blob: 8211e8e97c96462837bcf96bb707330489e97fb4 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (c) 2007-2017 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include <linux/skbuff.h>
22#include <linux/in.h>
23#include <linux/ip.h>
24#include <linux/openvswitch.h>
25#include <linux/netfilter_ipv6.h>
26#include <linux/sctp.h>
27#include <linux/tcp.h>
28#include <linux/udp.h>
29#include <linux/in6.h>
30#include <linux/if_arp.h>
31#include <linux/if_vlan.h>
32
33#include <net/dst.h>
34#include <net/ip.h>
35#include <net/ipv6.h>
36#include <net/ip6_fib.h>
37#include <net/checksum.h>
38#include <net/dsfield.h>
39#include <net/mpls.h>
40#include <net/sctp/checksum.h>
41
42#include "datapath.h"
43#include "flow.h"
44#include "conntrack.h"
45#include "vport.h"
46#include "flow_netlink.h"
47
48struct deferred_action {
49 struct sk_buff *skb;
50 const struct nlattr *actions;
51 int actions_len;
52
53 /* Store pkt_key clone when creating deferred action. */
54 struct sw_flow_key pkt_key;
55};
56
57#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
58struct ovs_frag_data {
59 unsigned long dst;
60 struct vport *vport;
61 struct ovs_skb_cb cb;
62 __be16 inner_protocol;
63 u16 network_offset; /* valid only for MPLS */
64 u16 vlan_tci;
65 __be16 vlan_proto;
66 unsigned int l2_len;
67 u8 mac_proto;
68 u8 l2_data[MAX_L2_LEN];
69};
70
71static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
72
73#define DEFERRED_ACTION_FIFO_SIZE 10
74#define OVS_RECURSION_LIMIT 5
75#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
76struct action_fifo {
77 int head;
78 int tail;
79 /* Deferred action fifo queue storage. */
80 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
81};
82
83struct action_flow_keys {
84 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
85};
86
87static struct action_fifo __percpu *action_fifos;
88static struct action_flow_keys __percpu *flow_keys;
89static DEFINE_PER_CPU(int, exec_actions_level);
90
91/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
92 * space. Return NULL if out of key spaces.
93 */
94static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
95{
96 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
97 int level = this_cpu_read(exec_actions_level);
98 struct sw_flow_key *key = NULL;
99
100 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
101 key = &keys->key[level - 1];
102 *key = *key_;
103 }
104
105 return key;
106}
107
108static void action_fifo_init(struct action_fifo *fifo)
109{
110 fifo->head = 0;
111 fifo->tail = 0;
112}
113
114static bool action_fifo_is_empty(const struct action_fifo *fifo)
115{
116 return (fifo->head == fifo->tail);
117}
118
119static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
120{
121 if (action_fifo_is_empty(fifo))
122 return NULL;
123
124 return &fifo->fifo[fifo->tail++];
125}
126
127static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
128{
129 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
130 return NULL;
131
132 return &fifo->fifo[fifo->head++];
133}
134
135/* Return true if fifo is not full */
136static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
137 const struct sw_flow_key *key,
138 const struct nlattr *actions,
139 const int actions_len)
140{
141 struct action_fifo *fifo;
142 struct deferred_action *da;
143
144 fifo = this_cpu_ptr(action_fifos);
145 da = action_fifo_put(fifo);
146 if (da) {
147 da->skb = skb;
148 da->actions = actions;
149 da->actions_len = actions_len;
150 da->pkt_key = *key;
151 }
152
153 return da;
154}
155
156static void invalidate_flow_key(struct sw_flow_key *key)
157{
158 key->mac_proto |= SW_FLOW_KEY_INVALID;
159}
160
161static bool is_flow_key_valid(const struct sw_flow_key *key)
162{
163 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
164}
165
166static int clone_execute(struct datapath *dp, struct sk_buff *skb,
167 struct sw_flow_key *key,
168 u32 recirc_id,
169 const struct nlattr *actions, int len,
170 bool last, bool clone_flow_key);
171
172static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
173 __be16 ethertype)
174{
175 if (skb->ip_summed == CHECKSUM_COMPLETE) {
176 __be16 diff[] = { ~(hdr->h_proto), ethertype };
177
178 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
179 }
180
181 hdr->h_proto = ethertype;
182}
183
184static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
185 const struct ovs_action_push_mpls *mpls)
186{
187 struct mpls_shim_hdr *new_mpls_lse;
188
189 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
190 if (skb->encapsulation)
191 return -ENOTSUPP;
192
193 if (skb_cow_head(skb, MPLS_HLEN) < 0)
194 return -ENOMEM;
195
196 if (!skb->inner_protocol) {
197 skb_set_inner_network_header(skb, skb->mac_len);
198 skb_set_inner_protocol(skb, skb->protocol);
199 }
200
201 skb_push(skb, MPLS_HLEN);
202 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
203 skb->mac_len);
204 skb_reset_mac_header(skb);
205 skb_set_network_header(skb, skb->mac_len);
206
207 new_mpls_lse = mpls_hdr(skb);
208 new_mpls_lse->label_stack_entry = mpls->mpls_lse;
209
210 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
211
212 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
213 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
214 skb->protocol = mpls->mpls_ethertype;
215
216 invalidate_flow_key(key);
217 return 0;
218}
219
220static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
221 const __be16 ethertype)
222{
223 int err;
224
225 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
226 if (unlikely(err))
227 return err;
228
229 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
230
231 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
232 skb->mac_len);
233
234 __skb_pull(skb, MPLS_HLEN);
235 skb_reset_mac_header(skb);
236 skb_set_network_header(skb, skb->mac_len);
237
238 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
239 struct ethhdr *hdr;
240
241 /* mpls_hdr() is used to locate the ethertype field correctly in the
242 * presence of VLAN tags.
