blob: cd7e01ea81448bdae206727301ab113371f1f00e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/module.h>
34#include <linux/errno.h>
35#include <linux/kernel.h>
36#include <linux/gfp.h>
37#include <linux/in.h>
38#include <linux/ipv6.h>
39#include <linux/poll.h>
40#include <net/sock.h>
41
42#include "rds.h"
43
44/* this is just used for stats gathering :/ */
45static DEFINE_SPINLOCK(rds_sock_lock);
46static unsigned long rds_sock_count;
47static LIST_HEAD(rds_sock_list);
48DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49
50/*
51 * This is called as the final descriptor referencing this socket is closed.
52 * We have to unbind the socket so that another socket can be bound to the
53 * address it was using.
54 *
55 * We have to be careful about racing with the incoming path. sock_orphan()
56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57 * messages shouldn't be queued.
58 */
59static int rds_release(struct socket *sock)
60{
61 struct sock *sk = sock->sk;
62 struct rds_sock *rs;
63
64 if (!sk)
65 goto out;
66
67 rs = rds_sk_to_rs(sk);
68
69 sock_orphan(sk);
70 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 * that ensures the recv path has completed messing
72 * with the socket. */
73 rds_clear_recv_queue(rs);
74 rds_cong_remove_socket(rs);
75
76 rds_remove_bound(rs);
77
78 rds_send_drop_to(rs, NULL);
79 rds_rdma_drop_keys(rs);
80 rds_notify_queue_get(rs, NULL);
81 rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82
83 spin_lock_bh(&rds_sock_lock);
84 list_del_init(&rs->rs_item);
85 rds_sock_count--;
86 spin_unlock_bh(&rds_sock_lock);
87
88 rds_trans_put(rs->rs_transport);
89
90 sock->sk = NULL;
91 sock_put(sk);
92out:
93 return 0;
94}
95
96/*
97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
105void rds_wake_sk_sleep(struct rds_sock *rs)
106{
107 unsigned long flags;
108
109 read_lock_irqsave(&rs->rs_recv_lock, flags);
110 __rds_wake_sk_sleep(rds_rs_to_sk(rs));
111 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112}
113
114static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115 int peer)
116{
117 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 struct sockaddr_in6 *sin6;
119 struct sockaddr_in *sin;
120 int uaddr_len;
121
122 /* racey, don't care */
123 if (peer) {
124 if (ipv6_addr_any(&rs->rs_conn_addr))
125 return -ENOTCONN;
126
127 if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128 sin = (struct sockaddr_in *)uaddr;
129 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130 sin->sin_family = AF_INET;
131 sin->sin_port = rs->rs_conn_port;
132 sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133 uaddr_len = sizeof(*sin);
134 } else {
135 sin6 = (struct sockaddr_in6 *)uaddr;
136 sin6->sin6_family = AF_INET6;
137 sin6->sin6_port = rs->rs_conn_port;
138 sin6->sin6_addr = rs->rs_conn_addr;
139 sin6->sin6_flowinfo = 0;
140 /* scope_id is the same as in the bound address. */
141 sin6->sin6_scope_id = rs->rs_bound_scope_id;
142 uaddr_len = sizeof(*sin6);
143 }
144 } else {
145 /* If socket is not yet bound and the socket is connected,
146 * set the return address family to be the same as the
147 * connected address, but with 0 address value. If it is not
148 * connected, set the family to be AF_UNSPEC (value 0) and
149 * the address size to be that of an IPv4 address.
