| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* SCTP kernel implementation | 
|  | 2 | * (C) Copyright IBM Corp. 2001, 2004 | 
|  | 3 | * Copyright (c) 1999-2000 Cisco, Inc. | 
|  | 4 | * Copyright (c) 1999-2001 Motorola, Inc. | 
|  | 5 | * Copyright (c) 2001-2003 Intel Corp. | 
|  | 6 | * | 
|  | 7 | * This file is part of the SCTP kernel implementation | 
|  | 8 | * | 
|  | 9 | * These functions implement the sctp_outq class.   The outqueue handles | 
|  | 10 | * bundling and queueing of outgoing SCTP chunks. | 
|  | 11 | * | 
|  | 12 | * This SCTP implementation is free software; | 
|  | 13 | * you can redistribute it and/or modify it under the terms of | 
|  | 14 | * the GNU General Public License as published by | 
|  | 15 | * the Free Software Foundation; either version 2, or (at your option) | 
|  | 16 | * any later version. | 
|  | 17 | * | 
|  | 18 | * This SCTP implementation is distributed in the hope that it | 
|  | 19 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
|  | 20 | *                 ************************ | 
|  | 21 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | 22 | * See the GNU General Public License for more details. | 
|  | 23 | * | 
|  | 24 | * You should have received a copy of the GNU General Public License | 
|  | 25 | * along with GNU CC; see the file COPYING.  If not, see | 
|  | 26 | * <http://www.gnu.org/licenses/>. | 
|  | 27 | * | 
|  | 28 | * Please send any bug reports or fixes you make to the | 
|  | 29 | * email address(es): | 
|  | 30 | *    lksctp developers <linux-sctp@vger.kernel.org> | 
|  | 31 | * | 
|  | 32 | * Written or modified by: | 
|  | 33 | *    La Monte H.P. Yarroll <piggy@acm.org> | 
|  | 34 | *    Karl Knutson          <karl@athena.chicago.il.us> | 
|  | 35 | *    Perry Melange         <pmelange@null.cc.uic.edu> | 
|  | 36 | *    Xingang Guo           <xingang.guo@intel.com> | 
|  | 37 | *    Hui Huang 	    <hui.huang@nokia.com> | 
|  | 38 | *    Sridhar Samudrala     <sri@us.ibm.com> | 
|  | 39 | *    Jon Grimm             <jgrimm@us.ibm.com> | 
|  | 40 | */ | 
|  | 41 |  | 
|  | 42 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 43 |  | 
|  | 44 | #include <linux/types.h> | 
|  | 45 | #include <linux/list.h>   /* For struct list_head */ | 
|  | 46 | #include <linux/socket.h> | 
|  | 47 | #include <linux/ip.h> | 
|  | 48 | #include <linux/slab.h> | 
|  | 49 | #include <net/sock.h>	  /* For skb_set_owner_w */ | 
|  | 50 |  | 
|  | 51 | #include <net/sctp/sctp.h> | 
|  | 52 | #include <net/sctp/sm.h> | 
|  | 53 | #include <net/sctp/stream_sched.h> | 
|  | 54 |  | 
|  | 55 | /* Declare internal functions here.  */ | 
|  | 56 | static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); | 
|  | 57 | static void sctp_check_transmitted(struct sctp_outq *q, | 
|  | 58 | struct list_head *transmitted_queue, | 
|  | 59 | struct sctp_transport *transport, | 
|  | 60 | union sctp_addr *saddr, | 
|  | 61 | struct sctp_sackhdr *sack, | 
|  | 62 | __u32 *highest_new_tsn); | 
|  | 63 |  | 
|  | 64 | static void sctp_mark_missing(struct sctp_outq *q, | 
|  | 65 | struct list_head *transmitted_queue, | 
|  | 66 | struct sctp_transport *transport, | 
|  | 67 | __u32 highest_new_tsn, | 
|  | 68 | int count_of_newacks); | 
|  | 69 |  | 
|  | 70 | static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp); | 
|  | 71 |  | 
|  | 72 | /* Add data to the front of the queue. */ | 
|  | 73 | static inline void sctp_outq_head_data(struct sctp_outq *q, | 
|  | 74 | struct sctp_chunk *ch) | 
|  | 75 | { | 
|  | 76 | struct sctp_stream_out_ext *oute; | 
|  | 77 | __u16 stream; | 
|  | 78 |  | 
|  | 79 | list_add(&ch->list, &q->out_chunk_list); | 
|  | 80 | q->out_qlen += ch->skb->len; | 
|  | 81 |  | 
|  | 82 | stream = sctp_chunk_stream_no(ch); | 
|  | 83 | oute = SCTP_SO(&q->asoc->stream, stream)->ext; | 
|  | 84 | list_add(&ch->stream_list, &oute->outq); | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | /* Take data from the front of the queue. */ | 
|  | 88 | static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) | 
|  | 89 | { | 
|  | 90 | return q->sched->dequeue(q); | 
|  | 91 | } | 
|  | 92 |  | 
|  | 93 | /* Add data chunk to the end of the queue. */ | 
|  | 94 | static inline void sctp_outq_tail_data(struct sctp_outq *q, | 
|  | 95 | struct sctp_chunk *ch) | 
|  | 96 | { | 
|  | 97 | struct sctp_stream_out_ext *oute; | 
|  | 98 | __u16 stream; | 
|  | 99 |  | 
|  | 100 | list_add_tail(&ch->list, &q->out_chunk_list); | 
|  | 101 | q->out_qlen += ch->skb->len; | 
|  | 102 |  | 
|  | 103 | stream = sctp_chunk_stream_no(ch); | 
|  | 104 | oute = SCTP_SO(&q->asoc->stream, stream)->ext; | 
|  | 105 | list_add_tail(&ch->stream_list, &oute->outq); | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | /* | 
|  | 109 | * SFR-CACC algorithm: | 
|  | 110 | * D) If count_of_newacks is greater than or equal to 2 | 
|  | 111 | * and t was not sent to the current primary then the | 
|  | 112 | * sender MUST NOT increment missing report count for t. | 
|  | 113 | */ | 
|  | 114 | static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, | 
|  | 115 | struct sctp_transport *transport, | 
|  | 116 | int count_of_newacks) | 
|  | 117 | { | 
|  | 118 | if (count_of_newacks >= 2 && transport != primary) | 
|  | 119 | return 1; | 
|  | 120 | return 0; | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | /* | 
|  | 124 | * SFR-CACC algorithm: | 
|  | 125 | * F) If count_of_newacks is less than 2, let d be the | 
|  | 126 | * destination to which t was sent. If cacc_saw_newack | 
|  | 127 | * is 0 for destination d, then the sender MUST NOT | 
|  | 128 | * increment missing report count for t. | 
|  | 129 | */ | 
|  | 130 | static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, | 
|  | 131 | int count_of_newacks) | 
|  | 132 | { | 
|  | 133 | if (count_of_newacks < 2 && | 
|  | 134 | (transport && !transport->cacc.cacc_saw_newack)) | 
|  | 135 | return 1; | 
|  | 136 | return 0; | 
|  | 137 | } | 
|  | 138 |  | 
|  | 139 | /* | 
|  | 140 | * SFR-CACC algorithm: | 
|  | 141 | * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD | 
|  | 142 | * execute steps C, D, F. | 
|  | 143 | * | 
|  | 144 | * C has been implemented in sctp_outq_sack | 
|  | 145 | */ | 
|  | 146 | static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, | 
|  | 147 | struct sctp_transport *transport, | 
|  | 148 | int count_of_newacks) | 
|  | 149 | { | 
|  | 150 | if (!primary->cacc.cycling_changeover) { | 
|  | 151 | if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) | 
|  | 152 | return 1; | 
|  | 153 | if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) | 
|  | 154 | return 1; | 
|  | 155 | return 0; | 
|  | 156 | } | 
|  | 157 | return 0; | 
|  | 158 | } | 
|  | 159 |  | 
|  | 160 | /* | 
|  | 161 | * SFR-CACC algorithm: | 
|  | 162 | * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less | 
|  | 163 | * than next_tsn_at_change of the current primary, then | 
|  | 164 | * the sender MUST NOT increment missing report count | 
|  | 165 | * for t. | 
|  | 166 | */ | 
|  | 167 | static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) | 
|  | 168 | { | 
|  | 169 | if (primary->cacc.cycling_changeover && | 
|  | 170 | TSN_lt(tsn, primary->cacc.next_tsn_at_change)) | 
|  | 171 | return 1; | 
|  | 172 | return 0; | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | /* | 
|  | 176 | * SFR-CACC algorithm: | 
|  | 177 | * 3) If the missing report count for TSN t is to be | 
|  | 178 | * incremented according to [RFC2960] and | 
|  | 179 | * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, | 
|  | 180 | * then the sender MUST further execute steps 3.1 and | 
|  | 181 | * 3.2 to determine if the missing report count for | 
|  | 182 | * TSN t SHOULD NOT be incremented. | 
|  | 183 | * | 
|  | 184 | * 3.3) If 3.1 and 3.2 do not dictate that the missing | 
|  | 185 | * report count for t should not be incremented, then | 
|  | 186 | * the sender SHOULD increment missing report count for | 
|  | 187 | * t (according to [RFC2960] and [SCTP_STEWART_2002]). | 
|  | 188 | */ | 
|  | 189 | static inline int sctp_cacc_skip(struct sctp_transport *primary, | 
|  | 190 | struct sctp_transport *transport, | 
|  | 191 | int count_of_newacks, | 
|  | 192 | __u32 tsn) | 
|  | 193 | { | 
|  | 194 | if (primary->cacc.changeover_active && | 
|  | 195 | (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) || | 
|  | 196 | sctp_cacc_skip_3_2(primary, tsn))) | 
|  | 197 | return 1; | 
|  | 198 | return 0; | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | /* Initialize an existing sctp_outq.  This does the boring stuff. | 
|  | 202 | * You still need to define handlers if you really want to DO | 
|  | 203 | * something with this structure... | 
|  | 204 | */ | 
|  | 205 | void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) | 
|  | 206 | { | 
|  | 207 | memset(q, 0, sizeof(struct sctp_outq)); | 
|  | 208 |  | 
|  | 209 | q->asoc = asoc; | 
|  | 210 | INIT_LIST_HEAD(&q->out_chunk_list); | 
|  | 211 | INIT_LIST_HEAD(&q->control_chunk_list); | 
|  | 212 | INIT_LIST_HEAD(&q->retransmit); | 
|  | 213 | INIT_LIST_HEAD(&q->sacked); | 
|  | 214 | INIT_LIST_HEAD(&q->abandoned); | 
|  | 215 | sctp_sched_set_sched(asoc, SCTP_SS_DEFAULT); | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | /* Free the outqueue structure and any related pending chunks. | 
|  | 219 | */ | 
|  | 220 | static void __sctp_outq_teardown(struct sctp_outq *q) | 
|  | 221 | { | 
|  | 222 | struct sctp_transport *transport; | 
|  | 223 | struct list_head *lchunk, *temp; | 
|  | 224 | struct sctp_chunk *chunk, *tmp; | 
|  | 225 |  | 
|  | 226 | /* Throw away unacknowledged chunks. */ | 
|  | 227 | list_for_each_entry(transport, &q->asoc->peer.transport_addr_list, | 
|  | 228 | transports) { | 
|  | 229 | while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { | 
|  | 230 | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 231 | transmitted_list); | 
|  | 232 | /* Mark as part of a failed message. */ | 
