blob: 871fa50a09f19ef4b291d7609ff911f297494f91 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20#include <linux/bsearch.h>
21#include <linux/mm.h>
22#include <linux/kvm_host.h>
23#include <linux/uaccess.h>
24#include <asm/kvm_arm.h>
25#include <asm/kvm_host.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_coproc.h>
28#include <asm/kvm_mmu.h>
29#include <asm/cacheflush.h>
30#include <asm/cputype.h>
31#include <trace/events/kvm.h>
32#include <asm/vfp.h>
33#include "../vfp/vfpinstr.h"
34
35#define CREATE_TRACE_POINTS
36#include "trace.h"
37#include "coproc.h"
38
39
40/******************************************************************************
41 * Co-processor emulation
42 *****************************************************************************/
43
44static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 const struct coproc_params *params)
46{
47 WARN_ONCE(1, "CP15 write to read-only register\n");
48 print_cp_instr(params);
49 kvm_inject_undefined(vcpu);
50 return false;
51}
52
53static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 const struct coproc_params *params)
55{
56 WARN_ONCE(1, "CP15 read to write-only register\n");
57 print_cp_instr(params);
58 kvm_inject_undefined(vcpu);
59 return false;
60}
61
62/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63static u32 cache_levels;
64
65/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66#define CSSELR_MAX 12
67
68/*
69 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70 * of cp15 registers can be viewed either as couple of two u32 registers
71 * or one u64 register. Current u64 register encoding is that least
72 * significant u32 word is followed by most significant u32 word.
73 */
74static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 const struct coproc_reg *r,
76 u64 val)
77{
78 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80}
81
82static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 const struct coproc_reg *r)
84{
85 u64 val;
86
87 val = vcpu_cp15(vcpu, r->reg + 1);
88 val = val << 32;
89 val = val | vcpu_cp15(vcpu, r->reg);
90 return val;
91}
92
93int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94{
95 kvm_inject_undefined(vcpu);
96 return 1;
97}
98
99int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100{
101 /*
102 * We can get here, if the host has been built without VFPv3 support,
103 * but the guest attempted a floating point operation.
104 */
105 kvm_inject_undefined(vcpu);
106 return 1;
107}
108
109int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110{
111 kvm_inject_undefined(vcpu);
112 return 1;
113}
114
115static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116{
117 /*
118 * Compute guest MPIDR. We build a virtual cluster out of the
119 * vcpu_id, but we read the 'U' bit from the underlying
120 * hardware directly.
121 */
122 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124 (vcpu->vcpu_id & 3));
125}
126
127/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
128static bool access_actlr(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131{
132 if (p->is_write)
133 return ignore_write(vcpu, p);
134
135 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136 return true;
137}
138
139/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
140static bool access_cbar(struct kvm_vcpu *vcpu,
141 const struct coproc_params *p,
142 const struct coproc_reg *r)
143{
144 if (p->is_write)
145 return write_to_read_only(vcpu, p);
146 return read_zero(vcpu, p);
147}
148
149/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
150static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151 const struct coproc_params *p,
152 const struct coproc_reg *r)
153{
154 if (p->is_write)
155 return ignore_write(vcpu, p);
156
157 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158 return true;
159}
160
161static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162{
163 u32 l2ctlr, ncores;
164
165 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166 l2ctlr &= ~(3 << 24);
167 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168 /* How many cores in the current cluster and the next ones */
169 ncores -= (vcpu->vcpu_id & ~3);
170 /* Cap it to the maximum number of cores in a single cluster */
171 ncores = min(ncores, 3U);
172 l2ctlr |= (ncores & 3) << 24;
173
174 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175}
176
177static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178{
179 u32 actlr;
180
181 /* ACTLR contains SMP bit: make sure you create all cpus first! */
182 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183 /* Make the SMP bit consistent with the guest configuration */
184 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185 actlr |= 1U << 6;
186 else
187 actlr &= ~(1U << 6);
188
189 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190}
191
192/*
193 * TRM entries: A7:4.3.50, A15:4.3.49
194 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195 */
196static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197 const struct coproc_params *p,
198 const struct coproc_reg *r)
199{
200 if (p->is_write)
201 return ignore_write(vcpu, p);
202
203 *vcpu_reg(vcpu, p->Rt1) = 0;
204 return true;
205}
206
207/*
208 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209 */
210static bool access_dcsw(struct kvm_vcpu *vcpu,
211 const struct coproc_params *p,
212 const struct coproc_reg *r)
213{
214 if (!p->is_write)
215 return read_from_write_only(vcpu, p);
216
217 kvm_set_way_flush(vcpu);
218 return true;
219}
220
221/*
222 * Generic accessor for VM registers. Only called as long as HCR_TVM
223 * is set. If the guest enables the MMU, we stop trapping the VM
224 * sys_regs and leave it in complete control of the caches.
