| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ | 
|  | 2 | /* | 
|  | 3 | * CPU frequency scaling support for Armada 37xx platform. | 
|  | 4 | * | 
|  | 5 | * Copyright (C) 2017 Marvell | 
|  | 6 | * | 
|  | 7 | * Gregory CLEMENT <gregory.clement@free-electrons.com> | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <linux/clk.h> | 
|  | 11 | #include <linux/cpu.h> | 
|  | 12 | #include <linux/cpufreq.h> | 
|  | 13 | #include <linux/err.h> | 
|  | 14 | #include <linux/interrupt.h> | 
|  | 15 | #include <linux/io.h> | 
|  | 16 | #include <linux/mfd/syscon.h> | 
|  | 17 | #include <linux/module.h> | 
|  | 18 | #include <linux/of_address.h> | 
|  | 19 | #include <linux/of_device.h> | 
|  | 20 | #include <linux/of_irq.h> | 
|  | 21 | #include <linux/platform_device.h> | 
|  | 22 | #include <linux/pm_opp.h> | 
|  | 23 | #include <linux/regmap.h> | 
|  | 24 | #include <linux/slab.h> | 
|  | 25 |  | 
|  | 26 | #include "cpufreq-dt.h" | 
|  | 27 |  | 
|  | 28 | /* Power management in North Bridge register set */ | 
|  | 29 | #define ARMADA_37XX_NB_L0L1	0x18 | 
|  | 30 | #define ARMADA_37XX_NB_L2L3	0x1C | 
|  | 31 | #define  ARMADA_37XX_NB_TBG_DIV_OFF	13 | 
|  | 32 | #define  ARMADA_37XX_NB_TBG_DIV_MASK	0x7 | 
|  | 33 | #define  ARMADA_37XX_NB_CLK_SEL_OFF	11 | 
|  | 34 | #define  ARMADA_37XX_NB_CLK_SEL_MASK	0x1 | 
|  | 35 | #define  ARMADA_37XX_NB_CLK_SEL_TBG	0x1 | 
|  | 36 | #define  ARMADA_37XX_NB_TBG_SEL_OFF	9 | 
|  | 37 | #define  ARMADA_37XX_NB_TBG_SEL_MASK	0x3 | 
|  | 38 | #define  ARMADA_37XX_NB_VDD_SEL_OFF	6 | 
|  | 39 | #define  ARMADA_37XX_NB_VDD_SEL_MASK	0x3 | 
|  | 40 | #define  ARMADA_37XX_NB_CONFIG_SHIFT	16 | 
|  | 41 | #define ARMADA_37XX_NB_DYN_MOD	0x24 | 
|  | 42 | #define  ARMADA_37XX_NB_CLK_SEL_EN	BIT(26) | 
|  | 43 | #define  ARMADA_37XX_NB_TBG_EN		BIT(28) | 
|  | 44 | #define  ARMADA_37XX_NB_DIV_EN		BIT(29) | 
|  | 45 | #define  ARMADA_37XX_NB_VDD_EN		BIT(30) | 
|  | 46 | #define  ARMADA_37XX_NB_DFS_EN		BIT(31) | 
|  | 47 | #define ARMADA_37XX_NB_CPU_LOAD 0x30 | 
|  | 48 | #define  ARMADA_37XX_NB_CPU_LOAD_MASK	0x3 | 
|  | 49 | #define  ARMADA_37XX_DVFS_LOAD_0	0 | 
|  | 50 | #define  ARMADA_37XX_DVFS_LOAD_1	1 | 
|  | 51 | #define  ARMADA_37XX_DVFS_LOAD_2	2 | 
|  | 52 | #define  ARMADA_37XX_DVFS_LOAD_3	3 | 
|  | 53 |  | 
|  | 54 | /* AVS register set */ | 
|  | 55 | #define ARMADA_37XX_AVS_CTL0		0x0 | 
|  | 56 | #define	 ARMADA_37XX_AVS_ENABLE		BIT(30) | 
|  | 57 | #define	 ARMADA_37XX_AVS_HIGH_VDD_LIMIT	16 | 
|  | 58 | #define	 ARMADA_37XX_AVS_LOW_VDD_LIMIT	22 | 
|  | 59 | #define	 ARMADA_37XX_AVS_VDD_MASK	0x3F | 
|  | 60 | #define ARMADA_37XX_AVS_CTL2		0x8 | 
|  | 61 | #define	 ARMADA_37XX_AVS_LOW_VDD_EN	BIT(6) | 
|  | 62 | #define ARMADA_37XX_AVS_VSET(x)	    (0x1C + 4 * (x)) | 
|  | 63 |  | 
|  | 64 | /* | 
|  | 65 | * On Armada 37xx the Power management manages 4 level of CPU load, | 
