blob: e7f5ef6bed0fe8a86e39497f8c1791690c3b0bc6 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/bootmem.h>
22
23#include <asm/fpu.h>
24#include <asm/page.h>
25#include <asm/cacheflush.h>
26#include <asm/mmu_context.h>
27#include <asm/pgalloc.h>
28#include <asm/pgtable.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33#include "commpage.h"
34
35#define CREATE_TRACE_POINTS
36#include "trace.h"
37
38#ifndef VECTORSPACING
39#define VECTORSPACING 0x100 /* for EI/VI mode */
40#endif
41
42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62#ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU },
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU },
65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU },
66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU },
67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU },
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU },
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU },
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU },
71#endif
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
76 {NULL}
77};
78
79bool kvm_trace_guest_mode_change;
80
81int kvm_guest_mode_change_trace_reg(void)
82{
83 kvm_trace_guest_mode_change = 1;
84 return 0;
85}
86
87void kvm_guest_mode_change_trace_unreg(void)
88{
89 kvm_trace_guest_mode_change = 0;
90}
91
92/*
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
95 */
96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97{
98 return !!(vcpu->arch.pending_exceptions);
99}
100
101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102{
103 return false;
104}
105
106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107{
108 return 1;
109}
110
111int kvm_arch_hardware_enable(void)
112{
113 return kvm_mips_callbacks->hardware_enable();
114}
115
116void kvm_arch_hardware_disable(void)
117{
118 kvm_mips_callbacks->hardware_disable();
119}
120
121int kvm_arch_hardware_setup(void)
122{
123 return 0;
124}
125
126void kvm_arch_check_processor_compat(void *rtn)
127{
128 *(int *)rtn = 0;
129}
130
131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132{
133 switch (type) {
134#ifdef CONFIG_KVM_MIPS_VZ
135 case KVM_VM_MIPS_VZ:
136#else
137 case KVM_VM_MIPS_TE:
138#endif
139 break;
140 default:
141 /* Unsupported KVM type */
142 return -EINVAL;
143 };
144
145 /* Allocate page table to map GPA -> RPA */
146 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147 if (!kvm->arch.gpa_mm.pgd)
148 return -ENOMEM;
149
150 return 0;
151}
152
153bool kvm_arch_has_vcpu_debugfs(void)
154{
155 return false;
156}
157
158int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
159{
160 return 0;
161}
162
163void kvm_mips_free_vcpus(struct kvm *kvm)
164{
165 unsigned int i;
166 struct kvm_vcpu *vcpu;
167
168 kvm_for_each_vcpu(i, vcpu, kvm) {
169 kvm_arch_vcpu_free(vcpu);
170 }
171
172 mutex_lock(&kvm->lock);
173
174 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
175 kvm->vcpus[i] = NULL;
176
177 atomic_set(&kvm->online_vcpus, 0);
178
179 mutex_unlock(&kvm->lock);
180}
181
182static void kvm_mips_free_gpa_pt(struct kvm *kvm)
183{
184 /* It should always be safe to remove after flushing the whole range */
185 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
186 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
187}
188
189void kvm_arch_destroy_vm(struct kvm *kvm)
190{
191 kvm_mips_free_vcpus(kvm);
192 kvm_mips_free_gpa_pt(kvm);
193}
194
195long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
196 unsigned long arg)
197{
198 return -ENOIOCTLCMD;
199}
200
201int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
202 unsigned long npages)
203{
204 return 0;
205}
206
207void kvm_arch_flush_shadow_all(struct kvm *kvm)
208{
209 /* Flush whole GPA */
210 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
211
212 /* Let implementation do the rest */
213 kvm_mips_callbacks->flush_shadow_all(kvm);
214}
215
216void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
217 struct kvm_memory_slot *slot)
218{
219 /*
220 * The slot has been made invalid (ready for moving or deletion), so we
221 * need to ensure that it can no longer be accessed by any guest VCPUs.
222 */
223
224 spin_lock(&kvm->mmu_lock);
225 /* Flush slot from GPA */
226 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
227 slot->base_gfn + slot->npages - 1);
228 /* Let implementation do the rest */
229 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
230 spin_unlock(&kvm->mmu_lock);
231}
232
233int kvm_arch_prepare_memory_region(struct kvm *kvm,
234 struct kvm_memory_slot *memslot,
235 const struct kvm_userspace_memory_region *mem,
236 enum kvm_mr_change change)
237{
238 return 0;
239}
240
241void kvm_arch_commit_memory_region(struct kvm *kvm,
242 const struct kvm_userspace_memory_region *mem,
243 const struct kvm_memory_slot *old,
244 const struct kvm_memory_slot *new,
245 enum kvm_mr_change change)
246{
247 int needs_flush;
248
249 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
250 __func__, kvm, mem->slot, mem->guest_phys_addr,
251 mem->memory_size, mem->userspace_addr);
252
253 /*
254 * If dirty page logging is enabled, write protect all pages in the slot
255 * ready for dirty logging.
256 *
257 * There is no need to do this in any of the following cases:
258 * CREATE: No dirty mappings will already exist.