150 */
151 if (ipv6_addr_any(&rs->rs_bound_addr)) {
152 if (ipv6_addr_any(&rs->rs_conn_addr)) {
153 sin = (struct sockaddr_in *)uaddr;
154 memset(sin, 0, sizeof(*sin));
155 sin->sin_family = AF_UNSPEC;
156 return sizeof(*sin);
157 }
158
159#if IS_ENABLED(CONFIG_IPV6)
160 if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161 IPV6_ADDR_MAPPED)) {
162 sin6 = (struct sockaddr_in6 *)uaddr;
163 memset(sin6, 0, sizeof(*sin6));
164 sin6->sin6_family = AF_INET6;
165 return sizeof(*sin6);
166 }
167#endif
168
169 sin = (struct sockaddr_in *)uaddr;
170 memset(sin, 0, sizeof(*sin));
171 sin->sin_family = AF_INET;
172 return sizeof(*sin);
173 }
174 if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175 sin = (struct sockaddr_in *)uaddr;
176 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177 sin->sin_family = AF_INET;
178 sin->sin_port = rs->rs_bound_port;
179 sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180 uaddr_len = sizeof(*sin);
181 } else {
182 sin6 = (struct sockaddr_in6 *)uaddr;
183 sin6->sin6_family = AF_INET6;
184 sin6->sin6_port = rs->rs_bound_port;
185 sin6->sin6_addr = rs->rs_bound_addr;
186 sin6->sin6_flowinfo = 0;
187 sin6->sin6_scope_id = rs->rs_bound_scope_id;
188 uaddr_len = sizeof(*sin6);
189 }
190 }
191
192 return uaddr_len;
193}
194
195/*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 * - there is data on the receive queue.
202 * - to signal that a previously congested destination may have become
203 * uncongested
204 * - A notification has been queued to the socket (this can be a congestion
205 * update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
212static __poll_t rds_poll(struct file *file, struct socket *sock,
213 poll_table *wait)
214{
215 struct sock *sk = sock->sk;
216 struct rds_sock *rs = rds_sk_to_rs(sk);
217 __poll_t mask = 0;
218 unsigned long flags;
219
220 poll_wait(file, sk_sleep(sk), wait);
221
222 if (rs->rs_seen_congestion)
223 poll_wait(file, &rds_poll_waitq, wait);
224
225 read_lock_irqsave(&rs->rs_recv_lock, flags);
226 if (!rs->rs_cong_monitor) {
227 /* When a congestion map was updated, we signal EPOLLIN for
228 * "historical" reasons. Applications can also poll for
229 * WRBAND instead. */
230 if (rds_cong_updated_since(&rs->rs_cong_track))
231 mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232 } else {
233 spin_lock(&rs->rs_lock);
234 if (rs->rs_cong_notify)
235 mask |= (EPOLLIN | EPOLLRDNORM);
236 spin_unlock(&rs->rs_lock);
237 }
238 if (!list_empty(&rs->rs_recv_queue) ||
239 !list_empty(&rs->rs_notify_queue) ||
240 !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241 mask |= (EPOLLIN | EPOLLRDNORM);
242 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243 mask |= (EPOLLOUT | EPOLLWRNORM);
244 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245 mask |= POLLERR;
246 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248 /* clear state any time we wake a seen-congested socket */
249 if (mask)
250 rs->rs_seen_congestion = 0;
251
252 return mask;
253}
254
255static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256{
257 return -ENOIOCTLCMD;
258}
259
260static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
261 int len)
262{
263 struct sockaddr_in6 sin6;
264 struct sockaddr_in sin;
265 int ret = 0;
266
267 /* racing with another thread binding seems ok here */
268 if (ipv6_addr_any(&rs->rs_bound_addr)) {
269 ret = -ENOTCONN; /* XXX not a great errno */
270 goto out;
271 }
272
273 if (len < sizeof(struct sockaddr_in)) {
274 ret = -EINVAL;
275 goto out;
276 } else if (len < sizeof(struct sockaddr_in6)) {