|  | 66 | * each level can be associated with a CPU clock source, a CPU | 
|  | 67 | * divider, a VDD level, etc... | 
|  | 68 | */ | 
|  | 69 | #define LOAD_LEVEL_NR	4 | 
|  | 70 |  | 
|  | 71 | #define MIN_VOLT_MV 1000 | 
|  | 72 |  | 
|  | 73 | /*  AVS value for the corresponding voltage (in mV) */ | 
|  | 74 | static int avs_map[] = { | 
|  | 75 | 747, 758, 770, 782, 793, 805, 817, 828, 840, 852, 863, 875, 887, 898, | 
|  | 76 | 910, 922, 933, 945, 957, 968, 980, 992, 1003, 1015, 1027, 1038, 1050, | 
|  | 77 | 1062, 1073, 1085, 1097, 1108, 1120, 1132, 1143, 1155, 1167, 1178, 1190, | 
|  | 78 | 1202, 1213, 1225, 1237, 1248, 1260, 1272, 1283, 1295, 1307, 1318, 1330, | 
|  | 79 | 1342 | 
|  | 80 | }; | 
|  | 81 |  | 
|  | 82 | struct armada37xx_cpufreq_state { | 
|  | 83 | struct regmap *regmap; | 
|  | 84 | u32 nb_l0l1; | 
|  | 85 | u32 nb_l2l3; | 
|  | 86 | u32 nb_dyn_mod; | 
|  | 87 | u32 nb_cpu_load; | 
|  | 88 | }; | 
|  | 89 |  | 
|  | 90 | static struct armada37xx_cpufreq_state *armada37xx_cpufreq_state; | 
|  | 91 |  | 
|  | 92 | struct armada_37xx_dvfs { | 
|  | 93 | u32 cpu_freq_max; | 
|  | 94 | u8 divider[LOAD_LEVEL_NR]; | 
|  | 95 | u32 avs[LOAD_LEVEL_NR]; | 
|  | 96 | }; | 
|  | 97 |  | 
|  | 98 | static struct armada_37xx_dvfs armada_37xx_dvfs[] = { | 
|  | 99 | {.cpu_freq_max = 1200*1000*1000, .divider = {1, 2, 4, 6} }, | 
|  | 100 | {.cpu_freq_max = 1000*1000*1000, .divider = {1, 2, 4, 5} }, | 
|  | 101 | {.cpu_freq_max = 800*1000*1000,  .divider = {1, 2, 3, 4} }, | 
|  | 102 | {.cpu_freq_max = 600*1000*1000,  .divider = {2, 4, 5, 6} }, | 
|  | 103 | }; | 
|  | 104 |  | 
|  | 105 | static struct armada_37xx_dvfs *armada_37xx_cpu_freq_info_get(u32 freq) | 
|  | 106 | { | 
|  | 107 | int i; | 
|  | 108 |  | 
|  | 109 | for (i = 0; i < ARRAY_SIZE(armada_37xx_dvfs); i++) { | 
|  | 110 | if (freq == armada_37xx_dvfs[i].cpu_freq_max) | 
|  | 111 | return &armada_37xx_dvfs[i]; | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | pr_err("Unsupported CPU frequency %d MHz\n", freq/1000000); | 
|  | 115 | return NULL; | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | /* | 
|  | 119 | * Setup the four level managed by the hardware. Once the four level | 
|  | 120 | * will be configured then the DVFS will be enabled. | 
|  | 121 | */ | 
|  | 122 | static void __init armada37xx_cpufreq_dvfs_setup(struct regmap *base, | 
|  | 123 | struct clk *clk, u8 *divider) | 
|  | 124 | { | 
|  | 125 | int load_lvl; | 
|  | 126 | struct clk *parent; | 
|  | 127 |  | 
|  | 128 | for (load_lvl = 0; load_lvl < LOAD_LEVEL_NR; load_lvl++) { | 
|  | 129 | unsigned int reg, mask, val, offset = 0; | 
|  | 130 |  | 
|  | 131 | if (load_lvl <= ARMADA_37XX_DVFS_LOAD_1) | 
|  | 132 | reg = ARMADA_37XX_NB_L0L1; | 
|  | 133 | else | 
|  | 134 | reg = ARMADA_37XX_NB_L2L3; | 
|  | 135 |  | 
|  | 136 | if (load_lvl == ARMADA_37XX_DVFS_LOAD_0 || | 