243 */
244 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
245 update_ethertype(skb, hdr, ethertype);
246 }
247 if (eth_p_mpls(skb->protocol))
248 skb->protocol = ethertype;
249
250 invalidate_flow_key(key);
251 return 0;
252}
253
254static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
255 const __be32 *mpls_lse, const __be32 *mask)
256{
257 struct mpls_shim_hdr *stack;
258 __be32 lse;
259 int err;
260
261 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
262 if (unlikely(err))
263 return err;
264
265 stack = mpls_hdr(skb);
266 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
267 if (skb->ip_summed == CHECKSUM_COMPLETE) {
268 __be32 diff[] = { ~(stack->label_stack_entry), lse };
269
270 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
271 }
272
273 stack->label_stack_entry = lse;
274 flow_key->mpls.top_lse = lse;
275 return 0;
276}
277
278static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
279{
280 int err;
281
282 err = skb_vlan_pop(skb);
283 if (skb_vlan_tag_present(skb)) {
284 invalidate_flow_key(key);
285 } else {
286 key->eth.vlan.tci = 0;
287 key->eth.vlan.tpid = 0;
288 }
289 return err;
290}
291
292static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
293 const struct ovs_action_push_vlan *vlan)
294{
295 if (skb_vlan_tag_present(skb)) {
296 invalidate_flow_key(key);
297 } else {
298 key->eth.vlan.tci = vlan->vlan_tci;
299 key->eth.vlan.tpid = vlan->vlan_tpid;
300 }
301 return skb_vlan_push(skb, vlan->vlan_tpid,
302 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
303}
304
305/* 'src' is already properly masked. */
306static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
307{
308 u16 *dst = (u16 *)dst_;
309 const u16 *src = (const u16 *)src_;
310 const u16 *mask = (const u16 *)mask_;
311
312 OVS_SET_MASKED(dst[0], src[0], mask[0]);
313 OVS_SET_MASKED(dst[1], src[1], mask[1]);
314 OVS_SET_MASKED(dst[2], src[2], mask[2]);
315}
316
317static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
318 const struct ovs_key_ethernet *key,
319 const struct ovs_key_ethernet *mask)
320{
321 int err;
322
323 err = skb_ensure_writable(skb, ETH_HLEN);
324 if (unlikely(err))
325 return err;
326
327 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
328
329 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
330 mask->eth_src);
331 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
332 mask->eth_dst);
333
334 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
335
336 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
337 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
338 return 0;
339}
340
341/* pop_eth does not support VLAN packets as this action is never called
342 * for them.
343 */
344static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
345{
346 skb_pull_rcsum(skb, ETH_HLEN);
347 skb_reset_mac_header(skb);
348 skb_reset_mac_len(skb);
349
350 /* safe right before invalidate_flow_key */
351 key->mac_proto = MAC_PROTO_NONE;
352 invalidate_flow_key(key);
353 return 0;
354}
355
356static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
357 const struct ovs_action_push_eth *ethh)
358{
359 struct ethhdr *hdr;
360
361 /* Add the new Ethernet header */
362 if (skb_cow_head(skb, ETH_HLEN) < 0)
363 return -ENOMEM;
364
365 skb_push(skb, ETH_HLEN);
366 skb_reset_mac_header(skb);
367 skb_reset_mac_len(skb);
368
369 hdr = eth_hdr(skb);
370 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
371 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
372 hdr->h_proto = skb->protocol;
373
374 skb_postpush_rcsum(skb, hdr, ETH_HLEN);
375
376 /* safe right before invalidate_flow_key */
377 key->mac_proto = MAC_PROTO_ETHERNET;
378 invalidate_flow_key(key);
379 return 0;
380}
381
382static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
383 const struct nshhdr *nh)
384{
385 int err;
386
387 err = nsh_push(skb, nh);
388 if (err)
389 return err;
390
391 /* safe right before invalidate_flow_key */
392 key->mac_proto = MAC_PROTO_NONE;
393 invalidate_flow_key(key);
394 return 0;
395}
396
397static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
398{
399 int err;
400
401 err = nsh_pop(skb);
402 if (err)
403 return err;
404
405 /* safe right before invalidate_flow_key */
406 if (skb->protocol == htons(ETH_P_TEB))
407 key->mac_proto = MAC_PROTO_ETHERNET;
408 else
409 key->mac_proto = MAC_PROTO_NONE;
410 invalidate_flow_key(key);
411 return 0;
412}
413
414static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
415 __be32 addr, __be32 new_addr)
416{
417 int transport_len = skb->len - skb_transport_offset(skb);
418
419 if (nh->frag_off & htons(IP_OFFSET))
420 return;
421
422 if (nh->protocol == IPPROTO_TCP) {
423 if (likely(transport_len >= sizeof(struct tcphdr)))
424 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
425 addr, new_addr, true);
426 } else if (nh->protocol == IPPROTO_UDP) {
427 if (likely(transport_len >= sizeof(struct udphdr))) {
428 struct udphdr *uh = udp_hdr(skb);
429
430 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
431 inet_proto_csum_replace4(&uh->check, skb,
432 addr, new_addr, true);
433 if (!uh->check)
434 uh->check = CSUM_MANGLED_0;
435 }
436 }
437 }
438}
439
440static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
441 __be32 *addr, __be32 new_addr)
442{
443 update_ip_l4_checksum(skb, nh, *addr, new_addr);
444 csum_replace4(&nh->check, *addr, new_addr);
445 skb_clear_hash(skb);
446 *addr = new_addr;
447}
448
449static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
450 __be32 addr[4], const __be32 new_addr[4])
451{
452 int transport_len = skb->len - skb_transport_offset(skb);
453
454 if (l4_proto == NEXTHDR_TCP) {
455 if (likely(transport_len >= sizeof(struct tcphdr)))