|  | 233 | sctp_chunk_fail(chunk, q->error); | 
|  | 234 | sctp_chunk_free(chunk); | 
|  | 235 | } | 
|  | 236 | } | 
|  | 237 |  | 
|  | 238 | /* Throw away chunks that have been gap ACKed.  */ | 
|  | 239 | list_for_each_safe(lchunk, temp, &q->sacked) { | 
|  | 240 | list_del_init(lchunk); | 
|  | 241 | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 242 | transmitted_list); | 
|  | 243 | sctp_chunk_fail(chunk, q->error); | 
|  | 244 | sctp_chunk_free(chunk); | 
|  | 245 | } | 
|  | 246 |  | 
|  | 247 | /* Throw away any chunks in the retransmit queue. */ | 
|  | 248 | list_for_each_safe(lchunk, temp, &q->retransmit) { | 
|  | 249 | list_del_init(lchunk); | 
|  | 250 | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 251 | transmitted_list); | 
|  | 252 | sctp_chunk_fail(chunk, q->error); | 
|  | 253 | sctp_chunk_free(chunk); | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | /* Throw away any chunks that are in the abandoned queue. */ | 
|  | 257 | list_for_each_safe(lchunk, temp, &q->abandoned) { | 
|  | 258 | list_del_init(lchunk); | 
|  | 259 | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 260 | transmitted_list); | 
|  | 261 | sctp_chunk_fail(chunk, q->error); | 
|  | 262 | sctp_chunk_free(chunk); | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | /* Throw away any leftover data chunks. */ | 
|  | 266 | while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { | 
|  | 267 | sctp_sched_dequeue_done(q, chunk); | 
|  | 268 |  | 
|  | 269 | /* Mark as send failure. */ | 
|  | 270 | sctp_chunk_fail(chunk, q->error); | 
|  | 271 | sctp_chunk_free(chunk); | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | /* Throw away any leftover control chunks. */ | 
|  | 275 | list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { | 
|  | 276 | list_del_init(&chunk->list); | 
|  | 277 | sctp_chunk_free(chunk); | 
|  | 278 | } | 
|  | 279 | } | 
|  | 280 |  | 
|  | 281 | void sctp_outq_teardown(struct sctp_outq *q) | 
|  | 282 | { | 
|  | 283 | __sctp_outq_teardown(q); | 
|  | 284 | sctp_outq_init(q->asoc, q); | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | /* Free the outqueue structure and any related pending chunks.  */ | 
|  | 288 | void sctp_outq_free(struct sctp_outq *q) | 
|  | 289 | { | 
|  | 290 | /* Throw away leftover chunks. */ | 
|  | 291 | __sctp_outq_teardown(q); | 
|  | 292 | } | 
|  | 293 |  | 
|  | 294 | /* Put a new chunk in an sctp_outq.  */ | 
|  | 295 | void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp) | 
|  | 296 | { | 
|  | 297 | struct net *net = sock_net(q->asoc->base.sk); | 
|  | 298 |  | 
|  | 299 | pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk, | 
|  | 300 | chunk && chunk->chunk_hdr ? | 
|  | 301 | sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : | 
|  | 302 | "illegal chunk"); | 
|  | 303 |  | 
|  | 304 | /* If it is data, queue it up, otherwise, send it | 
|  | 305 | * immediately. | 
|  | 306 | */ | 
|  | 307 | if (sctp_chunk_is_data(chunk)) { | 
|  | 308 | pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n", | 
|  | 309 | __func__, q, chunk, chunk && chunk->chunk_hdr ? | 
|  | 310 | sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : | 
|  | 311 | "illegal chunk"); | 
|  | 312 |  | 
|  | 313 | sctp_outq_tail_data(q, chunk); | 
|  | 314 | if (chunk->asoc->peer.prsctp_capable && | 
|  | 315 | SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) | 
|  | 316 | chunk->asoc->sent_cnt_removable++; | 
|  | 317 | if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) | 
|  | 318 | SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS); | 
|  | 319 | else | 
|  | 320 | SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS); | 
|  | 321 | } else { | 
|  | 322 | list_add_tail(&chunk->list, &q->control_chunk_list); | 
|  | 323 | SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS); | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | if (!q->cork) | 
|  | 327 | sctp_outq_flush(q, 0, gfp); | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list | 
|  | 331 | * and the abandoned list are in ascending order. | 
|  | 332 | */ | 
|  | 333 | static void sctp_insert_list(struct list_head *head, struct list_head *new) | 
|  | 334 | { | 
|  | 335 | struct list_head *pos; | 
|  | 336 | struct sctp_chunk *nchunk, *lchunk; | 
|  | 337 | __u32 ntsn, ltsn; | 
|  | 338 | int done = 0; | 
|  | 339 |  | 
|  | 340 | nchunk = list_entry(new, struct sctp_chunk, transmitted_list); | 
|  | 341 | ntsn = ntohl(nchunk->subh.data_hdr->tsn); | 
|  | 342 |  | 
|  | 343 | list_for_each(pos, head) { | 
|  | 344 | lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); | 
|  | 345 | ltsn = ntohl(lchunk->subh.data_hdr->tsn); | 
|  | 346 | if (TSN_lt(ntsn, ltsn)) { | 
|  | 347 | list_add(new, pos->prev); | 
|  | 348 | done = 1; | 
|  | 349 | break; | 
|  | 350 | } | 
|  | 351 | } | 
|  | 352 | if (!done) | 
|  | 353 | list_add_tail(new, head); | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | static int sctp_prsctp_prune_sent(struct sctp_association *asoc, | 
|  | 357 | struct sctp_sndrcvinfo *sinfo, | 
|  | 358 | struct list_head *queue, int msg_len) | 
|  | 359 | { | 
|  | 360 | struct sctp_chunk *chk, *temp; | 
|  | 361 |  | 
|  | 362 | list_for_each_entry_safe(chk, temp, queue, transmitted_list) { | 
|  | 363 | struct sctp_stream_out *streamout; | 
|  | 364 |  | 
|  | 365 | if (!chk->msg->abandoned && | 
|  | 366 | (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || | 
|  | 367 | chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) | 
|  | 368 | continue; | 
|  | 369 |  | 
|  | 370 | chk->msg->abandoned = 1; | 
|  | 371 | list_del_init(&chk->transmitted_list); | 
|  | 372 | sctp_insert_list(&asoc->outqueue.abandoned, | 
|  | 373 | &chk->transmitted_list); | 
|  | 374 |  | 
|  | 375 | streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); | 
|  | 376 | asoc->sent_cnt_removable--; | 
|  | 377 | asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; | 
|  | 378 | streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; | 
|  | 379 |  | 
|  | 380 | if (queue != &asoc->outqueue.retransmit && | 
|  | 381 | !chk->tsn_gap_acked) { | 
|  | 382 | if (chk->transport) | 
|  | 383 | chk->transport->flight_size -= | 
|  | 384 | sctp_data_size(chk); | 
|  | 385 | asoc->outqueue.outstanding_bytes -= sctp_data_size(chk); | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | msg_len -= SCTP_DATA_SNDSIZE(chk) + | 
|  | 389 | sizeof(struct sk_buff) + | 
|  | 390 | sizeof(struct sctp_chunk); | 
|  | 391 | if (msg_len <= 0) | 
|  | 392 | break; | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | return msg_len; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | static int sctp_prsctp_prune_unsent(struct sctp_association *asoc, | 
|  | 399 | struct sctp_sndrcvinfo *sinfo, int msg_len) | 
|  | 400 | { | 
|  | 401 | struct sctp_outq *q = &asoc->outqueue; | 
|  | 402 | struct sctp_chunk *chk, *temp; | 
|  | 403 |  | 
|  | 404 | q->sched->unsched_all(&asoc->stream); | 
|  | 405 |  | 
|  | 406 | list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) { | 
|  | 407 | if (!chk->msg->abandoned && | 
|  | 408 | (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) || | 
|  | 409 | !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || | 
|  | 410 | chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) | 
|  | 411 | continue; | 
|  | 412 |  | 
|  | 413 | chk->msg->abandoned = 1; | 
|  | 414 | sctp_sched_dequeue_common(q, chk); | 
|  | 415 | asoc->sent_cnt_removable--; | 
|  | 416 | asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; | 
|  | 417 | if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) { | 
|  | 418 | struct sctp_stream_out *streamout = | 
|  | 419 | SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); | 
|  | 420 |  | 
|  | 421 | streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; | 
|  | 422 | } | 
|  | 423 |  | 
|  | 424 | msg_len -= SCTP_DATA_SNDSIZE(chk) + | 
|  | 425 | sizeof(struct sk_buff) + | 
|  | 426 | sizeof(struct sctp_chunk); | 
|  | 427 | sctp_chunk_free(chk); | 
|  | 428 | if (msg_len <= 0) | 
|  | 429 | break; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | q->sched->sched_all(&asoc->stream); | 
|  | 433 |  | 
|  | 434 | return msg_len; | 
|  | 435 | } | 
|  | 436 |  | 
|  | 437 | /* Abandon the chunks according their priorities */ | 
|  | 438 | void sctp_prsctp_prune(struct sctp_association *asoc, | 
|  | 439 | struct sctp_sndrcvinfo *sinfo, int msg_len) | 
|  | 440 | { | 
|  | 441 | struct sctp_transport *transport; | 
|  | 442 |  | 
|  | 443 | if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable) | 
|  | 444 | return; | 
|  | 445 |  | 
|  | 446 | msg_len = sctp_prsctp_prune_sent(asoc, sinfo, | 
|  | 447 | &asoc->outqueue.retransmit, | 
|  | 448 | msg_len); | 
|  | 449 | if (msg_len <= 0) | 
|  | 450 | return; | 
|  | 451 |  | 
|  | 452 | list_for_each_entry(transport, &asoc->peer.transport_addr_list, | 
|  | 453 | transports) { | 
|  | 454 | msg_len = sctp_prsctp_prune_sent(asoc, sinfo, | 
|  | 455 | &transport->transmitted, | 
|  | 456 | msg_len); | 
|  | 457 | if (msg_len <= 0) | 
|  | 458 | return; | 
|  | 459 | } | 
|  | 460 |  | 
|  | 461 | sctp_prsctp_prune_unsent(asoc, sinfo, msg_len); | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | /* Mark all the eligible packets on a transport for retransmission.  */ | 
|  | 465 | void sctp_retransmit_mark(struct sctp_outq *q, | 
|  | 466 | struct sctp_transport *transport, | 
|  | 467 | __u8 reason) | 
|  | 468 | { | 
|  | 469 | struct list_head *lchunk, *ltemp; | 
|  | 470 | struct sctp_chunk *chunk; | 
|  | 471 |  | 
|  | 472 | /* Walk through the specified transmitted queue.  */ | 
|  | 473 | list_for_each_safe(lchunk, ltemp, &transport->transmitted) { | 
|  | 474 | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 475 | transmitted_list); | 
|  | 476 |  | 
|  | 477 | /* If the chunk is abandoned, move it to abandoned list. */ | 
|  | 478 | if (sctp_chunk_abandoned(chunk)) { | 
|  | 479 | list_del_init(lchunk); | 
