blob: ddbad8d5094906af82109ad196dcc43203dd3422 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/module.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/highmem.h>
11#include <linux/time.h>
12#include <linux/init.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/writeback.h>
18#include <linux/statfs.h>
19#include <linux/compat.h>
20#include <linux/parser.h>
21#include <linux/ctype.h>
22#include <linux/namei.h>
23#include <linux/miscdevice.h>
24#include <linux/magic.h>
25#include <linux/slab.h>
26#include <linux/cleancache.h>
27#include <linux/ratelimit.h>
28#include <linux/crc32c.h>
29#include <linux/btrfs.h>
30#include "delayed-inode.h"
31#include "ctree.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
35#include "print-tree.h"
36#include "props.h"
37#include "xattr.h"
38#include "volumes.h"
39#include "export.h"
40#include "compression.h"
41#include "rcu-string.h"
42#include "dev-replace.h"
43#include "free-space-cache.h"
44#include "backref.h"
45#include "tests/btrfs-tests.h"
46
47#include "qgroup.h"
48#define CREATE_TRACE_POINTS
49#include <trace/events/btrfs.h>
50
51static const struct super_operations btrfs_super_ops;
52
53/*
54 * Types for mounting the default subvolume and a subvolume explicitly
55 * requested by subvol=/path. That way the callchain is straightforward and we
56 * don't have to play tricks with the mount options and recursive calls to
57 * btrfs_mount.
58 *
59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
60 */
61static struct file_system_type btrfs_fs_type;
62static struct file_system_type btrfs_root_fs_type;
63
64static int btrfs_remount(struct super_block *sb, int *flags, char *data);
65
66const char *btrfs_decode_error(int errno)
67{
68 char *errstr = "unknown";
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 case -ENOSPC:
84 errstr = "No space left";
85 break;
86 case -ENOENT:
87 errstr = "No such entry";
88 break;
89 }
90
91 return errstr;
92}
93
94/*
95 * __btrfs_handle_fs_error decodes expected errors from the caller and
96 * invokes the approciate error response.
97 */
98__cold
99void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 unsigned int line, int errno, const char *fmt, ...)
101{
102 struct super_block *sb = fs_info->sb;
103#ifdef CONFIG_PRINTK
104 const char *errstr;
105#endif
106
107 /*
108 * Special case: if the error is EROFS, and we're already
109 * under SB_RDONLY, then it is safe here.
110 */
111 if (errno == -EROFS && sb_rdonly(sb))
112 return;
113
114#ifdef CONFIG_PRINTK
115 errstr = btrfs_decode_error(errno);
116 if (fmt) {
117 struct va_format vaf;
118 va_list args;
119
120 va_start(args, fmt);
121 vaf.fmt = fmt;
122 vaf.va = &args;
123
124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 sb->s_id, function, line, errno, errstr, &vaf);
126 va_end(args);
127 } else {
128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 sb->s_id, function, line, errno, errstr);
130 }
131#endif
132
133 /*
134 * Today we only save the error info to memory. Long term we'll
135 * also send it down to the disk
136 */
137 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
138
139 /* Don't go through full error handling during mount */
140 if (!(sb->s_flags & SB_BORN))
141 return;
142
143 if (sb_rdonly(sb))
144 return;
145
146 /* btrfs handle error by forcing the filesystem readonly */
147 sb->s_flags |= SB_RDONLY;
148 btrfs_info(fs_info, "forced readonly");
149 /*
150 * Note that a running device replace operation is not canceled here
151 * although there is no way to update the progress. It would add the
152 * risk of a deadlock, therefore the canceling is omitted. The only
153 * penalty is that some I/O remains active until the procedure
154 * completes. The next time when the filesystem is mounted writeable
155 * again, the device replace operation continues.
156 */
157}
158
159#ifdef CONFIG_PRINTK
160static const char * const logtypes[] = {
161 "emergency",
162 "alert",
163 "critical",
164 "error",
165 "warning",
166 "notice",
167 "info",
168 "debug",
169};
170
171
172/*
173 * Use one ratelimit state per log level so that a flood of less important
174 * messages doesn't cause more important ones to be dropped.
175 */
176static struct ratelimit_state printk_limits[] = {
177 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
185};
186
187void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188{
189 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 struct va_format vaf;
191 va_list args;
192 int kern_level;
193 const char *type = logtypes[4];
194 struct ratelimit_state *ratelimit = &printk_limits[4];
195
196 va_start(args, fmt);
197
198 while ((kern_level = printk_get_level(fmt)) != 0) {
199 size_t size = printk_skip_level(fmt) - fmt;
200
201 if (kern_level >= '0' && kern_level <= '7') {
202 memcpy(lvl, fmt, size);
203 lvl[size] = '\0';
204 type = logtypes[kern_level - '0'];
205 ratelimit = &printk_limits[kern_level - '0'];
206 }
207 fmt += size;
208 }
209
210 vaf.fmt = fmt;
211 vaf.va = &args;
212
213 if (__ratelimit(ratelimit))
214 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
216
217 va_end(args);
218}
219#endif
220
221/*
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
224 * one.
225 *
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
230 *
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
233 */
234__cold
235void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 const char *function,
237 unsigned int line, int errno)
238{
239 struct btrfs_fs_info *fs_info = trans->fs_info;
240
241 trans->aborted = errno;
242 /* Nothing used. The other threads that have joined this
243 * transaction may be able to continue. */
244 if (!trans->dirty && list_empty(&trans->new_bgs)) {
245 const char *errstr;
246
247 errstr = btrfs_decode_error(errno);
248 btrfs_warn(fs_info,
249 "%s:%d: Aborting unused transaction(%s).",
250 function, line, errstr);
251 return;
252 }
253 WRITE_ONCE(trans->transaction->aborted, errno);
254 /* Wake up anybody who may be waiting on this transaction */
255 wake_up(&fs_info->transaction_wait);
256 wake_up(&fs_info->transaction_blocked_wait);
257 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
258}
259/*
260 * __btrfs_panic decodes unexpected, fatal errors from the caller,
261 * issues an alert, and either panics or BUGs, depending on mount options.
262 */
263__cold
264void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 unsigned int line, int errno, const char *fmt, ...)
266{
267 char *s_id = "<unknown>";
268 const char *errstr;
269 struct va_format vaf = { .fmt = fmt };
270 va_list args;
271
272 if (fs_info)
273 s_id = fs_info->sb->s_id;
274
275 va_start(args, fmt);
276 vaf.va = &args;
277
278 errstr = btrfs_decode_error(errno);
279 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 s_id, function, line, &vaf, errno, errstr);
282
283 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 function, line, &vaf, errno, errstr);
285 va_end(args);
286 /* Caller calls BUG() */
287}
288
289static void btrfs_put_super(struct super_block *sb)
290{
291 close_ctree(btrfs_sb(sb));
292}
293
294enum {
295 Opt_acl, Opt_noacl,
296 Opt_clear_cache,
297 Opt_commit_interval,
298 Opt_compress,
299 Opt_compress_force,
300 Opt_compress_force_type,
301 Opt_compress_type,
302 Opt_degraded,
303 Opt_device,
304 Opt_fatal_errors,
305 Opt_flushoncommit, Opt_noflushoncommit,
306 Opt_inode_cache, Opt_noinode_cache,
307 Opt_max_inline,
308 Opt_barrier, Opt_nobarrier,
309 Opt_datacow, Opt_nodatacow,
310 Opt_datasum, Opt_nodatasum,
311 Opt_defrag, Opt_nodefrag,
312 Opt_discard, Opt_nodiscard,
313 Opt_nologreplay,
314 Opt_norecovery,
315 Opt_ratio,
316 Opt_rescan_uuid_tree,
317 Opt_skip_balance,
318 Opt_space_cache, Opt_no_space_cache,
319 Opt_space_cache_version,
320 Opt_ssd, Opt_nossd,
321 Opt_ssd_spread, Opt_nossd_spread,
322 Opt_subvol,
323 Opt_subvol_empty,
324 Opt_subvolid,
325 Opt_thread_pool,
326 Opt_treelog, Opt_notreelog,
327 Opt_usebackuproot,
328 Opt_user_subvol_rm_allowed,
329
330 /* Deprecated options */
331 Opt_alloc_start,
332 Opt_recovery,
333 Opt_subvolrootid,
334
335 /* Debugging options */
336 Opt_check_integrity,
337 Opt_check_integrity_including_extent_data,
338 Opt_check_integrity_print_mask,
339 Opt_enospc_debug, Opt_noenospc_debug,
340#ifdef CONFIG_BTRFS_DEBUG
341 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342#endif
343#ifdef CONFIG_BTRFS_FS_REF_VERIFY
344 Opt_ref_verify,
345#endif
346 Opt_err,
347};
348
349static const match_table_t tokens = {
350 {Opt_acl, "acl"},
351 {Opt_noacl, "noacl"},
352 {Opt_clear_cache, "clear_cache"},
353 {Opt_commit_interval, "commit=%u"},
354 {Opt_compress, "compress"},
355 {Opt_compress_type, "compress=%s"},
356 {Opt_compress_force, "compress-force"},
357 {Opt_compress_force_type, "compress-force=%s"},
358 {Opt_degraded, "degraded"},
359 {Opt_device, "device=%s"},
360 {Opt_fatal_errors, "fatal_errors=%s"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_inode_cache, "inode_cache"},
364 {Opt_noinode_cache, "noinode_cache"},
365 {Opt_max_inline, "max_inline=%s"},
366 {Opt_barrier, "barrier"},
367 {Opt_nobarrier, "nobarrier"},
368 {Opt_datacow, "datacow"},
369 {Opt_nodatacow, "nodatacow"},
370 {Opt_datasum, "datasum"},
371 {Opt_nodatasum, "nodatasum"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_discard, "discard"},
375 {Opt_nodiscard, "nodiscard"},
376 {Opt_nologreplay, "nologreplay"},
377 {Opt_norecovery, "norecovery"},
378 {Opt_ratio, "metadata_ratio=%u"},
379 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 {Opt_skip_balance, "skip_balance"},
381 {Opt_space_cache, "space_cache"},
382 {Opt_no_space_cache, "nospace_cache"},
383 {Opt_space_cache_version, "space_cache=%s"},
384 {Opt_ssd, "ssd"},
385 {Opt_nossd, "nossd"},
386 {Opt_ssd_spread, "ssd_spread"},
387 {Opt_nossd_spread, "nossd_spread"},
388 {Opt_subvol, "subvol=%s"},
389 {Opt_subvol_empty, "subvol="},
390 {Opt_subvolid, "subvolid=%s"},
391 {Opt_thread_pool, "thread_pool=%u"},
392 {Opt_treelog, "treelog"},
393 {Opt_notreelog, "notreelog"},
394 {Opt_usebackuproot, "usebackuproot"},
395 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
396
397 /* Deprecated options */
398 {Opt_alloc_start, "alloc_start=%s"},
399 {Opt_recovery, "recovery"},
400 {Opt_subvolrootid, "subvolrootid=%d"},
401
402 /* Debugging options */
403 {Opt_check_integrity, "check_int"},
404 {Opt_check_integrity_including_extent_data, "check_int_data"},
405 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 {Opt_enospc_debug, "enospc_debug"},
407 {Opt_noenospc_debug, "noenospc_debug"},
408#ifdef CONFIG_BTRFS_DEBUG
409 {Opt_fragment_data, "fragment=data"},
410 {Opt_fragment_metadata, "fragment=metadata"},
411 {Opt_fragment_all, "fragment=all"},
412#endif
413#ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 {Opt_ref_verify, "ref_verify"},
415#endif
416 {Opt_err, NULL},
417};
418
419/*
420 * Regular mount options parser. Everything that is needed only when
421 * reading in a new superblock is parsed here.