456 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
457 addr, new_addr, true);
458 } else if (l4_proto == NEXTHDR_UDP) {
459 if (likely(transport_len >= sizeof(struct udphdr))) {
460 struct udphdr *uh = udp_hdr(skb);
461
462 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
463 inet_proto_csum_replace16(&uh->check, skb,
464 addr, new_addr, true);
465 if (!uh->check)
466 uh->check = CSUM_MANGLED_0;
467 }
468 }
469 } else if (l4_proto == NEXTHDR_ICMP) {
470 if (likely(transport_len >= sizeof(struct icmp6hdr)))
471 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
472 skb, addr, new_addr, true);
473 }
474}
475
476static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
477 const __be32 mask[4], __be32 masked[4])
478{
479 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
480 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
481 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
482 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
483}
484
485static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
486 __be32 addr[4], const __be32 new_addr[4],
487 bool recalculate_csum)
488{
489 if (recalculate_csum)
490 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
491
492 skb_clear_hash(skb);
493 memcpy(addr, new_addr, sizeof(__be32[4]));
494}
495
496static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
497{
498 /* Bits 21-24 are always unmasked, so this retains their values. */
499 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
500 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
501 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
502}
503
504static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
505 u8 mask)
506{
507 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
508
509 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
510 nh->ttl = new_ttl;
511}
512
513static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
514 const struct ovs_key_ipv4 *key,
515 const struct ovs_key_ipv4 *mask)
516{
517 struct iphdr *nh;
518 __be32 new_addr;
519 int err;
520
521 err = skb_ensure_writable(skb, skb_network_offset(skb) +
522 sizeof(struct iphdr));
523 if (unlikely(err))
524 return err;
525
526 nh = ip_hdr(skb);
527
528 /* Setting an IP addresses is typically only a side effect of
529 * matching on them in the current userspace implementation, so it
530 * makes sense to check if the value actually changed.
531 */
532 if (mask->ipv4_src) {
533 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
534
535 if (unlikely(new_addr != nh->saddr)) {
536 set_ip_addr(skb, nh, &nh->saddr, new_addr);
537 flow_key->ipv4.addr.src = new_addr;
538 }
539 }
540 if (mask->ipv4_dst) {
541 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
542
543 if (unlikely(new_addr != nh->daddr)) {
544 set_ip_addr(skb, nh, &nh->daddr, new_addr);
545 flow_key->ipv4.addr.dst = new_addr;
546 }
547 }
548 if (mask->ipv4_tos) {
549 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
550 flow_key->ip.tos = nh->tos;
551 }
552 if (mask->ipv4_ttl) {
553 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
554 flow_key->ip.ttl = nh->ttl;
555 }
556
557 return 0;
558}
559
560static bool is_ipv6_mask_nonzero(const __be32 addr[4])
561{
562 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
563}
564
565static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
566 const struct ovs_key_ipv6 *key,
567 const struct ovs_key_ipv6 *mask)
568{
569 struct ipv6hdr *nh;
570 int err;
571
572 err = skb_ensure_writable(skb, skb_network_offset(skb) +
573 sizeof(struct ipv6hdr));
574 if (unlikely(err))
575 return err;
576
577 nh = ipv6_hdr(skb);
578
579 /* Setting an IP addresses is typically only a side effect of
580 * matching on them in the current userspace implementation, so it
581 * makes sense to check if the value actually changed.
582 */
583 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
584 __be32 *saddr = (__be32 *)&nh->saddr;
585 __be32 masked[4];
586
587 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
588
589 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
590 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
591 true);
592 memcpy(&flow_key->ipv6.addr.src, masked,
593 sizeof(flow_key->ipv6.addr.src));
594 }
595 }
596 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
597 unsigned int offset = 0;
598 int flags = IP6_FH_F_SKIP_RH;
599 bool recalc_csum = true;
600 __be32 *daddr = (__be32 *)&nh->daddr;
601 __be32 masked[4];
602
603 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
604
605 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
606 if (ipv6_ext_hdr(nh->nexthdr))
607 recalc_csum = (ipv6_find_hdr(skb, &offset,
608 NEXTHDR_ROUTING,
609 NULL, &flags)
610 != NEXTHDR_ROUTING);
611
612 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
613 recalc_csum);
614 memcpy(&flow_key->ipv6.addr.dst, masked,
615 sizeof(flow_key->ipv6.addr.dst));
616 }
617 }
618 if (mask->ipv6_tclass) {
619 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
620 flow_key->ip.tos = ipv6_get_dsfield(nh);
621 }
622 if (mask->ipv6_label) {
623 set_ipv6_fl(nh, ntohl(key->ipv6_label),
624 ntohl(mask->ipv6_label));
625 flow_key->ipv6.label =
626 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
627 }
628 if (mask->ipv6_hlimit) {
629 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
630 mask->ipv6_hlimit);
631 flow_key->ip.ttl = nh->hop_limit;
632 }
633 return 0;
634}
635
636static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
637 const struct nlattr *a)
638{
639 struct nshhdr *nh;
640 size_t length;
641 int err;
642 u8 flags;
643 u8 ttl;
644 int i;
645
646 struct ovs_key_nsh key;
647 struct ovs_key_nsh mask;
648
649 err = nsh_key_from_nlattr(a, &key, &mask);