|  | 480 | sctp_insert_list(&q->abandoned, lchunk); | 
|  | 481 |  | 
|  | 482 | /* If this chunk has not been previousely acked, | 
|  | 483 | * stop considering it 'outstanding'.  Our peer | 
|  | 484 | * will most likely never see it since it will | 
|  | 485 | * not be retransmitted | 
|  | 486 | */ | 
|  | 487 | if (!chunk->tsn_gap_acked) { | 
|  | 488 | if (chunk->transport) | 
|  | 489 | chunk->transport->flight_size -= | 
|  | 490 | sctp_data_size(chunk); | 
|  | 491 | q->outstanding_bytes -= sctp_data_size(chunk); | 
|  | 492 | q->asoc->peer.rwnd += sctp_data_size(chunk); | 
|  | 493 | } | 
|  | 494 | continue; | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | /* If we are doing  retransmission due to a timeout or pmtu | 
|  | 498 | * discovery, only the  chunks that are not yet acked should | 
|  | 499 | * be added to the retransmit queue. | 
|  | 500 | */ | 
|  | 501 | if ((reason == SCTP_RTXR_FAST_RTX  && | 
|  | 502 | (chunk->fast_retransmit == SCTP_NEED_FRTX)) || | 
|  | 503 | (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) { | 
|  | 504 | /* RFC 2960 6.2.1 Processing a Received SACK | 
|  | 505 | * | 
|  | 506 | * C) Any time a DATA chunk is marked for | 
|  | 507 | * retransmission (via either T3-rtx timer expiration | 
|  | 508 | * (Section 6.3.3) or via fast retransmit | 
|  | 509 | * (Section 7.2.4)), add the data size of those | 
|  | 510 | * chunks to the rwnd. | 
|  | 511 | */ | 
|  | 512 | q->asoc->peer.rwnd += sctp_data_size(chunk); | 
|  | 513 | q->outstanding_bytes -= sctp_data_size(chunk); | 
|  | 514 | if (chunk->transport) | 
|  | 515 | transport->flight_size -= sctp_data_size(chunk); | 
|  | 516 |  | 
|  | 517 | /* sctpimpguide-05 Section 2.8.2 | 
|  | 518 | * M5) If a T3-rtx timer expires, the | 
|  | 519 | * 'TSN.Missing.Report' of all affected TSNs is set | 
|  | 520 | * to 0. | 
|  | 521 | */ | 
|  | 522 | chunk->tsn_missing_report = 0; | 
|  | 523 |  | 
|  | 524 | /* If a chunk that is being used for RTT measurement | 
|  | 525 | * has to be retransmitted, we cannot use this chunk | 
|  | 526 | * anymore for RTT measurements. Reset rto_pending so | 
|  | 527 | * that a new RTT measurement is started when a new | 
|  | 528 | * data chunk is sent. | 
|  | 529 | */ | 
|  | 530 | if (chunk->rtt_in_progress) { | 
|  | 531 | chunk->rtt_in_progress = 0; | 
|  | 532 | transport->rto_pending = 0; | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | /* Move the chunk to the retransmit queue. The chunks | 
|  | 536 | * on the retransmit queue are always kept in order. | 
|  | 537 | */ | 
|  | 538 | list_del_init(lchunk); | 
|  | 539 | sctp_insert_list(&q->retransmit, lchunk); | 
|  | 540 | } | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, " | 
|  | 544 | "flight_size:%d, pba:%d\n", __func__, transport, reason, | 
|  | 545 | transport->cwnd, transport->ssthresh, transport->flight_size, | 
|  | 546 | transport->partial_bytes_acked); | 
|  | 547 | } | 
|  | 548 |  | 
|  | 549 | /* Mark all the eligible packets on a transport for retransmission and force | 
|  | 550 | * one packet out. | 
|  | 551 | */ | 
|  | 552 | void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, | 
|  | 553 | enum sctp_retransmit_reason reason) | 
|  | 554 | { | 
|  | 555 | struct net *net = sock_net(q->asoc->base.sk); | 
|  | 556 |  | 
|  | 557 | switch (reason) { | 
|  | 558 | case SCTP_RTXR_T3_RTX: | 
|  | 559 | SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS); | 
|  | 560 | sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); | 
|  | 561 | /* Update the retran path if the T3-rtx timer has expired for | 
|  | 562 | * the current retran path. | 
|  | 563 | */ | 
|  | 564 | if (transport == transport->asoc->peer.retran_path) | 
|  | 565 | sctp_assoc_update_retran_path(transport->asoc); | 
|  | 566 | transport->asoc->rtx_data_chunks += | 
|  | 567 | transport->asoc->unack_data; | 
|  | 568 | break; | 
|  | 569 | case SCTP_RTXR_FAST_RTX: | 
|  | 570 | SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS); | 
|  | 571 | sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); | 
|  | 572 | q->fast_rtx = 1; | 
|  | 573 | break; | 
|  | 574 | case SCTP_RTXR_PMTUD: | 
|  | 575 | SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS); | 
|  | 576 | break; | 
|  | 577 | case SCTP_RTXR_T1_RTX: | 
|  | 578 | SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS); | 
|  | 579 | transport->asoc->init_retries++; | 
|  | 580 | break; | 
|  | 581 | default: | 
|  | 582 | BUG(); | 
|  | 583 | } | 
|  | 584 |  | 
|  | 585 | sctp_retransmit_mark(q, transport, reason); | 
|  | 586 |  | 
|  | 587 | /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, | 
|  | 588 | * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by | 
|  | 589 | * following the procedures outlined in C1 - C5. | 
|  | 590 | */ | 
|  | 591 | if (reason == SCTP_RTXR_T3_RTX) | 
|  | 592 | q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point); | 
|  | 593 |  | 
|  | 594 | /* Flush the queues only on timeout, since fast_rtx is only | 
|  | 595 | * triggered during sack processing and the queue | 
|  | 596 | * will be flushed at the end. | 
|  | 597 | */ | 
|  | 598 | if (reason != SCTP_RTXR_FAST_RTX) | 
|  | 599 | sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC); | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 | /* | 
|  | 603 | * Transmit DATA chunks on the retransmit queue.  Upon return from | 
|  | 604 | * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which | 
|  | 605 | * need to be transmitted by the caller. | 
|  | 606 | * We assume that pkt->transport has already been set. | 
|  | 607 | * | 
|  | 608 | * The return value is a normal kernel error return value. | 
|  | 609 | */ | 
|  | 610 | static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, | 
|  | 611 | int rtx_timeout, int *start_timer, gfp_t gfp) | 
|  | 612 | { | 
|  | 613 | struct sctp_transport *transport = pkt->transport; | 
|  | 614 | struct sctp_chunk *chunk, *chunk1; | 
|  | 615 | struct list_head *lqueue; | 
|  | 616 | enum sctp_xmit status; | 
|  | 617 | int error = 0; | 
|  | 618 | int timer = 0; | 
|  | 619 | int done = 0; | 
|  | 620 | int fast_rtx; | 
|  | 621 |  | 
|  | 622 | lqueue = &q->retransmit; | 
|  | 623 | fast_rtx = q->fast_rtx; | 
|  | 624 |  | 
|  | 625 | /* This loop handles time-out retransmissions, fast retransmissions, | 
|  | 626 | * and retransmissions due to opening of whindow. | 
|  | 627 | * | 
|  | 628 | * RFC 2960 6.3.3 Handle T3-rtx Expiration | 
|  | 629 | * | 
|  | 630 | * E3) Determine how many of the earliest (i.e., lowest TSN) | 
|  | 631 | * outstanding DATA chunks for the address for which the | 
|  | 632 | * T3-rtx has expired will fit into a single packet, subject | 
|  | 633 | * to the MTU constraint for the path corresponding to the | 
|  | 634 | * destination transport address to which the retransmission | 
|  | 635 | * is being sent (this may be different from the address for | 
|  | 636 | * which the timer expires [see Section 6.4]). Call this value | 
|  | 637 | * K. Bundle and retransmit those K DATA chunks in a single | 
|  | 638 | * packet to the destination endpoint. | 
|  | 639 | * | 
|  | 640 | * [Just to be painfully clear, if we are retransmitting | 
|  | 641 | * because a timeout just happened, we should send only ONE | 
|  | 642 | * packet of retransmitted data.] | 
|  | 643 | * | 
|  | 644 | * For fast retransmissions we also send only ONE packet.  However, | 
|  | 645 | * if we are just flushing the queue due to open window, we'll | 
|  | 646 | * try to send as much as possible. | 
|  | 647 | */ | 
|  | 648 | list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) { | 
|  | 649 | /* If the chunk is abandoned, move it to abandoned list. */ | 
|  | 650 | if (sctp_chunk_abandoned(chunk)) { | 
|  | 651 | list_del_init(&chunk->transmitted_list); | 
|  | 652 | sctp_insert_list(&q->abandoned, | 
|  | 653 | &chunk->transmitted_list); | 
|  | 654 | continue; | 
|  | 655 | } | 
|  | 656 |  | 
|  | 657 | /* Make sure that Gap Acked TSNs are not retransmitted.  A | 
|  | 658 | * simple approach is just to move such TSNs out of the | 
|  | 659 | * way and into a 'transmitted' queue and skip to the | 
|  | 660 | * next chunk. | 
|  | 661 | */ | 
|  | 662 | if (chunk->tsn_gap_acked) { | 
|  | 663 | list_move_tail(&chunk->transmitted_list, | 
|  | 664 | &transport->transmitted); | 
|  | 665 | continue; | 
|  | 666 | } | 
|  | 667 |  | 
|  | 668 | /* If we are doing fast retransmit, ignore non-fast_rtransmit | 
|  | 669 | * chunks | 
|  | 670 | */ | 
|  | 671 | if (fast_rtx && !chunk->fast_retransmit) | 
|  | 672 | continue; | 
|  | 673 |  | 
|  | 674 | redo: | 
|  | 675 | /* Attempt to append this chunk to the packet. */ | 
|  | 676 | status = sctp_packet_append_chunk(pkt, chunk); | 
|  | 677 |  | 
|  | 678 | switch (status) { | 
|  | 679 | case SCTP_XMIT_PMTU_FULL: | 
|  | 680 | if (!pkt->has_data && !pkt->has_cookie_echo) { | 
|  | 681 | /* If this packet did not contain DATA then | 
|  | 682 | * retransmission did not happen, so do it | 
|  | 683 | * again.  We'll ignore the error here since | 
|  | 684 | * control chunks are already freed so there | 
|  | 685 | * is nothing we can do. | 
|  | 686 | */ | 
|  | 687 | sctp_packet_transmit(pkt, gfp); | 
|  | 688 | goto redo; | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | /* Send this packet.  */ | 
|  | 692 | error = sctp_packet_transmit(pkt, gfp); | 
|  | 693 |  | 
|  | 694 | /* If we are retransmitting, we should only | 
|  | 695 | * send a single packet. | 
|  | 696 | * Otherwise, try appending this chunk again. | 
|  | 697 | */ | 
|  | 698 | if (rtx_timeout || fast_rtx) | 
|  | 699 | done = 1; | 
|  | 700 | else | 
|  | 701 | goto redo; | 
|  | 702 |  | 
|  | 703 | /* Bundle next chunk in the next round.  */ | 
|  | 704 | break; | 
|  | 705 |  | 
|  | 706 | case SCTP_XMIT_RWND_FULL: | 
|  | 707 | /* Send this packet. */ | 
|  | 708 | error = sctp_packet_transmit(pkt, gfp); | 
|  | 709 |  | 
|  | 710 | /* Stop sending DATA as there is no more room | 