225 *
226 * Used by the cpu-specific code.
227 */
228bool access_vm_reg(struct kvm_vcpu *vcpu,
229 const struct coproc_params *p,
230 const struct coproc_reg *r)
231{
232 bool was_enabled = vcpu_has_cache_enabled(vcpu);
233
234 BUG_ON(!p->is_write);
235
236 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237 if (p->is_64bit)
238 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239
240 kvm_toggle_cache(vcpu, was_enabled);
241 return true;
242}
243
244static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245 const struct coproc_params *p,
246 const struct coproc_reg *r)
247{
248 u64 reg;
249 bool g1;
250
251 if (!p->is_write)
252 return read_from_write_only(vcpu, p);
253
254 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
255 reg |= *vcpu_reg(vcpu, p->Rt1) ;
256
257 /*
258 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
259 * Group0 SGIs only, while ICC_SGI1R can generate either group,
260 * depending on the SGI configuration. ICC_ASGI1R is effectively
261 * equivalent to ICC_SGI0R, as there is no "alternative" secure
262 * group.
263 */
264 switch (p->Op1) {
265 default: /* Keep GCC quiet */
266 case 0: /* ICC_SGI1R */
267 g1 = true;
268 break;
269 case 1: /* ICC_ASGI1R */
270 case 2: /* ICC_SGI0R */
271 g1 = false;
272 break;
273 }
274
275 vgic_v3_dispatch_sgi(vcpu, reg, g1);
276
277 return true;
278}
279
280static bool access_gic_sre(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283{
284 if (p->is_write)
285 return ignore_write(vcpu, p);
286
287 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
288
289 return true;
290}
291
292static bool access_cntp_tval(struct kvm_vcpu *vcpu,
293 const struct coproc_params *p,
294 const struct coproc_reg *r)
295{
296 u64 now = kvm_phys_timer_read();
297 u64 val;
298
299 if (p->is_write) {
300 val = *vcpu_reg(vcpu, p->Rt1);
301 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
302 } else {
303 val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
304 *vcpu_reg(vcpu, p->Rt1) = val - now;
305 }
306
307 return true;
308}
309
310static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
311 const struct coproc_params *p,
312 const struct coproc_reg *r)
313{
314 u32 val;
315
316 if (p->is_write) {
317 val = *vcpu_reg(vcpu, p->Rt1);
318 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
319 } else {
320 val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
321 *vcpu_reg(vcpu, p->Rt1) = val;
322 }
323
324 return true;
325}
326
327static bool access_cntp_cval(struct kvm_vcpu *vcpu,
328 const struct coproc_params *p,
329 const struct coproc_reg *r)
330{
331 u64 val;
332
333 if (p->is_write) {
334 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
335 val |= *vcpu_reg(vcpu, p->Rt1);
336 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
337 } else {
338 val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
339 *vcpu_reg(vcpu, p->Rt1) = val;
340 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
341 }
342
343 return true;
344}
345
346/*
347 * We could trap ID_DFR0 and tell the guest we don't support performance
348 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
349 * NAKed, so it will read the PMCR anyway.
350 *
351 * Therefore we tell the guest we have 0 counters. Unfortunately, we
352 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
353 * all PM registers, which doesn't crash the guest kernel at least.
354 */
355static bool trap_raz_wi(struct kvm_vcpu *vcpu,
356 const struct coproc_params *p,
357 const struct coproc_reg *r)
358{
359 if (p->is_write)
360 return ignore_write(vcpu, p);
361 else
362 return read_zero(vcpu, p);
363}
364
365#define access_pmcr trap_raz_wi
366#define access_pmcntenset trap_raz_wi
367#define access_pmcntenclr trap_raz_wi
368#define access_pmovsr trap_raz_wi
369#define access_pmselr trap_raz_wi
370#define access_pmceid0 trap_raz_wi
371#define access_pmceid1 trap_raz_wi
372#define access_pmccntr trap_raz_wi
373#define access_pmxevtyper trap_raz_wi
374#define access_pmxevcntr trap_raz_wi
375#define access_pmuserenr trap_raz_wi
376#define access_pmintenset trap_raz_wi
377#define access_pmintenclr trap_raz_wi
378
379/* Architected CP15 registers.
380 * CRn denotes the primary register number, but is copied to the CRm in the
381 * user space API for 64-bit register access in line with the terminology used
382 * in the ARM ARM.
383 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
384 * registers preceding 32-bit ones.