|  | 137 | load_lvl == ARMADA_37XX_DVFS_LOAD_2) | 
|  | 138 | offset += ARMADA_37XX_NB_CONFIG_SHIFT; | 
|  | 139 |  | 
|  | 140 | /* Set cpu clock source, for all the level we use TBG */ | 
|  | 141 | val = ARMADA_37XX_NB_CLK_SEL_TBG << ARMADA_37XX_NB_CLK_SEL_OFF; | 
|  | 142 | mask = (ARMADA_37XX_NB_CLK_SEL_MASK | 
|  | 143 | << ARMADA_37XX_NB_CLK_SEL_OFF); | 
|  | 144 |  | 
|  | 145 | /* | 
|  | 146 | * Set cpu divider based on the pre-computed array in | 
|  | 147 | * order to have balanced step. | 
|  | 148 | */ | 
|  | 149 | val |= divider[load_lvl] << ARMADA_37XX_NB_TBG_DIV_OFF; | 
|  | 150 | mask |= (ARMADA_37XX_NB_TBG_DIV_MASK | 
|  | 151 | << ARMADA_37XX_NB_TBG_DIV_OFF); | 
|  | 152 |  | 
|  | 153 | /* Set VDD divider which is actually the load level. */ | 
|  | 154 | val |= load_lvl << ARMADA_37XX_NB_VDD_SEL_OFF; | 
|  | 155 | mask |= (ARMADA_37XX_NB_VDD_SEL_MASK | 
|  | 156 | << ARMADA_37XX_NB_VDD_SEL_OFF); | 
|  | 157 |  | 
|  | 158 | val <<= offset; | 
|  | 159 | mask <<= offset; | 
|  | 160 |  | 
|  | 161 | regmap_update_bits(base, reg, mask, val); | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | /* | 
|  | 165 | * Set cpu clock source, for all the level we keep the same | 
|  | 166 | * clock source that the one already configured. For this one | 
|  | 167 | * we need to use the clock framework | 
|  | 168 | */ | 
|  | 169 | parent = clk_get_parent(clk); | 
|  | 170 | clk_set_parent(clk, parent); | 
|  | 171 | } | 
|  | 172 |  | 
|  | 173 | /* | 
|  | 174 | * Find out the armada 37x supported AVS value whose voltage value is | 
|  | 175 | * the round-up closest to the target voltage value. | 
|  | 176 | */ | 
|  | 177 | static u32 armada_37xx_avs_val_match(int target_vm) | 
|  | 178 | { | 
|  | 179 | u32 avs; | 
|  | 180 |  | 
|  | 181 | /* Find out the round-up closest supported voltage value */ | 
|  | 182 | for (avs = 0; avs < ARRAY_SIZE(avs_map); avs++) | 
|  | 183 | if (avs_map[avs] >= target_vm) | 
|  | 184 | break; | 
|  | 185 |  | 
|  | 186 | /* | 
|  | 187 | * If all supported voltages are smaller than target one, | 
|  | 188 | * choose the largest supported voltage | 
|  | 189 | */ | 
|  | 190 | if (avs == ARRAY_SIZE(avs_map)) | 
|  | 191 | avs = ARRAY_SIZE(avs_map) - 1; | 
|  | 192 |  | 
|  | 193 | return avs; | 
|  | 194 | } | 
|  | 195 |  | 
|  | 196 | /* | 
|  | 197 | * For Armada 37xx soc, L0(VSET0) VDD AVS value is set to SVC revision | 
|  | 198 | * value or a default value when SVC is not supported. | 
|  | 199 | * - L0 can be read out from the register of AVS_CTRL_0 and L0 voltage | 
|  | 200 | *   can be got from the mapping table of avs_map. | 
|  | 201 | * - L1 voltage should be about 100mv smaller than L0 voltage | 
|  | 202 | * - L2 & L3 voltage should be about 150mv smaller than L0 voltage. | 
|  | 203 | * This function calculates L1 & L2 & L3 AVS values dynamically based | 