422 * XXX JDM: This needs to be cleaned up for remount.
423 */
424int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 unsigned long new_flags)
426{
427 substring_t args[MAX_OPT_ARGS];
428 char *p, *num;
429 u64 cache_gen;
430 int intarg;
431 int ret = 0;
432 char *compress_type;
433 bool compress_force = false;
434 enum btrfs_compression_type saved_compress_type;
435 bool saved_compress_force;
436 int no_compress = 0;
437
438 cache_gen = btrfs_super_cache_generation(info->super_copy);
439 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
440 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
441 else if (cache_gen)
442 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
443
444 /*
445 * Even the options are empty, we still need to do extra check
446 * against new flags
447 */
448 if (!options)
449 goto check;
450
451 while ((p = strsep(&options, ",")) != NULL) {
452 int token;
453 if (!*p)
454 continue;
455
456 token = match_token(p, tokens, args);
457 switch (token) {
458 case Opt_degraded:
459 btrfs_info(info, "allowing degraded mounts");
460 btrfs_set_opt(info->mount_opt, DEGRADED);
461 break;
462 case Opt_subvol:
463 case Opt_subvol_empty:
464 case Opt_subvolid:
465 case Opt_subvolrootid:
466 case Opt_device:
467 /*
468 * These are parsed by btrfs_parse_subvol_options or
469 * btrfs_parse_device_options and can be ignored here.
470 */
471 break;
472 case Opt_nodatasum:
473 btrfs_set_and_info(info, NODATASUM,
474 "setting nodatasum");
475 break;
476 case Opt_datasum:
477 if (btrfs_test_opt(info, NODATASUM)) {
478 if (btrfs_test_opt(info, NODATACOW))
479 btrfs_info(info,
480 "setting datasum, datacow enabled");
481 else
482 btrfs_info(info, "setting datasum");
483 }
484 btrfs_clear_opt(info->mount_opt, NODATACOW);
485 btrfs_clear_opt(info->mount_opt, NODATASUM);
486 break;
487 case Opt_nodatacow:
488 if (!btrfs_test_opt(info, NODATACOW)) {
489 if (!btrfs_test_opt(info, COMPRESS) ||
490 !btrfs_test_opt(info, FORCE_COMPRESS)) {
491 btrfs_info(info,
492 "setting nodatacow, compression disabled");
493 } else {
494 btrfs_info(info, "setting nodatacow");
495 }
496 }
497 btrfs_clear_opt(info->mount_opt, COMPRESS);
498 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
499 btrfs_set_opt(info->mount_opt, NODATACOW);
500 btrfs_set_opt(info->mount_opt, NODATASUM);
501 break;
502 case Opt_datacow:
503 btrfs_clear_and_info(info, NODATACOW,
504 "setting datacow");
505 break;
506 case Opt_compress_force:
507 case Opt_compress_force_type:
508 compress_force = true;
509 /* Fallthrough */
510 case Opt_compress:
511 case Opt_compress_type:
512 saved_compress_type = btrfs_test_opt(info,
513 COMPRESS) ?
514 info->compress_type : BTRFS_COMPRESS_NONE;
515 saved_compress_force =
516 btrfs_test_opt(info, FORCE_COMPRESS);
517 if (token == Opt_compress ||
518 token == Opt_compress_force ||
519 strncmp(args[0].from, "zlib", 4) == 0) {
520 compress_type = "zlib";
521
522 info->compress_type = BTRFS_COMPRESS_ZLIB;
523 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
524 /*
525 * args[0] contains uninitialized data since
526 * for these tokens we don't expect any
527 * parameter.
528 */
529 if (token != Opt_compress &&
530 token != Opt_compress_force)
531 info->compress_level =
532 btrfs_compress_str2level(args[0].from);
533 btrfs_set_opt(info->mount_opt, COMPRESS);
534 btrfs_clear_opt(info->mount_opt, NODATACOW);
535 btrfs_clear_opt(info->mount_opt, NODATASUM);
536 no_compress = 0;
537 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
538 compress_type = "lzo";
539 info->compress_type = BTRFS_COMPRESS_LZO;
540 btrfs_set_opt(info->mount_opt, COMPRESS);
541 btrfs_clear_opt(info->mount_opt, NODATACOW);
542 btrfs_clear_opt(info->mount_opt, NODATASUM);
543 btrfs_set_fs_incompat(info, COMPRESS_LZO);
544 no_compress = 0;
545 } else if (strcmp(args[0].from, "zstd") == 0) {
546 compress_type = "zstd";
547 info->compress_type = BTRFS_COMPRESS_ZSTD;
548 btrfs_set_opt(info->mount_opt, COMPRESS);
549 btrfs_clear_opt(info->mount_opt, NODATACOW);
550 btrfs_clear_opt(info->mount_opt, NODATASUM);
551 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
552 no_compress = 0;
553 } else if (strncmp(args[0].from, "no", 2) == 0) {
554 compress_type = "no";
555 btrfs_clear_opt(info->mount_opt, COMPRESS);
556 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
557 compress_force = false;
558 no_compress++;
559 } else {
560 ret = -EINVAL;
561 goto out;
562 }
563
564 if (compress_force) {
565 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
566 } else {
567 /*
568 * If we remount from compress-force=xxx to
569 * compress=xxx, we need clear FORCE_COMPRESS
570 * flag, otherwise, there is no way for users
571 * to disable forcible compression separately.