277 /* Assume IPv4 */
278 if (copy_from_user(&sin, optval, sizeof(struct sockaddr_in))) {
279 ret = -EFAULT;
280 goto out;
281 }
282 ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
283 sin6.sin6_port = sin.sin_port;
284 } else {
285 if (copy_from_user(&sin6, optval,
286 sizeof(struct sockaddr_in6))) {
287 ret = -EFAULT;
288 goto out;
289 }
290 }
291
292 rds_send_drop_to(rs, &sin6);
293out:
294 return ret;
295}
296
297static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
298 int optlen)
299{
300 int value;
301
302 if (optlen < sizeof(int))
303 return -EINVAL;
304 if (get_user(value, (int __user *) optval))
305 return -EFAULT;
306 *optvar = !!value;
307 return 0;
308}
309
310static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
311 int optlen)
312{
313 int ret;
314
315 ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
316 if (ret == 0) {
317 if (rs->rs_cong_monitor) {
318 rds_cong_add_socket(rs);
319 } else {
320 rds_cong_remove_socket(rs);
321 rs->rs_cong_mask = 0;
322 rs->rs_cong_notify = 0;
323 }
324 }
325 return ret;
326}
327
328static int rds_set_transport(struct rds_sock *rs, char __user *optval,
329 int optlen)
330{
331 int t_type;
332
333 if (rs->rs_transport)
334 return -EOPNOTSUPP; /* previously attached to transport */
335
336 if (optlen != sizeof(int))
337 return -EINVAL;
338
339 if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
340 return -EFAULT;
341
342 if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
343 return -EINVAL;
344
345 rs->rs_transport = rds_trans_get(t_type);
346
347 return rs->rs_transport ? 0 : -ENOPROTOOPT;
348}
349
350static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
351 int optlen)
352{
353 int val, valbool;
354
355 if (optlen != sizeof(int))
356 return -EFAULT;
357
358 if (get_user(val, (int __user *)optval))
359 return -EFAULT;
360
361 valbool = val ? 1 : 0;
362
363 if (valbool)
364 sock_set_flag(sk, SOCK_RCVTSTAMP);
365 else
366 sock_reset_flag(sk, SOCK_RCVTSTAMP);
367
368 return 0;
369}
370
371static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
372 int optlen)
373{
374 struct rds_rx_trace_so trace;
375 int i;
376
377 if (optlen != sizeof(struct rds_rx_trace_so))
378 return -EFAULT;
379
380 if (copy_from_user(&trace, optval, sizeof(trace)))
381 return -EFAULT;
382
383 if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
384 return -EFAULT;
385
386 rs->rs_rx_traces = trace.rx_traces;
387 for (i = 0; i < rs->rs_rx_traces; i++) {
388 if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
389 rs->rs_rx_traces = 0;
390 return -EFAULT;
391 }
392 rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
393 }
394
395 return 0;
396}
397
398static int rds_setsockopt(struct socket *sock, int level, int optname,
399 char __user *optval, unsigned int optlen)
400{
401 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
402 int ret;
403
404 if (level != SOL_RDS) {
405 ret = -ENOPROTOOPT;
406 goto out;
407 }
408
409 switch (optname) {
410 case RDS_CANCEL_SENT_TO:
411 ret = rds_cancel_sent_to(rs, optval, optlen);
412 break;
413 case RDS_GET_MR:
414 ret = rds_get_mr(rs, optval, optlen);
415 break;
416 case RDS_GET_MR_FOR_DEST:
417 ret = rds_get_mr_for_dest(rs, optval, optlen);
418 break;
419 case RDS_FREE_MR:
420 ret = rds_free_mr(rs, optval, optlen);
421 break;
422 case RDS_RECVERR:
423 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
424 break;
425 case RDS_CONG_MONITOR:
426 ret = rds_cong_monitor(rs, optval, optlen);
427 break;
428 case SO_RDS_TRANSPORT:
429 lock_sock(sock->sk);
430 ret = rds_set_transport(rs, optval, optlen);