|  | 204 | * on L0 voltage and fill all AVS values to the AVS value table. | 
|  | 205 | */ | 
|  | 206 | static void __init armada37xx_cpufreq_avs_configure(struct regmap *base, | 
|  | 207 | struct armada_37xx_dvfs *dvfs) | 
|  | 208 | { | 
|  | 209 | unsigned int target_vm; | 
|  | 210 | int load_level = 0; | 
|  | 211 | u32 l0_vdd_min; | 
|  | 212 |  | 
|  | 213 | if (base == NULL) | 
|  | 214 | return; | 
|  | 215 |  | 
|  | 216 | /* Get L0 VDD min value */ | 
|  | 217 | regmap_read(base, ARMADA_37XX_AVS_CTL0, &l0_vdd_min); | 
|  | 218 | l0_vdd_min = (l0_vdd_min >> ARMADA_37XX_AVS_LOW_VDD_LIMIT) & | 
|  | 219 | ARMADA_37XX_AVS_VDD_MASK; | 
|  | 220 | if (l0_vdd_min >= ARRAY_SIZE(avs_map))  { | 
|  | 221 | pr_err("L0 VDD MIN %d is not correct.\n", l0_vdd_min); | 
|  | 222 | return; | 
|  | 223 | } | 
|  | 224 | dvfs->avs[0] = l0_vdd_min; | 
|  | 225 |  | 
|  | 226 | if (avs_map[l0_vdd_min] <= MIN_VOLT_MV) { | 
|  | 227 | /* | 
|  | 228 | * If L0 voltage is smaller than 1000mv, then all VDD sets | 
|  | 229 | * use L0 voltage; | 
|  | 230 | */ | 
|  | 231 | u32 avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV); | 
|  | 232 |  | 
|  | 233 | for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) | 
|  | 234 | dvfs->avs[load_level] = avs_min; | 
|  | 235 |  | 
|  | 236 | return; | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | /* | 
|  | 240 | * L1 voltage is equal to L0 voltage - 100mv and it must be | 
|  | 241 | * larger than 1000mv | 
|  | 242 | */ | 
|  | 243 |  | 
|  | 244 | target_vm = avs_map[l0_vdd_min] - 100; | 
|  | 245 | target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; | 
|  | 246 | dvfs->avs[1] = armada_37xx_avs_val_match(target_vm); | 
|  | 247 |  | 
|  | 248 | /* | 
|  | 249 | * L2 & L3 voltage is equal to L0 voltage - 150mv and it must | 
|  | 250 | * be larger than 1000mv | 
|  | 251 | */ | 
|  | 252 | target_vm = avs_map[l0_vdd_min] - 150; | 
|  | 253 | target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; | 
|  | 254 | dvfs->avs[2] = dvfs->avs[3] = armada_37xx_avs_val_match(target_vm); | 
|  | 255 | } | 
|  | 256 |  | 
|  | 257 | static void __init armada37xx_cpufreq_avs_setup(struct regmap *base, | 
|  | 258 | struct armada_37xx_dvfs *dvfs) | 
|  | 259 | { | 
|  | 260 | unsigned int avs_val = 0, freq; | 
|  | 261 | int load_level = 0; | 
|  | 262 |  | 
|  | 263 | if (base == NULL) | 
|  | 264 | return; | 
|  | 265 |  | 
|  | 266 | /* Disable AVS before the configuration */ | 
|  | 267 | regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, | 
|  | 268 | ARMADA_37XX_AVS_ENABLE, 0); | 
|  | 269 |  | 
|  | 270 |  | 
|  | 271 | /* Enable low voltage mode */ | 
|  | 272 | regmap_update_bits(base, ARMADA_37XX_AVS_CTL2, | 
|  | 273 | ARMADA_37XX_AVS_LOW_VDD_EN, | 
|  | 274 | ARMADA_37XX_AVS_LOW_VDD_EN); | 
|  | 275 |  | 
|  | 276 |  | 
