000000, |
| 50 | }; |
| 51 | |
| 52 | static const struct esdhc_clk_fixup ls1012a_esdhc_clk = { |
| 53 | .sd_dflt_max_clk = 25000000, |
| 54 | .max_clk[MMC_TIMING_UHS_SDR104] = 125000000, |
| 55 | .max_clk[MMC_TIMING_MMC_HS200] = 125000000, |
| 56 | }; |
| 57 | |
| 58 | static const struct esdhc_clk_fixup p1010_esdhc_clk = { |
| 59 | .sd_dflt_max_clk = 20000000, |
| 60 | .max_clk[MMC_TIMING_LEGACY] = 20000000, |
| 61 | .max_clk[MMC_TIMING_MMC_HS] = 42000000, |
| 62 | .max_clk[MMC_TIMING_SD_HS] = 40000000, |
| 63 | }; |
| 64 | |
| 65 | static const struct of_device_id sdhci_esdhc_of_match[] = { |
| 66 | { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk}, |
| 67 | { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk}, |
| 68 | { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk}, |
| 69 | { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk}, |
| 70 | { .compatible = "fsl,mpc8379-esdhc" }, |
| 71 | { .compatible = "fsl,mpc8536-esdhc" }, |
| 72 | { .compatible = "fsl,esdhc" }, |
| 73 | { } |
| 74 | }; |
| 75 | MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match); |
| 76 | |
| 77 | struct sdhci_esdhc { |
| 78 | u8 vendor_ver; |
| 79 | u8 spec_ver; |
| 80 | bool quirk_incorrect_hostver; |
| 81 | unsigned int peripheral_clock; |
| 82 | const struct esdhc_clk_fixup *clk_fixup; |
| 83 | }; |
| 84 | |
| 85 | /** |
| 86 | * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register |
| 87 | * to make it compatible with SD spec. |
| 88 | * |
| 89 | * @host: pointer to sdhci_host |
| 90 | * @spec_reg: SD spec register address |
| 91 | * @value: 32bit eSDHC register value on spec_reg address |
| 92 | * |
| 93 | * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC |
| 94 | * registers are 32 bits. There are differences in register size, register |
| 95 | * address, register function, bit position and function between eSDHC spec |
| 96 | * and SD spec. |
| 97 | * |
| 98 | * Return a fixed up register value |
| 99 | */ |
| 100 | static u32 esdhc_readl_fixup(struct sdhci_host *host, |
| 101 | int spec_reg, u32 value) |
| 102 | { |
| 103 | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| 104 | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| 105 | u32 ret; |
| 106 | |
| 107 | /* |
| 108 | * The bit of ADMA flag in eSDHC is not compatible with standard |
| 109 | * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is |
| 110 | * supported by eSDHC. |
| 111 | * And for many FSL eSDHC controller, the reset value of field |
| 112 | * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA, |
| 113 | * only these vendor version is greater than 2.2/0x12 support ADMA. |
| 114 | */ |
| 115 | if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) { |
| 116 | if (esdhc->vendor_ver > VENDOR_V_22) { |
| 117 | ret = value | SDHCI_CAN_DO_ADMA2; |
| 118 | return ret; |
| 119 | } |
| 120 | } |
| 121 | /* |
| 122 | * The DAT[3:0] line signal levels and the CMD line signal level are |
| 123 | * not compatible with standard SDHC register. The line signal levels |
| 124 | * DAT[7:0] are at bits 31:24 and the command line signal level is at |
| 125 | * bit 23. All other bits are the same as in the standard SDHC |
| 126 | * register. |
| 127 | */ |
| 128 | if (spec_reg == SDHCI_PRESENT_STATE) { |
| 129 | ret = value & 0x000fffff; |
| 130 | ret |= (value >> 4) & SDHCI_DATA_LVL_MASK; |
| 131 | ret |= (value << 1) & SDHCI_CMD_LVL; |
| 132 | return ret; |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * DTS properties of mmc host are used to enable each speed mode |
| 137 | * according to soc and board capability. So clean up |
| 138 | * SDR50/SDR104/DDR50 support bits here. |
| 139 | */ |
| 140 | if (spec_reg == SDHCI_CAPABILITIES_1) { |
| 141 | ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 | |
| 142 | SDHCI_SUPPORT_DDR50); |
| 143 | return ret; |
| 144 | } |
| 145 | |
| 146 | ret = value; |
| 147 | return ret; |
| 148 | } |
| 149 | |
| 150 | static u16 esdhc_readw_fixup(struct sdhci_host *host, |
| 151 | int spec_reg, u32 value) |
| 152 | { |