259 * MOVE/DELETE: The old mappings will already have been cleaned up by
260 * kvm_arch_flush_shadow_memslot()
261 */
262 if (change == KVM_MR_FLAGS_ONLY &&
263 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
264 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
265 spin_lock(&kvm->mmu_lock);
266 /* Write protect GPA page table entries */
267 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
268 new->base_gfn + new->npages - 1);
269 /* Let implementation do the rest */
270 if (needs_flush)
271 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
272 spin_unlock(&kvm->mmu_lock);
273 }
274}
275
276static inline void dump_handler(const char *symbol, void *start, void *end)
277{
278 u32 *p;
279
280 pr_debug("LEAF(%s)\n", symbol);
281
282 pr_debug("\t.set push\n");
283 pr_debug("\t.set noreorder\n");
284
285 for (p = start; p < (u32 *)end; ++p)
286 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
287
288 pr_debug("\t.set\tpop\n");
289
290 pr_debug("\tEND(%s)\n", symbol);
291}
292
293struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
294{
295 int err, size;
296 void *gebase, *p, *handler, *refill_start, *refill_end;
297 int i;
298
299 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
300
301 if (!vcpu) {
302 err = -ENOMEM;
303 goto out;
304 }
305
306 err = kvm_vcpu_init(vcpu, kvm, id);
307
308 if (err)
309 goto out_free_cpu;
310
311 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
312
313 /*
314 * Allocate space for host mode exception handlers that handle
315 * guest mode exits
316 */
317 if (cpu_has_veic || cpu_has_vint)
318 size = 0x200 + VECTORSPACING * 64;
319 else
320 size = 0x4000;
321
322 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
323
324 if (!gebase) {
325 err = -ENOMEM;
326 goto out_uninit_cpu;
327 }
328 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
329 ALIGN(size, PAGE_SIZE), gebase);
330
331 /*
332 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
333 * limits us to the low 512MB of physical address space. If the memory
334 * we allocate is out of range, just give up now.
335 */
336 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
337 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
338 gebase);
339 err = -ENOMEM;
340 goto out_free_gebase;
341 }
342
343 /* Save new ebase */
344 vcpu->arch.guest_ebase = gebase;
345
346 /* Build guest exception vectors dynamically in unmapped memory */
347 handler = gebase + 0x2000;
348
349 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
350 refill_start = gebase;
351 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
352 refill_start += 0x080;
353 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
354
355 /* General Exception Entry point */
356 kvm_mips_build_exception(gebase + 0x180, handler);
357
358 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
359 for (i = 0; i < 8; i++) {
360 kvm_debug("L1 Vectored handler @ %p\n",
361 gebase + 0x200 + (i * VECTORSPACING));
362 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
363 handler);
364 }
365
366 /* General exit handler */
367 p = handler;
368 p = kvm_mips_build_exit(p);
369
370 /* Guest entry routine */
371 vcpu->arch.vcpu_run = p;
372 p = kvm_mips_build_vcpu_run(p);
373
374 /* Dump the generated code */
375 pr_debug("#include <asm/asm.h>\n");
376 pr_debug("#include <asm/regdef.h>\n");
377 pr_debug("\n");
378 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
379 dump_handler("kvm_tlb_refill", refill_start, refill_end);
380 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
381 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
382
383 /* Invalidate the icache for these ranges */
384 flush_icache_range((unsigned long)gebase,
385 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
386
387 /*
388 * Allocate comm page for guest kernel, a TLB will be reserved for
389 * mapping GVA @ 0xFFFF8000 to this page
390 */
391 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
392
393 if (!vcpu->arch.kseg0_commpage) {
394 err = -ENOMEM;
395 goto out_free_gebase;
396 }
397
398 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
399 kvm_mips_commpage_init(vcpu);
400
401 /* Init */
402 vcpu->arch.last_sched_cpu = -1;
403 vcpu->arch.last_exec_cpu = -1;
404
405 return vcpu;
406
407out_free_gebase:
408 kfree(gebase);
409
410out_uninit_cpu:
411 kvm_vcpu_uninit(vcpu);
412
413out_free_cpu:
414 kfree(vcpu);
415
416out:
417 return ERR_PTR(err);
418}
419
420void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
421{
422 hrtimer_cancel(&vcpu->arch.comparecount_timer);
423
424 kvm_vcpu_uninit(vcpu);
425
426 kvm_mips_dump_stats(vcpu);
427
428 kvm_mmu_free_memory_caches(vcpu);
429 kfree(vcpu->arch.guest_ebase);
430 kfree(vcpu->arch.kseg0_commpage);
431 kfree(vcpu);
432}
433
434void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
435{
436 kvm_arch_vcpu_free(vcpu);
437}
438
439int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
440 struct kvm_guest_debug *dbg)
441{
442 return -ENOIOCTLCMD;
443}
444
445int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
446{
447 int r = -EINTR;
448
449 vcpu_load(vcpu);
450
451 kvm_sigset_activate(vcpu);
452
453 if (vcpu->mmio_needed) {
454 if (!vcpu->mmio_is_write)
455 kvm_mips_complete_mmio_load(vcpu, run);
456 vcpu->mmio_needed = 0;
457 }
458
459 if (run->immediate_exit)
460 goto out;
461
462 lose_fpu(1);
463
464 local_irq_disable();
465 guest_enter_irqoff();
466 trace_kvm_enter(vcpu);
467
468 /*
469 * Make sure the read of VCPU requests in vcpu_run() callback is not
470 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
471 * flush request while the requester sees the VCPU as outside of guest
472 * mode and not needing an IPI.