|  | 711 | * at the receiver. | 
|  | 712 | */ | 
|  | 713 | done = 1; | 
|  | 714 | break; | 
|  | 715 |  | 
|  | 716 | case SCTP_XMIT_DELAY: | 
|  | 717 | /* Send this packet. */ | 
|  | 718 | error = sctp_packet_transmit(pkt, gfp); | 
|  | 719 |  | 
|  | 720 | /* Stop sending DATA because of nagle delay. */ | 
|  | 721 | done = 1; | 
|  | 722 | break; | 
|  | 723 |  | 
|  | 724 | default: | 
|  | 725 | /* The append was successful, so add this chunk to | 
|  | 726 | * the transmitted list. | 
|  | 727 | */ | 
|  | 728 | list_move_tail(&chunk->transmitted_list, | 
|  | 729 | &transport->transmitted); | 
|  | 730 |  | 
|  | 731 | /* Mark the chunk as ineligible for fast retransmit | 
|  | 732 | * after it is retransmitted. | 
|  | 733 | */ | 
|  | 734 | if (chunk->fast_retransmit == SCTP_NEED_FRTX) | 
|  | 735 | chunk->fast_retransmit = SCTP_DONT_FRTX; | 
|  | 736 |  | 
|  | 737 | q->asoc->stats.rtxchunks++; | 
|  | 738 | break; | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | /* Set the timer if there were no errors */ | 
|  | 742 | if (!error && !timer) | 
|  | 743 | timer = 1; | 
|  | 744 |  | 
|  | 745 | if (done) | 
|  | 746 | break; | 
|  | 747 | } | 
|  | 748 |  | 
|  | 749 | /* If we are here due to a retransmit timeout or a fast | 
|  | 750 | * retransmit and if there are any chunks left in the retransmit | 
|  | 751 | * queue that could not fit in the PMTU sized packet, they need | 
|  | 752 | * to be marked as ineligible for a subsequent fast retransmit. | 
|  | 753 | */ | 
|  | 754 | if (rtx_timeout || fast_rtx) { | 
|  | 755 | list_for_each_entry(chunk1, lqueue, transmitted_list) { | 
|  | 756 | if (chunk1->fast_retransmit == SCTP_NEED_FRTX) | 
|  | 757 | chunk1->fast_retransmit = SCTP_DONT_FRTX; | 
|  | 758 | } | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | *start_timer = timer; | 
|  | 762 |  | 
|  | 763 | /* Clear fast retransmit hint */ | 
|  | 764 | if (fast_rtx) | 
|  | 765 | q->fast_rtx = 0; | 
|  | 766 |  | 
|  | 767 | return error; | 
|  | 768 | } | 
|  | 769 |  | 
|  | 770 | /* Cork the outqueue so queued chunks are really queued. */ | 
|  | 771 | void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp) | 
|  | 772 | { | 
|  | 773 | if (q->cork) | 
|  | 774 | q->cork = 0; | 
|  | 775 |  | 
|  | 776 | sctp_outq_flush(q, 0, gfp); | 
|  | 777 | } | 
|  | 778 |  | 
|  | 779 | static int sctp_packet_singleton(struct sctp_transport *transport, | 
|  | 780 | struct sctp_chunk *chunk, gfp_t gfp) | 
|  | 781 | { | 
|  | 782 | const struct sctp_association *asoc = transport->asoc; | 
|  | 783 | const __u16 sport = asoc->base.bind_addr.port; | 
|  | 784 | const __u16 dport = asoc->peer.port; | 
|  | 785 | const __u32 vtag = asoc->peer.i.init_tag; | 
|  | 786 | struct sctp_packet singleton; | 
|  | 787 |  | 
|  | 788 | sctp_packet_init(&singleton, transport, sport, dport); | 
|  | 789 | sctp_packet_config(&singleton, vtag, 0); | 
|  | 790 | sctp_packet_append_chunk(&singleton, chunk); | 
|  | 791 | return sctp_packet_transmit(&singleton, gfp); | 
|  | 792 | } | 
|  | 793 |  | 
|  | 794 | /* Struct to hold the context during sctp outq flush */ | 
|  | 795 | struct sctp_flush_ctx { | 
|  | 796 | struct sctp_outq *q; | 
|  | 797 | /* Current transport being used. It's NOT the same as curr active one */ | 
|  | 798 | struct sctp_transport *transport; | 
|  | 799 | /* These transports have chunks to send. */ | 
|  | 800 | struct list_head transport_list; | 
|  | 801 | struct sctp_association *asoc; | 
|  | 802 | /* Packet on the current transport above */ | 
|  | 803 | struct sctp_packet *packet; | 
|  | 804 | gfp_t gfp; | 
|  | 805 | }; | 
|  | 806 |  | 
|  | 807 | /* transport: current transport */ | 
|  | 808 | static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx, | 
|  | 809 | struct sctp_chunk *chunk) | 
|  | 810 | { | 
|  | 811 | struct sctp_transport *new_transport = chunk->transport; | 
|  | 812 |  | 
|  | 813 | if (!new_transport) { | 
|  | 814 | if (!sctp_chunk_is_data(chunk)) { | 
|  | 815 | /* If we have a prior transport pointer, see if | 
|  | 816 | * the destination address of the chunk | 
|  | 817 | * matches the destination address of the | 
|  | 818 | * current transport.  If not a match, then | 
|  | 819 | * try to look up the transport with a given | 
|  | 820 | * destination address.  We do this because | 
|  | 821 | * after processing ASCONFs, we may have new | 
|  | 822 | * transports created. | 
|  | 823 | */ | 
|  | 824 | if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest, | 
|  | 825 | &ctx->transport->ipaddr)) | 
|  | 826 | new_transport = ctx->transport; | 
|  | 827 | else | 
|  | 828 | new_transport = sctp_assoc_lookup_paddr(ctx->asoc, | 
|  | 829 | &chunk->dest); | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | /* if we still don't have a new transport, then | 
|  | 833 | * use the current active path. | 
|  | 834 | */ | 
|  | 835 | if (!new_transport) | 
|  | 836 | new_transport = ctx->asoc->peer.active_path; | 
|  | 837 | } else { | 
|  | 838 | __u8 type; | 
|  | 839 |  | 
|  | 840 | switch (new_transport->state) { | 
|  | 841 | case SCTP_INACTIVE: | 
|  | 842 | case SCTP_UNCONFIRMED: | 
|  | 843 | case SCTP_PF: | 
|  | 844 | /* If the chunk is Heartbeat or Heartbeat Ack, | 
|  | 845 | * send it to chunk->transport, even if it's | 
|  | 846 | * inactive. | 
|  | 847 | * | 
|  | 848 | * 3.3.6 Heartbeat Acknowledgement: | 
|  | 849 | * ... | 
|  | 850 | * A HEARTBEAT ACK is always sent to the source IP | 
|  | 851 | * address of the IP datagram containing the | 
|  | 852 | * HEARTBEAT chunk to which this ack is responding. | 
|  | 853 | * ... | 
|  | 854 | * | 
|  | 855 | * ASCONF_ACKs also must be sent to the source. | 
|  | 856 | */ | 
|  | 857 | type = chunk->chunk_hdr->type; | 
|  | 858 | if (type != SCTP_CID_HEARTBEAT && | 
|  | 859 | type != SCTP_CID_HEARTBEAT_ACK && | 
|  | 860 | type != SCTP_CID_ASCONF_ACK) | 
|  | 861 | new_transport = ctx->asoc->peer.active_path; | 
|  | 862 | break; | 
|  | 863 | default: | 
|  | 864 | break; | 
|  | 865 | } | 
|  | 866 | } | 
|  | 867 |  | 
|  | 868 | /* Are we switching transports? Take care of transport locks. */ | 
|  | 869 | if (new_transport != ctx->transport) { | 
|  | 870 | ctx->transport = new_transport; | 
|  | 871 | ctx->packet = &ctx->transport->packet; | 
|  | 872 |  | 
|  | 873 | if (list_empty(&ctx->transport->send_ready)) | 
|  | 874 | list_add_tail(&ctx->transport->send_ready, | 
|  | 875 | &ctx->transport_list); | 
|  | 876 |  | 
|  | 877 | sctp_packet_config(ctx->packet, | 
|  | 878 | ctx->asoc->peer.i.init_tag, | 
|  | 879 | ctx->asoc->peer.ecn_capable); | 
|  | 880 | /* We've switched transports, so apply the | 
|  | 881 | * Burst limit to the new transport. | 
|  | 882 | */ | 
|  | 883 | sctp_transport_burst_limited(ctx->transport); | 
|  | 884 | } | 
|  | 885 | } | 
|  | 886 |  | 
|  | 887 | static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx) | 
|  | 888 | { | 
|  | 889 | struct sctp_chunk *chunk, *tmp; | 
|  | 890 | enum sctp_xmit status; | 
|  | 891 | int one_packet, error; | 
|  | 892 |  | 
|  | 893 | list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) { | 
|  | 894 | one_packet = 0; | 
|  | 895 |  | 
|  | 896 | /* RFC 5061, 5.3 | 
|  | 897 | * F1) This means that until such time as the ASCONF | 
|  | 898 | * containing the add is acknowledged, the sender MUST | 
|  | 899 | * NOT use the new IP address as a source for ANY SCTP | 
|  | 900 | * packet except on carrying an ASCONF Chunk. | 
|  | 901 | */ | 
|  | 902 | if (ctx->asoc->src_out_of_asoc_ok && | 
|  | 903 | chunk->chunk_hdr->type != SCTP_CID_ASCONF) | 
|  | 904 | continue; | 
|  | 905 |  | 
|  | 906 | list_del_init(&chunk->list); | 
|  | 907 |  | 
|  | 908 | /* Pick the right transport to use. Should always be true for | 
|  | 909 | * the first chunk as we don't have a transport by then. | 
|  | 910 | */ | 
|  | 911 | sctp_outq_select_transport(ctx, chunk); | 
|  | 912 |  | 
|  | 913 | switch (chunk->chunk_hdr->type) { | 
|  | 914 | /* 6.10 Bundling | 
|  | 915 | *   ... | 
|  | 916 | *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN | 
|  | 917 | *   COMPLETE with any other chunks.  [Send them immediately.] | 
|  | 918 | */ | 
|  | 919 | case SCTP_CID_INIT: | 
|  | 920 | case SCTP_CID_INIT_ACK: | 
|  | 921 | case SCTP_CID_SHUTDOWN_COMPLETE: | 
|  | 922 | error = sctp_packet_singleton(ctx->transport, chunk, | 
|  | 923 | ctx->gfp); | 
|  | 924 | if (error < 0) { | 
|  | 925 | ctx->asoc->base.sk->sk_err = -error; | 
|  | 926 | return; | 
|  | 927 | } | 
|  | 928 | break; | 
|  | 929 |  | 
|  | 930 | case SCTP_CID_ABORT: | 
|  | 931 | if (sctp_test_T_bit(chunk)) | 
|  | 932 | ctx->packet->vtag = ctx->asoc->c.my_vtag; | 
|  | 933 | /* fallthru */ | 
|  | 934 |  | 
|  | 935 | /* The following chunks are "response" chunks, i.e. | 
|  | 936 | * they are generated in response to something we | 
|  | 937 | * received.  If we are sending these, then we can | 
|  | 938 | * send only 1 packet containing these chunks. | 
|  | 939 | */ | 
|  | 940 | case SCTP_CID_HEARTBEAT_ACK: | 
|  | 941 | case SCTP_CID_SHUTDOWN_ACK: | 
|  | 942 | case SCTP_CID_COOKIE_ACK: | 
|  | 943 | case SCTP_CID_COOKIE_ECHO: | 
|  | 944 | case SCTP_CID_ERROR: | 
|  | 945 | case SCTP_CID_ECN_CWR: | 
|  | 946 | case SCTP_CID_ASCONF_ACK: | 
|  | 947 | one_packet = 1; | 
|  | 948 | /* Fall through */ | 
|  | 949 |  | 
|  | 950 | case SCTP_CID_SACK: | 
|  | 951 | case SCTP_CID_HEARTBEAT: | 
|  | 952 | case SCTP_CID_SHUTDOWN: | 
|  | 953 | case SCTP_CID_ECN_ECNE: | 
|  | 954 | case SCTP_CID_ASCONF: | 
|  | 955 | case SCTP_CID_FWD_TSN: | 
|  | 956 | case SCTP_CID_I_FWD_TSN: | 
|  | 957 | case SCTP_CID_RECONF: | 
|  | 958 | status = sctp_packet_transmit_chunk(ctx->packet, chunk, | 
|  | 959 | one_packet, ctx->gfp); | 
|  | 960 | if (status != SCTP_XMIT_OK) { | 
|  | 961 | /* put the chunk back */ | 
|  | 962 | list_add(&chunk->list, &ctx->q->control_chunk_list); | 
|  | 963 | break; | 
|  | 964 | } | 
|  | 965 |  | 