650 if (err)
651 return err;
652
653 /* Make sure the NSH base header is there */
654 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
655 return -ENOMEM;
656
657 nh = nsh_hdr(skb);
658 length = nsh_hdr_len(nh);
659
660 /* Make sure the whole NSH header is there */
661 err = skb_ensure_writable(skb, skb_network_offset(skb) +
662 length);
663 if (unlikely(err))
664 return err;
665
666 nh = nsh_hdr(skb);
667 skb_postpull_rcsum(skb, nh, length);
668 flags = nsh_get_flags(nh);
669 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
670 flow_key->nsh.base.flags = flags;
671 ttl = nsh_get_ttl(nh);
672 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
673 flow_key->nsh.base.ttl = ttl;
674 nsh_set_flags_and_ttl(nh, flags, ttl);
675 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
676 mask.base.path_hdr);
677 flow_key->nsh.base.path_hdr = nh->path_hdr;
678 switch (nh->mdtype) {
679 case NSH_M_TYPE1:
680 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
681 nh->md1.context[i] =
682 OVS_MASKED(nh->md1.context[i], key.context[i],
683 mask.context[i]);
684 }
685 memcpy(flow_key->nsh.context, nh->md1.context,
686 sizeof(nh->md1.context));
687 break;
688 case NSH_M_TYPE2:
689 memset(flow_key->nsh.context, 0,
690 sizeof(flow_key->nsh.context));
691 break;
692 default:
693 return -EINVAL;
694 }
695 skb_postpush_rcsum(skb, nh, length);
696 return 0;
697}
698
699/* Must follow skb_ensure_writable() since that can move the skb data. */
700static void set_tp_port(struct sk_buff *skb, __be16 *port,
701 __be16 new_port, __sum16 *check)
702{
703 inet_proto_csum_replace2(check, skb, *port, new_port, false);
704 *port = new_port;
705}
706
707static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
708 const struct ovs_key_udp *key,
709 const struct ovs_key_udp *mask)
710{
711 struct udphdr *uh;
712 __be16 src, dst;
713 int err;
714
715 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
716 sizeof(struct udphdr));
717 if (unlikely(err))
718 return err;
719
720 uh = udp_hdr(skb);
721 /* Either of the masks is non-zero, so do not bother checking them. */
722 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
723 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
724
725 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
726 if (likely(src != uh->source)) {
727 set_tp_port(skb, &uh->source, src, &uh->check);
728 flow_key->tp.src = src;
729 }
730 if (likely(dst != uh->dest)) {
731 set_tp_port(skb, &uh->dest, dst, &uh->check);
732 flow_key->tp.dst = dst;
733 }
734
735 if (unlikely(!uh->check))
736 uh->check = CSUM_MANGLED_0;
737 } else {
738 uh->source = src;
739 uh->dest = dst;
740 flow_key->tp.src = src;
741 flow_key->tp.dst = dst;
742 }
743
744 skb_clear_hash(skb);
745
746 return 0;
747}
748
749static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
750 const struct ovs_key_tcp *key,
751 const struct ovs_key_tcp *mask)
752{
753 struct tcphdr *th;
754 __be16 src, dst;
755 int err;
756
757 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
758 sizeof(struct tcphdr));
759 if (unlikely(err))
760 return err;
761
762 th = tcp_hdr(skb);
763 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
764 if (likely(src != th->source)) {
765 set_tp_port(skb, &th->source, src, &th->check);
766 flow_key->tp.src = src;
767 }
768 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
769 if (likely(dst != th->dest)) {
770 set_tp_port(skb, &th->dest, dst, &th->check);
771 flow_key->tp.dst = dst;
772 }
773 skb_clear_hash(skb);
774
775 return 0;
776}
777
778static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
779 const struct ovs_key_sctp *key,
780 const struct ovs_key_sctp *mask)
781{
782 unsigned int sctphoff = skb_transport_offset(skb);
783 struct sctphdr *sh;
784 __le32 old_correct_csum, new_csum, old_csum;
785 int err;
786
787 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
788 if (unlikely(err))
789 return err;
790
791 sh = sctp_hdr(skb);
792 old_csum = sh->checksum;
793 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
794
795 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
796 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
797
798 new_csum = sctp_compute_cksum(skb, sctphoff);
799
800 /* Carry any checksum errors through. */
801 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
802
803 skb_clear_hash(skb);
804 flow_key->tp.src = sh->source;
805 flow_key->tp.dst = sh->dest;
806
807 return 0;
808}
809
810static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
811{
812 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
813 struct vport *vport = data->vport;
814
815 if (skb_cow_head(skb, data->l2_len) < 0) {
816 kfree_skb(skb);
817 return -ENOMEM;
818 }
819
820 __skb_dst_copy(skb, data->dst);
821 *OVS_CB(skb) = data->cb;
822 skb->inner_protocol = data->inner_protocol;
823 skb->vlan_tci = data->vlan_tci;
824 skb->vlan_proto = data->vlan_proto;
825
826 /* Reconstruct the MAC header. */
827 skb_push(skb, data->l2_len);
828 memcpy(skb->data, &data->l2_data, data->l2_len);
829 skb_postpush_rcsum(skb, skb->data, data->l2_len);
830 skb_reset_mac_header(skb);
831
832 if (eth_p_mpls(skb->protocol)) {
833 skb->inner_network_header = skb->network_header;
834 skb_set_network_header(skb, data->network_offset);
835 skb_reset_mac_len(skb);
836 }
837
838 ovs_vport_send(vport, skb, data->mac_proto);
839 return 0;
840}
841
842static unsigned int
843ovs_dst_get_mtu(const struct dst_entry *dst)
844{
845 return dst->dev->mtu;
846}
847
848static struct dst_ops ovs_dst_ops = {
849 .family = AF_UNSPEC,
850 .mtu = ovs_dst_get_mtu,
851};
852
853/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
854 * ovs_vport_output(), which is called once per fragmented packet.
