| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | | | 
 | 2 | |	decbin.sa 3.3 12/19/90 | 
 | 3 | | | 
 | 4 | |	Description: Converts normalized packed bcd value pointed to by | 
 | 5 | |	register A6 to extended-precision value in FP0. | 
 | 6 | | | 
 | 7 | |	Input: Normalized packed bcd value in ETEMP(a6). | 
 | 8 | | | 
 | 9 | |	Output:	Exact floating-point representation of the packed bcd value. | 
 | 10 | | | 
 | 11 | |	Saves and Modifies: D2-D5 | 
 | 12 | | | 
 | 13 | |	Speed: The program decbin takes ??? cycles to execute. | 
 | 14 | | | 
 | 15 | |	Object Size: | 
 | 16 | | | 
 | 17 | |	External Reference(s): None. | 
 | 18 | | | 
 | 19 | |	Algorithm: | 
 | 20 | |	Expected is a normal bcd (i.e. non-exceptional; all inf, zero, | 
 | 21 | |	and NaN operands are dispatched without entering this routine) | 
 | 22 | |	value in 68881/882 format at location ETEMP(A6). | 
 | 23 | | | 
 | 24 | |	A1.	Convert the bcd exponent to binary by successive adds and muls. | 
 | 25 | |	Set the sign according to SE. Subtract 16 to compensate | 
 | 26 | |	for the mantissa which is to be interpreted as 17 integer | 
 | 27 | |	digits, rather than 1 integer and 16 fraction digits. | 
 | 28 | |	Note: this operation can never overflow. | 
 | 29 | | | 
 | 30 | |	A2. Convert the bcd mantissa to binary by successive | 
 | 31 | |	adds and muls in FP0. Set the sign according to SM. | 
 | 32 | |	The mantissa digits will be converted with the decimal point | 
 | 33 | |	assumed following the least-significant digit. | 
 | 34 | |	Note: this operation can never overflow. | 
 | 35 | | | 
 | 36 | |	A3. Count the number of leading/trailing zeros in the | 
 | 37 | |	bcd string.  If SE is positive, count the leading zeros; | 
 | 38 | |	if negative, count the trailing zeros.  Set the adjusted | 
 | 39 | |	exponent equal to the exponent from A1 and the zero count | 
 | 40 | |	added if SM = 1 and subtracted if SM = 0.  Scale the | 
 | 41 | |	mantissa the equivalent of forcing in the bcd value: | 
 | 42 | | | 
 | 43 | |	SM = 0	a non-zero digit in the integer position | 
 | 44 | |	SM = 1	a non-zero digit in Mant0, lsd of the fraction | 
 | 45 | | | 
 | 46 | |	this will insure that any value, regardless of its | 
 | 47 | |	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted | 
 | 48 | |	consistently. | 
 | 49 | | | 
 | 50 | |	A4. Calculate the factor 10^exp in FP1 using a table of | 
 | 51 | |	10^(2^n) values.  To reduce the error in forming factors | 
 | 52 | |	greater than 10^27, a directed rounding scheme is used with | 
 | 53 | |	tables rounded to RN, RM, and RP, according to the table | 
 | 54 | |	in the comments of the pwrten section. | 
 | 55 | | | 
 | 56 | |	A5. Form the final binary number by scaling the mantissa by | 
 | 57 | |	the exponent factor.  This is done by multiplying the | 
 | 58 | |	mantissa in FP0 by the factor in FP1 if the adjusted | 
 | 59 | |	exponent sign is positive, and dividing FP0 by FP1 if | 
 | 60 | |	it is negative. | 
 | 61 | | | 
 | 62 | |	Clean up and return.  Check if the final mul or div resulted | 
 | 63 | |	in an inex2 exception.  If so, set inex1 in the fpsr and | 