| 153 | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| 154 | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| 155 | u16 ret; |
| 156 | int shift = (spec_reg & 0x2) * 8; |
| 157 | |
| 158 | if (spec_reg == SDHCI_HOST_VERSION) |
| 159 | ret = value & 0xffff; |
| 160 | else |
| 161 | ret = (value >> shift) & 0xffff; |
| 162 | /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect |
| 163 | * vendor version and spec version information. |
| 164 | */ |
| 165 | if ((spec_reg == SDHCI_HOST_VERSION) && |
| 166 | (esdhc->quirk_incorrect_hostver)) |
| 167 | ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200; |
| 168 | return ret; |
| 169 | } |
| 170 | |
| 171 | static u8 esdhc_readb_fixup(struct sdhci_host *host, |
| 172 | int spec_reg, u32 value) |
| 173 | { |
| 174 | u8 ret; |
| 175 | u8 dma_bits; |
| 176 | int shift = (spec_reg & 0x3) * 8; |
| 177 | |
| 178 | ret = (value >> shift) & 0xff; |
| 179 | |
| 180 | /* |
| 181 | * "DMA select" locates at offset 0x28 in SD specification, but on |
| 182 | * P5020 or P3041, it locates at 0x29. |
| 183 | */ |
| 184 | if (spec_reg == SDHCI_HOST_CONTROL) { |
| 185 | /* DMA select is 22,23 bits in Protocol Control Register */ |
| 186 | dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK; |
| 187 | /* fixup the result */ |
| 188 | ret &= ~SDHCI_CTRL_DMA_MASK; |
| 189 | ret |= dma_bits; |
| 190 | } |
| 191 | return ret; |
| 192 | } |
| 193 | |
| 194 | /** |
| 195 | * esdhc_write*_fixup - Fixup the SD spec register value so that it could be |
| 196 | * written into eSDHC register. |
| 197 | * |
| 198 | * @host: pointer to sdhci_host |
| 199 | * @spec_reg: SD spec register address |
| 200 | * @value: 8/16/32bit SD spec register value that would be written |
| 201 | * @old_value: 32bit eSDHC register value on spec_reg address |
| 202 | * |
| 203 | * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC |
| 204 | * registers are 32 bits. There are differences in register size, register |
| 205 | * address, register function, bit position and function between eSDHC spec |
| 206 | * and SD spec. |
| 207 | * |
| 208 | * Return a fixed up register value |
| 209 | */ |
| 210 | static u32 esdhc_writel_fixup(struct sdhci_host *host, |
| 211 | int spec_reg, u32 value, u32 old_value) |
| 212 | { |
| 213 | u32 ret; |
| 214 | |
| 215 | /* |
| 216 | * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE] |
| 217 | * when SYSCTL[RSTD] is set for some special operations. |
| 218 | * No any impact on other operation. |
| 219 | */ |
| 220 | if (spec_reg == SDHCI_INT_ENABLE) |
| 221 | ret = value | SDHCI_INT_BLK_GAP; |
| 222 | else |
| 223 | ret = value; |
| 224 | |
| 225 | return ret; |
| 226 | } |
| 227 | |
| 228 | static u32 esdhc_writew_fixup(struct sdhci_host *host, |
| 229 | int spec_reg, u16 value, u32 old_value) |
| 230 | { |
| 231 | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| 232 | int shift = (spec_reg & 0x2) * 8; |
| 233 | u32 ret; |
| 234 | |
| 235 | switch (spec_reg) { |
| 236 | case SDHCI_TRANSFER_MODE: |
| 237 | /* |
| 238 | * Postpone this write, we must do it together with a |
| 239 | * command write that is down below. Return old value. |
| 240 | */ |
| 241 | pltfm_host->xfer_mode_shadow = value; |
| 242 | return old_value; |
| 243 | case SDHCI_COMMAND: |
| 244 | ret = (value << 16) | pltfm_host->xfer_mode_shadow; |
| 245 | return ret; |
| 246 | } |
| 247 | |
| 248 | ret = old_value & (~(0xffff << shift)); |
| 249 | ret |= (value << shift); |
| 250 | |
| 251 | if (spec_reg == SDHCI_BLOCK_SIZE) { |
| 252 | /* |
| 253 | * Two last DMA bits are reserved, and first one is used for |
| 254 | * non-standard blksz of 4096 bytes that we don't support |
| 255 | * yet. So clear the DMA boundary bits. |
| 256 | */ |
| 257 | ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0)); |
| 258 | } |
| 259 | return ret; |
| 260 | } |
| 261 | |
| 262 | static u32 esdhc_writeb_fixup(struct sdhci_host *host, |
| 263 | int spec_reg, u8 value, u32 old_value) |
| 264 | { |
| 265 | u32 ret; |
| 266 | u32 dma_bits; |
| 267 | u8 tmp; |
| 268 | int shift = (spec_reg & 0x3) * 8; |
| 269 | |
| 270 | /* |