855 */
856static void prepare_frag(struct vport *vport, struct sk_buff *skb,
857 u16 orig_network_offset, u8 mac_proto)
858{
859 unsigned int hlen = skb_network_offset(skb);
860 struct ovs_frag_data *data;
861
862 data = this_cpu_ptr(&ovs_frag_data_storage);
863 data->dst = skb->_skb_refdst;
864 data->vport = vport;
865 data->cb = *OVS_CB(skb);
866 data->inner_protocol = skb->inner_protocol;
867 data->network_offset = orig_network_offset;
868 data->vlan_tci = skb->vlan_tci;
869 data->vlan_proto = skb->vlan_proto;
870 data->mac_proto = mac_proto;
871 data->l2_len = hlen;
872 memcpy(&data->l2_data, skb->data, hlen);
873
874 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
875 skb_pull(skb, hlen);
876}
877
878static void ovs_fragment(struct net *net, struct vport *vport,
879 struct sk_buff *skb, u16 mru,
880 struct sw_flow_key *key)
881{
882 u16 orig_network_offset = 0;
883
884 if (eth_p_mpls(skb->protocol)) {
885 orig_network_offset = skb_network_offset(skb);
886 skb->network_header = skb->inner_network_header;
887 }
888
889 if (skb_network_offset(skb) > MAX_L2_LEN) {
890 OVS_NLERR(1, "L2 header too long to fragment");
891 goto err;
892 }
893
894 if (key->eth.type == htons(ETH_P_IP)) {
895 struct dst_entry ovs_dst;
896 unsigned long orig_dst;
897
898 prepare_frag(vport, skb, orig_network_offset,
899 ovs_key_mac_proto(key));
900 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
901 DST_OBSOLETE_NONE, DST_NOCOUNT);
902 ovs_dst.dev = vport->dev;
903
904 orig_dst = skb->_skb_refdst;
905 skb_dst_set_noref(skb, &ovs_dst);
906 IPCB(skb)->frag_max_size = mru;
907
908 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
909 refdst_drop(orig_dst);
910 } else if (key->eth.type == htons(ETH_P_IPV6)) {
911 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
912 unsigned long orig_dst;
913 struct rt6_info ovs_rt;
914
915 if (!v6ops)
916 goto err;
917
918 prepare_frag(vport, skb, orig_network_offset,
919 ovs_key_mac_proto(key));
920 memset(&ovs_rt, 0, sizeof(ovs_rt));
921 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
922 DST_OBSOLETE_NONE, DST_NOCOUNT);
923 ovs_rt.dst.dev = vport->dev;
924
925 orig_dst = skb->_skb_refdst;
926 skb_dst_set_noref(skb, &ovs_rt.dst);
927 IP6CB(skb)->frag_max_size = mru;
928
929 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
930 refdst_drop(orig_dst);
931 } else {
932 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
933 ovs_vport_name(vport), ntohs(key->eth.type), mru,
934 vport->dev->mtu);
935 goto err;
936 }
937
938 return;
939err:
940 kfree_skb(skb);
941}
942
943static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
944 struct sw_flow_key *key)
945{
946 struct vport *vport = ovs_vport_rcu(dp, out_port);
947
948 if (likely(vport)) {
949 u16 mru = OVS_CB(skb)->mru;
950 u32 cutlen = OVS_CB(skb)->cutlen;
951
952 if (unlikely(cutlen > 0)) {
953 if (skb->len - cutlen > ovs_mac_header_len(key))
954 pskb_trim(skb, skb->len - cutlen);
955 else
956 pskb_trim(skb, ovs_mac_header_len(key));
957 }
958
959 if (likely(!mru ||
960 (skb->len <= mru + vport->dev->hard_header_len))) {
961 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
962 } else if (mru <= vport->dev->mtu) {
963 struct net *net = read_pnet(&dp->net);
964
965 ovs_fragment(net, vport, skb, mru, key);
966 } else {
967 kfree_skb(skb);
968 }
969 } else {
970 kfree_skb(skb);
971 }
972}
973
974static int output_userspace(struct datapath *dp, struct sk_buff *skb,
975 struct sw_flow_key *key, const struct nlattr *attr,
976 const struct nlattr *actions, int actions_len,
977 uint32_t cutlen)
978{
979 struct dp_upcall_info upcall;
980 const struct nlattr *a;
981 int rem;
982
983 memset(&upcall, 0, sizeof(upcall));
984 upcall.cmd = OVS_PACKET_CMD_ACTION;
985 upcall.mru = OVS_CB(skb)->mru;
986
987 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
988 a = nla_next(a, &rem)) {
989 switch (nla_type(a)) {
990 case OVS_USERSPACE_ATTR_USERDATA:
991 upcall.userdata = a;
992 break;
993
994 case OVS_USERSPACE_ATTR_PID:
995 upcall.portid = nla_get_u32(a);
996 break;
997
998 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
999 /* Get out tunnel info. */
1000 struct vport *vport;
1001
1002 vport = ovs_vport_rcu(dp, nla_get_u32(a));
1003 if (vport) {
1004 int err;
1005
1006 err = dev_fill_metadata_dst(vport->dev, skb);
1007 if (!err)
1008 upcall.egress_tun_info = skb_tunnel_info(skb);
1009 }
1010
1011 break;
1012 }
1013
1014 case OVS_USERSPACE_ATTR_ACTIONS: {
1015 /* Include actions. */
1016 upcall.actions = actions;
1017 upcall.actions_len = actions_len;
1018 break;
1019 }
1020
1021 } /* End of switch. */
1022 }
1023
1024 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1025}
1026
1027/* When 'last' is true, sample() should always consume the 'skb'.