431 release_sock(sock->sk);
432 break;
433 case SO_TIMESTAMP:
434 lock_sock(sock->sk);
435 ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
436 release_sock(sock->sk);
437 break;
438 case SO_RDS_MSG_RXPATH_LATENCY:
439 ret = rds_recv_track_latency(rs, optval, optlen);
440 break;
441 default:
442 ret = -ENOPROTOOPT;
443 }
444out:
445 return ret;
446}
447
448static int rds_getsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int __user *optlen)
450{
451 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
452 int ret = -ENOPROTOOPT, len;
453 int trans;
454
455 if (level != SOL_RDS)
456 goto out;
457
458 if (get_user(len, optlen)) {
459 ret = -EFAULT;
460 goto out;
461 }
462
463 switch (optname) {
464 case RDS_INFO_FIRST ... RDS_INFO_LAST:
465 ret = rds_info_getsockopt(sock, optname, optval,
466 optlen);
467 break;
468
469 case RDS_RECVERR:
470 if (len < sizeof(int))
471 ret = -EINVAL;
472 else
473 if (put_user(rs->rs_recverr, (int __user *) optval) ||
474 put_user(sizeof(int), optlen))
475 ret = -EFAULT;
476 else
477 ret = 0;
478 break;
479 case SO_RDS_TRANSPORT:
480 if (len < sizeof(int)) {
481 ret = -EINVAL;
482 break;
483 }
484 trans = (rs->rs_transport ? rs->rs_transport->t_type :
485 RDS_TRANS_NONE); /* unbound */
486 if (put_user(trans, (int __user *)optval) ||
487 put_user(sizeof(int), optlen))
488 ret = -EFAULT;
489 else
490 ret = 0;
491 break;
492 default:
493 break;
494 }
495
496out:
497 return ret;
498
499}
500
501static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
502 int addr_len, int flags)
503{
504 struct sock *sk = sock->sk;
505 struct sockaddr_in *sin;
506 struct rds_sock *rs = rds_sk_to_rs(sk);
507 int ret = 0;
508
509 if (addr_len < offsetofend(struct sockaddr, sa_family))
510 return -EINVAL;
511
512 lock_sock(sk);
513
514 switch (uaddr->sa_family) {
515 case AF_INET:
516 sin = (struct sockaddr_in *)uaddr;
517 if (addr_len < sizeof(struct sockaddr_in)) {
518 ret = -EINVAL;
519 break;
520 }
521 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
522 ret = -EDESTADDRREQ;
523 break;
524 }
525 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) ||
526 sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
527 ret = -EINVAL;
528 break;
529 }
530 ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
531 rs->rs_conn_port = sin->sin_port;
532 break;
533
534#if IS_ENABLED(CONFIG_IPV6)
535 case AF_INET6: {
536 struct sockaddr_in6 *sin6;
537 int addr_type;
538
539 sin6 = (struct sockaddr_in6 *)uaddr;
540 if (addr_len < sizeof(struct sockaddr_in6)) {
541 ret = -EINVAL;
542 break;
543 }
544 addr_type = ipv6_addr_type(&sin6->sin6_addr);
545 if (!(addr_type & IPV6_ADDR_UNICAST)) {
546 __be32 addr4;
547
548 if (!(addr_type & IPV6_ADDR_MAPPED)) {
549 ret = -EPROTOTYPE;
550 break;
551 }
552
553 /* It is a mapped address. Need to do some sanity
554 * checks.
555 */
556 addr4 = sin6->sin6_addr.s6_addr32[3];
557 if (addr4 == htonl(INADDR_ANY) ||
558 addr4 == htonl(INADDR_BROADCAST) ||
559 IN_MULTICAST(ntohl(addr4))) {
560 ret = -EPROTOTYPE;
561 break;
562 }
563 }
564
565 if (addr_type & IPV6_ADDR_LINKLOCAL) {
566 /* If socket is arleady bound to a link local address,
567 * the peer address must be on the same link.
568 */
569 if (sin6->sin6_scope_id == 0 ||
570 (!ipv6_addr_any(&rs->rs_bound_addr) &&
571 rs->rs_bound_scope_id &&
572 sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
573 ret = -EINVAL;
574 break;
575 }
576 /* Remember the connected address scope ID. It will
577 * be checked against the binding local address when
578 * the socket is bound.