473 */
474 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
475
476 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
477
478 trace_kvm_out(vcpu);
479 guest_exit_irqoff();
480 local_irq_enable();
481
482out:
483 kvm_sigset_deactivate(vcpu);
484
485 vcpu_put(vcpu);
486 return r;
487}
488
489int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
490 struct kvm_mips_interrupt *irq)
491{
492 int intr = (int)irq->irq;
493 struct kvm_vcpu *dvcpu = NULL;
494
495 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
496 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
497 (int)intr);
498
499 if (irq->cpu == -1)
500 dvcpu = vcpu;
501 else
502 dvcpu = vcpu->kvm->vcpus[irq->cpu];
503
504 if (intr == 2 || intr == 3 || intr == 4) {
505 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
506
507 } else if (intr == -2 || intr == -3 || intr == -4) {
508 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
509 } else {
510 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
511 irq->cpu, irq->irq);
512 return -EINVAL;
513 }
514
515 dvcpu->arch.wait = 0;
516
517 if (swq_has_sleeper(&dvcpu->wq))
518 swake_up_one(&dvcpu->wq);
519
520 return 0;
521}
522
523int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
524 struct kvm_mp_state *mp_state)
525{
526 return -ENOIOCTLCMD;
527}
528
529int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
530 struct kvm_mp_state *mp_state)
531{
532 return -ENOIOCTLCMD;
533}
534
535static u64 kvm_mips_get_one_regs[] = {
536 KVM_REG_MIPS_R0,
537 KVM_REG_MIPS_R1,
538 KVM_REG_MIPS_R2,
539 KVM_REG_MIPS_R3,
540 KVM_REG_MIPS_R4,
541 KVM_REG_MIPS_R5,
542 KVM_REG_MIPS_R6,
543 KVM_REG_MIPS_R7,
544 KVM_REG_MIPS_R8,
545 KVM_REG_MIPS_R9,
546 KVM_REG_MIPS_R10,
547 KVM_REG_MIPS_R11,
548 KVM_REG_MIPS_R12,
549 KVM_REG_MIPS_R13,
550 KVM_REG_MIPS_R14,
551 KVM_REG_MIPS_R15,
552 KVM_REG_MIPS_R16,
553 KVM_REG_MIPS_R17,
554 KVM_REG_MIPS_R18,
555 KVM_REG_MIPS_R19,
556 KVM_REG_MIPS_R20,
557 KVM_REG_MIPS_R21,
558 KVM_REG_MIPS_R22,
559 KVM_REG_MIPS_R23,
560 KVM_REG_MIPS_R24,
561 KVM_REG_MIPS_R25,
562 KVM_REG_MIPS_R26,
563 KVM_REG_MIPS_R27,
564 KVM_REG_MIPS_R28,
565 KVM_REG_MIPS_R29,
566 KVM_REG_MIPS_R30,
567 KVM_REG_MIPS_R31,
568
569#ifndef CONFIG_CPU_MIPSR6
570 KVM_REG_MIPS_HI,
571 KVM_REG_MIPS_LO,
572#endif
573 KVM_REG_MIPS_PC,
574};
575
576static u64 kvm_mips_get_one_regs_fpu[] = {
577 KVM_REG_MIPS_FCR_IR,
578 KVM_REG_MIPS_FCR_CSR,
579};
580
581static u64 kvm_mips_get_one_regs_msa[] = {
582 KVM_REG_MIPS_MSA_IR,
583 KVM_REG_MIPS_MSA_CSR,
584};
585
586static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
587{
588 unsigned long ret;
589
590 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
591 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
592 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
593 /* odd doubles */
594 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
595 ret += 16;
596 }
597 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
598 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
599 ret += kvm_mips_callbacks->num_regs(vcpu);
600
601 return ret;
602}
603
604static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
605{
606 u64 index;
607 unsigned int i;
608
609 if (copy_to_user(indices, kvm_mips_get_one_regs,
610 sizeof(kvm_mips_get_one_regs)))
611 return -EFAULT;
612 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
613
614 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
615 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
616 sizeof(kvm_mips_get_one_regs_fpu)))
617 return -EFAULT;
618 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
619
620 for (i = 0; i < 32; ++i) {
621 index = KVM_REG_MIPS_FPR_32(i);
622 if (copy_to_user(indices, &index, sizeof(index)))
623 return -EFAULT;
624 ++indices;
625
626 /* skip odd doubles if no F64 */
627 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
628 continue;
629
630 index = KVM_REG_MIPS_FPR_64(i);
631 if (copy_to_user(indices, &index, sizeof(index)))
632 return -EFAULT;
633 ++indices;
634 }
635 }
636
637 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
638 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
639 sizeof(kvm_mips_get_one_regs_msa)))
640 return -EFAULT;
641 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
642
643 for (i = 0; i < 32; ++i) {
644 index = KVM_REG_MIPS_VEC_128(i);
645 if (copy_to_user(indices, &index, sizeof(index)))
646 return -EFAULT;
647 ++indices;
648 }
649 }
650
651 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
652}
653
654static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
655 const struct kvm_one_reg *reg)
656{
657 struct mips_coproc *cop0 = vcpu->arch.cop0;
658 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
659 int ret;
660 s64 v;
661 s64 vs[2];
662 unsigned int idx;
663
664 switch (reg->id) {
665 /* General purpose registers */
666 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
667 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
668 break;
669#ifndef CONFIG_CPU_MIPSR6
670 case KVM_REG_MIPS_HI:
671 v = (long)vcpu->arch.hi;
672 break;
673 case KVM_REG_MIPS_LO:
674 v = (long)vcpu->arch.lo;
675 break;
676#endif
677 case KVM_REG_MIPS_PC:
678 v = (long)vcpu->arch.pc;
679 break;
680
681 /* Floating point registers */
682 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
683 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
684 return -EINVAL;
685 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
686 /* Odd singles in top of even double when FR=0 */
687 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
688 v = get_fpr32(&fpu->fpr[idx], 0);
689 else
690 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
691 break;
692 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
693 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