572 */
573 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
574 }
575 if ((btrfs_test_opt(info, COMPRESS) &&
576 (info->compress_type != saved_compress_type ||
577 compress_force != saved_compress_force)) ||
578 (!btrfs_test_opt(info, COMPRESS) &&
579 no_compress == 1)) {
580 btrfs_info(info, "%s %s compression, level %d",
581 (compress_force) ? "force" : "use",
582 compress_type, info->compress_level);
583 }
584 compress_force = false;
585 break;
586 case Opt_ssd:
587 btrfs_set_and_info(info, SSD,
588 "enabling ssd optimizations");
589 btrfs_clear_opt(info->mount_opt, NOSSD);
590 break;
591 case Opt_ssd_spread:
592 btrfs_set_and_info(info, SSD,
593 "enabling ssd optimizations");
594 btrfs_set_and_info(info, SSD_SPREAD,
595 "using spread ssd allocation scheme");
596 btrfs_clear_opt(info->mount_opt, NOSSD);
597 break;
598 case Opt_nossd:
599 btrfs_set_opt(info->mount_opt, NOSSD);
600 btrfs_clear_and_info(info, SSD,
601 "not using ssd optimizations");
602 /* Fallthrough */
603 case Opt_nossd_spread:
604 btrfs_clear_and_info(info, SSD_SPREAD,
605 "not using spread ssd allocation scheme");
606 break;
607 case Opt_barrier:
608 btrfs_clear_and_info(info, NOBARRIER,
609 "turning on barriers");
610 break;
611 case Opt_nobarrier:
612 btrfs_set_and_info(info, NOBARRIER,
613 "turning off barriers");
614 break;
615 case Opt_thread_pool:
616 ret = match_int(&args[0], &intarg);
617 if (ret) {
618 goto out;
619 } else if (intarg == 0) {
620 ret = -EINVAL;
621 goto out;
622 }
623 info->thread_pool_size = intarg;
624 break;
625 case Opt_max_inline:
626 num = match_strdup(&args[0]);
627 if (num) {
628 info->max_inline = memparse(num, NULL);
629 kfree(num);
630
631 if (info->max_inline) {
632 info->max_inline = min_t(u64,
633 info->max_inline,
634 info->sectorsize);
635 }
636 btrfs_info(info, "max_inline at %llu",
637 info->max_inline);
638 } else {
639 ret = -ENOMEM;
640 goto out;
641 }
642 break;
643 case Opt_alloc_start:
644 btrfs_info(info,
645 "option alloc_start is obsolete, ignored");
646 break;
647 case Opt_acl:
648#ifdef CONFIG_BTRFS_FS_POSIX_ACL
649 info->sb->s_flags |= SB_POSIXACL;
650 break;
651#else
652 btrfs_err(info, "support for ACL not compiled in!");
653 ret = -EINVAL;
654 goto out;
655#endif
656 case Opt_noacl:
657 info->sb->s_flags &= ~SB_POSIXACL;
658 break;
659 case Opt_notreelog:
660 btrfs_set_and_info(info, NOTREELOG,
661 "disabling tree log");
662 break;
663 case Opt_treelog:
664 btrfs_clear_and_info(info, NOTREELOG,
665 "enabling tree log");
666 break;
667 case Opt_norecovery:
668 case Opt_nologreplay:
669 btrfs_set_and_info(info, NOLOGREPLAY,
670 "disabling log replay at mount time");
671 break;
672 case Opt_flushoncommit:
673 btrfs_set_and_info(info, FLUSHONCOMMIT,
674 "turning on flush-on-commit");
675 break;
676 case Opt_noflushoncommit:
677 btrfs_clear_and_info(info, FLUSHONCOMMIT,
678 "turning off flush-on-commit");
679 break;
680 case Opt_ratio:
681 ret = match_int(&args[0], &intarg);
682 if (ret)
683 goto out;
684 info->metadata_ratio = intarg;
685 btrfs_info(info, "metadata ratio %u",
686 info->metadata_ratio);
687 break;
688 case Opt_discard:
689 btrfs_set_and_info(info, DISCARD,
690 "turning on discard");
691 break;
692 case Opt_nodiscard:
693 btrfs_clear_and_info(info, DISCARD,
694 "turning off discard");
695 break;
696 case Opt_space_cache:
697 case Opt_space_cache_version:
698 if (token == Opt_space_cache ||
699 strcmp(args[0].from, "v1") == 0) {
700 btrfs_clear_opt(info->mount_opt,
701 FREE_SPACE_TREE);
702 btrfs_set_and_info(info, SPACE_CACHE,
703 "enabling disk space caching");
704 } else if (strcmp(args[0].from, "v2") == 0) {
705 btrfs_clear_opt(info->mount_opt,
706 SPACE_CACHE);
707 btrfs_set_and_info(info, FREE_SPACE_TREE,
708 "enabling free space tree");
709 } else {
710 ret = -EINVAL;
711 goto out;
712 }
713 break;
714 case Opt_rescan_uuid_tree:
715 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
716 break;
717 case Opt_no_space_cache:
718 if (btrfs_test_opt(info, SPACE_CACHE)) {
719 btrfs_clear_and_info(info, SPACE_CACHE,
720 "disabling disk space caching");
721 }
722 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
723 btrfs_clear_and_info(info, FREE_SPACE_TREE,
724 "disabling free space tree");
725 }
726 break;
727 case Opt_inode_cache:
728 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
729 "enabling inode map caching");
730 break;
731 case Opt_noinode_cache:
732 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
733 "disabling inode map caching");
734 break;
735 case Opt_clear_cache:
736 btrfs_set_and_info(info, CLEAR_CACHE,
737 "force clearing of disk cache");
738 break;
739 case Opt_user_subvol_rm_allowed:
740 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
741 break;
742 case Opt_enospc_debug:
743 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
744 break;
745 case Opt_noenospc_debug:
746 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
747 break;
748 case Opt_defrag:
749 btrfs_set_and_info(info, AUTO_DEFRAG,
750 "enabling auto defrag");
751 break;
752 case Opt_nodefrag:
753 btrfs_clear_and_info(info, AUTO_DEFRAG,
754 "disabling auto defrag");
755 break;
756 case Opt_recovery:
757 btrfs_warn(info,
758 "'recovery' is deprecated, use 'usebackuproot' instead");
759 /* fall through */
760 case Opt_usebackuproot:
761 btrfs_info(info,
762 "trying to use backup root at mount time");
763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764 break;
765 case Opt_skip_balance:
766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767 break;
768#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 case Opt_check_integrity_including_extent_data:
770 btrfs_info(info,
771 "enabling check integrity including extent data");
772 btrfs_set_opt(info->mount_opt,
773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775 break;
776 case Opt_check_integrity:
777 btrfs_info(info, "enabling check integrity");
778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779 break;
780 case Opt_check_integrity_print_mask:
781 ret = match_int(&args[0], &intarg);
782 if (ret)
783 goto out;
784 info->check_integrity_print_mask = intarg;
785 btrfs_info(info, "check_integrity_print_mask 0x%x",
786 info->check_integrity_print_mask);
787 break;
788#else
789 case Opt_check_integrity_including_extent_data:
790 case Opt_check_integrity:
791 case Opt_check_integrity_print_mask:
792 btrfs_err(info,
793 "support for check_integrity* not compiled in!");
794 ret = -EINVAL;
795 goto out;
796#endif
797 case Opt_fatal_errors:
798 if (strcmp(args[0].from, "panic") == 0)
799 btrfs_set_opt(info->mount_opt,
800 PANIC_ON_FATAL_ERROR);
801 else if (strcmp(args[0].from, "bug") == 0)
802 btrfs_clear_opt(info->mount_opt,
803 PANIC_ON_FATAL_ERROR);
804 else {
805 ret = -EINVAL;
806 goto out;
807 }
808 break;
809 case Opt_commit_interval:
810 intarg = 0;
811 ret = match_int(&args[0], &intarg);
812 if (ret)
813 goto out;
814 if (intarg == 0) {
815 btrfs_info(info,
816 "using default commit interval %us",
817 BTRFS_DEFAULT_COMMIT_INTERVAL);
818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819 } else if (intarg > 300) {
820 btrfs_warn(info, "excessive commit interval %d",
821 intarg);
822 }
823 info->commit_interval = intarg;
824 break;
825#ifdef CONFIG_BTRFS_DEBUG
826 case Opt_fragment_all:
827 btrfs_info(info, "fragmenting all space");
828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830 break;
831 case Opt_fragment_metadata:
832 btrfs_info(info, "fragmenting metadata");
833 btrfs_set_opt(info->mount_opt,
834 FRAGMENT_METADATA);
835 break;
836 case Opt_fragment_data:
837 btrfs_info(info, "fragmenting data");
838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839 break;
840#endif
841#ifdef CONFIG_BTRFS_FS_REF_VERIFY
842 case Opt_ref_verify:
843 btrfs_info(info, "doing ref verification");
844 btrfs_set_opt(info->mount_opt, REF_VERIFY);
845 break;
846#endif
847 case Opt_err:
848 btrfs_info(info, "unrecognized mount option '%s'", p);
849 ret = -EINVAL;
850 goto out;
851 default:
852 break;
853 }
854 }
855check:
856 /*
857 * Extra check for current option against current flag
858 */
859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860 btrfs_err(info,
861 "nologreplay must be used with ro mount option");
862 ret = -EINVAL;
863 }
864out:
865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867 !btrfs_test_opt(info, CLEAR_CACHE)) {
868 btrfs_err(info, "cannot disable free space tree");
869 ret = -EINVAL;
870
871 }
872 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873 btrfs_info(info, "disk space caching is enabled");
874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875 btrfs_info(info, "using free space tree");
876 return ret;
877}
878
879/*
880 * Parse mount options that are required early in the mount process.
881 *
882 * All other options will be parsed on much later in the mount process and
883 * only when we need to allocate a new super block.