| 271 | * eSDHC doesn't have a standard power control register, so we do |
| 272 | * nothing here to avoid incorrect operation. |
| 273 | */ |
| 274 | if (spec_reg == SDHCI_POWER_CONTROL) |
| 275 | return old_value; |
| 276 | /* |
| 277 | * "DMA select" location is offset 0x28 in SD specification, but on |
| 278 | * P5020 or P3041, it's located at 0x29. |
| 279 | */ |
| 280 | if (spec_reg == SDHCI_HOST_CONTROL) { |
| 281 | /* |
| 282 | * If host control register is not standard, exit |
| 283 | * this function |
| 284 | */ |
| 285 | if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL) |
| 286 | return old_value; |
| 287 | |
| 288 | /* DMA select is 22,23 bits in Protocol Control Register */ |
| 289 | dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5; |
| 290 | ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits; |
| 291 | tmp = (value & (~SDHCI_CTRL_DMA_MASK)) | |
| 292 | (old_value & SDHCI_CTRL_DMA_MASK); |
| 293 | ret = (ret & (~0xff)) | tmp; |
| 294 | |
| 295 | /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */ |
| 296 | ret &= ~ESDHC_HOST_CONTROL_RES; |
| 297 | return ret; |
| 298 | } |
| 299 | |
| 300 | ret = (old_value & (~(0xff << shift))) | (value << shift); |
| 301 | return ret; |
| 302 | } |
| 303 | |
| 304 | static u32 esdhc_be_readl(struct sdhci_host *host, int reg) |
| 305 | { |
| 306 | u32 ret; |
| 307 | u32 value; |
| 308 | |
| 309 | if (reg == SDHCI_CAPABILITIES_1) |
| 310 | value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1); |
| 311 | else |
| 312 | value = ioread32be(host->ioaddr + reg); |
| 313 | |
| 314 | ret = esdhc_readl_fixup(host, reg, value); |
| 315 | |
| 316 | return ret; |
| 317 | } |
| 318 | |
| 319 | static u32 esdhc_le_readl(struct sdhci_host *host, int reg) |
| 320 | { |
| 321 | u32 ret; |
| 322 | u32 value; |
| 323 | |
| 324 | if (reg == SDHCI_CAPABILITIES_1) |
| 325 | value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1); |
| 326 | else |
| 327 | value = ioread32(host->ioaddr + reg); |
| 328 | |
| 329 | ret = esdhc_readl_fixup(host, reg, value); |
| 330 | |
| 331 | return ret; |
| 332 | } |
| 333 | |
| 334 | static u16 esdhc_be_readw(struct sdhci_host *host, int reg) |
| 335 | { |
| 336 | u16 ret; |
| 337 | u32 value; |
| 338 | int base = reg & ~0x3; |
| 339 | |
| 340 | value = ioread32be(host->ioaddr + base); |
| 341 | ret = esdhc_readw_fixup(host, reg, value); |
| 342 | return ret; |
| 343 | } |
| 344 | |
| 345 | static u16 esdhc_le_readw(struct sdhci_host *host, int reg) |
| 346 | { |
| 347 | u16 ret; |
| 348 | u32 value; |
| 349 | int base = reg & ~0x3; |
| 350 | |
| 351 | value = ioread32(host->ioaddr + base); |
| 352 | ret = esdhc_readw_fixup(host, reg, value); |
| 353 | return ret; |
| 354 | } |
| 355 | |
| 356 | static u8 esdhc_be_readb(struct sdhci_host *host, int reg) |
| 357 | { |
| 358 | u8 ret; |
| 359 | u32 value; |
| 360 | int base = reg & ~0x3; |
| 361 | |
| 362 | value = ioread32be(host->ioaddr + base); |
| 363 | ret = esdhc_readb_fixup(host, reg, value); |
| 364 | return ret; |
| 365 | } |
| 366 | |
| 367 | static u8 esdhc_le_readb(struct sdhci_host *host, int reg) |
| 368 | { |
| 369 | u8 ret; |
| 370 | u32 value; |
| 371 | int base = reg & ~0x3; |
| 372 | |
| 373 | value = ioread32(host->ioaddr + base); |
| 374 | ret = esdhc_readb_fixup(host, reg, value); |
| 375 | return ret; |
| 376 | } |
| 377 | |
| 378 | static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg) |
| 379 | { |
| 380 | u32 value; |
| 381 | |
| 382 | value = esdhc_writel_fixup(host, reg, val, 0); |
| 383 | iowrite32be(value, host->ioaddr + reg); |
| 384 | } |
| 385 | |
| 386 | static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg) |
| 387 | { |
| 388 | u32 value; |
| 389 | |
| 390 | value = esdhc_writel_fixup(host, reg, val, 0); |
| 391 | iowrite32(value, host->ioaddr + reg); |
| 392 | } |
| 393 | |
| 394 | static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg) |
| 395 | { |
| 396 | int base = reg & ~0x3; |
| 397 | u32 value; |
| 398 | u32 ret; |
| 399 | |
| 400 | value = ioread32be(host->ioaddr + base); |
| 401 | ret = esdhc_writew_fixup(host, reg, val, value); |