|  | 277 | for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) { | 
|  | 278 | freq = dvfs->cpu_freq_max / dvfs->divider[load_level]; | 
|  | 279 |  | 
|  | 280 | avs_val = dvfs->avs[load_level]; | 
|  | 281 | regmap_update_bits(base, ARMADA_37XX_AVS_VSET(load_level-1), | 
|  | 282 | ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | | 
|  | 283 | ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_LOW_VDD_LIMIT, | 
|  | 284 | avs_val << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | | 
|  | 285 | avs_val << ARMADA_37XX_AVS_LOW_VDD_LIMIT); | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /* Enable AVS after the configuration */ | 
|  | 289 | regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, | 
|  | 290 | ARMADA_37XX_AVS_ENABLE, | 
|  | 291 | ARMADA_37XX_AVS_ENABLE); | 
|  | 292 |  | 
|  | 293 | } | 
|  | 294 |  | 
|  | 295 | static void armada37xx_cpufreq_disable_dvfs(struct regmap *base) | 
|  | 296 | { | 
|  | 297 | unsigned int reg = ARMADA_37XX_NB_DYN_MOD, | 
|  | 298 | mask = ARMADA_37XX_NB_DFS_EN; | 
|  | 299 |  | 
|  | 300 | regmap_update_bits(base, reg, mask, 0); | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | static void __init armada37xx_cpufreq_enable_dvfs(struct regmap *base) | 
|  | 304 | { | 
|  | 305 | unsigned int val, reg = ARMADA_37XX_NB_CPU_LOAD, | 
|  | 306 | mask = ARMADA_37XX_NB_CPU_LOAD_MASK; | 
|  | 307 |  | 
|  | 308 | /* Start with the highest load (0) */ | 
|  | 309 | val = ARMADA_37XX_DVFS_LOAD_0; | 
|  | 310 | regmap_update_bits(base, reg, mask, val); | 
|  | 311 |  | 
|  | 312 | /* Now enable DVFS for the CPUs */ | 
|  | 313 | reg = ARMADA_37XX_NB_DYN_MOD; | 
|  | 314 | mask =	ARMADA_37XX_NB_CLK_SEL_EN | ARMADA_37XX_NB_TBG_EN | | 
|  | 315 | ARMADA_37XX_NB_DIV_EN | ARMADA_37XX_NB_VDD_EN | | 
|  | 316 | ARMADA_37XX_NB_DFS_EN; | 
|  | 317 |  | 
|  | 318 | regmap_update_bits(base, reg, mask, mask); | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 | static int armada37xx_cpufreq_suspend(struct cpufreq_policy *policy) | 
|  | 322 | { | 
|  | 323 | struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; | 
|  | 324 |  | 
|  | 325 | regmap_read(state->regmap, ARMADA_37XX_NB_L0L1, &state->nb_l0l1); | 
|  | 326 | regmap_read(state->regmap, ARMADA_37XX_NB_L2L3, &state->nb_l2l3); | 
|  | 327 | regmap_read(state->regmap, ARMADA_37XX_NB_CPU_LOAD, | 
|  | 328 | &state->nb_cpu_load); | 
|  | 329 | regmap_read(state->regmap, ARMADA_37XX_NB_DYN_MOD, &state->nb_dyn_mod); | 
|  | 330 |  | 
|  | 331 | return 0; | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | static int armada37xx_cpufreq_resume(struct cpufreq_policy *policy) | 
|  | 335 | { | 
|  | 336 | struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; | 
|  | 337 |  | 
|  | 338 | /* Ensure DVFS is disabled otherwise the following registers are RO */ | 
|  | 339 | armada37xx_cpufreq_disable_dvfs(state->regmap); | 