884 */
885static int btrfs_parse_device_options(const char *options, fmode_t flags,
886 void *holder)
887{
888 substring_t args[MAX_OPT_ARGS];
889 char *device_name, *opts, *orig, *p;
890 struct btrfs_device *device = NULL;
891 int error = 0;
892
893 lockdep_assert_held(&uuid_mutex);
894
895 if (!options)
896 return 0;
897
898 /*
899 * strsep changes the string, duplicate it because btrfs_parse_options
900 * gets called later
901 */
902 opts = kstrdup(options, GFP_KERNEL);
903 if (!opts)
904 return -ENOMEM;
905 orig = opts;
906
907 while ((p = strsep(&opts, ",")) != NULL) {
908 int token;
909
910 if (!*p)
911 continue;
912
913 token = match_token(p, tokens, args);
914 if (token == Opt_device) {
915 device_name = match_strdup(&args[0]);
916 if (!device_name) {
917 error = -ENOMEM;
918 goto out;
919 }
920 device = btrfs_scan_one_device(device_name, flags,
921 holder);
922 kfree(device_name);
923 if (IS_ERR(device)) {
924 error = PTR_ERR(device);
925 goto out;
926 }
927 }
928 }
929
930out:
931 kfree(orig);
932 return error;
933}
934
935/*
936 * Parse mount options that are related to subvolume id
937 *
938 * The value is later passed to mount_subvol()
939 */
940static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
941 u64 *subvol_objectid)
942{
943 substring_t args[MAX_OPT_ARGS];
944 char *opts, *orig, *p;
945 int error = 0;
946 u64 subvolid;
947
948 if (!options)
949 return 0;
950
951 /*
952 * strsep changes the string, duplicate it because
953 * btrfs_parse_device_options gets called later
954 */
955 opts = kstrdup(options, GFP_KERNEL);
956 if (!opts)
957 return -ENOMEM;
958 orig = opts;
959
960 while ((p = strsep(&opts, ",")) != NULL) {
961 int token;
962 if (!*p)
963 continue;
964
965 token = match_token(p, tokens, args);
966 switch (token) {
967 case Opt_subvol:
968 kfree(*subvol_name);
969 *subvol_name = match_strdup(&args[0]);
970 if (!*subvol_name) {
971 error = -ENOMEM;
972 goto out;
973 }
974 break;
975 case Opt_subvolid:
976 error = match_u64(&args[0], &subvolid);
977 if (error)
978 goto out;
979
980 /* we want the original fs_tree */
981 if (subvolid == 0)
982 subvolid = BTRFS_FS_TREE_OBJECTID;
983
984 *subvol_objectid = subvolid;
985 break;
986 case Opt_subvolrootid:
987 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
988 break;
989 default:
990 break;
991 }
992 }
993
994out:
995 kfree(orig);
996 return error;
997}
998
999static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1000 u64 subvol_objectid)
1001{
1002 struct btrfs_root *root = fs_info->tree_root;
1003 struct btrfs_root *fs_root;
1004 struct btrfs_root_ref *root_ref;
1005 struct btrfs_inode_ref *inode_ref;
1006 struct btrfs_key key;
1007 struct btrfs_path *path = NULL;
1008 char *name = NULL, *ptr;
1009 u64 dirid;
1010 int len;
1011 int ret;
1012
1013 path = btrfs_alloc_path();
1014 if (!path) {
1015 ret = -ENOMEM;
1016 goto err;
1017 }
1018 path->leave_spinning = 1;
1019
1020 name = kmalloc(PATH_MAX, GFP_KERNEL);
1021 if (!name) {
1022 ret = -ENOMEM;
1023 goto err;
1024 }
1025 ptr = name + PATH_MAX - 1;
1026 ptr[0] = '\0';
1027
1028 /*
1029 * Walk up the subvolume trees in the tree of tree roots by root
1030 * backrefs until we hit the top-level subvolume.
1031 */
1032 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1033 key.objectid = subvol_objectid;
1034 key.type = BTRFS_ROOT_BACKREF_KEY;
1035 key.offset = (u64)-1;
1036
1037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1038 if (ret < 0) {
1039 goto err;
1040 } else if (ret > 0) {
1041 ret = btrfs_previous_item(root, path, subvol_objectid,
1042 BTRFS_ROOT_BACKREF_KEY);
1043 if (ret < 0) {
1044 goto err;
1045 } else if (ret > 0) {
1046 ret = -ENOENT;
1047 goto err;
1048 }
1049 }
1050
1051 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1052 subvol_objectid = key.offset;
1053
1054 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1055 struct btrfs_root_ref);
1056 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1057 ptr -= len + 1;
1058 if (ptr < name) {
1059 ret = -ENAMETOOLONG;
1060 goto err;
1061 }
1062 read_extent_buffer(path->nodes[0], ptr + 1,
1063 (unsigned long)(root_ref + 1), len);
1064 ptr[0] = '/';
1065 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1066 btrfs_release_path(path);
1067
1068 key.objectid = subvol_objectid;
1069 key.type = BTRFS_ROOT_ITEM_KEY;
1070 key.offset = (u64)-1;
1071 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1072 if (IS_ERR(fs_root)) {
1073 ret = PTR_ERR(fs_root);
1074 goto err;
1075 }
1076
1077 /*
1078 * Walk up the filesystem tree by inode refs until we hit the
1079 * root directory.
1080 */
1081 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1082 key.objectid = dirid;
1083 key.type = BTRFS_INODE_REF_KEY;
1084 key.offset = (u64)-1;
1085
1086 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1087 if (ret < 0) {
1088 goto err;
1089 } else if (ret > 0) {
1090 ret = btrfs_previous_item(fs_root, path, dirid,
1091 BTRFS_INODE_REF_KEY);
1092 if (ret < 0) {
1093 goto err;
1094 } else if (ret > 0) {
1095 ret = -ENOENT;
1096 goto err;
1097 }
1098 }
1099
1100 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1101 dirid = key.offset;
1102
1103 inode_ref = btrfs_item_ptr(path->nodes[0],
1104 path->slots[0],
1105 struct btrfs_inode_ref);
1106 len = btrfs_inode_ref_name_len(path->nodes[0],
1107 inode_ref);
1108 ptr -= len + 1;
1109 if (ptr < name) {
1110 ret = -ENAMETOOLONG;
1111 goto err;
1112 }
1113 read_extent_buffer(path->nodes[0], ptr + 1,
1114 (unsigned long)(inode_ref + 1), len);
1115 ptr[0] = '/';
1116 btrfs_release_path(path);
1117 }
1118 }
1119
1120 btrfs_free_path(path);
1121 if (ptr == name + PATH_MAX - 1) {
1122 name[0] = '/';
1123 name[1] = '\0';
1124 } else {
1125 memmove(name, ptr, name + PATH_MAX - ptr);
1126 }
1127 return name;
1128
1129err:
1130 btrfs_free_path(path);
1131 kfree(name);
1132 return ERR_PTR(ret);
1133}
1134
1135static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1136{
1137 struct btrfs_root *root = fs_info->tree_root;
1138 struct btrfs_dir_item *di;
1139 struct btrfs_path *path;
1140 struct btrfs_key location;
1141 u64 dir_id;
1142
1143 path = btrfs_alloc_path();
1144 if (!path)
1145 return -ENOMEM;
1146 path->leave_spinning = 1;
1147
1148 /*
1149 * Find the "default" dir item which points to the root item that we
1150 * will mount by default if we haven't been given a specific subvolume
1151 * to mount.
1152 */
1153 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1154 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1155 if (IS_ERR(di)) {
1156 btrfs_free_path(path);
1157 return PTR_ERR(di);
1158 }
1159 if (!di) {
1160 /*
1161 * Ok the default dir item isn't there. This is weird since
1162 * it's always been there, but don't freak out, just try and
1163 * mount the top-level subvolume.
1164 */
1165 btrfs_free_path(path);
1166 *objectid = BTRFS_FS_TREE_OBJECTID;
1167 return 0;
1168 }
1169
1170 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1171 btrfs_free_path(path);
1172 *objectid = location.objectid;
1173 return 0;
1174}
1175
1176static int btrfs_fill_super(struct super_block *sb,
1177 struct btrfs_fs_devices *fs_devices,
1178 void *data)
1179{
1180 struct inode *inode;
1181 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1182 struct btrfs_key key;
1183 int err;
1184
1185 sb->s_maxbytes = MAX_LFS_FILESIZE;
1186 sb->s_magic = BTRFS_SUPER_MAGIC;
1187 sb->s_op = &btrfs_super_ops;
1188 sb->s_d_op = &btrfs_dentry_operations;
1189 sb->s_export_op = &btrfs_export_ops;
1190 sb->s_xattr = btrfs_xattr_handlers;
1191 sb->s_time_gran = 1;
1192#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1193 sb->s_flags |= SB_POSIXACL;
1194#endif
1195 sb->s_flags |= SB_I_VERSION;
1196 sb->s_iflags |= SB_I_CGROUPWB;
1197
1198 err = super_setup_bdi(sb);
1199 if (err) {
1200 btrfs_err(fs_info, "super_setup_bdi failed");
1201 return err;
1202 }
1203
1204 err = open_ctree(sb, fs_devices, (char *)data);
1205 if (err) {
1206 btrfs_err(fs_info, "open_ctree failed");
1207 return err;
1208 }
1209
1210 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1211 key.type = BTRFS_INODE_ITEM_KEY;
1212 key.offset = 0;
1213 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1214 if (IS_ERR(inode)) {
1215 err = PTR_ERR(inode);
1216 goto fail_close;
1217 }
1218
1219 sb->s_root = d_make_root(inode);
1220 if (!sb->s_root) {
1221 err = -ENOMEM;
1222 goto fail_close;
1223 }
1224
1225 cleancache_init_fs(sb);
1226 sb->s_flags |= SB_ACTIVE;
1227 return 0;
1228
1229fail_close:
1230 close_ctree(fs_info);
1231 return err;
1232}
1233
1234int btrfs_sync_fs(struct super_block *sb, int wait)
1235{
1236 struct btrfs_trans_handle *trans;
1237 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1238 struct btrfs_root *root = fs_info->tree_root;
1239
1240 trace_btrfs_sync_fs(fs_info, wait);
1241
1242 if (!wait) {
1243 filemap_flush(fs_info->btree_inode->i_mapping);
1244 return 0;
1245 }
1246
1247 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1248
1249 trans = btrfs_attach_transaction_barrier(root);
1250 if (IS_ERR(trans)) {
1251 /* no transaction, don't bother */
1252 if (PTR_ERR(trans) == -ENOENT) {
1253 /*
1254 * Exit unless we have some pending changes
1255 * that need to go through commit
1256 */
1257 if (fs_info->pending_changes == 0)
1258 return 0;
1259 /*
1260 * A non-blocking test if the fs is frozen. We must not
1261 * start a new transaction here otherwise a deadlock
1262 * happens. The pending operations are delayed to the
1263 * next commit after thawing.