| 402 | if (reg != SDHCI_TRANSFER_MODE) |
| 403 | iowrite32be(ret, host->ioaddr + base); |
| 404 | } |
| 405 | |
| 406 | static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg) |
| 407 | { |
| 408 | int base = reg & ~0x3; |
| 409 | u32 value; |
| 410 | u32 ret; |
| 411 | |
| 412 | value = ioread32(host->ioaddr + base); |
| 413 | ret = esdhc_writew_fixup(host, reg, val, value); |
| 414 | if (reg != SDHCI_TRANSFER_MODE) |
| 415 | iowrite32(ret, host->ioaddr + base); |
| 416 | } |
| 417 | |
| 418 | static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg) |
| 419 | { |
| 420 | int base = reg & ~0x3; |
| 421 | u32 value; |
| 422 | u32 ret; |
| 423 | |
| 424 | value = ioread32be(host->ioaddr + base); |
| 425 | ret = esdhc_writeb_fixup(host, reg, val, value); |
| 426 | iowrite32be(ret, host->ioaddr + base); |
| 427 | } |
| 428 | |
| 429 | static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg) |
| 430 | { |
| 431 | int base = reg & ~0x3; |
| 432 | u32 value; |
| 433 | u32 ret; |
| 434 | |
| 435 | value = ioread32(host->ioaddr + base); |
| 436 | ret = esdhc_writeb_fixup(host, reg, val, value); |
| 437 | iowrite32(ret, host->ioaddr + base); |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * For Abort or Suspend after Stop at Block Gap, ignore the ADMA |
| 442 | * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC]) |
| 443 | * and Block Gap Event(IRQSTAT[BGE]) are also set. |
| 444 | * For Continue, apply soft reset for data(SYSCTL[RSTD]); |
| 445 | * and re-issue the entire read transaction from beginning. |
| 446 | */ |
| 447 | static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask) |
| 448 | { |
| 449 | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| 450 | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| 451 | bool applicable; |
| 452 | dma_addr_t dmastart; |
| 453 | dma_addr_t dmanow; |
| 454 | |
| 455 | applicable = (intmask & SDHCI_INT_DATA_END) && |
| 456 | (intmask & SDHCI_INT_BLK_GAP) && |
| 457 | (esdhc->vendor_ver == VENDOR_V_23); |
| 458 | if (!applicable) |
| 459 | return; |
| 460 | |
| 461 | host->data->error = 0; |
| 462 | dmastart = sg_dma_address(host->data->sg); |
| 463 | dmanow = dmastart + host->data->bytes_xfered; |
| 464 | /* |
| 465 | * Force update to the next DMA block boundary. |
| 466 | */ |
| 467 | dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + |
| 468 | SDHCI_DEFAULT_BOUNDARY_SIZE; |
| 469 | host->data->bytes_xfered = dmanow - dmastart; |
| 470 | sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); |
| 471 | } |
| 472 | |
| 473 | static int esdhc_of_enable_dma(struct sdhci_host *host) |
| 474 | { |
| 475 | u32 value; |
| 476 | struct device *dev = mmc_dev(host->mmc); |
| 477 | |
| 478 | if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") || |
| 479 | of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) |
| 480 | dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40)); |
| 481 | |
| 482 | value = sdhci_readl(host, ESDHC_DMA_SYSCTL); |
| 483 | |
| 484 | if (of_dma_is_coherent(dev->of_node)) |
| 485 | value |= ESDHC_DMA_SNOOP; |
| 486 | else |
| 487 | value &= ~ESDHC_DMA_SNOOP; |
| 488 | |
| 489 | sdhci_writel(host, value, ESDHC_DMA_SYSCTL); |
| 490 | return 0; |
| 491 | } |
| 492 | |
| 493 | static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host) |
| 494 | { |
| 495 | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| 496 | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| 497 | |
| 498 | if (esdhc->peripheral_clock) |
| 499 | return esdhc->peripheral_clock; |
| 500 | else |
| 501 | return pltfm_host->clock; |
| 502 | } |
| 503 | |
| 504 | static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host) |
| 505 | { |
| 506 | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| 507 | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| 508 | unsigned int clock; |
| 509 | |
| 510 | if (esdhc->peripheral_clock) |
| 511 | clock = esdhc->peripheral_clock; |
| 512 | else |
| 513 | clock = pltfm_host->clock; |
| 514 | return clock / 256 / 16; |
| 515 | } |
| 516 | |