694 return -EINVAL;
695 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
696 /* Can't access odd doubles in FR=0 mode */
697 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
698 return -EINVAL;
699 v = get_fpr64(&fpu->fpr[idx], 0);
700 break;
701 case KVM_REG_MIPS_FCR_IR:
702 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703 return -EINVAL;
704 v = boot_cpu_data.fpu_id;
705 break;
706 case KVM_REG_MIPS_FCR_CSR:
707 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708 return -EINVAL;
709 v = fpu->fcr31;
710 break;
711
712 /* MIPS SIMD Architecture (MSA) registers */
713 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
714 if (!kvm_mips_guest_has_msa(&vcpu->arch))
715 return -EINVAL;
716 /* Can't access MSA registers in FR=0 mode */
717 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
718 return -EINVAL;
719 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
720#ifdef CONFIG_CPU_LITTLE_ENDIAN
721 /* least significant byte first */
722 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
723 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
724#else
725 /* most significant byte first */
726 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
727 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
728#endif
729 break;
730 case KVM_REG_MIPS_MSA_IR:
731 if (!kvm_mips_guest_has_msa(&vcpu->arch))
732 return -EINVAL;
733 v = boot_cpu_data.msa_id;
734 break;
735 case KVM_REG_MIPS_MSA_CSR:
736 if (!kvm_mips_guest_has_msa(&vcpu->arch))
737 return -EINVAL;
738 v = fpu->msacsr;
739 break;
740
741 /* registers to be handled specially */
742 default:
743 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
744 if (ret)
745 return ret;
746 break;
747 }
748 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
749 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
750
751 return put_user(v, uaddr64);
752 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
753 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
754 u32 v32 = (u32)v;
755
756 return put_user(v32, uaddr32);
757 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
758 void __user *uaddr = (void __user *)(long)reg->addr;
759
760 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
761 } else {
762 return -EINVAL;
763 }
764}
765
766static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
767 const struct kvm_one_reg *reg)
768{
769 struct mips_coproc *cop0 = vcpu->arch.cop0;
770 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
771 s64 v;
772 s64 vs[2];
773 unsigned int idx;
774
775 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
776 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
777
778 if (get_user(v, uaddr64) != 0)
779 return -EFAULT;
780 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
781 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
782 s32 v32;
783
784 if (get_user(v32, uaddr32) != 0)
785 return -EFAULT;
786 v = (s64)v32;
787 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
788 void __user *uaddr = (void __user *)(long)reg->addr;
789
790 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
791 } else {
792 return -EINVAL;
793 }
794
795 switch (reg->id) {
796 /* General purpose registers */
797 case KVM_REG_MIPS_R0:
798 /* Silently ignore requests to set $0 */
799 break;
800 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
801 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
802 break;
803#ifndef CONFIG_CPU_MIPSR6
804 case KVM_REG_MIPS_HI:
805 vcpu->arch.hi = v;
806 break;
807 case KVM_REG_MIPS_LO:
808 vcpu->arch.lo = v;
809 break;
810#endif
811 case KVM_REG_MIPS_PC:
812 vcpu->arch.pc = v;
813 break;
814
815 /* Floating point registers */
816 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
817 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
818 return -EINVAL;
819 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
820 /* Odd singles in top of even double when FR=0 */
821 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
822 set_fpr32(&fpu->fpr[idx], 0, v);
823 else
824 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
825 break;
826 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
827 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
828 return -EINVAL;
829 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
830 /* Can't access odd doubles in FR=0 mode */
831 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
832 return -EINVAL;
833 set_fpr64(&fpu->fpr[idx], 0, v);
834 break;
835 case KVM_REG_MIPS_FCR_IR:
836 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837 return -EINVAL;
838 /* Read-only */
839 break;
840 case KVM_REG_MIPS_FCR_CSR:
841 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
842 return -EINVAL;
843 fpu->fcr31 = v;
844 break;
845
846 /* MIPS SIMD Architecture (MSA) registers */
847 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
848 if (!kvm_mips_guest_has_msa(&vcpu->arch))
849 return -EINVAL;
850 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
851#ifdef CONFIG_CPU_LITTLE_ENDIAN
852 /* least significant byte first */
853 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
854 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
855#else
856 /* most significant byte first */
857 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
858 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
859#endif
860 break;
861 case KVM_REG_MIPS_MSA_IR:
862 if (!kvm_mips_guest_has_msa(&vcpu->arch))
863 return -EINVAL;
864 /* Read-only */
865 break;
866 case KVM_REG_MIPS_MSA_CSR:
867 if (!kvm_mips_guest_has_msa(&vcpu->arch))
868 return -EINVAL;
869 fpu->msacsr = v;
870 break;
871
872 /* registers to be handled specially */
873 default:
874 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
875 }
876 return 0;
877}
878