1264 */
1265 if (sb_start_write_trylock(sb))
1266 sb_end_write(sb);
1267 else
1268 return 0;
1269 trans = btrfs_start_transaction(root, 0);
1270 }
1271 if (IS_ERR(trans))
1272 return PTR_ERR(trans);
1273 }
1274 return btrfs_commit_transaction(trans);
1275}
1276
1277static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1278{
1279 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1280 const char *compress_type;
1281
1282 if (btrfs_test_opt(info, DEGRADED))
1283 seq_puts(seq, ",degraded");
1284 if (btrfs_test_opt(info, NODATASUM))
1285 seq_puts(seq, ",nodatasum");
1286 if (btrfs_test_opt(info, NODATACOW))
1287 seq_puts(seq, ",nodatacow");
1288 if (btrfs_test_opt(info, NOBARRIER))
1289 seq_puts(seq, ",nobarrier");
1290 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1291 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1292 if (info->thread_pool_size != min_t(unsigned long,
1293 num_online_cpus() + 2, 8))
1294 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1295 if (btrfs_test_opt(info, COMPRESS)) {
1296 compress_type = btrfs_compress_type2str(info->compress_type);
1297 if (btrfs_test_opt(info, FORCE_COMPRESS))
1298 seq_printf(seq, ",compress-force=%s", compress_type);
1299 else
1300 seq_printf(seq, ",compress=%s", compress_type);
1301 if (info->compress_level)
1302 seq_printf(seq, ":%d", info->compress_level);
1303 }
1304 if (btrfs_test_opt(info, NOSSD))
1305 seq_puts(seq, ",nossd");
1306 if (btrfs_test_opt(info, SSD_SPREAD))
1307 seq_puts(seq, ",ssd_spread");
1308 else if (btrfs_test_opt(info, SSD))
1309 seq_puts(seq, ",ssd");
1310 if (btrfs_test_opt(info, NOTREELOG))
1311 seq_puts(seq, ",notreelog");
1312 if (btrfs_test_opt(info, NOLOGREPLAY))
1313 seq_puts(seq, ",nologreplay");
1314 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1315 seq_puts(seq, ",flushoncommit");
1316 if (btrfs_test_opt(info, DISCARD))
1317 seq_puts(seq, ",discard");
1318 if (!(info->sb->s_flags & SB_POSIXACL))
1319 seq_puts(seq, ",noacl");
1320 if (btrfs_test_opt(info, SPACE_CACHE))
1321 seq_puts(seq, ",space_cache");
1322 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1323 seq_puts(seq, ",space_cache=v2");
1324 else
1325 seq_puts(seq, ",nospace_cache");
1326 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1327 seq_puts(seq, ",rescan_uuid_tree");
1328 if (btrfs_test_opt(info, CLEAR_CACHE))
1329 seq_puts(seq, ",clear_cache");
1330 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1331 seq_puts(seq, ",user_subvol_rm_allowed");
1332 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1333 seq_puts(seq, ",enospc_debug");
1334 if (btrfs_test_opt(info, AUTO_DEFRAG))
1335 seq_puts(seq, ",autodefrag");
1336 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1337 seq_puts(seq, ",inode_cache");
1338 if (btrfs_test_opt(info, SKIP_BALANCE))
1339 seq_puts(seq, ",skip_balance");
1340#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1341 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1342 seq_puts(seq, ",check_int_data");
1343 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1344 seq_puts(seq, ",check_int");
1345 if (info->check_integrity_print_mask)
1346 seq_printf(seq, ",check_int_print_mask=%d",
1347 info->check_integrity_print_mask);
1348#endif
1349 if (info->metadata_ratio)
1350 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1351 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1352 seq_puts(seq, ",fatal_errors=panic");
1353 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1354 seq_printf(seq, ",commit=%u", info->commit_interval);
1355#ifdef CONFIG_BTRFS_DEBUG
1356 if (btrfs_test_opt(info, FRAGMENT_DATA))
1357 seq_puts(seq, ",fragment=data");
1358 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1359 seq_puts(seq, ",fragment=metadata");
1360#endif
1361 if (btrfs_test_opt(info, REF_VERIFY))
1362 seq_puts(seq, ",ref_verify");
1363 seq_printf(seq, ",subvolid=%llu",
1364 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1365 seq_puts(seq, ",subvol=");
1366 seq_dentry(seq, dentry, " \t\n\\");
1367 return 0;
1368}
1369
1370static int btrfs_test_super(struct super_block *s, void *data)
1371{
1372 struct btrfs_fs_info *p = data;
1373 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1374
1375 return fs_info->fs_devices == p->fs_devices;
1376}
1377
1378static int btrfs_set_super(struct super_block *s, void *data)
1379{
1380 int err = set_anon_super(s, data);
1381 if (!err)
1382 s->s_fs_info = data;
1383 return err;
1384}
1385
1386/*
1387 * subvolumes are identified by ino 256
1388 */
1389static inline int is_subvolume_inode(struct inode *inode)
1390{
1391 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1392 return 1;
1393 return 0;
1394}
1395
1396static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1397 const char *device_name, struct vfsmount *mnt)
1398{
1399 struct dentry *root;
1400 int ret;
1401
1402 if (!subvol_name) {
1403 if (!subvol_objectid) {
1404 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1405 &subvol_objectid);
1406 if (ret) {
1407 root = ERR_PTR(ret);
1408 goto out;
1409 }
1410 }
1411 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1412 subvol_objectid);
1413 if (IS_ERR(subvol_name)) {
1414 root = ERR_CAST(subvol_name);
1415 subvol_name = NULL;
1416 goto out;
1417 }
1418
1419 }
1420
1421 root = mount_subtree(mnt, subvol_name);
1422 /* mount_subtree() drops our reference on the vfsmount. */
1423 mnt = NULL;
1424
1425 if (!IS_ERR(root)) {
1426 struct super_block *s = root->d_sb;
1427 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1428 struct inode *root_inode = d_inode(root);
1429 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1430
1431 ret = 0;
1432 if (!is_subvolume_inode(root_inode)) {
1433 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1434 subvol_name);
1435 ret = -EINVAL;
1436 }
1437 if (subvol_objectid && root_objectid != subvol_objectid) {
1438 /*
1439 * This will also catch a race condition where a
1440 * subvolume which was passed by ID is renamed and
1441 * another subvolume is renamed over the old location.
1442 */
1443 btrfs_err(fs_info,
1444 "subvol '%s' does not match subvolid %llu",
1445 subvol_name, subvol_objectid);
1446 ret = -EINVAL;
1447 }
1448 if (ret) {
1449 dput(root);
1450 root = ERR_PTR(ret);
1451 deactivate_locked_super(s);
1452 }
1453 }
1454
1455out:
1456 mntput(mnt);
1457 kfree(subvol_name);
1458 return root;
1459}
1460
1461static int parse_security_options(char *orig_opts,
1462 struct security_mnt_opts *sec_opts)
1463{
1464 char *secdata = NULL;
1465 int ret = 0;
1466
1467 secdata = alloc_secdata();
1468 if (!secdata)
1469 return -ENOMEM;
1470 ret = security_sb_copy_data(orig_opts, secdata);
1471 if (ret) {
1472 free_secdata(secdata);
1473 return ret;
1474 }
1475 ret = security_sb_parse_opts_str(secdata, sec_opts);
1476 free_secdata(secdata);
1477 return ret;
1478}
1479
1480static int setup_security_options(struct btrfs_fs_info *fs_info,
1481 struct super_block *sb,
1482 struct security_mnt_opts *sec_opts)
1483{
1484 int ret = 0;
1485
1486 /*
1487 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1488 * is valid.
1489 */
1490 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1491 if (ret)
1492 return ret;
1493
1494#ifdef CONFIG_SECURITY
1495 if (!fs_info->security_opts.num_mnt_opts) {
1496 /* first time security setup, copy sec_opts to fs_info */
1497 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1498 } else {
1499 /*
1500 * Since SELinux (the only one supporting security_mnt_opts)
1501 * does NOT support changing context during remount/mount of
1502 * the same sb, this must be the same or part of the same
1503 * security options, just free it.
1504 */
1505 security_free_mnt_opts(sec_opts);
1506 }
1507#endif
1508 return ret;
1509}
1510
1511/*
1512 * Find a superblock for the given device / mount point.
1513 *
1514 * Note: This is based on mount_bdev from fs/super.c with a few additions
1515 * for multiple device setup. Make sure to keep it in sync.
1516 */
1517static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1518 int flags, const char *device_name, void *data)
1519{
1520 struct block_device *bdev = NULL;
1521 struct super_block *s;
1522 struct btrfs_device *device = NULL;
1523 struct btrfs_fs_devices *fs_devices = NULL;
1524 struct btrfs_fs_info *fs_info = NULL;
1525 struct security_mnt_opts new_sec_opts;
1526 fmode_t mode = FMODE_READ;
1527 int error = 0;
1528
1529 if (!(flags & SB_RDONLY))
1530 mode |= FMODE_WRITE;
1531
1532 security_init_mnt_opts(&new_sec_opts);
1533 if (data) {
1534 error = parse_security_options(data, &new_sec_opts);
1535 if (error)
1536 return ERR_PTR(error);
1537 }
1538
1539 /*
1540 * Setup a dummy root and fs_info for test/set super. This is because
1541 * we don't actually fill this stuff out until open_ctree, but we need
1542 * it for searching for existing supers, so this lets us do that and
1543 * then open_ctree will properly initialize everything later.