| 517 | static void esdhc_clock_enable(struct sdhci_host *host, bool enable) |
| 518 | { |
| 519 | u32 val; |
| 520 | ktime_t timeout; |
| 521 | |
| 522 | val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); |
| 523 | |
| 524 | if (enable) |
| 525 | val |= ESDHC_CLOCK_SDCLKEN; |
| 526 | else |
| 527 | val &= ~ESDHC_CLOCK_SDCLKEN; |
| 528 | |
| 529 | sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL); |
| 530 | |
| 531 | /* Wait max 20 ms */ |
| 532 | timeout = ktime_add_ms(ktime_get(), 20); |
| 533 | val = ESDHC_CLOCK_STABLE; |
| 534 | while (1) { |
| 535 | bool timedout = ktime_after(ktime_get(), timeout); |
| 536 | |
| 537 | if (sdhci_readl(host, ESDHC_PRSSTAT) & val) |
| 538 | break; |
| 539 | if (timedout) { |
| 540 | pr_err("%s: Internal clock never stabilised.\n", |
| 541 | mmc_hostname(host->mmc)); |
| 542 | break; |
| 543 | } |
| 544 | udelay(10); |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock) |
| 549 | { |
| 550 | struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| 551 | struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| 552 | int pre_div = 1; |
| 553 | int div = 1; |
| 554 | ktime_t timeout; |
| 555 | long fixup = 0; |
| 556 | u32 temp; |
| 557 | |
| 558 | host->mmc->actual_clock = 0; |
| 559 | |
| 560 | if (clock == 0) { |
| 561 | esdhc_clock_enable(host, false); |
| 562 | return; |
| 563 | } |
| 564 | |
| 565 | /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */ |
| 566 | if (esdhc->vendor_ver < VENDOR_V_23) |
| 567 | pre_div = 2; |
| 568 | |
| 569 | if (host->mmc->card && mmc_card_sd(host->mmc->card) && |
| 570 | esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY) |
| 571 | fixup = esdhc->clk_fixup->sd_dflt_max_clk; |
| 572 | else if (esdhc->clk_fixup) |
| 573 | fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing]; |
| 574 | |
| 575 | if (fixup && clock > fixup) |
| 576 | clock = fixup; |
| 577 | |
| 578 | temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); |
| 579 | temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | |
| 580 | ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK); |
| 581 | sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); |
| 582 | |
| 583 | while (host->max_clk / pre_div / 16 > clock && pre_div < 256) |
| 584 | pre_div *= 2; |
| 585 | |
| 586 | while (host->max_clk / pre_div / div > clock && div < 16) |
| 587 | div++; |
| 588 | |
| 589 | dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n", |
| 590 | clock, host->max_clk / pre_div / div); |
| 591 | host->mmc->actual_clock = host->max_clk / pre_div / div; |
| 592 | pre_div >>= 1; |
| 593 | div--; |
| 594 | |
| 595 | temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); |
| 596 | temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN |
| 597 | | (div << ESDHC_DIVIDER_SHIFT) |
| 598 | | (pre_div << ESDHC_PREDIV_SHIFT)); |
| 599 | sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); |
| 600 | |
| 601 | /* Wait max 20 ms */ |
| 602 | timeout = ktime_add_ms(ktime_get(), 20); |
| 603 | while (1) { |
| 604 | bool timedout = ktime_after(ktime_get(), timeout); |
| 605 | |
| 606 | if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) |
| 607 | break; |
| 608 | if (timedout) { |
| 609 | pr_err("%s: Internal clock never stabilised.\n", |
| 610 | mmc_hostname(host->mmc)); |
| 611 | return; |
| 612 | } |
| 613 | udelay(10); |
| 614 | } |
| 615 | |
| 616 | temp |= ESDHC_CLOCK_SDCLKEN; |
| 617 | sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); |
| 618 | } |
| 619 | |
| 620 | static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width) |
| 621 | { |
| 622 | u32 ctrl; |
| 623 | |
| 624 | ctrl = sdhci_readl(host, ESDHC_PROCTL); |
| 625 | ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK); |
| 626 | switch (width) { |
| 627 | case MMC_BUS_WIDTH_8: |
| 628 | ctrl |= ESDHC_CTRL_8BITBUS; |
| 629 | break; |
| 630 | |
| 631 | case MMC_BUS_WIDTH_4: |
| 632 | ctrl |= ESDHC_CTRL_4BITBUS; |
| 633 | break; |
| 634 | |
| 635 | default: |
| 636 | break; |
| 637 | } |
| 638 | |
| 639 | sdhci_writel(host, ctrl, ESDHC_PROCTL); |
| 640 | } |
| 641 | |