385 */
386static const struct coproc_reg cp15_regs[] = {
387 /* MPIDR: we use VMPIDR for guest access. */
388 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
389 NULL, reset_mpidr, c0_MPIDR },
390
391 /* CSSELR: swapped by interrupt.S. */
392 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
393 NULL, reset_unknown, c0_CSSELR },
394
395 /* ACTLR: trapped by HCR.TAC bit. */
396 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
397 access_actlr, reset_actlr, c1_ACTLR },
398
399 /* CPACR: swapped by interrupt.S. */
400 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
401 NULL, reset_val, c1_CPACR, 0x00000000 },
402
403 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
404 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
405 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
406 access_vm_reg, reset_unknown, c2_TTBR0 },
407 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
408 access_vm_reg, reset_unknown, c2_TTBR1 },
409 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
410 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
411 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
412
413
414 /* DACR: swapped by interrupt.S. */
415 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
416 access_vm_reg, reset_unknown, c3_DACR },
417
418 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
419 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
420 access_vm_reg, reset_unknown, c5_DFSR },
421 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
422 access_vm_reg, reset_unknown, c5_IFSR },
423 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
424 access_vm_reg, reset_unknown, c5_ADFSR },
425 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
426 access_vm_reg, reset_unknown, c5_AIFSR },
427
428 /* DFAR/IFAR: swapped by interrupt.S. */
429 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
430 access_vm_reg, reset_unknown, c6_DFAR },
431 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
432 access_vm_reg, reset_unknown, c6_IFAR },
433
434 /* PAR swapped by interrupt.S */
435 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
436
437 /*
438 * DC{C,I,CI}SW operations:
439 */
440 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
441 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
442 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
443 /*
444 * L2CTLR access (guest wants to know #CPUs).
445 */
446 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
447 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
448 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
449
450 /*
451 * Dummy performance monitor implementation.
452 */
453 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
454 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
455 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
456 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
457 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
458 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
459 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
460 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
461 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
462 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
463 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
464 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
465 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
466
467 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
468 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
469 access_vm_reg, reset_unknown, c10_PRRR},
470 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
471 access_vm_reg, reset_unknown, c10_NMRR},
472
473 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
474 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
475 access_vm_reg, reset_unknown, c10_AMAIR0},
476 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
477 access_vm_reg, reset_unknown, c10_AMAIR1},
478
479 /* ICC_SGI1R */
480 { CRm64(12), Op1( 0), is64, access_gic_sgi},
481
482 /* VBAR: swapped by interrupt.S. */
483 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
484 NULL, reset_val, c12_VBAR, 0x00000000 },
485
486 /* ICC_ASGI1R */
487 { CRm64(12), Op1( 1), is64, access_gic_sgi},
488 /* ICC_SGI0R */
489 { CRm64(12), Op1( 2), is64, access_gic_sgi},
490 /* ICC_SRE */
491 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
492
493 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
494 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
495 access_vm_reg, reset_val, c13_CID, 0x00000000 },
496 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
497 NULL, reset_unknown, c13_TID_URW },
498 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
499 NULL, reset_unknown, c13_TID_URO },
500 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
501 NULL, reset_unknown, c13_TID_PRIV },
502
503 /* CNTP */
504 { CRm64(14), Op1( 2), is64, access_cntp_cval},
505
506 /* CNTKCTL: swapped by interrupt.S. */
507 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
508 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
509
510 /* CNTP */
511 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
512 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
513
514 /* The Configuration Base Address Register. */
515 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
516};
517
518static int check_reg_table(const struct coproc_reg *table, unsigned int n)
519{
520 unsigned int i;
521
522 for (i = 1; i < n; i++) {
523 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
524 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
525 return 1;
526 }
527 }
528
529 return 0;
530}
531
532/* Target specific emulation tables */
533static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
534
535void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
536{
537 BUG_ON(check_reg_table(table->table, table->num));
538 target_tables[table->target] = table;
539}
540
541/* Get specific register table for this target. */
542static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
543{
544 struct kvm_coproc_target_table *table;
545
546 table = target_tables[target];
547 *num = table->num;
548 return table->table;
549}
550
551#define reg_to_match_value(x) \
552 ({ \
553 unsigned long val; \
554 val = (x)->CRn << 11; \
555 val |= (x)->CRm << 7; \
556 val |= (x)->Op1 << 4; \
557 val |= (x)->Op2 << 1; \
558 val |= !(x)->is_64bit; \
559 val; \
560 })
561
562static int match_reg(const void *key, const void *elt)
563{
564 const unsigned long pval = (unsigned long)key;
565 const struct coproc_reg *r = elt;
566
567 return pval - reg_to_match_value(r);
568}
569