|  | 966 | ctx->asoc->stats.octrlchunks++; | 
|  | 967 | /* PR-SCTP C5) If a FORWARD TSN is sent, the | 
|  | 968 | * sender MUST assure that at least one T3-rtx | 
|  | 969 | * timer is running. | 
|  | 970 | */ | 
|  | 971 | if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN || | 
|  | 972 | chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) { | 
|  | 973 | sctp_transport_reset_t3_rtx(ctx->transport); | 
|  | 974 | ctx->transport->last_time_sent = jiffies; | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | if (chunk == ctx->asoc->strreset_chunk) | 
|  | 978 | sctp_transport_reset_reconf_timer(ctx->transport); | 
|  | 979 |  | 
|  | 980 | break; | 
|  | 981 |  | 
|  | 982 | default: | 
|  | 983 | /* We built a chunk with an illegal type! */ | 
|  | 984 | BUG(); | 
|  | 985 | } | 
|  | 986 | } | 
|  | 987 | } | 
|  | 988 |  | 
|  | 989 | /* Returns false if new data shouldn't be sent */ | 
|  | 990 | static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx, | 
|  | 991 | int rtx_timeout) | 
|  | 992 | { | 
|  | 993 | int error, start_timer = 0; | 
|  | 994 |  | 
|  | 995 | if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED) | 
|  | 996 | return false; | 
|  | 997 |  | 
|  | 998 | if (ctx->transport != ctx->asoc->peer.retran_path) { | 
|  | 999 | /* Switch transports & prepare the packet.  */ | 
|  | 1000 | ctx->transport = ctx->asoc->peer.retran_path; | 
|  | 1001 | ctx->packet = &ctx->transport->packet; | 
|  | 1002 |  | 
|  | 1003 | if (list_empty(&ctx->transport->send_ready)) | 
|  | 1004 | list_add_tail(&ctx->transport->send_ready, | 
|  | 1005 | &ctx->transport_list); | 
|  | 1006 |  | 
|  | 1007 | sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag, | 
|  | 1008 | ctx->asoc->peer.ecn_capable); | 
|  | 1009 | } | 
|  | 1010 |  | 
|  | 1011 | error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout, | 
|  | 1012 | &start_timer, ctx->gfp); | 
|  | 1013 | if (error < 0) | 
|  | 1014 | ctx->asoc->base.sk->sk_err = -error; | 
|  | 1015 |  | 
|  | 1016 | if (start_timer) { | 
|  | 1017 | sctp_transport_reset_t3_rtx(ctx->transport); | 
|  | 1018 | ctx->transport->last_time_sent = jiffies; | 
|  | 1019 | } | 
|  | 1020 |  | 
|  | 1021 | /* This can happen on COOKIE-ECHO resend.  Only | 
|  | 1022 | * one chunk can get bundled with a COOKIE-ECHO. | 
|  | 1023 | */ | 
|  | 1024 | if (ctx->packet->has_cookie_echo) | 
|  | 1025 | return false; | 
|  | 1026 |  | 
|  | 1027 | /* Don't send new data if there is still data | 
|  | 1028 | * waiting to retransmit. | 
|  | 1029 | */ | 
|  | 1030 | if (!list_empty(&ctx->q->retransmit)) | 
|  | 1031 | return false; | 
|  | 1032 |  | 
|  | 1033 | return true; | 
|  | 1034 | } | 
|  | 1035 |  | 
|  | 1036 | static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx, | 
|  | 1037 | int rtx_timeout) | 
|  | 1038 | { | 
|  | 1039 | struct sctp_chunk *chunk; | 
|  | 1040 | enum sctp_xmit status; | 
|  | 1041 |  | 
|  | 1042 | /* Is it OK to send data chunks?  */ | 
|  | 1043 | switch (ctx->asoc->state) { | 
|  | 1044 | case SCTP_STATE_COOKIE_ECHOED: | 
|  | 1045 | /* Only allow bundling when this packet has a COOKIE-ECHO | 
|  | 1046 | * chunk. | 
|  | 1047 | */ | 
|  | 1048 | if (!ctx->packet || !ctx->packet->has_cookie_echo) | 
|  | 1049 | return; | 
|  | 1050 |  | 
|  | 1051 | /* fall through */ | 
|  | 1052 | case SCTP_STATE_ESTABLISHED: | 
|  | 1053 | case SCTP_STATE_SHUTDOWN_PENDING: | 
|  | 1054 | case SCTP_STATE_SHUTDOWN_RECEIVED: | 
|  | 1055 | break; | 
|  | 1056 |  | 
|  | 1057 | default: | 
|  | 1058 | /* Do nothing. */ | 
|  | 1059 | return; | 
|  | 1060 | } | 
|  | 1061 |  | 
|  | 1062 | /* RFC 2960 6.1  Transmission of DATA Chunks | 
|  | 1063 | * | 
|  | 1064 | * C) When the time comes for the sender to transmit, | 
|  | 1065 | * before sending new DATA chunks, the sender MUST | 
|  | 1066 | * first transmit any outstanding DATA chunks which | 
|  | 1067 | * are marked for retransmission (limited by the | 
|  | 1068 | * current cwnd). | 
|  | 1069 | */ | 
|  | 1070 | if (!list_empty(&ctx->q->retransmit) && | 
|  | 1071 | !sctp_outq_flush_rtx(ctx, rtx_timeout)) | 
|  | 1072 | return; | 
|  | 1073 |  | 
|  | 1074 | /* Apply Max.Burst limitation to the current transport in | 
|  | 1075 | * case it will be used for new data.  We are going to | 
|  | 1076 | * rest it before we return, but we want to apply the limit | 
|  | 1077 | * to the currently queued data. | 
|  | 1078 | */ | 
|  | 1079 | if (ctx->transport) | 
|  | 1080 | sctp_transport_burst_limited(ctx->transport); | 
|  | 1081 |  | 
|  | 1082 | /* Finally, transmit new packets.  */ | 
|  | 1083 | while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) { | 
|  | 1084 | __u32 sid = ntohs(chunk->subh.data_hdr->stream); | 
|  | 1085 | __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state; | 
|  | 1086 |  | 
|  | 1087 | /* Has this chunk expired? */ | 
|  | 1088 | if (sctp_chunk_abandoned(chunk)) { | 
|  | 1089 | sctp_sched_dequeue_done(ctx->q, chunk); | 
|  | 1090 | sctp_chunk_fail(chunk, 0); | 
|  | 1091 | sctp_chunk_free(chunk); | 
|  | 1092 | continue; | 
|  | 1093 | } | 
|  | 1094 |  | 
|  | 1095 | if (stream_state == SCTP_STREAM_CLOSED) { | 
|  | 1096 | sctp_outq_head_data(ctx->q, chunk); | 
|  | 1097 | break; | 
|  | 1098 | } | 
|  | 1099 |  | 
|  | 1100 | sctp_outq_select_transport(ctx, chunk); | 
|  | 1101 |  | 
|  | 1102 | pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n", | 
|  | 1103 | __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ? | 
|  | 1104 | sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : | 
|  | 1105 | "illegal chunk", ntohl(chunk->subh.data_hdr->tsn), | 
|  | 1106 | chunk->skb ? chunk->skb->head : NULL, chunk->skb ? | 
|  | 1107 | refcount_read(&chunk->skb->users) : -1); | 
|  | 1108 |  | 
|  | 1109 | /* Add the chunk to the packet.  */ | 
|  | 1110 | status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0, | 
|  | 1111 | ctx->gfp); | 
|  | 1112 | if (status != SCTP_XMIT_OK) { | 
|  | 1113 | /* We could not append this chunk, so put | 
|  | 1114 | * the chunk back on the output queue. | 
|  | 1115 | */ | 
|  | 1116 | pr_debug("%s: could not transmit tsn:0x%x, status:%d\n", | 
|  | 1117 | __func__, ntohl(chunk->subh.data_hdr->tsn), | 
|  | 1118 | status); | 
|  | 1119 |  | 
|  | 1120 | sctp_outq_head_data(ctx->q, chunk); | 
|  | 1121 | break; | 
|  | 1122 | } | 
|  | 1123 |  | 
|  | 1124 | /* The sender is in the SHUTDOWN-PENDING state, | 
|  | 1125 | * The sender MAY set the I-bit in the DATA | 
|  | 1126 | * chunk header. | 
|  | 1127 | */ | 
|  | 1128 | if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING) | 
|  | 1129 | chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM; | 
|  | 1130 | if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) | 
|  | 1131 | ctx->asoc->stats.ouodchunks++; | 
|  | 1132 | else | 
|  | 1133 | ctx->asoc->stats.oodchunks++; | 
|  | 1134 |  | 
|  | 1135 | /* Only now it's safe to consider this | 
|  | 1136 | * chunk as sent, sched-wise. | 
|  | 1137 | */ | 
|  | 1138 | sctp_sched_dequeue_done(ctx->q, chunk); | 
|  | 1139 |  | 
|  | 1140 | list_add_tail(&chunk->transmitted_list, | 
|  | 1141 | &ctx->transport->transmitted); | 
|  | 1142 |  | 
|  | 1143 | sctp_transport_reset_t3_rtx(ctx->transport); | 
|  | 1144 | ctx->transport->last_time_sent = jiffies; | 
|  | 1145 |  | 
|  | 1146 | /* Only let one DATA chunk get bundled with a | 
|  | 1147 | * COOKIE-ECHO chunk. | 
|  | 1148 | */ | 
|  | 1149 | if (ctx->packet->has_cookie_echo) | 
|  | 1150 | break; | 
|  | 1151 | } | 
|  | 1152 | } | 
|  | 1153 |  | 
|  | 1154 | static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx) | 
|  | 1155 | { | 
|  | 1156 | struct list_head *ltransport; | 
|  | 1157 | struct sctp_packet *packet; | 
|  | 1158 | struct sctp_transport *t; | 
|  | 1159 | int error = 0; | 
|  | 1160 |  | 
|  | 1161 | while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) { | 
|  | 1162 | t = list_entry(ltransport, struct sctp_transport, send_ready); | 
|  | 1163 | packet = &t->packet; | 
|  | 1164 | if (!sctp_packet_empty(packet)) { | 
|  | 1165 | error = sctp_packet_transmit(packet, ctx->gfp); | 
|  | 1166 | if (error < 0) | 
|  | 1167 | ctx->q->asoc->base.sk->sk_err = -error; | 
|  | 1168 | } | 
|  | 1169 |  | 
|  | 1170 | /* Clear the burst limited state, if any */ | 
|  | 1171 | sctp_transport_burst_reset(t); | 
|  | 1172 | } | 
|  | 1173 | } | 
|  | 1174 |  | 
|  | 1175 | /* Try to flush an outqueue. | 
|  | 1176 | * | 
|  | 1177 | * Description: Send everything in q which we legally can, subject to | 
|  | 1178 | * congestion limitations. | 
|  | 1179 | * * Note: This function can be called from multiple contexts so appropriate | 
|  | 1180 | * locking concerns must be made.  Today we use the sock lock to protect | 
|  | 1181 | * this function. | 
|  | 1182 | */ | 
|  | 1183 |  | 
|  | 1184 | static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp) | 
|  | 1185 | { | 
|  | 1186 | struct sctp_flush_ctx ctx = { | 
|  | 1187 | .q = q, | 
|  | 1188 | .transport = NULL, | 
|  | 1189 | .transport_list = LIST_HEAD_INIT(ctx.transport_list), | 
|  | 1190 | .asoc = q->asoc, | 
|  | 1191 | .packet = NULL, | 
|  | 1192 | .gfp = gfp, | 
|  | 1193 | }; | 
|  | 1194 |  | 
|  | 1195 | /* 6.10 Bundling | 
|  | 1196 | *   ... | 
|  | 1197 | *   When bundling control chunks with DATA chunks, an | 
|  | 1198 | *   endpoint MUST place control chunks first in the outbound | 
|  | 1199 | *   SCTP packet.  The transmitter MUST transmit DATA chunks | 
|  | 1200 | *   within a SCTP packet in increasing order of TSN. | 
|  | 1201 | *   ... | 
|  | 1202 | */ | 
|  | 1203 |  | 
|  | 1204 | sctp_outq_flush_ctrl(&ctx); | 
|  | 1205 |  | 
|  | 1206 | if (q->asoc->src_out_of_asoc_ok) | 
|  | 1207 | goto sctp_flush_out; | 
|  | 1208 |  | 
|  | 1209 | sctp_outq_flush_data(&ctx, rtx_timeout); | 
|  | 1210 |  | 
|  | 1211 | sctp_flush_out: | 
|  | 1212 |  | 
|  | 1213 | sctp_outq_flush_transports(&ctx); | 
|  | 1214 | } | 
|  | 1215 |  | 
|  | 1216 | /* Update unack_data based on the incoming SACK chunk */ | 