1028 * Otherwise, sample() should keep 'skb' intact regardless what
1029 * actions are executed within sample().
1030 */
1031static int sample(struct datapath *dp, struct sk_buff *skb,
1032 struct sw_flow_key *key, const struct nlattr *attr,
1033 bool last)
1034{
1035 struct nlattr *actions;
1036 struct nlattr *sample_arg;
1037 int rem = nla_len(attr);
1038 const struct sample_arg *arg;
1039 bool clone_flow_key;
1040
1041 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1042 sample_arg = nla_data(attr);
1043 arg = nla_data(sample_arg);
1044 actions = nla_next(sample_arg, &rem);
1045
1046 if ((arg->probability != U32_MAX) &&
1047 (!arg->probability || prandom_u32() > arg->probability)) {
1048 if (last)
1049 consume_skb(skb);
1050 return 0;
1051 }
1052
1053 clone_flow_key = !arg->exec;
1054 return clone_execute(dp, skb, key, 0, actions, rem, last,
1055 clone_flow_key);
1056}
1057
1058/* When 'last' is true, clone() should always consume the 'skb'.
1059 * Otherwise, clone() should keep 'skb' intact regardless what
1060 * actions are executed within clone().
1061 */
1062static int clone(struct datapath *dp, struct sk_buff *skb,
1063 struct sw_flow_key *key, const struct nlattr *attr,
1064 bool last)
1065{
1066 struct nlattr *actions;
1067 struct nlattr *clone_arg;
1068 int rem = nla_len(attr);
1069 bool dont_clone_flow_key;
1070
1071 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1072 clone_arg = nla_data(attr);
1073 dont_clone_flow_key = nla_get_u32(clone_arg);
1074 actions = nla_next(clone_arg, &rem);
1075
1076 return clone_execute(dp, skb, key, 0, actions, rem, last,
1077 !dont_clone_flow_key);
1078}
1079
1080static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1081 const struct nlattr *attr)
1082{
1083 struct ovs_action_hash *hash_act = nla_data(attr);
1084 u32 hash = 0;
1085
1086 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1087 hash = skb_get_hash(skb);
1088 hash = jhash_1word(hash, hash_act->hash_basis);
1089 if (!hash)
1090 hash = 0x1;
1091
1092 key->ovs_flow_hash = hash;
1093}
1094
1095static int execute_set_action(struct sk_buff *skb,
1096 struct sw_flow_key *flow_key,
1097 const struct nlattr *a)
1098{
1099 /* Only tunnel set execution is supported without a mask. */
1100 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1101 struct ovs_tunnel_info *tun = nla_data(a);
1102
1103 skb_dst_drop(skb);
1104 dst_hold((struct dst_entry *)tun->tun_dst);
1105 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1106 return 0;
1107 }
1108
1109 return -EINVAL;
1110}
1111
1112/* Mask is at the midpoint of the data. */
1113#define get_mask(a, type) ((const type)nla_data(a) + 1)
1114
1115static int execute_masked_set_action(struct sk_buff *skb,
1116 struct sw_flow_key *flow_key,
1117 const struct nlattr *a)
1118{
1119 int err = 0;
1120
1121 switch (nla_type(a)) {
1122 case OVS_KEY_ATTR_PRIORITY:
1123 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1124 *get_mask(a, u32 *));
1125 flow_key->phy.priority = skb->priority;
1126 break;
1127
1128 case OVS_KEY_ATTR_SKB_MARK:
1129 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1130 flow_key->phy.skb_mark = skb->mark;
1131 break;
1132
1133 case OVS_KEY_ATTR_TUNNEL_INFO:
1134 /* Masked data not supported for tunnel. */
1135 err = -EINVAL;
1136 break;
1137
1138 case OVS_KEY_ATTR_ETHERNET:
1139 err = set_eth_addr(skb, flow_key, nla_data(a),
1140 get_mask(a, struct ovs_key_ethernet *));
1141 break;
1142
1143 case OVS_KEY_ATTR_NSH:
1144 err = set_nsh(skb, flow_key, a);
1145 break;
1146
1147 case OVS_KEY_ATTR_IPV4:
1148 err = set_ipv4(skb, flow_key, nla_data(a),
1149 get_mask(a, struct ovs_key_ipv4 *));
1150 break;
1151
1152 case OVS_KEY_ATTR_IPV6:
1153 err = set_ipv6(skb, flow_key, nla_data(a),
1154 get_mask(a, struct ovs_key_ipv6 *));
1155 break;
1156
1157 case OVS_KEY_ATTR_TCP:
1158 err = set_tcp(skb, flow_key, nla_data(a),
1159 get_mask(a, struct ovs_key_tcp *));
1160 break;
1161
1162 case OVS_KEY_ATTR_UDP:
1163 err = set_udp(skb, flow_key, nla_data(a),
1164 get_mask(a, struct ovs_key_udp *));
1165 break;
1166
1167 case OVS_KEY_ATTR_SCTP:
1168 err = set_sctp(skb, flow_key, nla_data(a),
1169 get_mask(a, struct ovs_key_sctp *));
1170 break;
1171
1172 case OVS_KEY_ATTR_MPLS:
1173 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1174 __be32 *));
1175 break;
1176
1177 case OVS_KEY_ATTR_CT_STATE:
1178 case OVS_KEY_ATTR_CT_ZONE:
1179 case OVS_KEY_ATTR_CT_MARK:
1180 case OVS_KEY_ATTR_CT_LABELS:
1181 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1182 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1183 err = -EINVAL;
1184 break;
1185 }