879static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
880 struct kvm_enable_cap *cap)
881{
882 int r = 0;
883
884 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
885 return -EINVAL;
886 if (cap->flags)
887 return -EINVAL;
888 if (cap->args[0])
889 return -EINVAL;
890
891 switch (cap->cap) {
892 case KVM_CAP_MIPS_FPU:
893 vcpu->arch.fpu_enabled = true;
894 break;
895 case KVM_CAP_MIPS_MSA:
896 vcpu->arch.msa_enabled = true;
897 break;
898 default:
899 r = -EINVAL;
900 break;
901 }
902
903 return r;
904}
905
906long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
907 unsigned long arg)
908{
909 struct kvm_vcpu *vcpu = filp->private_data;
910 void __user *argp = (void __user *)arg;
911
912 if (ioctl == KVM_INTERRUPT) {
913 struct kvm_mips_interrupt irq;
914
915 if (copy_from_user(&irq, argp, sizeof(irq)))
916 return -EFAULT;
917 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
918 irq.irq);
919
920 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
921 }
922
923 return -ENOIOCTLCMD;
924}
925
926long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
927 unsigned long arg)
928{
929 struct kvm_vcpu *vcpu = filp->private_data;
930 void __user *argp = (void __user *)arg;
931 long r;
932
933 vcpu_load(vcpu);
934
935 switch (ioctl) {
936 case KVM_SET_ONE_REG:
937 case KVM_GET_ONE_REG: {
938 struct kvm_one_reg reg;
939
940 r = -EFAULT;
941 if (copy_from_user(&reg, argp, sizeof(reg)))
942 break;
943 if (ioctl == KVM_SET_ONE_REG)
944 r = kvm_mips_set_reg(vcpu, &reg);
945 else
946 r = kvm_mips_get_reg(vcpu, &reg);
947 break;
948 }
949 case KVM_GET_REG_LIST: {
950 struct kvm_reg_list __user *user_list = argp;
951 struct kvm_reg_list reg_list;
952 unsigned n;
953
954 r = -EFAULT;
955 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
956 break;
957 n = reg_list.n;
958 reg_list.n = kvm_mips_num_regs(vcpu);
959 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
960 break;
961 r = -E2BIG;
962 if (n < reg_list.n)
963 break;
964 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
965 break;
966 }
967 case KVM_ENABLE_CAP: {
968 struct kvm_enable_cap cap;
969
970 r = -EFAULT;
971 if (copy_from_user(&cap, argp, sizeof(cap)))
972 break;
973 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
974 break;
975 }
976 default:
977 r = -ENOIOCTLCMD;
978 }
979
980 vcpu_put(vcpu);
981 return r;
982}
983
984/**
985 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
986 * @kvm: kvm instance
987 * @log: slot id and address to which we copy the log
988 *
989 * Steps 1-4 below provide general overview of dirty page logging. See
990 * kvm_get_dirty_log_protect() function description for additional details.
991 *
992 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
993 * always flush the TLB (step 4) even if previous step failed and the dirty
994 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
995 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
996 * writes will be marked dirty for next log read.
997 *
998 * 1. Take a snapshot of the bit and clear it if needed.
999 * 2. Write protect the corresponding page.
1000 * 3. Copy the snapshot to the userspace.
1001 * 4. Flush TLB's if needed.
1002 */
1003int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1004{
1005 struct kvm_memslots *slots;
1006 struct kvm_memory_slot *memslot;
1007 bool is_dirty = false;
1008 int r;
1009
1010 mutex_lock(&kvm->slots_lock);
1011
1012 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1013
1014 if (is_dirty) {
1015 slots = kvm_memslots(kvm);
1016 memslot = id_to_memslot(slots, log->slot);
1017
1018 /* Let implementation handle TLB/GVA invalidation */
1019 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1020 }
1021
1022 mutex_unlock(&kvm->slots_lock);
1023 return r;
1024}
1025
1026long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1027{
1028 long r;
1029
1030 switch (ioctl) {
1031 default:
1032 r = -ENOIOCTLCMD;
1033 }
1034
1035 return r;
1036}
1037
1038int kvm_arch_init(void *opaque)
1039{
1040 if (kvm_mips_callbacks) {
1041 kvm_err("kvm: module already exists\n");
1042 return -EEXIST;
1043 }
1044
1045 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1046}
1047
1048void kvm_arch_exit(void)
1049{
1050 kvm_mips_callbacks = NULL;
1051}
1052
1053int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1054 struct kvm_sregs *sregs)
1055{
1056 return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1060 struct kvm_sregs *sregs)
1061{
1062 return -ENOIOCTLCMD;
1063}
1064
1065void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1066{
1067}
1068
1069int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1070{
1071 return -ENOIOCTLCMD;
1072}
1073
1074int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1075{
1076 return -ENOIOCTLCMD;
1077}
1078
1079vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1080{
1081 return VM_FAULT_SIGBUS;
1082}
1083
1084int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1085{
1086 int r;
1087
1088 switch (ext) {
1089 case KVM_CAP_ONE_REG:
1090 case KVM_CAP_ENABLE_CAP:
1091 case KVM_CAP_READONLY_MEM:
1092 case KVM_CAP_SYNC_MMU:
1093 case KVM_CAP_IMMEDIATE_EXIT:
1094 r = 1;
1095 break;
1096 case KVM_CAP_NR_VCPUS:
1097 r = num_online_cpus();
1098 break;
1099 case KVM_CAP_MAX_VCPUS:
1100 r = KVM_MAX_VCPUS;
1101 break;
1102 case KVM_CAP_MAX_VCPU_ID:
1103 r = KVM_MAX_VCPU_ID;
1104 break;
1105 case KVM_CAP_MIPS_FPU:
1106 /* We don't handle systems with inconsistent cpu_has_fpu */
1107 r = !!raw_cpu_has_fpu;
1108 break;
1109 case KVM_CAP_MIPS_MSA:
1110 /*
1111 * We don't support MSA vector partitioning yet:
1112 * 1) It would require explicit support which can't be tested
1113 * yet due to lack of support in current hardware.
1114 * 2) It extends the state that would need to be saved/restored
1115 * by e.g. QEMU for migration.