570static const struct coproc_reg *find_reg(const struct coproc_params *params,
571 const struct coproc_reg table[],
572 unsigned int num)
573{
574 unsigned long pval = reg_to_match_value(params);
575
576 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
577}
578
579static int emulate_cp15(struct kvm_vcpu *vcpu,
580 const struct coproc_params *params)
581{
582 size_t num;
583 const struct coproc_reg *table, *r;
584
585 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
586 params->CRm, params->Op2, params->is_write);
587
588 table = get_target_table(vcpu->arch.target, &num);
589
590 /* Search target-specific then generic table. */
591 r = find_reg(params, table, num);
592 if (!r)
593 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
594
595 if (likely(r)) {
596 /* If we don't have an accessor, we should never get here! */
597 BUG_ON(!r->access);
598
599 if (likely(r->access(vcpu, params, r))) {
600 /* Skip instruction, since it was emulated */
601 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
602 }
603 } else {
604 /* If access function fails, it should complain. */
605 kvm_err("Unsupported guest CP15 access at: %08lx\n",
606 *vcpu_pc(vcpu));
607 print_cp_instr(params);
608 kvm_inject_undefined(vcpu);
609 }
610
611 return 1;
612}
613
614static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
615{
616 struct coproc_params params;
617
618 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
619 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
620 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
621 params.is_64bit = true;
622
623 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
624 params.Op2 = 0;
625 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
626 params.CRm = 0;
627
628 return params;
629}
630
631/**
632 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
633 * @vcpu: The VCPU pointer
634 * @run: The kvm_run struct
635 */
636int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
637{
638 struct coproc_params params = decode_64bit_hsr(vcpu);
639
640 return emulate_cp15(vcpu, &params);
641}
642
643/**
644 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
645 * @vcpu: The VCPU pointer
646 * @run: The kvm_run struct
647 */
648int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
649{
650 struct coproc_params params = decode_64bit_hsr(vcpu);
651
652 /* raz_wi cp14 */
653 trap_raz_wi(vcpu, &params, NULL);
654
655 /* handled */
656 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
657 return 1;
658}
659
660static void reset_coproc_regs(struct kvm_vcpu *vcpu,
661 const struct coproc_reg *table, size_t num,
662 unsigned long *bmap)
663{
664 unsigned long i;
665
666 for (i = 0; i < num; i++)
667 if (table[i].reset) {
668 int reg = table[i].reg;
669
670 table[i].reset(vcpu, &table[i]);
671 if (reg > 0 && reg < NR_CP15_REGS) {
672 set_bit(reg, bmap);
673 if (table[i].is_64bit)
674 set_bit(reg + 1, bmap);
675 }
676 }
677}
678
679static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
680{
681 struct coproc_params params;
682
683 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
684 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
685 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
686 params.is_64bit = false;
687
688 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
689 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
690 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
691 params.Rt2 = 0;
692
693 return params;
694}
695
696/**
697 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
698 * @vcpu: The VCPU pointer
699 * @run: The kvm_run struct
700 */
701int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
702{
703 struct coproc_params params = decode_32bit_hsr(vcpu);
704 return emulate_cp15(vcpu, &params);
705}
706
707/**
708 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
709 * @vcpu: The VCPU pointer
710 * @run: The kvm_run struct
711 */
712int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
713{
714 struct coproc_params params = decode_32bit_hsr(vcpu);
715
716 /* raz_wi cp14 */
717 trap_raz_wi(vcpu, &params, NULL);
718
719 /* handled */
720 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
721 return 1;
722}
723
724/******************************************************************************
725 * Userspace API
726 *****************************************************************************/
727
728static bool index_to_params(u64 id, struct coproc_params *params)
729{
730 switch (id & KVM_REG_SIZE_MASK) {
731 case KVM_REG_SIZE_U32:
732 /* Any unused index bits means it's not valid. */
733 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
734 | KVM_REG_ARM_COPROC_MASK
735 | KVM_REG_ARM_32_CRN_MASK
736 | KVM_REG_ARM_CRM_MASK
737 | KVM_REG_ARM_OPC1_MASK
738 | KVM_REG_ARM_32_OPC2_MASK))
739 return false;
740
741 params->is_64bit = false;
742 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
743 >> KVM_REG_ARM_32_CRN_SHIFT);
744 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
745 >> KVM_REG_ARM_CRM_SHIFT);
746 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
747 >> KVM_REG_ARM_OPC1_SHIFT);
748 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
749 >> KVM_REG_ARM_32_OPC2_SHIFT);
750 return true;
751 case KVM_REG_SIZE_U64:
752 /* Any unused index bits means it's not valid. */
753 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
754 | KVM_REG_ARM_COPROC_MASK
755 | KVM_REG_ARM_CRM_MASK
756 | KVM_REG_ARM_OPC1_MASK))
757 return false;
758 params->is_64bit = true;
759 /* CRm to CRn: see cp15_to_index for details */
760 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
761 >> KVM_REG_ARM_CRM_SHIFT);
762 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
763 >> KVM_REG_ARM_OPC1_SHIFT);
764 params->Op2 = 0;
765 params->CRm = 0;
766 return true;
767 default:
768 return false;
769 }
770}
771
772/* Decode an index value, and find the cp15 coproc_reg entry. */
773static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
774 u64 id)
775{
776 size_t num;
777 const struct coproc_reg *table, *r;
778 struct coproc_params params;
779
780 /* We only do cp15 for now. */
781 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
782 return NULL;
783
784 if (!index_to_params(id, &params))
785 return NULL;
786
787 table = get_target_table(vcpu->arch.target, &num);
788 r = find_reg(&params, table, num);
789 if (!r)
790 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
791
792 /* Not saved in the cp15 array? */
793 if (r && !r->reg)
794 r = NULL;
795
796 return r;
797}
798
799/*
800 * These are the invariant cp15 registers: we let the guest see the host
801 * versions of these, so they're part of the guest state.