579 */
580 rs->rs_bound_scope_id = sin6->sin6_scope_id;
581 }
582 rs->rs_conn_addr = sin6->sin6_addr;
583 rs->rs_conn_port = sin6->sin6_port;
584 break;
585 }
586#endif
587
588 default:
589 ret = -EAFNOSUPPORT;
590 break;
591 }
592
593 release_sock(sk);
594 return ret;
595}
596
597static struct proto rds_proto = {
598 .name = "RDS",
599 .owner = THIS_MODULE,
600 .obj_size = sizeof(struct rds_sock),
601};
602
603static const struct proto_ops rds_proto_ops = {
604 .family = AF_RDS,
605 .owner = THIS_MODULE,
606 .release = rds_release,
607 .bind = rds_bind,
608 .connect = rds_connect,
609 .socketpair = sock_no_socketpair,
610 .accept = sock_no_accept,
611 .getname = rds_getname,
612 .poll = rds_poll,
613 .ioctl = rds_ioctl,
614 .listen = sock_no_listen,
615 .shutdown = sock_no_shutdown,
616 .setsockopt = rds_setsockopt,
617 .getsockopt = rds_getsockopt,
618 .sendmsg = rds_sendmsg,
619 .recvmsg = rds_recvmsg,
620 .mmap = sock_no_mmap,
621 .sendpage = sock_no_sendpage,
622};
623
624static void rds_sock_destruct(struct sock *sk)
625{
626 struct rds_sock *rs = rds_sk_to_rs(sk);
627
628 WARN_ON((&rs->rs_item != rs->rs_item.next ||
629 &rs->rs_item != rs->rs_item.prev));
630}
631
632static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
633{
634 struct rds_sock *rs;
635
636 sock_init_data(sock, sk);
637 sock->ops = &rds_proto_ops;
638 sk->sk_protocol = protocol;
639 sk->sk_destruct = rds_sock_destruct;
640
641 rs = rds_sk_to_rs(sk);
642 spin_lock_init(&rs->rs_lock);
643 rwlock_init(&rs->rs_recv_lock);
644 INIT_LIST_HEAD(&rs->rs_send_queue);
645 INIT_LIST_HEAD(&rs->rs_recv_queue);
646 INIT_LIST_HEAD(&rs->rs_notify_queue);
647 INIT_LIST_HEAD(&rs->rs_cong_list);
648 rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
649 spin_lock_init(&rs->rs_rdma_lock);
650 rs->rs_rdma_keys = RB_ROOT;
651 rs->rs_rx_traces = 0;
652
653 spin_lock_bh(&rds_sock_lock);
654 list_add_tail(&rs->rs_item, &rds_sock_list);
655 rds_sock_count++;
656 spin_unlock_bh(&rds_sock_lock);
657
658 return 0;
659}
660
661static int rds_create(struct net *net, struct socket *sock, int protocol,
662 int kern)
663{
664 struct sock *sk;
665
666 if (sock->type != SOCK_SEQPACKET || protocol)
667 return -ESOCKTNOSUPPORT;
668
669 sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
670 if (!sk)
671 return -ENOMEM;
672
673 return __rds_create(sock, sk, protocol);
674}
675
676void rds_sock_addref(struct rds_sock *rs)
677{
678 sock_hold(rds_rs_to_sk(rs));
679}
680
681void rds_sock_put(struct rds_sock *rs)
682{
683 sock_put(rds_rs_to_sk(rs));
684}
685
686static const struct net_proto_family rds_family_ops = {
687 .family = AF_RDS,
688 .create = rds_create,
689 .owner = THIS_MODULE,
690};
691
692static void rds_sock_inc_info(struct socket *sock, unsigned int len,
693 struct rds_info_iterator *iter,
694 struct rds_info_lengths *lens)
695{
696 struct rds_sock *rs;
697 struct rds_incoming *inc;
698 unsigned int total = 0;
699
700 len /= sizeof(struct rds_info_message);
701
702 spin_lock_bh(&rds_sock_lock);
703
704 list_for_each_entry(rs, &rds_sock_list, rs_item) {
705 read_lock(&rs->rs_recv_lock);
706
707 /* XXX too lazy to maintain counts.. */