| 642 | static void esdhc_reset(struct sdhci_host *host, u8 mask) |
| 643 | { |
| 644 | u32 val; |
| 645 | |
| 646 | sdhci_reset(host, mask); |
| 647 | |
| 648 | sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); |
| 649 | sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); |
| 650 | |
| 651 | if (mask & SDHCI_RESET_ALL) { |
| 652 | val = sdhci_readl(host, ESDHC_TBCTL); |
| 653 | val &= ~ESDHC_TB_EN; |
| 654 | sdhci_writel(host, val, ESDHC_TBCTL); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | /* The SCFG, Supplemental Configuration Unit, provides SoC specific |
| 659 | * configuration and status registers for the device. There is a |
| 660 | * SDHC IO VSEL control register on SCFG for some platforms. It's |
| 661 | * used to support SDHC IO voltage switching. |
| 662 | */ |
| 663 | static const struct of_device_id scfg_device_ids[] = { |
| 664 | { .compatible = "fsl,t1040-scfg", }, |
| 665 | { .compatible = "fsl,ls1012a-scfg", }, |
| 666 | { .compatible = "fsl,ls1046a-scfg", }, |
| 667 | {} |
| 668 | }; |
| 669 | |
| 670 | /* SDHC IO VSEL control register definition */ |
| 671 | #define SCFG_SDHCIOVSELCR 0x408 |
| 672 | #define SDHCIOVSELCR_TGLEN 0x80000000 |
| 673 | #define SDHCIOVSELCR_VSELVAL 0x60000000 |
| 674 | #define SDHCIOVSELCR_SDHC_VS 0x00000001 |
| 675 | |
| 676 | static int esdhc_signal_voltage_switch(struct mmc_host *mmc, |
| 677 | struct mmc_ios *ios) |
| 678 | { |
| 679 | struct sdhci_host *host = mmc_priv(mmc); |
| 680 | struct device_node *scfg_node; |
| 681 | void __iomem *scfg_base = NULL; |
| 682 | u32 sdhciovselcr; |
| 683 | u32 val; |
| 684 | |
| 685 | /* |
| 686 | * Signal Voltage Switching is only applicable for Host Controllers |
| 687 | * v3.00 and above. |
| 688 | */ |
| 689 | if (host->version < SDHCI_SPEC_300) |
| 690 | return 0; |
| 691 | |
| 692 | val = sdhci_readl(host, ESDHC_PROCTL); |
| 693 | |
| 694 | switch (ios->signal_voltage) { |
| 695 | case MMC_SIGNAL_VOLTAGE_330: |
| 696 | val &= ~ESDHC_VOLT_SEL; |
| 697 | sdhci_writel(host, val, ESDHC_PROCTL); |
| 698 | return 0; |
| 699 | case MMC_SIGNAL_VOLTAGE_180: |
| 700 | scfg_node = of_find_matching_node(NULL, scfg_device_ids); |
| 701 | if (scfg_node) |
| 702 | scfg_base = of_iomap(scfg_node, 0); |
| 703 | if (scfg_base) { |
| 704 | sdhciovselcr = SDHCIOVSELCR_TGLEN | |
| 705 | SDHCIOVSELCR_VSELVAL; |
| 706 | iowrite32be(sdhciovselcr, |
| 707 | scfg_base + SCFG_SDHCIOVSELCR); |
| 708 | |
| 709 | val |= ESDHC_VOLT_SEL; |
| 710 | sdhci_writel(host, val, ESDHC_PROCTL); |
| 711 | mdelay(5); |
| 712 | |
| 713 | sdhciovselcr = SDHCIOVSELCR_TGLEN | |
| 714 | SDHCIOVSELCR_SDHC_VS; |
| 715 | iowrite32be(sdhciovselcr, |
| 716 | scfg_base + SCFG_SDHCIOVSELCR); |
| 717 | iounmap(scfg_base); |
| 718 | } else { |
| 719 | val |= ESDHC_VOLT_SEL; |
| 720 | sdhci_writel(host, val, ESDHC_PROCTL); |
| 721 | } |
| 722 | return 0; |
| 723 | default: |
| 724 | return 0; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode) |
| 729 | { |
| 730 | struct sdhci_host *host = mmc_priv(mmc); |
| 731 | u32 val; |
| 732 | |
| 733 | /* Use tuning block for tuning procedure */ |
| 734 | esdhc_clock_enable(host, false); |
| 735 | val = sdhci_readl(host, ESDHC_DMA_SYSCTL); |
| 736 | val |= ESDHC_FLUSH_ASYNC_FIFO; |
| 737 | sdhci_writel(host, val, ESDHC_DMA_SYSCTL); |
| 738 | |
| 739 | val = sdhci_readl(host, ESDHC_TBCTL); |
| 740 | val |= ESDHC_TB_EN; |
| 741 | sdhci_writel(host, val, ESDHC_TBCTL); |
| 742 | esdhc_clock_enable(host, true); |
| 743 | |
| 744 | return sdhci_execute_tuning(mmc, opcode); |
| 745 | } |
| 746 | |
| 747 | #ifdef CONFIG_PM_SLEEP |
| 748 | static u32 esdhc_proctl; |
| 749 | static int esdhc_of_suspend(struct device *dev) |
| 750 | { |
| 751 | struct sdhci_host *host = dev_get_drvdata(dev); |
| 752 | |
| 753 | esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL); |
| 754 | |
| 755 | if (host->tuning_mode != SDHCI_TUNING_MODE_3) |
| 756 | mmc_retune_needed(host->mmc); |
| 757 | |
| 758 | return sdhci_suspend_host(host); |
| 759 | } |
| 760 | |
| 761 | static int esdhc_of_resume(struct device *dev) |
| 762 | { |