802 *
803 * A future CPU may provide a mechanism to present different values to
804 * the guest, or a future kvm may trap them.
805 */
806/* Unfortunately, there's no register-argument for mrc, so generate. */
807#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
808 static void get_##name(struct kvm_vcpu *v, \
809 const struct coproc_reg *r) \
810 { \
811 u32 val; \
812 \
813 asm volatile("mrc p15, " __stringify(op1) \
814 ", %0, c" __stringify(crn) \
815 ", c" __stringify(crm) \
816 ", " __stringify(op2) "\n" : "=r" (val)); \
817 ((struct coproc_reg *)r)->val = val; \
818 }
819
820FUNCTION_FOR32(0, 0, 0, 0, MIDR)
821FUNCTION_FOR32(0, 0, 0, 1, CTR)
822FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
823FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
824FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
825FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
826FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
827FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
828FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
829FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
830FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
831FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
832FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
833FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
834FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
835FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
836FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
837FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
838FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
839FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
840FUNCTION_FOR32(0, 0, 1, 7, AIDR)
841
842/* ->val is filled in by kvm_invariant_coproc_table_init() */
843static struct coproc_reg invariant_cp15[] = {
844 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
845 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
846 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
847 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
848 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
849
850 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
851 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
852
853 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
854 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
855 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
856 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
857 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
858 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
859 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
860 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
861
862 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
863 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
864 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
865 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
866 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
867 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
868};
869
870/*
871 * Reads a register value from a userspace address to a kernel
872 * variable. Make sure that register size matches sizeof(*__val).
873 */
874static int reg_from_user(void *val, const void __user *uaddr, u64 id)
875{
876 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
877 return -EFAULT;
878 return 0;
879}
880
881/*
882 * Writes a register value to a userspace address from a kernel variable.
883 * Make sure that register size matches sizeof(*__val).
884 */
885static int reg_to_user(void __user *uaddr, const void *val, u64 id)
886{
887 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
888 return -EFAULT;
889 return 0;
890}
891
892static int get_invariant_cp15(u64 id, void __user *uaddr)
893{
894 struct coproc_params params;
895 const struct coproc_reg *r;
896 int ret;
897
898 if (!index_to_params(id, &params))
899 return -ENOENT;
900
901 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
902 if (!r)
903 return -ENOENT;
904
905 ret = -ENOENT;
906 if (KVM_REG_SIZE(id) == 4) {
907 u32 val = r->val;
908
909 ret = reg_to_user(uaddr, &val, id);
910 } else if (KVM_REG_SIZE(id) == 8) {
911 ret = reg_to_user(uaddr, &r->val, id);
912 }
913 return ret;
914}
915
916static int set_invariant_cp15(u64 id, void __user *uaddr)
917{
918 struct coproc_params params;
919 const struct coproc_reg *r;
920 int err;
921 u64 val;
922
923 if (!index_to_params(id, &params))
924 return -ENOENT;
925 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
926 if (!r)
927 return -ENOENT;
928
929 err = -ENOENT;
930 if (KVM_REG_SIZE(id) == 4) {
931 u32 val32;
932
933 err = reg_from_user(&val32, uaddr, id);
934 if (!err)
935 val = val32;
936 } else if (KVM_REG_SIZE(id) == 8) {
937 err = reg_from_user(&val, uaddr, id);
938 }
939 if (err)