708 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
709 total++;
710 if (total <= len)
711 rds_inc_info_copy(inc, iter,
712 inc->i_saddr.s6_addr32[3],
713 rs->rs_bound_addr_v4,
714 1);
715 }
716
717 read_unlock(&rs->rs_recv_lock);
718 }
719
720 spin_unlock_bh(&rds_sock_lock);
721
722 lens->nr = total;
723 lens->each = sizeof(struct rds_info_message);
724}
725
726static void rds_sock_info(struct socket *sock, unsigned int len,
727 struct rds_info_iterator *iter,
728 struct rds_info_lengths *lens)
729{
730 struct rds_info_socket sinfo;
731 struct rds_sock *rs;
732
733 len /= sizeof(struct rds_info_socket);
734
735 spin_lock_bh(&rds_sock_lock);
736
737 if (len < rds_sock_count)
738 goto out;
739
740 list_for_each_entry(rs, &rds_sock_list, rs_item) {
741 sinfo.sndbuf = rds_sk_sndbuf(rs);
742 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
743 sinfo.bound_addr = rs->rs_bound_addr_v4;
744 sinfo.connected_addr = rs->rs_conn_addr_v4;
745 sinfo.bound_port = rs->rs_bound_port;
746 sinfo.connected_port = rs->rs_conn_port;
747 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
748
749 rds_info_copy(iter, &sinfo, sizeof(sinfo));
750 }
751
752out:
753 lens->nr = rds_sock_count;
754 lens->each = sizeof(struct rds_info_socket);
755
756 spin_unlock_bh(&rds_sock_lock);
757}
758
759static void rds_exit(void)
760{
761 sock_unregister(rds_family_ops.family);
762 proto_unregister(&rds_proto);
763 rds_conn_exit();
764 rds_cong_exit();
765 rds_sysctl_exit();
766 rds_threads_exit();
767 rds_stats_exit();
768 rds_page_exit();
769 rds_bind_lock_destroy();
770 rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
771 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
772}
773module_exit(rds_exit);
774
775u32 rds_gen_num;
776
777static int rds_init(void)
778{
779 int ret;
780
781 net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
782
783 ret = rds_bind_lock_init();
784 if (ret)
785 goto out;
786
787 ret = rds_conn_init();
788 if (ret)
789 goto out_bind;
790
791 ret = rds_threads_init();
792 if (ret)
793 goto out_conn;
794 ret = rds_sysctl_init();
795 if (ret)
796 goto out_threads;
797 ret = rds_stats_init();
798 if (ret)
799 goto out_sysctl;
800 ret = proto_register(&rds_proto, 1);
801 if (ret)
802 goto out_stats;
803 ret = sock_register(&rds_family_ops);
804 if (ret)
805 goto out_proto;
806
807 rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
808 rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
809
810 goto out;
811
812out_proto:
813 proto_unregister(&rds_proto);
814out_stats:
815 rds_stats_exit();
816out_sysctl:
817 rds_sysctl_exit();
818out_threads:
819 rds_threads_exit();
820out_conn:
821 rds_conn_exit();
822 rds_cong_exit();
823 rds_page_exit();
824out_bind:
825 rds_bind_lock_destroy();
826out:
827 return ret;
828}
829module_init(rds_init);
830
831#define DRV_VERSION "4.0"
832#define DRV_RELDATE "Feb 12, 2009"
833
834MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
835MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
836 " v" DRV_VERSION " (" DRV_RELDATE ")");
837MODULE_VERSION(DRV_VERSION);
838MODULE_LICENSE("Dual BSD/GPL");
839MODULE_ALIAS_NETPROTO(PF_RDS);