1544 */
1545 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1546 if (!fs_info) {
1547 error = -ENOMEM;
1548 goto error_sec_opts;
1549 }
1550
1551 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1552 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1553 security_init_mnt_opts(&fs_info->security_opts);
1554 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1555 error = -ENOMEM;
1556 goto error_fs_info;
1557 }
1558
1559 mutex_lock(&uuid_mutex);
1560 error = btrfs_parse_device_options(data, mode, fs_type);
1561 if (error) {
1562 mutex_unlock(&uuid_mutex);
1563 goto error_fs_info;
1564 }
1565
1566 device = btrfs_scan_one_device(device_name, mode, fs_type);
1567 if (IS_ERR(device)) {
1568 mutex_unlock(&uuid_mutex);
1569 error = PTR_ERR(device);
1570 goto error_fs_info;
1571 }
1572
1573 fs_devices = device->fs_devices;
1574 fs_info->fs_devices = fs_devices;
1575
1576 error = btrfs_open_devices(fs_devices, mode, fs_type);
1577 mutex_unlock(&uuid_mutex);
1578 if (error)
1579 goto error_fs_info;
1580
1581 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1582 error = -EACCES;
1583 goto error_close_devices;
1584 }
1585
1586 bdev = fs_devices->latest_bdev;
1587 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1588 fs_info);
1589 if (IS_ERR(s)) {
1590 error = PTR_ERR(s);
1591 goto error_close_devices;
1592 }
1593
1594 if (s->s_root) {
1595 btrfs_close_devices(fs_devices);
1596 free_fs_info(fs_info);
1597 if ((flags ^ s->s_flags) & SB_RDONLY)
1598 error = -EBUSY;
1599 } else {
1600 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1601 btrfs_sb(s)->bdev_holder = fs_type;
1602 error = btrfs_fill_super(s, fs_devices, data);
1603 }
1604 if (error) {
1605 deactivate_locked_super(s);
1606 goto error_sec_opts;
1607 }
1608
1609 fs_info = btrfs_sb(s);
1610 error = setup_security_options(fs_info, s, &new_sec_opts);
1611 if (error) {
1612 deactivate_locked_super(s);
1613 goto error_sec_opts;
1614 }
1615
1616 return dget(s->s_root);
1617
1618error_close_devices:
1619 btrfs_close_devices(fs_devices);
1620error_fs_info:
1621 free_fs_info(fs_info);
1622error_sec_opts:
1623 security_free_mnt_opts(&new_sec_opts);
1624 return ERR_PTR(error);
1625}
1626
1627/*
1628 * Mount function which is called by VFS layer.
1629 *
1630 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1631 * which needs vfsmount* of device's root (/). This means device's root has to
1632 * be mounted internally in any case.
1633 *
1634 * Operation flow:
1635 * 1. Parse subvol id related options for later use in mount_subvol().
1636 *
1637 * 2. Mount device's root (/) by calling vfs_kern_mount().
1638 *
1639 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1640 * first place. In order to avoid calling btrfs_mount() again, we use
1641 * different file_system_type which is not registered to VFS by
1642 * register_filesystem() (btrfs_root_fs_type). As a result,
1643 * btrfs_mount_root() is called. The return value will be used by
1644 * mount_subtree() in mount_subvol().
1645 *
1646 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1647 * "btrfs subvolume set-default", mount_subvol() is called always.
1648 */
1649static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1650 const char *device_name, void *data)
1651{
1652 struct vfsmount *mnt_root;
1653 struct dentry *root;
1654 fmode_t mode = FMODE_READ;
1655 char *subvol_name = NULL;
1656 u64 subvol_objectid = 0;
1657 int error = 0;
1658
1659 if (!(flags & SB_RDONLY))
1660 mode |= FMODE_WRITE;
1661
1662 error = btrfs_parse_subvol_options(data, &subvol_name,
1663 &subvol_objectid);
1664 if (error) {
1665 kfree(subvol_name);
1666 return ERR_PTR(error);
1667 }
1668
1669 /* mount device's root (/) */
1670 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1671 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1672 if (flags & SB_RDONLY) {
1673 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1674 flags & ~SB_RDONLY, device_name, data);
1675 } else {
1676 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1677 flags | SB_RDONLY, device_name, data);
1678 if (IS_ERR(mnt_root)) {
1679 root = ERR_CAST(mnt_root);
1680 kfree(subvol_name);
1681 goto out;
1682 }
1683
1684 down_write(&mnt_root->mnt_sb->s_umount);
1685 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1686 up_write(&mnt_root->mnt_sb->s_umount);
1687 if (error < 0) {
1688 root = ERR_PTR(error);
1689 mntput(mnt_root);
1690 kfree(subvol_name);
1691 goto out;
1692 }
1693 }
1694 }
1695 if (IS_ERR(mnt_root)) {
1696 root = ERR_CAST(mnt_root);
1697 kfree(subvol_name);
1698 goto out;
1699 }
1700
1701 /* mount_subvol() will free subvol_name and mnt_root */
1702 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1703
1704out:
1705 return root;
1706}
1707
1708static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1709 u32 new_pool_size, u32 old_pool_size)
1710{
1711 if (new_pool_size == old_pool_size)
1712 return;
1713
1714 fs_info->thread_pool_size = new_pool_size;
1715
1716 btrfs_info(fs_info, "resize thread pool %d -> %d",
1717 old_pool_size, new_pool_size);
1718
1719 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1720 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1721 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1722 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1723 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1724 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1725 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1726 new_pool_size);
1727 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1728 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1729 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1730 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1731 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1732 new_pool_size);
1733}
1734
1735static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1736{
1737 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1738}
1739
1740static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1741 unsigned long old_opts, int flags)
1742{
1743 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1744 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1745 (flags & SB_RDONLY))) {
1746 /* wait for any defraggers to finish */
1747 wait_event(fs_info->transaction_wait,
1748 (atomic_read(&fs_info->defrag_running) == 0));
1749 if (flags & SB_RDONLY)
1750 sync_filesystem(fs_info->sb);
1751 }
1752}
1753
1754static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1755 unsigned long old_opts)
1756{
1757 /*
1758 * We need to cleanup all defragable inodes if the autodefragment is
1759 * close or the filesystem is read only.
1760 */
1761 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1762 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1763 btrfs_cleanup_defrag_inodes(fs_info);
1764 }
1765
1766 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1767}
1768
1769static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1770{
1771 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1772 struct btrfs_root *root = fs_info->tree_root;
1773 unsigned old_flags = sb->s_flags;
1774 unsigned long old_opts = fs_info->mount_opt;
1775 unsigned long old_compress_type = fs_info->compress_type;
1776 u64 old_max_inline = fs_info->max_inline;
1777 u32 old_thread_pool_size = fs_info->thread_pool_size;
1778 u32 old_metadata_ratio = fs_info->metadata_ratio;
1779 int ret;
1780
1781 sync_filesystem(sb);
1782 btrfs_remount_prepare(fs_info);
1783
1784 if (data) {
1785 struct security_mnt_opts new_sec_opts;
1786
1787 security_init_mnt_opts(&new_sec_opts);
1788 ret = parse_security_options(data, &new_sec_opts);
1789 if (ret)
1790 goto restore;
1791 ret = setup_security_options(fs_info, sb,
1792 &new_sec_opts);
1793 if (ret) {
1794 security_free_mnt_opts(&new_sec_opts);
1795 goto restore;
1796 }
1797 }
1798
1799 ret = btrfs_parse_options(fs_info, data, *flags);
1800 if (ret)
1801 goto restore;
1802
1803 btrfs_remount_begin(fs_info, old_opts, *flags);
1804 btrfs_resize_thread_pool(fs_info,
1805 fs_info->thread_pool_size, old_thread_pool_size);
1806
1807 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1808 goto out;
1809
1810 if (*flags & SB_RDONLY) {
1811 /*
1812 * this also happens on 'umount -rf' or on shutdown, when
1813 * the filesystem is busy.
1814 */
1815 cancel_work_sync(&fs_info->async_reclaim_work);
1816
1817 /* wait for the uuid_scan task to finish */
1818 down(&fs_info->uuid_tree_rescan_sem);
1819 /* avoid complains from lockdep et al. */
1820 up(&fs_info->uuid_tree_rescan_sem);
1821
1822 sb->s_flags |= SB_RDONLY;
1823
1824 /*
1825 * Setting SB_RDONLY will put the cleaner thread to
1826 * sleep at the next loop if it's already active.
1827 * If it's already asleep, we'll leave unused block
1828 * groups on disk until we're mounted read-write again
1829 * unless we clean them up here.