|  | 1217 | static void sctp_sack_update_unack_data(struct sctp_association *assoc, | 
|  | 1218 | struct sctp_sackhdr *sack) | 
|  | 1219 | { | 
|  | 1220 | union sctp_sack_variable *frags; | 
|  | 1221 | __u16 unack_data; | 
|  | 1222 | int i; | 
|  | 1223 |  | 
|  | 1224 | unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; | 
|  | 1225 |  | 
|  | 1226 | frags = sack->variable; | 
|  | 1227 | for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { | 
|  | 1228 | unack_data -= ((ntohs(frags[i].gab.end) - | 
|  | 1229 | ntohs(frags[i].gab.start) + 1)); | 
|  | 1230 | } | 
|  | 1231 |  | 
|  | 1232 | assoc->unack_data = unack_data; | 
|  | 1233 | } | 
|  | 1234 |  | 
|  | 1235 | /* This is where we REALLY process a SACK. | 
|  | 1236 | * | 
|  | 1237 | * Process the SACK against the outqueue.  Mostly, this just frees | 
|  | 1238 | * things off the transmitted queue. | 
|  | 1239 | */ | 
|  | 1240 | int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk) | 
|  | 1241 | { | 
|  | 1242 | struct sctp_association *asoc = q->asoc; | 
|  | 1243 | struct sctp_sackhdr *sack = chunk->subh.sack_hdr; | 
|  | 1244 | struct sctp_transport *transport; | 
|  | 1245 | struct sctp_chunk *tchunk = NULL; | 
|  | 1246 | struct list_head *lchunk, *transport_list, *temp; | 
|  | 1247 | union sctp_sack_variable *frags = sack->variable; | 
|  | 1248 | __u32 sack_ctsn, ctsn, tsn; | 
|  | 1249 | __u32 highest_tsn, highest_new_tsn; | 
|  | 1250 | __u32 sack_a_rwnd; | 
|  | 1251 | unsigned int outstanding; | 
|  | 1252 | struct sctp_transport *primary = asoc->peer.primary_path; | 
|  | 1253 | int count_of_newacks = 0; | 
|  | 1254 | int gap_ack_blocks; | 
|  | 1255 | u8 accum_moved = 0; | 
|  | 1256 |  | 
|  | 1257 | /* Grab the association's destination address list. */ | 
|  | 1258 | transport_list = &asoc->peer.transport_addr_list; | 
|  | 1259 |  | 
|  | 1260 | sack_ctsn = ntohl(sack->cum_tsn_ack); | 
|  | 1261 | gap_ack_blocks = ntohs(sack->num_gap_ack_blocks); | 
|  | 1262 | asoc->stats.gapcnt += gap_ack_blocks; | 
|  | 1263 | /* | 
|  | 1264 | * SFR-CACC algorithm: | 
|  | 1265 | * On receipt of a SACK the sender SHOULD execute the | 
|  | 1266 | * following statements. | 
|  | 1267 | * | 
|  | 1268 | * 1) If the cumulative ack in the SACK passes next tsn_at_change | 
|  | 1269 | * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be | 
|  | 1270 | * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for | 
|  | 1271 | * all destinations. | 
|  | 1272 | * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE | 
|  | 1273 | * is set the receiver of the SACK MUST take the following actions: | 
|  | 1274 | * | 
|  | 1275 | * A) Initialize the cacc_saw_newack to 0 for all destination | 
|  | 1276 | * addresses. | 
|  | 1277 | * | 
|  | 1278 | * Only bother if changeover_active is set. Otherwise, this is | 
|  | 1279 | * totally suboptimal to do on every SACK. | 
|  | 1280 | */ | 
|  | 1281 | if (primary->cacc.changeover_active) { | 
|  | 1282 | u8 clear_cycling = 0; | 
|  | 1283 |  | 
|  | 1284 | if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { | 
|  | 1285 | primary->cacc.changeover_active = 0; | 
|  | 1286 | clear_cycling = 1; | 
|  | 1287 | } | 
|  | 1288 |  | 
|  | 1289 | if (clear_cycling || gap_ack_blocks) { | 
|  | 1290 | list_for_each_entry(transport, transport_list, | 
|  | 1291 | transports) { | 
|  | 1292 | if (clear_cycling) | 
|  | 1293 | transport->cacc.cycling_changeover = 0; | 
|  | 1294 | if (gap_ack_blocks) | 
|  | 1295 | transport->cacc.cacc_saw_newack = 0; | 
|  | 1296 | } | 
|  | 1297 | } | 
|  | 1298 | } | 
|  | 1299 |  | 
|  | 1300 | /* Get the highest TSN in the sack. */ | 
|  | 1301 | highest_tsn = sack_ctsn; | 
|  | 1302 | if (gap_ack_blocks) | 
|  | 1303 | highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end); | 
|  | 1304 |  | 
|  | 1305 | if (TSN_lt(asoc->highest_sacked, highest_tsn)) | 
|  | 1306 | asoc->highest_sacked = highest_tsn; | 
|  | 1307 |  | 
|  | 1308 | highest_new_tsn = sack_ctsn; | 
|  | 1309 |  | 
|  | 1310 | /* Run through the retransmit queue.  Credit bytes received | 
|  | 1311 | * and free those chunks that we can. | 
|  | 1312 | */ | 
|  | 1313 | sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn); | 
|  | 1314 |  | 
|  | 1315 | /* Run through the transmitted queue. | 
|  | 1316 | * Credit bytes received and free those chunks which we can. | 
|  | 1317 | * | 
|  | 1318 | * This is a MASSIVE candidate for optimization. | 
|  | 1319 | */ | 
|  | 1320 | list_for_each_entry(transport, transport_list, transports) { | 
|  | 1321 | sctp_check_transmitted(q, &transport->transmitted, | 
|  | 1322 | transport, &chunk->source, sack, | 
|  | 1323 | &highest_new_tsn); | 
|  | 1324 | /* | 
|  | 1325 | * SFR-CACC algorithm: | 
|  | 1326 | * C) Let count_of_newacks be the number of | 
|  | 1327 | * destinations for which cacc_saw_newack is set. | 
|  | 1328 | */ | 
|  | 1329 | if (transport->cacc.cacc_saw_newack) | 
|  | 1330 | count_of_newacks++; | 
|  | 1331 | } | 
|  | 1332 |  | 
|  | 1333 | /* Move the Cumulative TSN Ack Point if appropriate.  */ | 
|  | 1334 | if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) { | 
|  | 1335 | asoc->ctsn_ack_point = sack_ctsn; | 
|  | 1336 | accum_moved = 1; | 
|  | 1337 | } | 
|  | 1338 |  | 
|  | 1339 | if (gap_ack_blocks) { | 
|  | 1340 |  | 
|  | 1341 | if (asoc->fast_recovery && accum_moved) | 
|  | 1342 | highest_new_tsn = highest_tsn; | 
|  | 1343 |  | 
|  | 1344 | list_for_each_entry(transport, transport_list, transports) | 
|  | 1345 | sctp_mark_missing(q, &transport->transmitted, transport, | 
|  | 1346 | highest_new_tsn, count_of_newacks); | 
|  | 1347 | } | 
|  | 1348 |  | 
|  | 1349 | /* Update unack_data field in the assoc. */ | 
|  | 1350 | sctp_sack_update_unack_data(asoc, sack); | 
|  | 1351 |  | 
|  | 1352 | ctsn = asoc->ctsn_ack_point; | 
|  | 1353 |  | 
|  | 1354 | /* Throw away stuff rotting on the sack queue.  */ | 
|  | 1355 | list_for_each_safe(lchunk, temp, &q->sacked) { | 
|  | 1356 | tchunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 1357 | transmitted_list); | 
|  | 1358 | tsn = ntohl(tchunk->subh.data_hdr->tsn); | 
|  | 1359 | if (TSN_lte(tsn, ctsn)) { | 
|  | 1360 | list_del_init(&tchunk->transmitted_list); | 
|  | 1361 | if (asoc->peer.prsctp_capable && | 
|  | 1362 | SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) | 
|  | 1363 | asoc->sent_cnt_removable--; | 
|  | 1364 | sctp_chunk_free(tchunk); | 
|  | 1365 | } | 
|  | 1366 | } | 
|  | 1367 |  | 
|  | 1368 | /* ii) Set rwnd equal to the newly received a_rwnd minus the | 
|  | 1369 | *     number of bytes still outstanding after processing the | 
|  | 1370 | *     Cumulative TSN Ack and the Gap Ack Blocks. | 
|  | 1371 | */ | 
|  | 1372 |  | 
|  | 1373 | sack_a_rwnd = ntohl(sack->a_rwnd); | 
|  | 1374 | asoc->peer.zero_window_announced = !sack_a_rwnd; | 
|  | 1375 | outstanding = q->outstanding_bytes; | 
|  | 1376 |  | 
|  | 1377 | if (outstanding < sack_a_rwnd) | 
|  | 1378 | sack_a_rwnd -= outstanding; | 
|  | 1379 | else | 
|  | 1380 | sack_a_rwnd = 0; | 
|  | 1381 |  | 
|  | 1382 | asoc->peer.rwnd = sack_a_rwnd; | 
|  | 1383 |  | 
|  | 1384 | asoc->stream.si->generate_ftsn(q, sack_ctsn); | 
|  | 1385 |  | 
|  | 1386 | pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn); | 
|  | 1387 | pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, " | 
|  | 1388 | "advertised peer ack point:0x%x\n", __func__, asoc, ctsn, | 
|  | 1389 | asoc->adv_peer_ack_point); | 
|  | 1390 |  | 
|  | 1391 | return sctp_outq_is_empty(q); | 
|  | 1392 | } | 
|  | 1393 |  | 
|  | 1394 | /* Is the outqueue empty? | 
|  | 1395 | * The queue is empty when we have not pending data, no in-flight data | 
|  | 1396 | * and nothing pending retransmissions. | 
|  | 1397 | */ | 
|  | 1398 | int sctp_outq_is_empty(const struct sctp_outq *q) | 
|  | 1399 | { | 
|  | 1400 | return q->out_qlen == 0 && q->outstanding_bytes == 0 && | 
|  | 1401 | list_empty(&q->retransmit); | 
|  | 1402 | } | 
|  | 1403 |  | 
|  | 1404 | /******************************************************************** | 
|  | 1405 | * 2nd Level Abstractions | 
|  | 1406 | ********************************************************************/ | 
|  | 1407 |  | 
|  | 1408 | /* Go through a transport's transmitted list or the association's retransmit | 
|  | 1409 | * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. | 
|  | 1410 | * The retransmit list will not have an associated transport. | 
|  | 1411 | * | 
|  | 1412 | * I added coherent debug information output.	--xguo | 
|  | 1413 | * | 
|  | 1414 | * Instead of printing 'sacked' or 'kept' for each TSN on the | 
|  | 1415 | * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. | 
|  | 1416 | * KEPT TSN6-TSN7, etc. | 
|  | 1417 | */ | 
|  | 1418 | static void sctp_check_transmitted(struct sctp_outq *q, | 
|  | 1419 | struct list_head *transmitted_queue, | 
|  | 1420 | struct sctp_transport *transport, | 
|  | 1421 | union sctp_addr *saddr, | 
|  | 1422 | struct sctp_sackhdr *sack, | 
|  | 1423 | __u32 *highest_new_tsn_in_sack) | 
|  | 1424 | { | 
|  | 1425 | struct list_head *lchunk; | 
|  | 1426 | struct sctp_chunk *tchunk; | 
|  | 1427 | struct list_head tlist; | 
|  | 1428 | __u32 tsn; | 
|  | 1429 | __u32 sack_ctsn; | 
|  | 1430 | __u32 rtt; | 
|  | 1431 | __u8 restart_timer = 0; | 
|  | 1432 | int bytes_acked = 0; | 
|  | 1433 | int migrate_bytes = 0; | 
|  | 1434 | bool forward_progress = false; | 
|  | 1435 |  | 
|  | 1436 | sack_ctsn = ntohl(sack->cum_tsn_ack); | 
|  | 1437 |  | 
|  | 1438 | INIT_LIST_HEAD(&tlist); | 
|  | 1439 |  | 
|  | 1440 | /* The while loop will skip empty transmitted queues. */ | 
|  | 1441 | while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { | 
|  | 1442 | tchunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 1443 | transmitted_list); | 
|  | 1444 |  | 
|  | 1445 | if (sctp_chunk_abandoned(tchunk)) { | 
|  | 1446 | /* Move the chunk to abandoned list. */ | 