 | 64 | |	check if the inex1 exception is enabled.  If so, set d7 upper | 
 | 65 | |	word to $0100.  This will signal unimp.sa that an enabled inex1 | 
 | 66 | |	exception occurred.  Unimp will fix the stack. | 
 | 67 | | | 
 | 68 |  | 
 | 69 | |		Copyright (C) Motorola, Inc. 1990 | 
 | 70 | |			All Rights Reserved | 
 | 71 | | | 
 | 72 | |       For details on the license for this file, please see the | 
 | 73 | |       file, README, in this same directory. | 
 | 74 |  | 
 | 75 | |DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package | 
 | 76 |  | 
 | 77 | 	|section	8 | 
 | 78 |  | 
 | 79 | #include "fpsp.h" | 
 | 80 |  | 
 | 81 | | | 
 | 82 | |	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded | 
 | 83 | |	to nearest, minus, and plus, respectively.  The tables include | 
 | 84 | |	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding | 
 | 85 | |	is required until the power is greater than 27, however, all | 
 | 86 | |	tables include the first 5 for ease of indexing. | 
 | 87 | | | 
 | 88 | 	|xref	PTENRN | 
 | 89 | 	|xref	PTENRM | 
 | 90 | 	|xref	PTENRP | 
 | 91 |  | 
 | 92 | RTABLE:	.byte	0,0,0,0 | 
 | 93 | 	.byte	2,3,2,3 | 
 | 94 | 	.byte	2,3,3,2 | 
 | 95 | 	.byte	3,2,2,3 | 
 | 96 |  | 
 | 97 | 	.global	decbin | 
 | 98 | 	.global	calc_e | 
 | 99 | 	.global	pwrten | 
 | 100 | 	.global	calc_m | 
 | 101 | 	.global	norm | 
 | 102 | 	.global	ap_st_z | 
 | 103 | 	.global	ap_st_n | 
 | 104 | | | 
 | 105 | 	.set	FNIBS,7 | 
 | 106 | 	.set	FSTRT,0 | 
 | 107 | | | 
 | 108 | 	.set	ESTRT,4 | 
 | 109 | 	.set	EDIGITS,2	| | 
 | 110 | | | 
 | 111 | | Constants in single precision | 
 | 112 | FZERO:	.long	0x00000000 | 
 | 113 | FONE:	.long	0x3F800000 | 
 | 114 | FTEN:	.long	0x41200000 | 
 | 115 |  | 
 | 116 | 	.set	TEN,10 | 
 | 117 |  | 
 | 118 | | | 
 | 119 | decbin: | 
 | 120 | 	| fmovel	#0,FPCR		;clr real fpcr | 
 | 121 | 	moveml	%d2-%d5,-(%a7) | 
 | 122 | | | 
 | 123 | | Calculate exponent: | 
 | 124 | |  1. Copy bcd value in memory for use as a working copy. | 
 | 125 | |  2. Calculate absolute value of exponent in d1 by mul and add. | 
 | 126 | |  3. Correct for exponent sign. | 
 | 127 | |  4. Subtract 16 to compensate for interpreting the mant as all integer digits. | 
 | 128 | |     (i.e., all digits assumed left of the decimal point.) | 
 | 129 | | | 
 | 130 | | Register usage: | 
 | 131 | | | 
 | 132 | |  calc_e: | 
 | 133 | |	(*)  d0: temp digit storage | 
 | 134 | |	(*)  d1: accumulator for binary exponent | 
 | 135 | |	(*)  d2: digit count | 
 | 136 | |	(*)  d3: offset pointer | 
 | 137 | |	( )  d4: first word of bcd | 
 | 138 | |	( )  a0: pointer to working bcd value | 
 | 139 | |	( )  a6: pointer to original bcd value | 
 | 140 | |	(*)  FP_SCR1: working copy of original bcd value | 
 | 141 | |	(*)  L_SCR1: copy of original exponent word | 
 | 142 | | | 
 | 143 | calc_e: | 
 | 144 | 	movel	#EDIGITS,%d2	|# of nibbles (digits) in fraction part | 
 | 145 | 	moveql	#ESTRT,%d3	|counter to pick up digits | 
 | 146 | 	leal	FP_SCR1(%a6),%a0	|load tmp bcd storage address | 
 | 147 | 	movel	ETEMP(%a6),(%a0)	|save input bcd value | 