1116 *
1117 * When vector partitioning hardware becomes available, support
1118 * could be added by requiring a flag when enabling
1119 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1120 * to save/restore the appropriate extra state.
1121 */
1122 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1123 break;
1124 default:
1125 r = kvm_mips_callbacks->check_extension(kvm, ext);
1126 break;
1127 }
1128 return r;
1129}
1130
1131int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1132{
1133 return kvm_mips_pending_timer(vcpu) ||
1134 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1135}
1136
1137int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1138{
1139 int i;
1140 struct mips_coproc *cop0;
1141
1142 if (!vcpu)
1143 return -1;
1144
1145 kvm_debug("VCPU Register Dump:\n");
1146 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1147 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1148
1149 for (i = 0; i < 32; i += 4) {
1150 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1151 vcpu->arch.gprs[i],
1152 vcpu->arch.gprs[i + 1],
1153 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1154 }
1155 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1156 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1157
1158 cop0 = vcpu->arch.cop0;
1159 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1160 kvm_read_c0_guest_status(cop0),
1161 kvm_read_c0_guest_cause(cop0));
1162
1163 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1164
1165 return 0;
1166}
1167
1168int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1169{
1170 int i;
1171
1172 vcpu_load(vcpu);
1173
1174 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1175 vcpu->arch.gprs[i] = regs->gpr[i];
1176 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1177 vcpu->arch.hi = regs->hi;
1178 vcpu->arch.lo = regs->lo;
1179 vcpu->arch.pc = regs->pc;
1180
1181 vcpu_put(vcpu);
1182 return 0;
1183}
1184
1185int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1186{
1187 int i;
1188
1189 vcpu_load(vcpu);
1190
1191 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1192 regs->gpr[i] = vcpu->arch.gprs[i];
1193
1194 regs->hi = vcpu->arch.hi;
1195 regs->lo = vcpu->arch.lo;
1196 regs->pc = vcpu->arch.pc;
1197
1198 vcpu_put(vcpu);
1199 return 0;
1200}
1201
1202static void kvm_mips_comparecount_func(unsigned long data)
1203{
1204 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1205
1206 kvm_mips_callbacks->queue_timer_int(vcpu);
1207
1208 vcpu->arch.wait = 0;
1209 if (swq_has_sleeper(&vcpu->wq))
1210 swake_up_one(&vcpu->wq);
1211}
1212
1213/* low level hrtimer wake routine */
1214static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1215{
1216 struct kvm_vcpu *vcpu;
1217
1218 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1219 kvm_mips_comparecount_func((unsigned long) vcpu);
1220 return kvm_mips_count_timeout(vcpu);
1221}
1222
1223int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1224{
1225 int err;
1226
1227 err = kvm_mips_callbacks->vcpu_init(vcpu);
1228 if (err)
1229 return err;
1230
1231 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1232 HRTIMER_MODE_REL);
1233 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1234 return 0;
1235}
1236
1237void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1238{
1239 kvm_mips_callbacks->vcpu_uninit(vcpu);
1240}
1241
1242int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1243 struct kvm_translation *tr)
1244{
1245 return 0;
1246}
1247
1248/* Initial guest state */
1249int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1250{
1251 return kvm_mips_callbacks->vcpu_setup(vcpu);
1252}
1253
1254static void kvm_mips_set_c0_status(void)
1255{
1256 u32 status = read_c0_status();
1257
1258 if (cpu_has_dsp)
1259 status |= (ST0_MX);
1260
1261 write_c0_status(status);
1262 ehb();
1263}
1264
1265/*
1266 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1267 */
1268int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1269{
1270 u32 cause = vcpu->arch.host_cp0_cause;
1271 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1272 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1273 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1274 enum emulation_result er = EMULATE_DONE;
1275 u32 inst;
1276 int ret = RESUME_GUEST;
1277
1278 vcpu->mode = OUTSIDE_GUEST_MODE;
1279
1280 /* re-enable HTW before enabling interrupts */
1281 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1282 htw_start();
1283
1284 /* Set a default exit reason */
1285 run->exit_reason = KVM_EXIT_UNKNOWN;
1286 run->ready_for_interrupt_injection = 1;
1287
1288 /*
1289 * Set the appropriate status bits based on host CPU features,
1290 * before we hit the scheduler
1291 */
1292 kvm_mips_set_c0_status();
1293
1294 local_irq_enable();
1295
1296 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1297 cause, opc, run, vcpu);
1298 trace_kvm_exit(vcpu, exccode);
1299
1300 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1301 /*
1302 * Do a privilege check, if in UM most of these exit conditions
1303 * end up causing an exception to be delivered to the Guest
1304 * Kernel
1305 */
1306 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1307 if (er == EMULATE_PRIV_FAIL) {
1308 goto skip_emul;
1309 } else if (er == EMULATE_FAIL) {
1310 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1311 ret = RESUME_HOST;
1312 goto skip_emul;
1313 }
1314 }
1315
1316 switch (exccode) {
1317 case EXCCODE_INT:
1318 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1319
1320 ++vcpu->stat.int_exits;
1321
1322 if (need_resched())
1323 cond_resched();
1324
1325 ret = RESUME_GUEST;
1326 break;
1327
1328 case EXCCODE_CPU:
1329 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1330
1331 ++vcpu->stat.cop_unusable_exits;
1332 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1333 /* XXXKYMA: Might need to return to user space */
1334 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1335 ret = RESUME_HOST;
1336 break;
1337
1338 case EXCCODE_MOD:
1339 ++vcpu->stat.tlbmod_exits;
1340 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1341 break;