|  | 1447 | sctp_insert_list(&q->abandoned, lchunk); | 
|  | 1448 |  | 
|  | 1449 | /* If this chunk has not been acked, stop | 
|  | 1450 | * considering it as 'outstanding'. | 
|  | 1451 | */ | 
|  | 1452 | if (transmitted_queue != &q->retransmit && | 
|  | 1453 | !tchunk->tsn_gap_acked) { | 
|  | 1454 | if (tchunk->transport) | 
|  | 1455 | tchunk->transport->flight_size -= | 
|  | 1456 | sctp_data_size(tchunk); | 
|  | 1457 | q->outstanding_bytes -= sctp_data_size(tchunk); | 
|  | 1458 | } | 
|  | 1459 | continue; | 
|  | 1460 | } | 
|  | 1461 |  | 
|  | 1462 | tsn = ntohl(tchunk->subh.data_hdr->tsn); | 
|  | 1463 | if (sctp_acked(sack, tsn)) { | 
|  | 1464 | /* If this queue is the retransmit queue, the | 
|  | 1465 | * retransmit timer has already reclaimed | 
|  | 1466 | * the outstanding bytes for this chunk, so only | 
|  | 1467 | * count bytes associated with a transport. | 
|  | 1468 | */ | 
|  | 1469 | if (transport && !tchunk->tsn_gap_acked) { | 
|  | 1470 | /* If this chunk is being used for RTT | 
|  | 1471 | * measurement, calculate the RTT and update | 
|  | 1472 | * the RTO using this value. | 
|  | 1473 | * | 
|  | 1474 | * 6.3.1 C5) Karn's algorithm: RTT measurements | 
|  | 1475 | * MUST NOT be made using packets that were | 
|  | 1476 | * retransmitted (and thus for which it is | 
|  | 1477 | * ambiguous whether the reply was for the | 
|  | 1478 | * first instance of the packet or a later | 
|  | 1479 | * instance). | 
|  | 1480 | */ | 
|  | 1481 | if (!sctp_chunk_retransmitted(tchunk) && | 
|  | 1482 | tchunk->rtt_in_progress) { | 
|  | 1483 | tchunk->rtt_in_progress = 0; | 
|  | 1484 | rtt = jiffies - tchunk->sent_at; | 
|  | 1485 | sctp_transport_update_rto(transport, | 
|  | 1486 | rtt); | 
|  | 1487 | } | 
|  | 1488 |  | 
|  | 1489 | if (TSN_lte(tsn, sack_ctsn)) { | 
|  | 1490 | /* | 
|  | 1491 | * SFR-CACC algorithm: | 
|  | 1492 | * 2) If the SACK contains gap acks | 
|  | 1493 | * and the flag CHANGEOVER_ACTIVE is | 
|  | 1494 | * set the receiver of the SACK MUST | 
|  | 1495 | * take the following action: | 
|  | 1496 | * | 
|  | 1497 | * B) For each TSN t being acked that | 
|  | 1498 | * has not been acked in any SACK so | 
|  | 1499 | * far, set cacc_saw_newack to 1 for | 
|  | 1500 | * the destination that the TSN was | 
|  | 1501 | * sent to. | 
|  | 1502 | */ | 
|  | 1503 | if (sack->num_gap_ack_blocks && | 
|  | 1504 | q->asoc->peer.primary_path->cacc. | 
|  | 1505 | changeover_active) | 
|  | 1506 | transport->cacc.cacc_saw_newack | 
|  | 1507 | = 1; | 
|  | 1508 | } | 
|  | 1509 | } | 
|  | 1510 |  | 
|  | 1511 | /* If the chunk hasn't been marked as ACKED, | 
|  | 1512 | * mark it and account bytes_acked if the | 
|  | 1513 | * chunk had a valid transport (it will not | 
|  | 1514 | * have a transport if ASCONF had deleted it | 
|  | 1515 | * while DATA was outstanding). | 
|  | 1516 | */ | 
|  | 1517 | if (!tchunk->tsn_gap_acked) { | 
|  | 1518 | tchunk->tsn_gap_acked = 1; | 
|  | 1519 | if (TSN_lt(*highest_new_tsn_in_sack, tsn)) | 
|  | 1520 | *highest_new_tsn_in_sack = tsn; | 
|  | 1521 | bytes_acked += sctp_data_size(tchunk); | 
|  | 1522 | if (!tchunk->transport) | 
|  | 1523 | migrate_bytes += sctp_data_size(tchunk); | 
|  | 1524 | forward_progress = true; | 
|  | 1525 | } | 
|  | 1526 |  | 
|  | 1527 | if (TSN_lte(tsn, sack_ctsn)) { | 
|  | 1528 | /* RFC 2960  6.3.2 Retransmission Timer Rules | 
|  | 1529 | * | 
|  | 1530 | * R3) Whenever a SACK is received | 
|  | 1531 | * that acknowledges the DATA chunk | 
|  | 1532 | * with the earliest outstanding TSN | 
|  | 1533 | * for that address, restart T3-rtx | 
|  | 1534 | * timer for that address with its | 
|  | 1535 | * current RTO. | 
|  | 1536 | */ | 
|  | 1537 | restart_timer = 1; | 
|  | 1538 | forward_progress = true; | 
|  | 1539 |  | 
|  | 1540 | list_add_tail(&tchunk->transmitted_list, | 
|  | 1541 | &q->sacked); | 
|  | 1542 | } else { | 
|  | 1543 | /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 | 
|  | 1544 | * M2) Each time a SACK arrives reporting | 
|  | 1545 | * 'Stray DATA chunk(s)' record the highest TSN | 
|  | 1546 | * reported as newly acknowledged, call this | 
|  | 1547 | * value 'HighestTSNinSack'. A newly | 
|  | 1548 | * acknowledged DATA chunk is one not | 
|  | 1549 | * previously acknowledged in a SACK. | 
|  | 1550 | * | 
|  | 1551 | * When the SCTP sender of data receives a SACK | 
|  | 1552 | * chunk that acknowledges, for the first time, | 
|  | 1553 | * the receipt of a DATA chunk, all the still | 
|  | 1554 | * unacknowledged DATA chunks whose TSN is | 
|  | 1555 | * older than that newly acknowledged DATA | 
|  | 1556 | * chunk, are qualified as 'Stray DATA chunks'. | 
|  | 1557 | */ | 
|  | 1558 | list_add_tail(lchunk, &tlist); | 
|  | 1559 | } | 
|  | 1560 | } else { | 
|  | 1561 | if (tchunk->tsn_gap_acked) { | 
|  | 1562 | pr_debug("%s: receiver reneged on data TSN:0x%x\n", | 
|  | 1563 | __func__, tsn); | 
|  | 1564 |  | 
|  | 1565 | tchunk->tsn_gap_acked = 0; | 
|  | 1566 |  | 
|  | 1567 | if (tchunk->transport) | 
|  | 1568 | bytes_acked -= sctp_data_size(tchunk); | 
|  | 1569 |  | 
|  | 1570 | /* RFC 2960 6.3.2 Retransmission Timer Rules | 
|  | 1571 | * | 
|  | 1572 | * R4) Whenever a SACK is received missing a | 
|  | 1573 | * TSN that was previously acknowledged via a | 
|  | 1574 | * Gap Ack Block, start T3-rtx for the | 
|  | 1575 | * destination address to which the DATA | 
|  | 1576 | * chunk was originally | 
|  | 1577 | * transmitted if it is not already running. | 
|  | 1578 | */ | 
|  | 1579 | restart_timer = 1; | 
|  | 1580 | } | 
|  | 1581 |  | 
|  | 1582 | list_add_tail(lchunk, &tlist); | 
|  | 1583 | } | 
|  | 1584 | } | 
|  | 1585 |  | 
|  | 1586 | if (transport) { | 
|  | 1587 | if (bytes_acked) { | 
|  | 1588 | struct sctp_association *asoc = transport->asoc; | 
|  | 1589 |  | 
|  | 1590 | /* We may have counted DATA that was migrated | 
|  | 1591 | * to this transport due to DEL-IP operation. | 
|  | 1592 | * Subtract those bytes, since the were never | 
|  | 1593 | * send on this transport and shouldn't be | 
|  | 1594 | * credited to this transport. | 
|  | 1595 | */ | 
|  | 1596 | bytes_acked -= migrate_bytes; | 
|  | 1597 |  | 
|  | 1598 | /* 8.2. When an outstanding TSN is acknowledged, | 
|  | 1599 | * the endpoint shall clear the error counter of | 
|  | 1600 | * the destination transport address to which the | 
|  | 1601 | * DATA chunk was last sent. | 
|  | 1602 | * The association's overall error counter is | 
|  | 1603 | * also cleared. | 
|  | 1604 | */ | 
|  | 1605 | transport->error_count = 0; | 
|  | 1606 | transport->asoc->overall_error_count = 0; | 
|  | 1607 | forward_progress = true; | 
|  | 1608 |  | 
|  | 1609 | /* | 
|  | 1610 | * While in SHUTDOWN PENDING, we may have started | 
|  | 1611 | * the T5 shutdown guard timer after reaching the | 
|  | 1612 | * retransmission limit. Stop that timer as soon | 
|  | 1613 | * as the receiver acknowledged any data. | 
|  | 1614 | */ | 
|  | 1615 | if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING && | 
|  | 1616 | del_timer(&asoc->timers | 
|  | 1617 | [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD])) | 
|  | 1618 | sctp_association_put(asoc); | 
|  | 1619 |  | 
|  | 1620 | /* Mark the destination transport address as | 
|  | 1621 | * active if it is not so marked. | 
|  | 1622 | */ | 
|  | 1623 | if ((transport->state == SCTP_INACTIVE || | 
|  | 1624 | transport->state == SCTP_UNCONFIRMED) && | 
|  | 1625 | sctp_cmp_addr_exact(&transport->ipaddr, saddr)) { | 
|  | 1626 | sctp_assoc_control_transport( | 
|  | 1627 | transport->asoc, | 
|  | 1628 | transport, | 
|  | 1629 | SCTP_TRANSPORT_UP, | 
|  | 1630 | SCTP_RECEIVED_SACK); | 
|  | 1631 | } | 
|  | 1632 |  | 
|  | 1633 | sctp_transport_raise_cwnd(transport, sack_ctsn, | 
|  | 1634 | bytes_acked); | 
|  | 1635 |  | 
|  | 1636 | transport->flight_size -= bytes_acked; | 
|  | 1637 | if (transport->flight_size == 0) | 
|  | 1638 | transport->partial_bytes_acked = 0; | 
|  | 1639 | q->outstanding_bytes -= bytes_acked + migrate_bytes; | 
|  | 1640 | } else { | 
|  | 1641 | /* RFC 2960 6.1, sctpimpguide-06 2.15.2 | 
|  | 1642 | * When a sender is doing zero window probing, it | 
|  | 1643 | * should not timeout the association if it continues | 
|  | 1644 | * to receive new packets from the receiver. The | 
|  | 1645 | * reason is that the receiver MAY keep its window | 
|  | 1646 | * closed for an indefinite time. | 
|  | 1647 | * A sender is doing zero window probing when the | 
|  | 1648 | * receiver's advertised window is zero, and there is | 
|  | 1649 | * only one data chunk in flight to the receiver. | 
|  | 1650 | * | 
|  | 1651 | * Allow the association to timeout while in SHUTDOWN | 
|  | 1652 | * PENDING or SHUTDOWN RECEIVED in case the receiver | 
|  | 1653 | * stays in zero window mode forever. | 
|  | 1654 | */ | 
|  | 1655 | if (!q->asoc->peer.rwnd && | 
|  | 1656 | !list_empty(&tlist) && | 
|  | 1657 | (sack_ctsn+2 == q->asoc->next_tsn) && | 
|  | 1658 | q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) { | 
|  | 1659 | pr_debug("%s: sack received for zero window " | 
|  | 1660 | "probe:%u\n", __func__, sack_ctsn); | 
|  | 1661 |  | 
|  | 1662 | q->asoc->overall_error_count = 0; | 
|  | 1663 | transport->error_count = 0; | 
|  | 1664 | } | 
|  | 1665 | } | 
|  | 1666 |  | 
|  | 1667 | /* RFC 2960 6.3.2 Retransmission Timer Rules | 
|  | 1668 | * | 
|  | 1669 | * R2) Whenever all outstanding data sent to an address have | 
|  | 1670 | * been acknowledged, turn off the T3-rtx timer of that | 
|  | 1671 | * address. | 
|  | 1672 | */ | 
|  | 1673 | if (!transport->flight_size) { | 
|  | 1674 | if (del_timer(&transport->T3_rtx_timer)) | 
|  | 1675 | sctp_transport_put(transport); | 
|  | 1676 | } else if (restart_timer) { | 
|  | 1677 | if (!mod_timer(&transport->T3_rtx_timer, | 
|  | 1678 | jiffies + transport->rto)) | 
|  | 1679 | sctp_transport_hold(transport); | 
|  | 1680 | } | 
|  | 1681 |  | 
|  | 1682 | if (forward_progress) { | 