1830 */
1831 btrfs_delete_unused_bgs(fs_info);
1832
1833 btrfs_dev_replace_suspend_for_unmount(fs_info);
1834 btrfs_scrub_cancel(fs_info);
1835 btrfs_pause_balance(fs_info);
1836
1837 ret = btrfs_commit_super(fs_info);
1838 if (ret)
1839 goto restore;
1840 } else {
1841 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1842 btrfs_err(fs_info,
1843 "Remounting read-write after error is not allowed");
1844 ret = -EINVAL;
1845 goto restore;
1846 }
1847 if (fs_info->fs_devices->rw_devices == 0) {
1848 ret = -EACCES;
1849 goto restore;
1850 }
1851
1852 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1853 btrfs_warn(fs_info,
1854 "too many missing devices, writeable remount is not allowed");
1855 ret = -EACCES;
1856 goto restore;
1857 }
1858
1859 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1860 ret = -EINVAL;
1861 goto restore;
1862 }
1863
1864 ret = btrfs_cleanup_fs_roots(fs_info);
1865 if (ret)
1866 goto restore;
1867
1868 /* recover relocation */
1869 mutex_lock(&fs_info->cleaner_mutex);
1870 ret = btrfs_recover_relocation(root);
1871 mutex_unlock(&fs_info->cleaner_mutex);
1872 if (ret)
1873 goto restore;
1874
1875 ret = btrfs_resume_balance_async(fs_info);
1876 if (ret)
1877 goto restore;
1878
1879 ret = btrfs_resume_dev_replace_async(fs_info);
1880 if (ret) {
1881 btrfs_warn(fs_info, "failed to resume dev_replace");
1882 goto restore;
1883 }
1884
1885 btrfs_qgroup_rescan_resume(fs_info);
1886
1887 if (!fs_info->uuid_root) {
1888 btrfs_info(fs_info, "creating UUID tree");
1889 ret = btrfs_create_uuid_tree(fs_info);
1890 if (ret) {
1891 btrfs_warn(fs_info,
1892 "failed to create the UUID tree %d",
1893 ret);
1894 goto restore;
1895 }
1896 }
1897 sb->s_flags &= ~SB_RDONLY;
1898
1899 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1900 }
1901out:
1902 wake_up_process(fs_info->transaction_kthread);
1903 btrfs_remount_cleanup(fs_info, old_opts);
1904 return 0;
1905
1906restore:
1907 /* We've hit an error - don't reset SB_RDONLY */
1908 if (sb_rdonly(sb))
1909 old_flags |= SB_RDONLY;
1910 sb->s_flags = old_flags;
1911 fs_info->mount_opt = old_opts;
1912 fs_info->compress_type = old_compress_type;
1913 fs_info->max_inline = old_max_inline;
1914 btrfs_resize_thread_pool(fs_info,
1915 old_thread_pool_size, fs_info->thread_pool_size);
1916 fs_info->metadata_ratio = old_metadata_ratio;
1917 btrfs_remount_cleanup(fs_info, old_opts);
1918 return ret;
1919}
1920
1921/* Used to sort the devices by max_avail(descending sort) */
1922static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1923 const void *dev_info2)
1924{
1925 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1926 ((struct btrfs_device_info *)dev_info2)->max_avail)
1927 return -1;
1928 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1929 ((struct btrfs_device_info *)dev_info2)->max_avail)
1930 return 1;
1931 else
1932 return 0;
1933}
1934
1935/*
1936 * sort the devices by max_avail, in which max free extent size of each device
1937 * is stored.(Descending Sort)
1938 */
1939static inline void btrfs_descending_sort_devices(
1940 struct btrfs_device_info *devices,
1941 size_t nr_devices)
1942{
1943 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1944 btrfs_cmp_device_free_bytes, NULL);
1945}
1946
1947/*
1948 * The helper to calc the free space on the devices that can be used to store
1949 * file data.
1950 */
1951static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1952 u64 *free_bytes)
1953{
1954 struct btrfs_device_info *devices_info;
1955 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1956 struct btrfs_device *device;
1957 u64 skip_space;
1958 u64 type;
1959 u64 avail_space;
1960 u64 min_stripe_size;
1961 int min_stripes = 1, num_stripes = 1;
1962 int i = 0, nr_devices;
1963
1964 /*
1965 * We aren't under the device list lock, so this is racy-ish, but good
1966 * enough for our purposes.
1967 */
1968 nr_devices = fs_info->fs_devices->open_devices;
1969 if (!nr_devices) {
1970 smp_mb();
1971 nr_devices = fs_info->fs_devices->open_devices;
1972 ASSERT(nr_devices);
1973 if (!nr_devices) {
1974 *free_bytes = 0;
1975 return 0;
1976 }
1977 }
1978
1979 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1980 GFP_KERNEL);
1981 if (!devices_info)
1982 return -ENOMEM;
1983
1984 /* calc min stripe number for data space allocation */
1985 type = btrfs_data_alloc_profile(fs_info);
1986 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1987 min_stripes = 2;
1988 num_stripes = nr_devices;
1989 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1990 min_stripes = 2;
1991 num_stripes = 2;
1992 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1993 min_stripes = 4;
1994 num_stripes = 4;
1995 }
1996
1997 if (type & BTRFS_BLOCK_GROUP_DUP)
1998 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1999 else
2000 min_stripe_size = BTRFS_STRIPE_LEN;
2001
2002 rcu_read_lock();
2003 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2004 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2005 &device->dev_state) ||
2006 !device->bdev ||
2007 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2008 continue;
2009
2010 if (i >= nr_devices)
2011 break;
2012
2013 avail_space = device->total_bytes - device->bytes_used;
2014
2015 /* align with stripe_len */
2016 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2017 avail_space *= BTRFS_STRIPE_LEN;
2018
2019 /*
2020 * In order to avoid overwriting the superblock on the drive,
2021 * btrfs starts at an offset of at least 1MB when doing chunk
2022 * allocation.
2023 */
2024 skip_space = SZ_1M;
2025
2026 /*
2027 * we can use the free space in [0, skip_space - 1], subtract
2028 * it from the total.
2029 */
2030 if (avail_space && avail_space >= skip_space)
2031 avail_space -= skip_space;
2032 else
2033 avail_space = 0;
2034
2035 if (avail_space < min_stripe_size)
2036 continue;
2037
2038 devices_info[i].dev = device;
2039 devices_info[i].max_avail = avail_space;
2040
2041 i++;
2042 }
2043 rcu_read_unlock();
2044
2045 nr_devices = i;
2046
2047 btrfs_descending_sort_devices(devices_info, nr_devices);
2048
2049 i = nr_devices - 1;
2050 avail_space = 0;
2051 while (nr_devices >= min_stripes) {
2052 if (num_stripes > nr_devices)
2053 num_stripes = nr_devices;
2054
2055 if (devices_info[i].max_avail >= min_stripe_size) {
2056 int j;
2057 u64 alloc_size;
2058
2059 avail_space += devices_info[i].max_avail * num_stripes;
2060 alloc_size = devices_info[i].max_avail;
2061 for (j = i + 1 - num_stripes; j <= i; j++)
2062 devices_info[j].max_avail -= alloc_size;
2063 }
2064 i--;
2065 nr_devices--;
2066 }
2067
2068 kfree(devices_info);
2069 *free_bytes = avail_space;
2070 return 0;
2071}
2072
2073/*
2074 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2075 *
2076 * If there's a redundant raid level at DATA block groups, use the respective
2077 * multiplier to scale the sizes.
2078 *
2079 * Unused device space usage is based on simulating the chunk allocator
2080 * algorithm that respects the device sizes and order of allocations. This is
2081 * a close approximation of the actual use but there are other factors that may
2082 * change the result (like a new metadata chunk).
2083 *
2084 * If metadata is exhausted, f_bavail will be 0.
2085 */
2086static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2087{
2088 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2089 struct btrfs_super_block *disk_super = fs_info->super_copy;
2090 struct list_head *head = &fs_info->space_info;
2091 struct btrfs_space_info *found;
2092 u64 total_used = 0;
2093 u64 total_free_data = 0;
2094 u64 total_free_meta = 0;
2095 int bits = dentry->d_sb->s_blocksize_bits;
2096 __be32 *fsid = (__be32 *)fs_info->fsid;
2097 unsigned factor = 1;
2098 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2099 int ret;
2100 u64 thresh = 0;
2101 int mixed = 0;
2102
2103 rcu_read_lock();
2104 list_for_each_entry_rcu(found, head, list) {
2105 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2106 int i;
2107
2108 total_free_data += found->disk_total - found->disk_used;
2109 total_free_data -=
2110 btrfs_account_ro_block_groups_free_space(found);
2111
2112 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2113 if (!list_empty(&found->block_groups[i]))
2114 factor = btrfs_bg_type_to_factor(
2115 btrfs_raid_array[i].bg_flag);
2116 }
2117 }
2118
2119 /*
2120 * Metadata in mixed block goup profiles are accounted in data
2121 */
2122 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2123 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2124 mixed = 1;
2125 else
2126 total_free_meta += found->disk_total -
2127 found->disk_used;
2128 }
2129
2130 total_used += found->disk_used;
2131 }
2132
2133 rcu_read_unlock();
2134
2135 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2136 buf->f_blocks >>= bits;
2137 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2138
2139 /* Account global block reserve as used, it's in logical size already */
2140 spin_lock(&block_rsv->lock);
2141 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2142 if (buf->f_bfree >= block_rsv->size >> bits)
2143 buf->f_bfree -= block_rsv->size >> bits;
2144 else
2145 buf->f_bfree = 0;
2146 spin_unlock(&block_rsv->lock);
2147
2148 buf->f_bavail = div_u64(total_free_data, factor);
2149 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2150 if (ret)
2151 return ret;
2152 buf->f_bavail += div_u64(total_free_data, factor);
2153 buf->f_bavail = buf->f_bavail >> bits;
2154
2155 /*
2156 * We calculate the remaining metadata space minus global reserve. If
2157 * this is (supposedly) smaller than zero, there's no space. But this
2158 * does not hold in practice, the exhausted state happens where's still
2159 * some positive delta. So we apply some guesswork and compare the
2160 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2161 *
2162 * We probably cannot calculate the exact threshold value because this
2163 * depends on the internal reservations requested by various
2164 * operations, so some operations that consume a few metadata will
2165 * succeed even if the Avail is zero. But this is better than the other
2166 * way around.
2167 */
2168 thresh = SZ_4M;
2169
2170 if (!mixed && total_free_meta - thresh < block_rsv->size)
2171 buf->f_bavail = 0;
2172
2173 buf->f_type = BTRFS_SUPER_MAGIC;
2174 buf->f_bsize = dentry->d_sb->s_blocksize;
2175 buf->f_namelen = BTRFS_NAME_LEN;
2176
2177 /* We treat it as constant endianness (it doesn't matter _which_)
2178 because we want the fsid to come out the same whether mounted
2179 on a big-endian or little-endian host */
2180 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2181 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2182 /* Mask in the root object ID too, to disambiguate subvols */
2183 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2184 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2185
2186 return 0;
2187}
2188
2189static void btrfs_kill_super(struct super_block *sb)
2190{
2191 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2192 kill_anon_super(sb);
2193 free_fs_info(fs_info);
2194}
2195
2196static struct file_system_type btrfs_fs_type = {
2197 .owner = THIS_MODULE,
2198 .name = "btrfs",
2199 .mount = btrfs_mount,
2200 .kill_sb = btrfs_kill_super,
2201 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2202};
2203
2204static struct file_system_type btrfs_root_fs_type = {
2205 .owner = THIS_MODULE,
2206 .name = "btrfs",
2207 .mount = btrfs_mount_root,
2208 .kill_sb = btrfs_kill_super,
2209 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2210};
2211
2212MODULE_ALIAS_FS("btrfs");
2213
2214static int btrfs_control_open(struct inode *inode, struct file *file)
2215{
2216 /*
2217 * The control file's private_data is used to hold the
2218 * transaction when it is started and is used to keep
2219 * track of whether a transaction is already in progress.