 | 148 | 	movel	ETEMP_HI(%a6),4(%a0) |save words 2 and 3 | 
 | 149 | 	movel	ETEMP_LO(%a6),8(%a0) |and work with these | 
 | 150 | 	movel	(%a0),%d4	|get first word of bcd | 
 | 151 | 	clrl	%d1		|zero d1 for accumulator | 
 | 152 | e_gd: | 
 | 153 | 	mulul	#TEN,%d1	|mul partial product by one digit place | 
 | 154 | 	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend into d0 | 
 | 155 | 	addl	%d0,%d1		|d1 = d1 + d0 | 
 | 156 | 	addqb	#4,%d3		|advance d3 to the next digit | 
 | 157 | 	dbf	%d2,e_gd	|if we have used all 3 digits, exit loop | 
 | 158 | 	btst	#30,%d4		|get SE | 
 | 159 | 	beqs	e_pos		|don't negate if pos | 
 | 160 | 	negl	%d1		|negate before subtracting | 
 | 161 | e_pos: | 
 | 162 | 	subl	#16,%d1		|sub to compensate for shift of mant | 
 | 163 | 	bges	e_save		|if still pos, do not neg | 
 | 164 | 	negl	%d1		|now negative, make pos and set SE | 
 | 165 | 	orl	#0x40000000,%d4	|set SE in d4, | 
 | 166 | 	orl	#0x40000000,(%a0)	|and in working bcd | 
 | 167 | e_save: | 
 | 168 | 	movel	%d1,L_SCR1(%a6)	|save exp in memory | 
 | 169 | | | 
 | 170 | | | 
 | 171 | | Calculate mantissa: | 
 | 172 | |  1. Calculate absolute value of mantissa in fp0 by mul and add. | 
 | 173 | |  2. Correct for mantissa sign. | 
 | 174 | |     (i.e., all digits assumed left of the decimal point.) | 
 | 175 | | | 
 | 176 | | Register usage: | 
 | 177 | | | 
 | 178 | |  calc_m: | 
 | 179 | |	(*)  d0: temp digit storage | 
 | 180 | |	(*)  d1: lword counter | 
 | 181 | |	(*)  d2: digit count | 
 | 182 | |	(*)  d3: offset pointer | 
 | 183 | |	( )  d4: words 2 and 3 of bcd | 
 | 184 | |	( )  a0: pointer to working bcd value | 
 | 185 | |	( )  a6: pointer to original bcd value | 
 | 186 | |	(*) fp0: mantissa accumulator | 
 | 187 | |	( )  FP_SCR1: working copy of original bcd value | 
 | 188 | |	( )  L_SCR1: copy of original exponent word | 
 | 189 | | | 
 | 190 | calc_m: | 
 | 191 | 	moveql	#1,%d1		|word counter, init to 1 | 
 | 192 | 	fmoves	FZERO,%fp0	|accumulator | 
 | 193 | | | 
 | 194 | | | 
 | 195 | |  Since the packed number has a long word between the first & second parts, | 
 | 196 | |  get the integer digit then skip down & get the rest of the | 
 | 197 | |  mantissa.  We will unroll the loop once. | 
 | 198 | | | 
 | 199 | 	bfextu	(%a0){#28:#4},%d0	|integer part is ls digit in long word | 
 | 200 | 	faddb	%d0,%fp0		|add digit to sum in fp0 | 
 | 201 | | | 
 | 202 | | | 
 | 203 | |  Get the rest of the mantissa. | 
 | 204 | | | 
 | 205 | loadlw: | 
 | 206 | 	movel	(%a0,%d1.L*4),%d4	|load mantissa longword into d4 | 
 | 207 | 	moveql	#FSTRT,%d3	|counter to pick up digits | 
 | 208 | 	moveql	#FNIBS,%d2	|reset number of digits per a0 ptr | 
 | 209 | md2b: | 
 | 210 | 	fmuls	FTEN,%fp0	|fp0 = fp0 * 10 | 
 | 211 | 	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend | 
 | 212 | 	faddb	%d0,%fp0	|fp0 = fp0 + digit | 
 | 213 | | | 
 | 214 | | | 
 | 215 | |  If all the digits (8) in that long word have been converted (d2=0), | 
 | 216 | |  then inc d1 (=2) to point to the next long word and reset d3 to 0 | 