940 return err;
941
942 /* This is what we mean by invariant: you can't change it. */
943 if (r->val != val)
944 return -EINVAL;
945
946 return 0;
947}
948
949static bool is_valid_cache(u32 val)
950{
951 u32 level, ctype;
952
953 if (val >= CSSELR_MAX)
954 return false;
955
956 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
957 level = (val >> 1);
958 ctype = (cache_levels >> (level * 3)) & 7;
959
960 switch (ctype) {
961 case 0: /* No cache */
962 return false;
963 case 1: /* Instruction cache only */
964 return (val & 1);
965 case 2: /* Data cache only */
966 case 4: /* Unified cache */
967 return !(val & 1);
968 case 3: /* Separate instruction and data caches */
969 return true;
970 default: /* Reserved: we can't know instruction or data. */
971 return false;
972 }
973}
974
975/* Which cache CCSIDR represents depends on CSSELR value. */
976static u32 get_ccsidr(u32 csselr)
977{
978 u32 ccsidr;
979
980 /* Make sure noone else changes CSSELR during this! */
981 local_irq_disable();
982 /* Put value into CSSELR */
983 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
984 isb();
985 /* Read result out of CCSIDR */
986 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
987 local_irq_enable();
988
989 return ccsidr;
990}
991
992static int demux_c15_get(u64 id, void __user *uaddr)
993{
994 u32 val;
995 u32 __user *uval = uaddr;
996
997 /* Fail if we have unknown bits set. */
998 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
999 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1000 return -ENOENT;
1001
1002 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1003 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1004 if (KVM_REG_SIZE(id) != 4)
1005 return -ENOENT;
1006 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1007 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1008 if (!is_valid_cache(val))
1009 return -ENOENT;
1010
1011 return put_user(get_ccsidr(val), uval);
1012 default:
1013 return -ENOENT;
1014 }
1015}
1016
1017static int demux_c15_set(u64 id, void __user *uaddr)
1018{
1019 u32 val, newval;
1020 u32 __user *uval = uaddr;
1021
1022 /* Fail if we have unknown bits set. */
1023 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1024 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1025 return -ENOENT;
1026
1027 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1028 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1029 if (KVM_REG_SIZE(id) != 4)
1030 return -ENOENT;
1031 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1032 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1033 if (!is_valid_cache(val))
1034 return -ENOENT;
1035
1036 if (get_user(newval, uval))
1037 return -EFAULT;
1038
1039 /* This is also invariant: you can't change it. */
1040 if (newval != get_ccsidr(val))
1041 return -EINVAL;
1042 return 0;
1043 default:
1044 return -ENOENT;
1045 }
1046}
1047
1048#ifdef CONFIG_VFPv3
1049static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1050 KVM_REG_ARM_VFP_FPSCR,
1051 KVM_REG_ARM_VFP_FPINST,
1052 KVM_REG_ARM_VFP_FPINST2,
1053 KVM_REG_ARM_VFP_MVFR0,
1054 KVM_REG_ARM_VFP_MVFR1,
1055 KVM_REG_ARM_VFP_FPSID };
1056
1057static unsigned int num_fp_regs(void)
1058{
1059 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1060 return 32;
1061 else
1062 return 16;
1063}
1064
1065static unsigned int num_vfp_regs(void)
1066{
1067 /* Normal FP regs + control regs. */
1068 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1069}
1070
1071static int copy_vfp_regids(u64 __user *uindices)
1072{
1073 unsigned int i;
1074 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1075 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1076
1077 for (i = 0; i < num_fp_regs(); i++) {
1078 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1079 uindices))
1080 return -EFAULT;
1081 uindices++;
1082 }
1083
1084 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1085 if (put_user(u32reg | vfp_sysregs[i], uindices))
1086 return -EFAULT;
1087 uindices++;
1088 }
1089
1090 return num_vfp_regs();
1091}
1092
1093static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1094{
1095 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1096 u32 val;
1097
1098 /* Fail if we have unknown bits set. */
1099 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1100 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1101 return -ENOENT;
1102
1103 if (vfpid < num_fp_regs()) {
1104 if (KVM_REG_SIZE(id) != 8)
1105 return -ENOENT;
1106 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1107 id);
1108 }
1109
1110 /* FP control registers are all 32 bit. */
1111 if (KVM_REG_SIZE(id) != 4)
1112 return -ENOENT;
1113
1114 switch (vfpid) {
1115 case KVM_REG_ARM_VFP_FPEXC:
1116 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1117 case KVM_REG_ARM_VFP_FPSCR:
1118 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1119 case KVM_REG_ARM_VFP_FPINST:
1120 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1121 case KVM_REG_ARM_VFP_FPINST2:
1122 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1123 case KVM_REG_ARM_VFP_MVFR0:
1124 val = fmrx(MVFR0);
1125 return reg_to_user(uaddr, &val, id);
1126 case KVM_REG_ARM_VFP_MVFR1:
1127 val = fmrx(MVFR1);
1128 return reg_to_user(uaddr, &val, id);
1129 case KVM_REG_ARM_VFP_FPSID:
1130 val = fmrx(FPSID);
1131 return reg_to_user(uaddr, &val, id);
1132 default:
1133 return -ENOENT;
1134 }
1135}
1136
1137static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1138{
1139 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1140 u32 val;
1141
1142 /* Fail if we have unknown bits set. */
1143 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1144 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1145 return -ENOENT;
1146
1147 if (vfpid < num_fp_regs()) {
1148 if (KVM_REG_SIZE(id) != 8)
1149 return -ENOENT;
1150 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1151 uaddr, id);
1152 }
1153
1154 /* FP control registers are all 32 bit. */
1155 if (KVM_REG_SIZE(id) != 4)
1156 return -ENOENT;
1157
1158 switch (vfpid) {
1159 case KVM_REG_ARM_VFP_FPEXC:
1160 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1161 case KVM_REG_ARM_VFP_FPSCR:
1162 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1163 case KVM_REG_ARM_VFP_FPINST:
1164 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1165 case KVM_REG_ARM_VFP_FPINST2:
1166 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1167 /* These are invariant. */
1168 case KVM_REG_ARM_VFP_MVFR0:
1169 if (reg_from_user(&val, uaddr, id))
1170 return -EFAULT;
1171 if (val != fmrx(MVFR0))
1172 return -EINVAL;
1173 return 0;
1174 case KVM_REG_ARM_VFP_MVFR1:
1175 if (reg_from_user(&val, uaddr, id))
1176 return -EFAULT;
1177 if (val != fmrx(MVFR1))
1178 return -EINVAL;
1179 return 0;
1180 case KVM_REG_ARM_VFP_FPSID:
1181 if (reg_from_user(&val, uaddr, id))
1182 return -EFAULT;
1183 if (val != fmrx(FPSID))
1184 return -EINVAL;
1185 return 0;
1186 default:
1187 return -ENOENT;
1188 }
1189}
1190#else /* !CONFIG_VFPv3 */
1191static unsigned int num_vfp_regs(void)
1192{
1193 return 0;
1194}
1195
1196static int copy_vfp_regids(u64 __user *uindices)
1197{
1198 return 0;
1199}
1200
1201static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1202{
1203 return -ENOENT;
1204}
1205
1206static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1207{
1208 return -ENOENT;
1209}
1210#endif /* !CONFIG_VFPv3 */
1211
1212int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1213{
1214 const struct coproc_reg *r;
1215 void __user *uaddr = (void __user *)(long)reg->addr;
1216 int ret;
1217
1218 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1219 return demux_c15_get(reg->id, uaddr);
1220
1221 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1222 return vfp_get_reg(vcpu, reg->id, uaddr);
1223
1224 r = index_to_coproc_reg(vcpu, reg->id);
1225 if (!r)
1226 return get_invariant_cp15(reg->id, uaddr);
1227
1228 ret = -ENOENT;
1229 if (KVM_REG_SIZE(reg->id) == 8) {
1230 u64 val;
1231
1232 val = vcpu_cp15_reg64_get(vcpu, r);
1233 ret = reg_to_user(uaddr, &val, reg->id);
1234 } else if (KVM_REG_SIZE(reg->id) == 4) {
1235 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1236 }
1237
1238 return ret;
1239}
1240
1241int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1242{
1243 const struct coproc_reg *r;
1244 void __user *uaddr = (void __user *)(long)reg->addr;
1245 int ret;
1246
1247 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1248 return demux_c15_set(reg->id, uaddr);
1249
1250 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1251 return vfp_set_reg(vcpu, reg->id, uaddr);
1252
1253 r = index_to_coproc_reg(vcpu, reg->id);
1254 if (!r)
1255 return set_invariant_cp15(reg->id, uaddr);
1256
1257 ret = -ENOENT;
1258 if (KVM_REG_SIZE(reg->id) == 8) {
1259 u64 val;
1260
1261 ret = reg_from_user(&val, uaddr, reg->id);
1262 if (!ret)
1263 vcpu_cp15_reg64_set(vcpu, r, val);
1264 } else if (KVM_REG_SIZE(reg->id) == 4) {
1265 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1266 }
1267
1268 return ret;
1269}
1270
1271static unsigned int num_demux_regs(void)
1272{
1273 unsigned int i, count = 0;
1274
1275 for (i = 0; i < CSSELR_MAX; i++)
1276 if (is_valid_cache(i))
1277 count++;
1278
1279 return count;
1280}
1281
1282static int write_demux_regids(u64 __user *uindices)
1283{
1284 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1285 unsigned int i;
1286
1287 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1288 for (i = 0; i < CSSELR_MAX; i++) {
1289 if (!is_valid_cache(i))
1290 continue;
1291 if (put_user(val | i, uindices))
1292 return -EFAULT;
1293 uindices++;
1294 }
1295 return 0;
1296}
1297
1298static u64 cp15_to_index(const struct coproc_reg *reg)
1299{
1300 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1301 if (reg->is_64bit) {