1342
1343 case EXCCODE_TLBS:
1344 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1345 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1346 badvaddr);
1347
1348 ++vcpu->stat.tlbmiss_st_exits;
1349 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1350 break;
1351
1352 case EXCCODE_TLBL:
1353 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1354 cause, opc, badvaddr);
1355
1356 ++vcpu->stat.tlbmiss_ld_exits;
1357 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1358 break;
1359
1360 case EXCCODE_ADES:
1361 ++vcpu->stat.addrerr_st_exits;
1362 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1363 break;
1364
1365 case EXCCODE_ADEL:
1366 ++vcpu->stat.addrerr_ld_exits;
1367 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1368 break;
1369
1370 case EXCCODE_SYS:
1371 ++vcpu->stat.syscall_exits;
1372 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1373 break;
1374
1375 case EXCCODE_RI:
1376 ++vcpu->stat.resvd_inst_exits;
1377 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1378 break;
1379
1380 case EXCCODE_BP:
1381 ++vcpu->stat.break_inst_exits;
1382 ret = kvm_mips_callbacks->handle_break(vcpu);
1383 break;
1384
1385 case EXCCODE_TR:
1386 ++vcpu->stat.trap_inst_exits;
1387 ret = kvm_mips_callbacks->handle_trap(vcpu);
1388 break;
1389
1390 case EXCCODE_MSAFPE:
1391 ++vcpu->stat.msa_fpe_exits;
1392 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1393 break;
1394
1395 case EXCCODE_FPE:
1396 ++vcpu->stat.fpe_exits;
1397 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1398 break;
1399
1400 case EXCCODE_MSADIS:
1401 ++vcpu->stat.msa_disabled_exits;
1402 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1403 break;
1404
1405 case EXCCODE_GE:
1406 /* defer exit accounting to handler */
1407 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1408 break;
1409
1410 default:
1411 if (cause & CAUSEF_BD)
1412 opc += 1;
1413 inst = 0;
1414 kvm_get_badinstr(opc, vcpu, &inst);
1415 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1416 exccode, opc, inst, badvaddr,
1417 kvm_read_c0_guest_status(vcpu->arch.cop0));
1418 kvm_arch_vcpu_dump_regs(vcpu);
1419 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1420 ret = RESUME_HOST;
1421 break;
1422
1423 }
1424
1425skip_emul:
1426 local_irq_disable();
1427
1428 if (ret == RESUME_GUEST)
1429 kvm_vz_acquire_htimer(vcpu);
1430
1431 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1432 kvm_mips_deliver_interrupts(vcpu, cause);
1433
1434 if (!(ret & RESUME_HOST)) {
1435 /* Only check for signals if not already exiting to userspace */
1436 if (signal_pending(current)) {
1437 run->exit_reason = KVM_EXIT_INTR;
1438 ret = (-EINTR << 2) | RESUME_HOST;
1439 ++vcpu->stat.signal_exits;
1440 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1441 }
1442 }
1443
1444 if (ret == RESUME_GUEST) {
1445 trace_kvm_reenter(vcpu);
1446
1447 /*
1448 * Make sure the read of VCPU requests in vcpu_reenter()
1449 * callback is not reordered ahead of the write to vcpu->mode,
1450 * or we could miss a TLB flush request while the requester sees
1451 * the VCPU as outside of guest mode and not needing an IPI.
1452 */
1453 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1454
1455 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1456
1457 /*
1458 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1459 * is live), restore FCR31 / MSACSR.
1460 *
1461 * This should be before returning to the guest exception
1462 * vector, as it may well cause an [MSA] FP exception if there
1463 * are pending exception bits unmasked. (see
1464 * kvm_mips_csr_die_notifier() for how that is handled).
1465 */
1466 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1467 read_c0_status() & ST0_CU1)
1468 __kvm_restore_fcsr(&vcpu->arch);
1469
1470 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1471 read_c0_config5() & MIPS_CONF5_MSAEN)
1472 __kvm_restore_msacsr(&vcpu->arch);
1473 }
1474
1475 /* Disable HTW before returning to guest or host */
1476 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1477 htw_stop();
1478
1479 return ret;
1480}
1481
1482/* Enable FPU for guest and restore context */
1483void kvm_own_fpu(struct kvm_vcpu *vcpu)
1484{
1485 struct mips_coproc *cop0 = vcpu->arch.cop0;
1486 unsigned int sr, cfg5;
1487
1488 preempt_disable();
1489
1490 sr = kvm_read_c0_guest_status(cop0);
1491
1492 /*
1493 * If MSA state is already live, it is undefined how it interacts with
1494 * FR=0 FPU state, and we don't want to hit reserved instruction
1495 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1496 * play it safe and save it first.
1497 *
1498 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1499 * get called when guest CU1 is set, however we can't trust the guest
1500 * not to clobber the status register directly via the commpage.
1501 */
1502 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1503 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1504 kvm_lose_fpu(vcpu);
1505
1506 /*
1507 * Enable FPU for guest
1508 * We set FR and FRE according to guest context
1509 */
1510 change_c0_status(ST0_CU1 | ST0_FR, sr);
1511 if (cpu_has_fre) {
1512 cfg5 = kvm_read_c0_guest_config5(cop0);
1513 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1514 }
1515 enable_fpu_hazard();
1516
1517 /* If guest FPU state not active, restore it now */
1518 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1519 __kvm_restore_fpu(&vcpu->arch);
1520 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1521 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1522 } else {
1523 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1524 }
1525
1526 preempt_enable();
1527}
1528
1529#ifdef CONFIG_CPU_HAS_MSA
1530/* Enable MSA for guest and restore context */
1531void kvm_own_msa(struct kvm_vcpu *vcpu)
1532{
1533 struct mips_coproc *cop0 = vcpu->arch.cop0;
1534 unsigned int sr, cfg5;
1535
1536 preempt_disable();
1537
1538 /*
1539 * Enable FPU if enabled in guest, since we're restoring FPU context
1540 * anyway. We set FR and FRE according to guest context.