 | 217 | |  to initialize the digit offset, and set d2 to 7 for the digit count; | 
 | 218 | |  else continue with this long word. | 
 | 219 | | | 
 | 220 | 	addqb	#4,%d3		|advance d3 to the next digit | 
 | 221 | 	dbf	%d2,md2b		|check for last digit in this lw | 
 | 222 | nextlw: | 
 | 223 | 	addql	#1,%d1		|inc lw pointer in mantissa | 
 | 224 | 	cmpl	#2,%d1		|test for last lw | 
 | 225 | 	ble	loadlw		|if not, get last one | 
 | 226 |  | 
 | 227 | | | 
 | 228 | |  Check the sign of the mant and make the value in fp0 the same sign. | 
 | 229 | | | 
 | 230 | m_sign: | 
 | 231 | 	btst	#31,(%a0)	|test sign of the mantissa | 
 | 232 | 	beq	ap_st_z		|if clear, go to append/strip zeros | 
 | 233 | 	fnegx	%fp0		|if set, negate fp0 | 
 | 234 |  | 
 | 235 | | | 
 | 236 | | Append/strip zeros: | 
 | 237 | | | 
 | 238 | |  For adjusted exponents which have an absolute value greater than 27*, | 
 | 239 | |  this routine calculates the amount needed to normalize the mantissa | 
 | 240 | |  for the adjusted exponent.  That number is subtracted from the exp | 
 | 241 | |  if the exp was positive, and added if it was negative.  The purpose | 
 | 242 | |  of this is to reduce the value of the exponent and the possibility | 
 | 243 | |  of error in calculation of pwrten. | 
 | 244 | | | 
 | 245 | |  1. Branch on the sign of the adjusted exponent. | 
 | 246 | |  2p.(positive exp) | 
 | 247 | |   2. Check M16 and the digits in lwords 2 and 3 in descending order. | 
 | 248 | |   3. Add one for each zero encountered until a non-zero digit. | 
 | 249 | |   4. Subtract the count from the exp. | 
 | 250 | |   5. Check if the exp has crossed zero in #3 above; make the exp abs | 
 | 251 | |	   and set SE. | 
 | 252 | |	6. Multiply the mantissa by 10**count. | 
 | 253 | |  2n.(negative exp) | 
 | 254 | |   2. Check the digits in lwords 3 and 2 in descending order. | 
 | 255 | |   3. Add one for each zero encountered until a non-zero digit. | 
 | 256 | |   4. Add the count to the exp. | 
 | 257 | |   5. Check if the exp has crossed zero in #3 above; clear SE. | 
 | 258 | |   6. Divide the mantissa by 10**count. | 
 | 259 | | | 
 | 260 | |  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than | 
 | 261 | |   any adjustment due to append/strip zeros will drive the resultant | 
 | 262 | |   exponent towards zero.  Since all pwrten constants with a power | 
 | 263 | |   of 27 or less are exact, there is no need to use this routine to | 
 | 264 | |   attempt to lessen the resultant exponent. | 
 | 265 | | | 
 | 266 | | Register usage: | 
 | 267 | | | 
 | 268 | |  ap_st_z: | 
 | 269 | |	(*)  d0: temp digit storage | 
 | 270 | |	(*)  d1: zero count | 
 | 271 | |	(*)  d2: digit count | 
 | 272 | |	(*)  d3: offset pointer | 
 | 273 | |	( )  d4: first word of bcd | 
 | 274 | |	(*)  d5: lword counter | 
 | 275 | |	( )  a0: pointer to working bcd value | 
 | 276 | |	( )  FP_SCR1: working copy of original bcd value | 
 | 277 | |	( )  L_SCR1: copy of original exponent word | 
 | 278 | | | 
 | 279 | | | 
 | 280 | | First check the absolute value of the exponent to see if this | 
 | 281 | | routine is necessary.  If so, then check the sign of the exponent | 