1302 val |= KVM_REG_SIZE_U64;
1303 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1304 /*
1305 * CRn always denotes the primary coproc. reg. nr. for the
1306 * in-kernel representation, but the user space API uses the
1307 * CRm for the encoding, because it is modelled after the
1308 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1309 * B3-1445
1310 */
1311 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1312 } else {
1313 val |= KVM_REG_SIZE_U32;
1314 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1315 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1316 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1317 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1318 }
1319 return val;
1320}
1321
1322static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1323{
1324 if (!*uind)
1325 return true;
1326
1327 if (put_user(cp15_to_index(reg), *uind))
1328 return false;
1329
1330 (*uind)++;
1331 return true;
1332}
1333
1334/* Assumed ordered tables, see kvm_coproc_table_init. */
1335static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1336{
1337 const struct coproc_reg *i1, *i2, *end1, *end2;
1338 unsigned int total = 0;
1339 size_t num;
1340
1341 /* We check for duplicates here, to allow arch-specific overrides. */
1342 i1 = get_target_table(vcpu->arch.target, &num);
1343 end1 = i1 + num;
1344 i2 = cp15_regs;
1345 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1346
1347 BUG_ON(i1 == end1 || i2 == end2);
1348
1349 /* Walk carefully, as both tables may refer to the same register. */
1350 while (i1 || i2) {
1351 int cmp = cmp_reg(i1, i2);
1352 /* target-specific overrides generic entry. */
1353 if (cmp <= 0) {
1354 /* Ignore registers we trap but don't save. */
1355 if (i1->reg) {
1356 if (!copy_reg_to_user(i1, &uind))
1357 return -EFAULT;
1358 total++;
1359 }
1360 } else {
1361 /* Ignore registers we trap but don't save. */
1362 if (i2->reg) {
1363 if (!copy_reg_to_user(i2, &uind))
1364 return -EFAULT;
1365 total++;
1366 }
1367 }
1368
1369 if (cmp <= 0 && ++i1 == end1)
1370 i1 = NULL;
1371 if (cmp >= 0 && ++i2 == end2)
1372 i2 = NULL;
1373 }
1374 return total;
1375}
1376
1377unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1378{
1379 return ARRAY_SIZE(invariant_cp15)
1380 + num_demux_regs()
1381 + num_vfp_regs()
1382 + walk_cp15(vcpu, (u64 __user *)NULL);
1383}
1384
1385int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1386{
1387 unsigned int i;
1388 int err;
1389
1390 /* Then give them all the invariant registers' indices. */
1391 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1392 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1393 return -EFAULT;
1394 uindices++;
1395 }
1396
1397 err = walk_cp15(vcpu, uindices);
1398 if (err < 0)
1399 return err;
1400 uindices += err;
1401
1402 err = copy_vfp_regids(uindices);
1403 if (err < 0)
1404 return err;
1405 uindices += err;
1406
1407 return write_demux_regids(uindices);
1408}
1409
1410void kvm_coproc_table_init(void)
1411{
1412 unsigned int i;
1413
1414 /* Make sure tables are unique and in order. */
1415 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1416 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1417
1418 /* We abuse the reset function to overwrite the table itself. */
1419 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1420 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1421
1422 /*
1423 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1424 *
1425 * If software reads the Cache Type fields from Ctype1
1426 * upwards, once it has seen a value of 0b000, no caches
1427 * exist at further-out levels of the hierarchy. So, for
1428 * example, if Ctype3 is the first Cache Type field with a
1429 * value of 0b000, the values of Ctype4 to Ctype7 must be
1430 * ignored.
1431 */
1432 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1433 for (i = 0; i < 7; i++)
1434 if (((cache_levels >> (i*3)) & 7) == 0)
1435 break;
1436 /* Clear all higher bits. */
1437 cache_levels &= (1 << (i*3))-1;
1438}
1439
1440/**
1441 * kvm_reset_coprocs - sets cp15 registers to reset value
1442 * @vcpu: The VCPU pointer
1443 *
1444 * This function finds the right table above and sets the registers on the
1445 * virtual CPU struct to their architecturally defined reset values.
1446 */
1447void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1448{
1449 size_t num;
1450 const struct coproc_reg *table;
1451 DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1452
1453 /* Generic chip reset first (so target could override). */
1454 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1455
1456 table = get_target_table(vcpu->arch.target, &num);
1457 reset_coproc_regs(vcpu, table, num, bmap);
1458
1459 for (num = 1; num < NR_CP15_REGS; num++)
1460 WARN(!test_bit(num, bmap),
1461 "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1462}