1186
1187 return err;
1188}
1189
1190static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1191 struct sw_flow_key *key,
1192 const struct nlattr *a, bool last)
1193{
1194 u32 recirc_id;
1195
1196 if (!is_flow_key_valid(key)) {
1197 int err;
1198
1199 err = ovs_flow_key_update(skb, key);
1200 if (err)
1201 return err;
1202 }
1203 BUG_ON(!is_flow_key_valid(key));
1204
1205 recirc_id = nla_get_u32(a);
1206 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1207}
1208
1209/* Execute a list of actions against 'skb'. */
1210static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1211 struct sw_flow_key *key,
1212 const struct nlattr *attr, int len)
1213{
1214 const struct nlattr *a;
1215 int rem;
1216
1217 for (a = attr, rem = len; rem > 0;
1218 a = nla_next(a, &rem)) {
1219 int err = 0;
1220
1221 switch (nla_type(a)) {
1222 case OVS_ACTION_ATTR_OUTPUT: {
1223 int port = nla_get_u32(a);
1224 struct sk_buff *clone;
1225
1226 /* Every output action needs a separate clone
1227 * of 'skb', In case the output action is the
1228 * last action, cloning can be avoided.
1229 */
1230 if (nla_is_last(a, rem)) {
1231 do_output(dp, skb, port, key);
1232 /* 'skb' has been used for output.
1233 */
1234 return 0;
1235 }
1236
1237 clone = skb_clone(skb, GFP_ATOMIC);
1238 if (clone)
1239 do_output(dp, clone, port, key);
1240 OVS_CB(skb)->cutlen = 0;
1241 break;
1242 }
1243
1244 case OVS_ACTION_ATTR_TRUNC: {
1245 struct ovs_action_trunc *trunc = nla_data(a);
1246
1247 if (skb->len > trunc->max_len)
1248 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1249 break;
1250 }
1251
1252 case OVS_ACTION_ATTR_USERSPACE:
1253 output_userspace(dp, skb, key, a, attr,
1254 len, OVS_CB(skb)->cutlen);
1255 OVS_CB(skb)->cutlen = 0;
1256 break;
1257
1258 case OVS_ACTION_ATTR_HASH:
1259 execute_hash(skb, key, a);
1260 break;
1261
1262 case OVS_ACTION_ATTR_PUSH_MPLS:
1263 err = push_mpls(skb, key, nla_data(a));
1264 break;
1265
1266 case OVS_ACTION_ATTR_POP_MPLS:
1267 err = pop_mpls(skb, key, nla_get_be16(a));
1268 break;
1269
1270 case OVS_ACTION_ATTR_PUSH_VLAN:
1271 err = push_vlan(skb, key, nla_data(a));
1272 break;
1273
1274 case OVS_ACTION_ATTR_POP_VLAN:
1275 err = pop_vlan(skb, key);
1276 break;
1277
1278 case OVS_ACTION_ATTR_RECIRC: {
1279 bool last = nla_is_last(a, rem);
1280
1281 err = execute_recirc(dp, skb, key, a, last);
1282 if (last) {
1283 /* If this is the last action, the skb has
1284 * been consumed or freed.
1285 * Return immediately.
1286 */
1287 return err;
1288 }
1289 break;
1290 }
1291
1292 case OVS_ACTION_ATTR_SET:
1293 err = execute_set_action(skb, key, nla_data(a));
1294 break;
1295
1296 case OVS_ACTION_ATTR_SET_MASKED:
1297 case OVS_ACTION_ATTR_SET_TO_MASKED:
1298 err = execute_masked_set_action(skb, key, nla_data(a));
1299 break;
1300
1301 case OVS_ACTION_ATTR_SAMPLE: {
1302 bool last = nla_is_last(a, rem);
1303
1304 err = sample(dp, skb, key, a, last);
1305 if (last)
1306 return err;
1307
1308 break;
1309 }
1310
1311 case OVS_ACTION_ATTR_CT:
1312 if (!is_flow_key_valid(key)) {
1313 err = ovs_flow_key_update(skb, key);
1314 if (err)
1315 return err;
1316 }
1317
1318 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1319 nla_data(a));
1320
1321 /* Hide stolen IP fragments from user space. */
1322 if (err)
1323 return err == -EINPROGRESS ? 0 : err;
1324 break;
1325
1326 case OVS_ACTION_ATTR_CT_CLEAR:
1327 err = ovs_ct_clear(skb, key);
1328 break;
1329
1330 case OVS_ACTION_ATTR_PUSH_ETH:
1331 err = push_eth(skb, key, nla_data(a));
1332 break;
1333
1334 case OVS_ACTION_ATTR_POP_ETH:
1335 err = pop_eth(skb, key);
1336 break;
1337
1338 case OVS_ACTION_ATTR_PUSH_NSH: {
1339 u8 buffer[NSH_HDR_MAX_LEN];
1340 struct nshhdr *nh = (struct nshhdr *)buffer;
1341
1342 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1343 NSH_HDR_MAX_LEN);
1344 if (unlikely(err))
1345 break;
1346 err = push_nsh(skb, key, nh);
1347 break;
1348 }
1349
1350 case OVS_ACTION_ATTR_POP_NSH:
1351 err = pop_nsh(skb, key);
1352 break;
1353
1354 case OVS_ACTION_ATTR_METER:
1355 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1356 consume_skb(skb);
1357 return 0;
1358 }
1359 break;
1360
1361 case OVS_ACTION_ATTR_CLONE: {
1362 bool last = nla_is_last(a, rem);
1363
1364 err = clone(dp, skb, key, a, last);
1365 if (last)
1366 return err;
1367
1368 break;
1369 }
1370 }
1371
1372 if (unlikely(err)) {
1373 kfree_skb(skb);
1374 return err;
1375 }
1376 }
1377
1378 consume_skb(skb);
1379 return 0;
1380}
1381
1382/* Execute the actions on the clone of the packet. The effect of the
1383 * execution does not affect the original 'skb' nor the original 'key'.