 | 282 | | and do append (+) or strip (-) zeros accordingly. | 
 | 283 | | This section handles a positive adjusted exponent. | 
 | 284 | | | 
 | 285 | ap_st_z: | 
 | 286 | 	movel	L_SCR1(%a6),%d1	|load expA for range test | 
 | 287 | 	cmpl	#27,%d1		|test is with 27 | 
 | 288 | 	ble	pwrten		|if abs(expA) <28, skip ap/st zeros | 
 | 289 | 	btst	#30,(%a0)	|check sign of exp | 
 | 290 | 	bne	ap_st_n		|if neg, go to neg side | 
 | 291 | 	clrl	%d1		|zero count reg | 
 | 292 | 	movel	(%a0),%d4		|load lword 1 to d4 | 
 | 293 | 	bfextu	%d4{#28:#4},%d0	|get M16 in d0 | 
 | 294 | 	bnes	ap_p_fx		|if M16 is non-zero, go fix exp | 
 | 295 | 	addql	#1,%d1		|inc zero count | 
 | 296 | 	moveql	#1,%d5		|init lword counter | 
 | 297 | 	movel	(%a0,%d5.L*4),%d4	|get lword 2 to d4 | 
 | 298 | 	bnes	ap_p_cl		|if lw 2 is zero, skip it | 
 | 299 | 	addql	#8,%d1		|and inc count by 8 | 
 | 300 | 	addql	#1,%d5		|inc lword counter | 
 | 301 | 	movel	(%a0,%d5.L*4),%d4	|get lword 3 to d4 | 
 | 302 | ap_p_cl: | 
 | 303 | 	clrl	%d3		|init offset reg | 
 | 304 | 	moveql	#7,%d2		|init digit counter | 
 | 305 | ap_p_gd: | 
 | 306 | 	bfextu	%d4{%d3:#4},%d0	|get digit | 
 | 307 | 	bnes	ap_p_fx		|if non-zero, go to fix exp | 
 | 308 | 	addql	#4,%d3		|point to next digit | 
 | 309 | 	addql	#1,%d1		|inc digit counter | 
 | 310 | 	dbf	%d2,ap_p_gd	|get next digit | 
 | 311 | ap_p_fx: | 
 | 312 | 	movel	%d1,%d0		|copy counter to d2 | 
 | 313 | 	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory | 
 | 314 | 	subl	%d0,%d1		|subtract count from exp | 
 | 315 | 	bges	ap_p_fm		|if still pos, go to pwrten | 
 | 316 | 	negl	%d1		|now its neg; get abs | 
 | 317 | 	movel	(%a0),%d4		|load lword 1 to d4 | 
 | 318 | 	orl	#0x40000000,%d4	| and set SE in d4 | 
 | 319 | 	orl	#0x40000000,(%a0)	| and in memory | 
 | 320 | | | 
 | 321 | | Calculate the mantissa multiplier to compensate for the striping of | 
 | 322 | | zeros from the mantissa. | 
 | 323 | | | 
 | 324 | ap_p_fm: | 
 | 325 | 	movel	#PTENRN,%a1	|get address of power-of-ten table | 
 | 326 | 	clrl	%d3		|init table index | 
 | 327 | 	fmoves	FONE,%fp1	|init fp1 to 1 | 
 | 328 | 	moveql	#3,%d2		|init d2 to count bits in counter | 
 | 329 | ap_p_el: | 
 | 330 | 	asrl	#1,%d0		|shift lsb into carry | 
 | 331 | 	bccs	ap_p_en		|if 1, mul fp1 by pwrten factor | 
 | 332 | 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no) | 
 | 333 | ap_p_en: | 
 | 334 | 	addl	#12,%d3		|inc d3 to next rtable entry | 
 | 335 | 	tstl	%d0		|check if d0 is zero | 
 | 336 | 	bnes	ap_p_el		|if not, get next bit | 
 | 337 | 	fmulx	%fp1,%fp0		|mul mantissa by 10**(no_bits_shifted) | 
 | 338 | 	bra	pwrten		|go calc pwrten | 
 | 339 | | | 
 | 340 | | This section handles a negative adjusted exponent. | 
 | 341 | | | 
 | 342 | ap_st_n: | 
 | 343 | 	clrl	%d1		|clr counter | 
 | 344 | 	moveql	#2,%d5		|set up d5 to point to lword 3 | 
 | 345 | 	movel	(%a0,%d5.L*4),%d4	|get lword 3 | 
 | 346 | 	bnes	ap_n_cl		|if not zero, check digits | 
 | 347 | 	subl	#1,%d5		|dec d5 to point to lword 2 | 
 | 348 | 	addql	#8,%d1		|inc counter by 8 | 