| 763 | struct sdhci_host *host = dev_get_drvdata(dev); |
| 764 | int ret = sdhci_resume_host(host); |
| 765 | |
| 766 | if (ret == 0) { |
| 767 | /* Isn't this already done by sdhci_resume_host() ? --rmk */ |
| 768 | esdhc_of_enable_dma(host); |
| 769 | sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL); |
| 770 | } |
| 771 | return ret; |
| 772 | } |
| 773 | #endif |
| 774 | |
| 775 | static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops, |
| 776 | esdhc_of_suspend, |
| 777 | esdhc_of_resume); |
| 778 | |
| 779 | static const struct sdhci_ops sdhci_esdhc_be_ops = { |
| 780 | .read_l = esdhc_be_readl, |
| 781 | .read_w = esdhc_be_readw, |
| 782 | .read_b = esdhc_be_readb, |
| 783 | .write_l = esdhc_be_writel, |
| 784 | .write_w = esdhc_be_writew, |
| 785 | .write_b = esdhc_be_writeb, |
| 786 | .set_clock = esdhc_of_set_clock, |
| 787 | .enable_dma = esdhc_of_enable_dma, |
| 788 | .get_max_clock = esdhc_of_get_max_clock, |
| 789 | .get_min_clock = esdhc_of_get_min_clock, |
| 790 | .adma_workaround = esdhc_of_adma_workaround, |
| 791 | .set_bus_width = esdhc_pltfm_set_bus_width, |
| 792 | .reset = esdhc_reset, |
| 793 | .set_uhs_signaling = sdhci_set_uhs_signaling, |
| 794 | }; |
| 795 | |
| 796 | static const struct sdhci_ops sdhci_esdhc_le_ops = { |
| 797 | .read_l = esdhc_le_readl, |
| 798 | .read_w = esdhc_le_readw, |
| 799 | .read_b = esdhc_le_readb, |
| 800 | .write_l = esdhc_le_writel, |
| 801 | .write_w = esdhc_le_writew, |
| 802 | .write_b = esdhc_le_writeb, |
| 803 | .set_clock = esdhc_of_set_clock, |
| 804 | .enable_dma = esdhc_of_enable_dma, |
| 805 | .get_max_clock = esdhc_of_get_max_clock, |
| 806 | .get_min_clock = esdhc_of_get_min_clock, |
| 807 | .adma_workaround = esdhc_of_adma_workaround, |
| 808 | .set_bus_width = esdhc_pltfm_set_bus_width, |
| 809 | .reset = esdhc_reset, |
| 810 | .set_uhs_signaling = sdhci_set_uhs_signaling, |
| 811 | }; |
| 812 | |
| 813 | static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = { |
| 814 | .quirks = ESDHC_DEFAULT_QUIRKS | |
| 815 | #ifdef CONFIG_PPC |
| 816 | SDHCI_QUIRK_BROKEN_CARD_DETECTION | |
| 817 | #endif |
| 818 | SDHCI_QUIRK_NO_CARD_NO_RESET | |
| 819 | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, |
| 820 | .ops = &sdhci_esdhc_be_ops, |
| 821 | }; |
| 822 | |
| 823 | static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = { |
| 824 | .quirks = ESDHC_DEFAULT_QUIRKS | |
| 825 | SDHCI_QUIRK_NO_CARD_NO_RESET | |
| 826 | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, |
| 827 | .ops = &sdhci_esdhc_le_ops, |
| 828 | }; |
| 829 | |
| 830 | static struct soc_device_attribute soc_incorrect_hostver[] = { |
| 831 | { .family = "QorIQ T4240", .revision = "1.0", }, |
| 832 | { .family = "QorIQ T4240", .revision = "2.0", }, |
| 833 | { }, |
| 834 | }; |
| 835 | |
| 836 | static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host) |
| 837 | { |
| 838 | const struct of_device_id *match; |
| 839 | struct sdhci_pltfm_host *pltfm_host; |
| 840 | struct sdhci_esdhc *esdhc; |
| 841 | struct device_node *np; |
| 842 | struct clk *clk; |
| 843 | u32 val; |
| 844 | u16 host_ver; |
| 845 | |
| 846 | pltfm_host = sdhci_priv(host); |
| 847 | esdhc = sdhci_pltfm_priv(pltfm_host); |
| 848 | |
| 849 | host_ver = sdhci_readw(host, SDHCI_HOST_VERSION); |
| 850 | esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >> |
| 851 | SDHCI_VENDOR_VER_SHIFT; |
| 852 | esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK; |
| 853 | if (soc_device_match(soc_incorrect_hostver)) |
| 854 | esdhc->quirk_incorrect_hostver = true; |
| 855 | else |
| 856 | esdhc->quirk_incorrect_hostver = false; |
| 857 | |
| 858 | match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node); |
| 859 | if (match) |
| 860 | esdhc->clk_fixup = match->data; |
| 861 | np = pdev->dev.of_node; |
| 862 | clk = of_clk_get(np, 0); |
| 863 | if (!IS_ERR(clk)) { |
| 864 | /* |
| 865 | * esdhc->peripheral_clock would be assigned with a value |
| 866 | * which is eSDHC base clock when use periperal clock. |
| 867 | * For ls1046a, the clock value got by common clk API is |