|  | 1683 | if (transport->dst) | 
|  | 1684 | sctp_transport_dst_confirm(transport); | 
|  | 1685 | } | 
|  | 1686 | } | 
|  | 1687 |  | 
|  | 1688 | list_splice(&tlist, transmitted_queue); | 
|  | 1689 | } | 
|  | 1690 |  | 
|  | 1691 | /* Mark chunks as missing and consequently may get retransmitted. */ | 
|  | 1692 | static void sctp_mark_missing(struct sctp_outq *q, | 
|  | 1693 | struct list_head *transmitted_queue, | 
|  | 1694 | struct sctp_transport *transport, | 
|  | 1695 | __u32 highest_new_tsn_in_sack, | 
|  | 1696 | int count_of_newacks) | 
|  | 1697 | { | 
|  | 1698 | struct sctp_chunk *chunk; | 
|  | 1699 | __u32 tsn; | 
|  | 1700 | char do_fast_retransmit = 0; | 
|  | 1701 | struct sctp_association *asoc = q->asoc; | 
|  | 1702 | struct sctp_transport *primary = asoc->peer.primary_path; | 
|  | 1703 |  | 
|  | 1704 | list_for_each_entry(chunk, transmitted_queue, transmitted_list) { | 
|  | 1705 |  | 
|  | 1706 | tsn = ntohl(chunk->subh.data_hdr->tsn); | 
|  | 1707 |  | 
|  | 1708 | /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all | 
|  | 1709 | * 'Unacknowledged TSN's', if the TSN number of an | 
|  | 1710 | * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' | 
|  | 1711 | * value, increment the 'TSN.Missing.Report' count on that | 
|  | 1712 | * chunk if it has NOT been fast retransmitted or marked for | 
|  | 1713 | * fast retransmit already. | 
|  | 1714 | */ | 
|  | 1715 | if (chunk->fast_retransmit == SCTP_CAN_FRTX && | 
|  | 1716 | !chunk->tsn_gap_acked && | 
|  | 1717 | TSN_lt(tsn, highest_new_tsn_in_sack)) { | 
|  | 1718 |  | 
|  | 1719 | /* SFR-CACC may require us to skip marking | 
|  | 1720 | * this chunk as missing. | 
|  | 1721 | */ | 
|  | 1722 | if (!transport || !sctp_cacc_skip(primary, | 
|  | 1723 | chunk->transport, | 
|  | 1724 | count_of_newacks, tsn)) { | 
|  | 1725 | chunk->tsn_missing_report++; | 
|  | 1726 |  | 
|  | 1727 | pr_debug("%s: tsn:0x%x missing counter:%d\n", | 
|  | 1728 | __func__, tsn, chunk->tsn_missing_report); | 
|  | 1729 | } | 
|  | 1730 | } | 
|  | 1731 | /* | 
|  | 1732 | * M4) If any DATA chunk is found to have a | 
|  | 1733 | * 'TSN.Missing.Report' | 
|  | 1734 | * value larger than or equal to 3, mark that chunk for | 
|  | 1735 | * retransmission and start the fast retransmit procedure. | 
|  | 1736 | */ | 
|  | 1737 |  | 
|  | 1738 | if (chunk->tsn_missing_report >= 3) { | 
|  | 1739 | chunk->fast_retransmit = SCTP_NEED_FRTX; | 
|  | 1740 | do_fast_retransmit = 1; | 
|  | 1741 | } | 
|  | 1742 | } | 
|  | 1743 |  | 
|  | 1744 | if (transport) { | 
|  | 1745 | if (do_fast_retransmit) | 
|  | 1746 | sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); | 
|  | 1747 |  | 
|  | 1748 | pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, " | 
|  | 1749 | "flight_size:%d, pba:%d\n",  __func__, transport, | 
|  | 1750 | transport->cwnd, transport->ssthresh, | 
|  | 1751 | transport->flight_size, transport->partial_bytes_acked); | 
|  | 1752 | } | 
|  | 1753 | } | 
|  | 1754 |  | 
|  | 1755 | /* Is the given TSN acked by this packet?  */ | 
|  | 1756 | static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) | 
|  | 1757 | { | 
|  | 1758 | __u32 ctsn = ntohl(sack->cum_tsn_ack); | 
|  | 1759 | union sctp_sack_variable *frags; | 
|  | 1760 | __u16 tsn_offset, blocks; | 
|  | 1761 | int i; | 
|  | 1762 |  | 
|  | 1763 | if (TSN_lte(tsn, ctsn)) | 
|  | 1764 | goto pass; | 
|  | 1765 |  | 
|  | 1766 | /* 3.3.4 Selective Acknowledgment (SACK) (3): | 
|  | 1767 | * | 
|  | 1768 | * Gap Ack Blocks: | 
|  | 1769 | *  These fields contain the Gap Ack Blocks. They are repeated | 
|  | 1770 | *  for each Gap Ack Block up to the number of Gap Ack Blocks | 
|  | 1771 | *  defined in the Number of Gap Ack Blocks field. All DATA | 
|  | 1772 | *  chunks with TSNs greater than or equal to (Cumulative TSN | 
|  | 1773 | *  Ack + Gap Ack Block Start) and less than or equal to | 
|  | 1774 | *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack | 
|  | 1775 | *  Block are assumed to have been received correctly. | 
|  | 1776 | */ | 
|  | 1777 |  | 
|  | 1778 | frags = sack->variable; | 
|  | 1779 | blocks = ntohs(sack->num_gap_ack_blocks); | 
|  | 1780 | tsn_offset = tsn - ctsn; | 
|  | 1781 | for (i = 0; i < blocks; ++i) { | 
|  | 1782 | if (tsn_offset >= ntohs(frags[i].gab.start) && | 
|  | 1783 | tsn_offset <= ntohs(frags[i].gab.end)) | 
|  | 1784 | goto pass; | 
|  | 1785 | } | 
|  | 1786 |  | 
|  | 1787 | return 0; | 
|  | 1788 | pass: | 
|  | 1789 | return 1; | 
|  | 1790 | } | 
|  | 1791 |  | 
|  | 1792 | static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, | 
|  | 1793 | int nskips, __be16 stream) | 
|  | 1794 | { | 
|  | 1795 | int i; | 
|  | 1796 |  | 
|  | 1797 | for (i = 0; i < nskips; i++) { | 
|  | 1798 | if (skiplist[i].stream == stream) | 
|  | 1799 | return i; | 
|  | 1800 | } | 
|  | 1801 | return i; | 
|  | 1802 | } | 
|  | 1803 |  | 
|  | 1804 | /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ | 
|  | 1805 | void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) | 
|  | 1806 | { | 
|  | 1807 | struct sctp_association *asoc = q->asoc; | 
|  | 1808 | struct sctp_chunk *ftsn_chunk = NULL; | 
|  | 1809 | struct sctp_fwdtsn_skip ftsn_skip_arr[10]; | 
|  | 1810 | int nskips = 0; | 
|  | 1811 | int skip_pos = 0; | 
|  | 1812 | __u32 tsn; | 
|  | 1813 | struct sctp_chunk *chunk; | 
|  | 1814 | struct list_head *lchunk, *temp; | 
|  | 1815 |  | 
|  | 1816 | if (!asoc->peer.prsctp_capable) | 
|  | 1817 | return; | 
|  | 1818 |  | 
|  | 1819 | /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the | 
|  | 1820 | * received SACK. | 
|  | 1821 | * | 
|  | 1822 | * If (Advanced.Peer.Ack.Point < SackCumAck), then update | 
|  | 1823 | * Advanced.Peer.Ack.Point to be equal to SackCumAck. | 
|  | 1824 | */ | 
|  | 1825 | if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) | 
|  | 1826 | asoc->adv_peer_ack_point = ctsn; | 
|  | 1827 |  | 
|  | 1828 | /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" | 
|  | 1829 | * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as | 
|  | 1830 | * the chunk next in the out-queue space is marked as "abandoned" as | 
|  | 1831 | * shown in the following example: | 
|  | 1832 | * | 
|  | 1833 | * Assuming that a SACK arrived with the Cumulative TSN ACK 102 | 
|  | 1834 | * and the Advanced.Peer.Ack.Point is updated to this value: | 
|  | 1835 | * | 
|  | 1836 | *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point | 
|  | 1837 | *   normal SACK processing           local advancement | 
|  | 1838 | *                ...                           ... | 
|  | 1839 | *   Adv.Ack.Pt-> 102 acked                     102 acked | 
|  | 1840 | *                103 abandoned                 103 abandoned | 
|  | 1841 | *                104 abandoned     Adv.Ack.P-> 104 abandoned | 
|  | 1842 | *                105                           105 | 
|  | 1843 | *                106 acked                     106 acked | 
|  | 1844 | *                ...                           ... | 
|  | 1845 | * | 
|  | 1846 | * In this example, the data sender successfully advanced the | 
|  | 1847 | * "Advanced.Peer.Ack.Point" from 102 to 104 locally. | 
|  | 1848 | */ | 
|  | 1849 | list_for_each_safe(lchunk, temp, &q->abandoned) { | 
|  | 1850 | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | 1851 | transmitted_list); | 
|  | 1852 | tsn = ntohl(chunk->subh.data_hdr->tsn); | 
|  | 1853 |  | 
|  | 1854 | /* Remove any chunks in the abandoned queue that are acked by | 
|  | 1855 | * the ctsn. | 
|  | 1856 | */ | 
|  | 1857 | if (TSN_lte(tsn, ctsn)) { | 
|  | 1858 | list_del_init(lchunk); | 
|  | 1859 | sctp_chunk_free(chunk); | 
|  | 1860 | } else { | 
|  | 1861 | if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { | 
|  | 1862 | asoc->adv_peer_ack_point = tsn; | 
|  | 1863 | if (chunk->chunk_hdr->flags & | 
|  | 1864 | SCTP_DATA_UNORDERED) | 
|  | 1865 | continue; | 
|  | 1866 | skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], | 
|  | 1867 | nskips, | 
|  | 1868 | chunk->subh.data_hdr->stream); | 
|  | 1869 | ftsn_skip_arr[skip_pos].stream = | 
|  | 1870 | chunk->subh.data_hdr->stream; | 
|  | 1871 | ftsn_skip_arr[skip_pos].ssn = | 
|  | 1872 | chunk->subh.data_hdr->ssn; | 
|  | 1873 | if (skip_pos == nskips) | 
|  | 1874 | nskips++; | 
|  | 1875 | if (nskips == 10) | 
|  | 1876 | break; | 
|  | 1877 | } else | 
|  | 1878 | break; | 
|  | 1879 | } | 
|  | 1880 | } | 
|  | 1881 |  | 
|  | 1882 | /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" | 
|  | 1883 | * is greater than the Cumulative TSN ACK carried in the received | 
|  | 1884 | * SACK, the data sender MUST send the data receiver a FORWARD TSN | 
|  | 1885 | * chunk containing the latest value of the | 
|  | 1886 | * "Advanced.Peer.Ack.Point". | 
|  | 1887 | * | 
|  | 1888 | * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD | 
|  | 1889 | * list each stream and sequence number in the forwarded TSN. This | 
|  | 1890 | * information will enable the receiver to easily find any | 
|  | 1891 | * stranded TSN's waiting on stream reorder queues. Each stream | 
|  | 1892 | * SHOULD only be reported once; this means that if multiple | 
|  | 1893 | * abandoned messages occur in the same stream then only the | 
|  | 1894 | * highest abandoned stream sequence number is reported. If the | 
|  | 1895 | * total size of the FORWARD TSN does NOT fit in a single MTU then | 
|  | 1896 | * the sender of the FORWARD TSN SHOULD lower the | 
|  | 1897 | * Advanced.Peer.Ack.Point to the last TSN that will fit in a | 
|  | 1898 | * single MTU. | 
|  | 1899 | */ | 
|  | 1900 | if (asoc->adv_peer_ack_point > ctsn) | 
|  | 1901 | ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, | 
|  | 1902 | nskips, &ftsn_skip_arr[0]); | 
|  | 1903 |  | 
|  | 1904 | if (ftsn_chunk) { | 
|  | 1905 | list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); | 
|  | 1906 | SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS); | 
|  | 1907 | } | 
|  | 1908 | } |