 | 349 | 	movel	(%a0,%d5.L*4),%d4	|get lword 2 | 
 | 350 | ap_n_cl: | 
 | 351 | 	movel	#28,%d3		|point to last digit | 
 | 352 | 	moveql	#7,%d2		|init digit counter | 
 | 353 | ap_n_gd: | 
 | 354 | 	bfextu	%d4{%d3:#4},%d0	|get digit | 
 | 355 | 	bnes	ap_n_fx		|if non-zero, go to exp fix | 
 | 356 | 	subql	#4,%d3		|point to previous digit | 
 | 357 | 	addql	#1,%d1		|inc digit counter | 
 | 358 | 	dbf	%d2,ap_n_gd	|get next digit | 
 | 359 | ap_n_fx: | 
 | 360 | 	movel	%d1,%d0		|copy counter to d0 | 
 | 361 | 	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory | 
 | 362 | 	subl	%d0,%d1		|subtract count from exp | 
 | 363 | 	bgts	ap_n_fm		|if still pos, go fix mantissa | 
 | 364 | 	negl	%d1		|take abs of exp and clr SE | 
 | 365 | 	movel	(%a0),%d4		|load lword 1 to d4 | 
 | 366 | 	andl	#0xbfffffff,%d4	| and clr SE in d4 | 
 | 367 | 	andl	#0xbfffffff,(%a0)	| and in memory | 
 | 368 | | | 
 | 369 | | Calculate the mantissa multiplier to compensate for the appending of | 
 | 370 | | zeros to the mantissa. | 
 | 371 | | | 
 | 372 | ap_n_fm: | 
 | 373 | 	movel	#PTENRN,%a1	|get address of power-of-ten table | 
 | 374 | 	clrl	%d3		|init table index | 
 | 375 | 	fmoves	FONE,%fp1	|init fp1 to 1 | 
 | 376 | 	moveql	#3,%d2		|init d2 to count bits in counter | 
 | 377 | ap_n_el: | 
 | 378 | 	asrl	#1,%d0		|shift lsb into carry | 
 | 379 | 	bccs	ap_n_en		|if 1, mul fp1 by pwrten factor | 
 | 380 | 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no) | 
 | 381 | ap_n_en: | 
 | 382 | 	addl	#12,%d3		|inc d3 to next rtable entry | 
 | 383 | 	tstl	%d0		|check if d0 is zero | 
 | 384 | 	bnes	ap_n_el		|if not, get next bit | 
 | 385 | 	fdivx	%fp1,%fp0		|div mantissa by 10**(no_bits_shifted) | 
 | 386 | | | 
 | 387 | | | 
 | 388 | | Calculate power-of-ten factor from adjusted and shifted exponent. | 
 | 389 | | | 
 | 390 | | Register usage: | 
 | 391 | | | 
 | 392 | |  pwrten: | 
 | 393 | |	(*)  d0: temp | 
 | 394 | |	( )  d1: exponent | 
 | 395 | |	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp | 
 | 396 | |	(*)  d3: FPCR work copy | 
 | 397 | |	( )  d4: first word of bcd | 
 | 398 | |	(*)  a1: RTABLE pointer | 
 | 399 | |  calc_p: | 
 | 400 | |	(*)  d0: temp | 
 | 401 | |	( )  d1: exponent | 
 | 402 | |	(*)  d3: PWRTxx table index | 
 | 403 | |	( )  a0: pointer to working copy of bcd | 
 | 404 | |	(*)  a1: PWRTxx pointer | 
 | 405 | |	(*) fp1: power-of-ten accumulator | 
 | 406 | | | 
 | 407 | | Pwrten calculates the exponent factor in the selected rounding mode | 
 | 408 | | according to the following table: | 
 | 409 | | | 
 | 410 | |	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode | 
 | 411 | | | 
 | 412 | |	ANY	  ANY	RN	RN | 
 | 413 | | | 
 | 414 | |	 +	   +	RP	RP | 
 | 415 | |	 -	   +	RP	RM | 
 | 416 | |	 +	   -	RP	RM | 
 | 417 | |	 -	   -	RP	RP | 
 | 418 | | | 
 | 419 | |	 +	   +	RM	RM | 
 | 420 | |	 -	   +	RM	RP | 
 | 421 | |	 +	   -	RM	RP | 
 | 422 | |	 -	   -	RM	RM | 
 | 423 | | | 
 | 424 | |	 +	   +	RZ	RM | 
 | 425 | |	 -	   +	RZ	RM | 
 | 426 | |	 +	   -	RZ	RP | 
 | 427 | |	 -	   -	RZ	RP | 
 | 428 | | | 
 | 429 | | | 
 | 430 | pwrten: | 