2220 */
2221 file->private_data = NULL;
2222 return 0;
2223}
2224
2225/*
2226 * used by btrfsctl to scan devices when no FS is mounted
2227 */
2228static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2229 unsigned long arg)
2230{
2231 struct btrfs_ioctl_vol_args *vol;
2232 struct btrfs_device *device = NULL;
2233 int ret = -ENOTTY;
2234
2235 if (!capable(CAP_SYS_ADMIN))
2236 return -EPERM;
2237
2238 vol = memdup_user((void __user *)arg, sizeof(*vol));
2239 if (IS_ERR(vol))
2240 return PTR_ERR(vol);
2241 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2242
2243 switch (cmd) {
2244 case BTRFS_IOC_SCAN_DEV:
2245 mutex_lock(&uuid_mutex);
2246 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2247 &btrfs_root_fs_type);
2248 ret = PTR_ERR_OR_ZERO(device);
2249 mutex_unlock(&uuid_mutex);
2250 break;
2251 case BTRFS_IOC_DEVICES_READY:
2252 mutex_lock(&uuid_mutex);
2253 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2254 &btrfs_root_fs_type);
2255 if (IS_ERR(device)) {
2256 mutex_unlock(&uuid_mutex);
2257 ret = PTR_ERR(device);
2258 break;
2259 }
2260 ret = !(device->fs_devices->num_devices ==
2261 device->fs_devices->total_devices);
2262 mutex_unlock(&uuid_mutex);
2263 break;
2264 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2265 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2266 break;
2267 }
2268
2269 kfree(vol);
2270 return ret;
2271}
2272
2273static int btrfs_freeze(struct super_block *sb)
2274{
2275 struct btrfs_trans_handle *trans;
2276 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2277 struct btrfs_root *root = fs_info->tree_root;
2278
2279 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2280 /*
2281 * We don't need a barrier here, we'll wait for any transaction that
2282 * could be in progress on other threads (and do delayed iputs that
2283 * we want to avoid on a frozen filesystem), or do the commit
2284 * ourselves.
2285 */
2286 trans = btrfs_attach_transaction_barrier(root);
2287 if (IS_ERR(trans)) {
2288 /* no transaction, don't bother */
2289 if (PTR_ERR(trans) == -ENOENT)
2290 return 0;
2291 return PTR_ERR(trans);
2292 }
2293 return btrfs_commit_transaction(trans);
2294}
2295
2296static int btrfs_unfreeze(struct super_block *sb)
2297{
2298 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2299
2300 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2301 return 0;
2302}
2303
2304static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2305{
2306 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2307 struct btrfs_fs_devices *cur_devices;
2308 struct btrfs_device *dev, *first_dev = NULL;
2309 struct list_head *head;
2310
2311 /*
2312 * Lightweight locking of the devices. We should not need
2313 * device_list_mutex here as we only read the device data and the list
2314 * is protected by RCU. Even if a device is deleted during the list
2315 * traversals, we'll get valid data, the freeing callback will wait at
2316 * least until until the rcu_read_unlock.
2317 */
2318 rcu_read_lock();
2319 cur_devices = fs_info->fs_devices;
2320 while (cur_devices) {
2321 head = &cur_devices->devices;
2322 list_for_each_entry_rcu(dev, head, dev_list) {
2323 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2324 continue;
2325 if (!dev->name)
2326 continue;
2327 if (!first_dev || dev->devid < first_dev->devid)
2328 first_dev = dev;
2329 }
2330 cur_devices = cur_devices->seed;
2331 }
2332
2333 if (first_dev)
2334 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2335 else
2336 WARN_ON(1);
2337 rcu_read_unlock();
2338 return 0;
2339}
2340
2341static const struct super_operations btrfs_super_ops = {
2342 .drop_inode = btrfs_drop_inode,
2343 .evict_inode = btrfs_evict_inode,
2344 .put_super = btrfs_put_super,
2345 .sync_fs = btrfs_sync_fs,
2346 .show_options = btrfs_show_options,
2347 .show_devname = btrfs_show_devname,
2348 .alloc_inode = btrfs_alloc_inode,
2349 .destroy_inode = btrfs_destroy_inode,
2350 .statfs = btrfs_statfs,
2351 .remount_fs = btrfs_remount,
2352 .freeze_fs = btrfs_freeze,
2353 .unfreeze_fs = btrfs_unfreeze,
2354};
2355
2356static const struct file_operations btrfs_ctl_fops = {
2357 .open = btrfs_control_open,
2358 .unlocked_ioctl = btrfs_control_ioctl,
2359 .compat_ioctl = btrfs_control_ioctl,
2360 .owner = THIS_MODULE,
2361 .llseek = noop_llseek,
2362};
2363
2364static struct miscdevice btrfs_misc = {
2365 .minor = BTRFS_MINOR,
2366 .name = "btrfs-control",
2367 .fops = &btrfs_ctl_fops
2368};
2369
2370MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2371MODULE_ALIAS("devname:btrfs-control");
2372
2373static int __init btrfs_interface_init(void)
2374{
2375 return misc_register(&btrfs_misc);
2376}
2377
2378static __cold void btrfs_interface_exit(void)
2379{
2380 misc_deregister(&btrfs_misc);
2381}
2382
2383static void __init btrfs_print_mod_info(void)
2384{
2385 static const char options[] = ""
2386#ifdef CONFIG_BTRFS_DEBUG
2387 ", debug=on"
2388#endif
2389#ifdef CONFIG_BTRFS_ASSERT
2390 ", assert=on"
2391#endif
2392#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2393 ", integrity-checker=on"
2394#endif
2395#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2396 ", ref-verify=on"
2397#endif
2398 ;
2399 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2400}
2401
2402static int __init init_btrfs_fs(void)
2403{
2404 int err;
2405
2406 btrfs_props_init();
2407
2408 err = btrfs_init_sysfs();
2409 if (err)
2410 return err;
2411
2412 btrfs_init_compress();
2413
2414 err = btrfs_init_cachep();
2415 if (err)
2416 goto free_compress;
2417
2418 err = extent_io_init();
2419 if (err)
2420 goto free_cachep;
2421
2422 err = extent_map_init();
2423 if (err)
2424 goto free_extent_io;
2425
2426 err = ordered_data_init();
2427 if (err)
2428 goto free_extent_map;
2429
2430 err = btrfs_delayed_inode_init();
2431 if (err)
2432 goto free_ordered_data;
2433
2434 err = btrfs_auto_defrag_init();
2435 if (err)
2436 goto free_delayed_inode;
2437
2438 err = btrfs_delayed_ref_init();
2439 if (err)
2440 goto free_auto_defrag;
2441
2442 err = btrfs_prelim_ref_init();
2443 if (err)
2444 goto free_delayed_ref;
2445
2446 err = btrfs_end_io_wq_init();
2447 if (err)
2448 goto free_prelim_ref;
2449
2450 err = btrfs_interface_init();
2451 if (err)
2452 goto free_end_io_wq;
2453
2454 btrfs_init_lockdep();
2455
2456 btrfs_print_mod_info();
2457
2458 err = btrfs_run_sanity_tests();
2459 if (err)
2460 goto unregister_ioctl;
2461
2462 err = register_filesystem(&btrfs_fs_type);
2463 if (err)
2464 goto unregister_ioctl;
2465
2466 return 0;
2467
2468unregister_ioctl:
2469 btrfs_interface_exit();
2470free_end_io_wq:
2471 btrfs_end_io_wq_exit();
2472free_prelim_ref:
2473 btrfs_prelim_ref_exit();
2474free_delayed_ref:
2475 btrfs_delayed_ref_exit();
2476free_auto_defrag:
2477 btrfs_auto_defrag_exit();
2478free_delayed_inode:
2479 btrfs_delayed_inode_exit();
2480free_ordered_data:
2481 ordered_data_exit();
2482free_extent_map:
2483 extent_map_exit();
2484free_extent_io:
2485 extent_io_exit();
2486free_cachep:
2487 btrfs_destroy_cachep();
2488free_compress:
2489 btrfs_exit_compress();
2490 btrfs_exit_sysfs();
2491
2492 return err;
2493}
2494
2495static void __exit exit_btrfs_fs(void)
2496{
2497 btrfs_destroy_cachep();
2498 btrfs_delayed_ref_exit();
2499 btrfs_auto_defrag_exit();
2500 btrfs_delayed_inode_exit();
2501 btrfs_prelim_ref_exit();
2502 ordered_data_exit();
2503 extent_map_exit();
2504 extent_io_exit();
2505 btrfs_interface_exit();
2506 btrfs_end_io_wq_exit();
2507 unregister_filesystem(&btrfs_fs_type);
2508 btrfs_exit_sysfs();
2509 btrfs_cleanup_fs_uuids();
2510 btrfs_exit_compress();
2511}
2512
2513late_initcall(init_btrfs_fs);
2514module_exit(exit_btrfs_fs)
2515
2516MODULE_LICENSE("GPL");