1384 *
1385 * The execution may be deferred in case the actions can not be executed
1386 * immediately.
1387 */
1388static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1389 struct sw_flow_key *key, u32 recirc_id,
1390 const struct nlattr *actions, int len,
1391 bool last, bool clone_flow_key)
1392{
1393 struct deferred_action *da;
1394 struct sw_flow_key *clone;
1395
1396 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1397 if (!skb) {
1398 /* Out of memory, skip this action.
1399 */
1400 return 0;
1401 }
1402
1403 /* When clone_flow_key is false, the 'key' will not be change
1404 * by the actions, then the 'key' can be used directly.
1405 * Otherwise, try to clone key from the next recursion level of
1406 * 'flow_keys'. If clone is successful, execute the actions
1407 * without deferring.
1408 */
1409 clone = clone_flow_key ? clone_key(key) : key;
1410 if (clone) {
1411 int err = 0;
1412
1413 if (actions) { /* Sample action */
1414 if (clone_flow_key)
1415 __this_cpu_inc(exec_actions_level);
1416
1417 err = do_execute_actions(dp, skb, clone,
1418 actions, len);
1419
1420 if (clone_flow_key)
1421 __this_cpu_dec(exec_actions_level);
1422 } else { /* Recirc action */
1423 clone->recirc_id = recirc_id;
1424 ovs_dp_process_packet(skb, clone);
1425 }
1426 return err;
1427 }
1428
1429 /* Out of 'flow_keys' space. Defer actions */
1430 da = add_deferred_actions(skb, key, actions, len);
1431 if (da) {
1432 if (!actions) { /* Recirc action */
1433 key = &da->pkt_key;
1434 key->recirc_id = recirc_id;
1435 }
1436 } else {
1437 /* Out of per CPU action FIFO space. Drop the 'skb' and
1438 * log an error.
1439 */
1440 kfree_skb(skb);
1441
1442 if (net_ratelimit()) {
1443 if (actions) { /* Sample action */
1444 pr_warn("%s: deferred action limit reached, drop sample action\n",
1445 ovs_dp_name(dp));
1446 } else { /* Recirc action */
1447 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1448 ovs_dp_name(dp));
1449 }
1450 }
1451 }
1452 return 0;
1453}
1454
1455static void process_deferred_actions(struct datapath *dp)
1456{
1457 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1458
1459 /* Do not touch the FIFO in case there is no deferred actions. */
1460 if (action_fifo_is_empty(fifo))
1461 return;
1462
1463 /* Finishing executing all deferred actions. */
1464 do {
1465 struct deferred_action *da = action_fifo_get(fifo);
1466 struct sk_buff *skb = da->skb;
1467 struct sw_flow_key *key = &da->pkt_key;
1468 const struct nlattr *actions = da->actions;
1469 int actions_len = da->actions_len;
1470
1471 if (actions)
1472 do_execute_actions(dp, skb, key, actions, actions_len);
1473 else
1474 ovs_dp_process_packet(skb, key);
1475 } while (!action_fifo_is_empty(fifo));
1476
1477 /* Reset FIFO for the next packet. */
1478 action_fifo_init(fifo);
1479}
1480
1481/* Execute a list of actions against 'skb'. */
1482int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1483 const struct sw_flow_actions *acts,
1484 struct sw_flow_key *key)
1485{
1486 int err, level;
1487
1488 level = __this_cpu_inc_return(exec_actions_level);
1489 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1490 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1491 ovs_dp_name(dp));
1492 kfree_skb(skb);
1493 err = -ENETDOWN;
1494 goto out;
1495 }
1496
1497 OVS_CB(skb)->acts_origlen = acts->orig_len;
1498 err = do_execute_actions(dp, skb, key,
1499 acts->actions, acts->actions_len);
1500
1501 if (level == 1)
1502 process_deferred_actions(dp);
1503
1504out:
1505 __this_cpu_dec(exec_actions_level);
1506 return err;
1507}
1508
1509int action_fifos_init(void)
1510{
1511 action_fifos = alloc_percpu(struct action_fifo);
1512 if (!action_fifos)
1513 return -ENOMEM;
1514
1515 flow_keys = alloc_percpu(struct action_flow_keys);
1516 if (!flow_keys) {
1517 free_percpu(action_fifos);
1518 return -ENOMEM;
1519 }
1520
1521 return 0;
1522}
1523
1524void action_fifos_exit(void)
1525{
1526 free_percpu(action_fifos);
1527 free_percpu(flow_keys);
1528}