 | 431 | 	movel	USER_FPCR(%a6),%d3 |get user's FPCR | 
 | 432 | 	bfextu	%d3{#26:#2},%d2	|isolate rounding mode bits | 
 | 433 | 	movel	(%a0),%d4		|reload 1st bcd word to d4 | 
 | 434 | 	asll	#2,%d2		|format d2 to be | 
 | 435 | 	bfextu	%d4{#0:#2},%d0	| {FPCR[6],FPCR[5],SM,SE} | 
 | 436 | 	addl	%d0,%d2		|in d2 as index into RTABLE | 
 | 437 | 	leal	RTABLE,%a1	|load rtable base | 
 | 438 | 	moveb	(%a1,%d2),%d0	|load new rounding bits from table | 
 | 439 | 	clrl	%d3			|clear d3 to force no exc and extended | 
 | 440 | 	bfins	%d0,%d3{#26:#2}	|stuff new rounding bits in FPCR | 
 | 441 | 	fmovel	%d3,%FPCR		|write new FPCR | 
 | 442 | 	asrl	#1,%d0		|write correct PTENxx table | 
 | 443 | 	bccs	not_rp		|to a1 | 
 | 444 | 	leal	PTENRP,%a1	|it is RP | 
 | 445 | 	bras	calc_p		|go to init section | 
 | 446 | not_rp: | 
 | 447 | 	asrl	#1,%d0		|keep checking | 
 | 448 | 	bccs	not_rm | 
 | 449 | 	leal	PTENRM,%a1	|it is RM | 
 | 450 | 	bras	calc_p		|go to init section | 
 | 451 | not_rm: | 
 | 452 | 	leal	PTENRN,%a1	|it is RN | 
 | 453 | calc_p: | 
 | 454 | 	movel	%d1,%d0		|copy exp to d0;use d0 | 
 | 455 | 	bpls	no_neg		|if exp is negative, | 
 | 456 | 	negl	%d0		|invert it | 
 | 457 | 	orl	#0x40000000,(%a0)	|and set SE bit | 
 | 458 | no_neg: | 
 | 459 | 	clrl	%d3		|table index | 
 | 460 | 	fmoves	FONE,%fp1	|init fp1 to 1 | 
 | 461 | e_loop: | 
 | 462 | 	asrl	#1,%d0		|shift next bit into carry | 
 | 463 | 	bccs	e_next		|if zero, skip the mul | 
 | 464 | 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no) | 
 | 465 | e_next: | 
 | 466 | 	addl	#12,%d3		|inc d3 to next rtable entry | 
 | 467 | 	tstl	%d0		|check if d0 is zero | 
 | 468 | 	bnes	e_loop		|not zero, continue shifting | 
 | 469 | | | 
 | 470 | | | 
 | 471 | |  Check the sign of the adjusted exp and make the value in fp0 the | 
 | 472 | |  same sign. If the exp was pos then multiply fp1*fp0; | 
 | 473 | |  else divide fp0/fp1. | 
 | 474 | | | 
 | 475 | | Register Usage: | 
 | 476 | |  norm: | 
 | 477 | |	( )  a0: pointer to working bcd value | 
 | 478 | |	(*) fp0: mantissa accumulator | 
 | 479 | |	( ) fp1: scaling factor - 10**(abs(exp)) | 
 | 480 | | | 
 | 481 | norm: | 
 | 482 | 	btst	#30,(%a0)	|test the sign of the exponent | 
 | 483 | 	beqs	mul		|if clear, go to multiply | 
 | 484 | div: | 
 | 485 | 	fdivx	%fp1,%fp0		|exp is negative, so divide mant by exp | 
 | 486 | 	bras	end_dec | 
 | 487 | mul: | 
 | 488 | 	fmulx	%fp1,%fp0		|exp is positive, so multiply by exp | 
 | 489 | | | 
 | 490 | | | 
 | 491 | | Clean up and return with result in fp0. | 
 | 492 | | | 
 | 493 | | If the final mul/div in decbin incurred an inex exception, | 
 | 494 | | it will be inex2, but will be reported as inex1 by get_op. | 
 | 495 | | | 
 | 496 | end_dec: | 
 | 497 | 	fmovel	%FPSR,%d0		|get status register | 
 | 498 | 	bclrl	#inex2_bit+8,%d0	|test for inex2 and clear it | 
 | 499 | 	fmovel	%d0,%FPSR		|return status reg w/o inex2 | 
 | 500 | 	beqs	no_exc		|skip this if no exc | 
 | 501 | 	orl	#inx1a_mask,USER_FPSR(%a6) |set inex1/ainex | 
 | 502 | no_exc: | 
 | 503 | 	moveml	(%a7)+,%d2-%d5 | 
 | 504 | 	rts | 
 | 505 | 	|end |