1541 */
1542 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1543 sr = kvm_read_c0_guest_status(cop0);
1544
1545 /*
1546 * If FR=0 FPU state is already live, it is undefined how it
1547 * interacts with MSA state, so play it safe and save it first.
1548 */
1549 if (!(sr & ST0_FR) &&
1550 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1551 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1552 kvm_lose_fpu(vcpu);
1553
1554 change_c0_status(ST0_CU1 | ST0_FR, sr);
1555 if (sr & ST0_CU1 && cpu_has_fre) {
1556 cfg5 = kvm_read_c0_guest_config5(cop0);
1557 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1558 }
1559 }
1560
1561 /* Enable MSA for guest */
1562 set_c0_config5(MIPS_CONF5_MSAEN);
1563 enable_fpu_hazard();
1564
1565 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1566 case KVM_MIPS_AUX_FPU:
1567 /*
1568 * Guest FPU state already loaded, only restore upper MSA state
1569 */
1570 __kvm_restore_msa_upper(&vcpu->arch);
1571 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1572 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1573 break;
1574 case 0:
1575 /* Neither FPU or MSA already active, restore full MSA state */
1576 __kvm_restore_msa(&vcpu->arch);
1577 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1578 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1579 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1580 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1581 KVM_TRACE_AUX_FPU_MSA);
1582 break;
1583 default:
1584 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1585 break;
1586 }
1587
1588 preempt_enable();
1589}
1590#endif
1591
1592/* Drop FPU & MSA without saving it */
1593void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1594{
1595 preempt_disable();
1596 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1597 disable_msa();
1598 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1599 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1600 }
1601 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1602 clear_c0_status(ST0_CU1 | ST0_FR);
1603 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1604 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1605 }
1606 preempt_enable();
1607}
1608
1609/* Save and disable FPU & MSA */
1610void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1611{
1612 /*
1613 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1614 * is disabled in guest context (software), but the register state in
1615 * the hardware may still be in use.
1616 * This is why we explicitly re-enable the hardware before saving.
1617 */
1618
1619 preempt_disable();
1620 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1621 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1622 set_c0_config5(MIPS_CONF5_MSAEN);
1623 enable_fpu_hazard();
1624 }
1625
1626 __kvm_save_msa(&vcpu->arch);
1627 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1628
1629 /* Disable MSA & FPU */
1630 disable_msa();
1631 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1632 clear_c0_status(ST0_CU1 | ST0_FR);
1633 disable_fpu_hazard();
1634 }
1635 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1636 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1637 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1638 set_c0_status(ST0_CU1);
1639 enable_fpu_hazard();
1640 }
1641
1642 __kvm_save_fpu(&vcpu->arch);
1643 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1644 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1645
1646 /* Disable FPU */
1647 clear_c0_status(ST0_CU1 | ST0_FR);
1648 disable_fpu_hazard();
1649 }
1650 preempt_enable();
1651}
1652
1653/*
1654 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1655 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1656 * exception if cause bits are set in the value being written.
1657 */
1658static int kvm_mips_csr_die_notify(struct notifier_block *self,
1659 unsigned long cmd, void *ptr)
1660{
1661 struct die_args *args = (struct die_args *)ptr;
1662 struct pt_regs *regs = args->regs;
1663 unsigned long pc;
1664
1665 /* Only interested in FPE and MSAFPE */
1666 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1667 return NOTIFY_DONE;
1668
1669 /* Return immediately if guest context isn't active */
1670 if (!(current->flags & PF_VCPU))
1671 return NOTIFY_DONE;
1672
1673 /* Should never get here from user mode */
1674 BUG_ON(user_mode(regs));
1675
1676 pc = instruction_pointer(regs);
1677 switch (cmd) {
1678 case DIE_FP:
1679 /* match 2nd instruction in __kvm_restore_fcsr */
1680 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1681 return NOTIFY_DONE;
1682 break;
1683 case DIE_MSAFP:
1684 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1685 if (!cpu_has_msa ||
1686 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1687 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1688 return NOTIFY_DONE;
1689 break;
1690 }
1691
1692 /* Move PC forward a little and continue executing */
1693 instruction_pointer(regs) += 4;
1694
1695 return NOTIFY_STOP;
1696}
1697
1698static struct notifier_block kvm_mips_csr_die_notifier = {
1699 .notifier_call = kvm_mips_csr_die_notify,
1700};
1701
1702static int __init kvm_mips_init(void)
1703{
1704 int ret;
1705
1706 ret = kvm_mips_entry_setup();
1707 if (ret)
1708 return ret;
1709
1710 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1711
1712 if (ret)
1713 return ret;
1714
1715 register_die_notifier(&kvm_mips_csr_die_notifier);
1716
1717 return 0;
1718}
1719
1720static void __exit kvm_mips_exit(void)
1721{
1722 kvm_exit();
1723
1724 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1725}
1726
1727module_init(kvm_mips_init);
1728module_exit(kvm_mips_exit);
1729
1730EXPORT_TRACEPOINT_SYMBOL(kvm_exit);