| 868 | * peripheral clock while the eSDHC base clock is 1/2 |
| 869 | * peripheral clock. |
| 870 | */ |
| 871 | if (of_device_is_compatible(np, "fsl,ls1046a-esdhc")) |
| 872 | esdhc->peripheral_clock = clk_get_rate(clk) / 2; |
| 873 | else |
| 874 | esdhc->peripheral_clock = clk_get_rate(clk); |
| 875 | |
| 876 | clk_put(clk); |
| 877 | } |
| 878 | |
| 879 | if (esdhc->peripheral_clock) { |
| 880 | esdhc_clock_enable(host, false); |
| 881 | val = sdhci_readl(host, ESDHC_DMA_SYSCTL); |
| 882 | val |= ESDHC_PERIPHERAL_CLK_SEL; |
| 883 | sdhci_writel(host, val, ESDHC_DMA_SYSCTL); |
| 884 | esdhc_clock_enable(host, true); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | static int sdhci_esdhc_probe(struct platform_device *pdev) |
| 889 | { |
| 890 | struct sdhci_host *host; |
| 891 | struct device_node *np; |
| 892 | struct sdhci_pltfm_host *pltfm_host; |
| 893 | struct sdhci_esdhc *esdhc; |
| 894 | int ret; |
| 895 | |
| 896 | np = pdev->dev.of_node; |
| 897 | |
| 898 | if (of_property_read_bool(np, "little-endian")) |
| 899 | host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata, |
| 900 | sizeof(struct sdhci_esdhc)); |
| 901 | else |
| 902 | host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata, |
| 903 | sizeof(struct sdhci_esdhc)); |
| 904 | |
| 905 | if (IS_ERR(host)) |
| 906 | return PTR_ERR(host); |
| 907 | |
| 908 | host->mmc_host_ops.start_signal_voltage_switch = |
| 909 | esdhc_signal_voltage_switch; |
| 910 | host->mmc_host_ops.execute_tuning = esdhc_execute_tuning; |
| 911 | host->tuning_delay = 1; |
| 912 | |
| 913 | esdhc_init(pdev, host); |
| 914 | |
| 915 | sdhci_get_of_property(pdev); |
| 916 | |
| 917 | pltfm_host = sdhci_priv(host); |
| 918 | esdhc = sdhci_pltfm_priv(pltfm_host); |
| 919 | if (esdhc->vendor_ver == VENDOR_V_22) |
| 920 | host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23; |
| 921 | |
| 922 | if (esdhc->vendor_ver > VENDOR_V_22) |
| 923 | host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ; |
| 924 | |
| 925 | if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) { |
| 926 | host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST; |
| 927 | host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; |
| 928 | } |
| 929 | |
| 930 | if (of_device_is_compatible(np, "fsl,p5040-esdhc") || |
| 931 | of_device_is_compatible(np, "fsl,p5020-esdhc") || |
| 932 | of_device_is_compatible(np, "fsl,p4080-esdhc") || |
| 933 | of_device_is_compatible(np, "fsl,p1020-esdhc") || |
| 934 | of_device_is_compatible(np, "fsl,t1040-esdhc")) |
| 935 | host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION; |
| 936 | |
| 937 | if (of_device_is_compatible(np, "fsl,ls1021a-esdhc")) |
| 938 | host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; |
| 939 | |
| 940 | if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { |
| 941 | /* |
| 942 | * Freescale messed up with P2020 as it has a non-standard |
| 943 | * host control register |
| 944 | */ |
| 945 | host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL; |
| 946 | } |
| 947 | |
| 948 | /* call to generic mmc_of_parse to support additional capabilities */ |
| 949 | ret = mmc_of_parse(host->mmc); |
| 950 | if (ret) |
| 951 | goto err; |
| 952 | |
| 953 | mmc_of_parse_voltage(np, &host->ocr_mask); |
| 954 | |
| 955 | ret = sdhci_add_host(host); |
| 956 | if (ret) |
| 957 | goto err; |
| 958 | |
| 959 | return 0; |
| 960 | err: |
| 961 | sdhci_pltfm_free(pdev); |
| 962 | return ret; |
| 963 | } |
| 964 | |
| 965 | static struct platform_driver sdhci_esdhc_driver = { |
| 966 | .driver = { |
| 967 | .name = "sdhci-esdhc", |
| 968 | .of_match_table = sdhci_esdhc_of_match, |
| 969 | .pm = &esdhc_of_dev_pm_ops, |
| 970 | }, |
| 971 | .probe = sdhci_esdhc_probe, |
| 972 | .remove = sdhci_pltfm_unregister, |
| 973 | }; |
| 974 | |
| 975 | module_platform_driver(sdhci_esdhc_driver); |
| 976 | |
| 977 | MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC"); |
| 978 | MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, " |
| 979 | "Anton Vorontsov <avorontsov@ru.mvista.com>"); |
| 980 | MODULE_LICENSE("GPL v2"); |