|  | 340 |  | 
|  | 341 | regmap_write(state->regmap, ARMADA_37XX_NB_L0L1, state->nb_l0l1); | 
|  | 342 | regmap_write(state->regmap, ARMADA_37XX_NB_L2L3, state->nb_l2l3); | 
|  | 343 | regmap_write(state->regmap, ARMADA_37XX_NB_CPU_LOAD, | 
|  | 344 | state->nb_cpu_load); | 
|  | 345 |  | 
|  | 346 | /* | 
|  | 347 | * NB_DYN_MOD register is the one that actually enable back DVFS if it | 
|  | 348 | * was enabled before the suspend operation. This must be done last | 
|  | 349 | * otherwise other registers are not writable. | 
|  | 350 | */ | 
|  | 351 | regmap_write(state->regmap, ARMADA_37XX_NB_DYN_MOD, state->nb_dyn_mod); | 
|  | 352 |  | 
|  | 353 | return 0; | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | static int __init armada37xx_cpufreq_driver_init(void) | 
|  | 357 | { | 
|  | 358 | struct cpufreq_dt_platform_data pdata; | 
|  | 359 | struct armada_37xx_dvfs *dvfs; | 
|  | 360 | struct platform_device *pdev; | 
|  | 361 | unsigned long freq; | 
|  | 362 | unsigned int cur_frequency, base_frequency; | 
|  | 363 | struct regmap *nb_pm_base, *avs_base; | 
|  | 364 | struct device *cpu_dev; | 
|  | 365 | int load_lvl, ret; | 
|  | 366 | struct clk *clk, *parent; | 
|  | 367 |  | 
|  | 368 | nb_pm_base = | 
|  | 369 | syscon_regmap_lookup_by_compatible("marvell,armada-3700-nb-pm"); | 
|  | 370 |  | 
|  | 371 | if (IS_ERR(nb_pm_base)) | 
|  | 372 | return -ENODEV; | 
|  | 373 |  | 
|  | 374 | avs_base = | 
|  | 375 | syscon_regmap_lookup_by_compatible("marvell,armada-3700-avs"); | 
|  | 376 |  | 
|  | 377 | /* if AVS is not present don't use it but still try to setup dvfs */ | 
|  | 378 | if (IS_ERR(avs_base)) { | 
|  | 379 | pr_info("Syscon failed for Adapting Voltage Scaling: skip it\n"); | 
|  | 380 | avs_base = NULL; | 
|  | 381 | } | 
|  | 382 | /* Before doing any configuration on the DVFS first, disable it */ | 
|  | 383 | armada37xx_cpufreq_disable_dvfs(nb_pm_base); | 
|  | 384 |  | 
|  | 385 | /* | 
|  | 386 | * On CPU 0 register the operating points supported (which are | 
|  | 387 | * the nominal CPU frequency and full integer divisions of | 
|  | 388 | * it). | 
|  | 389 | */ | 
|  | 390 | cpu_dev = get_cpu_device(0); | 
|  | 391 | if (!cpu_dev) { | 
|  | 392 | dev_err(cpu_dev, "Cannot get CPU\n"); | 
|  | 393 | return -ENODEV; | 
|  | 394 | } | 
|  | 395 |  | 
|  | 396 | clk = clk_get(cpu_dev, 0); | 
|  | 397 | if (IS_ERR(clk)) { | 
|  | 398 | dev_err(cpu_dev, "Cannot get clock for CPU0\n"); | 
|  | 399 | return PTR_ERR(clk); | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | parent = clk_get_parent(clk); | 
|  | 403 | if (IS_ERR(parent)) { | 
|  | 404 | dev_err(cpu_dev, "Cannot get parent clock for CPU0\n"); | 
|  | 405 | clk_put(clk); | 
|  | 406 | return PTR_ERR(parent); | 
|  | 407 | } | 
|  | 408 |  | 
|  | 409 | /* Get parent CPU frequency */ | 
|  | 410 | base_frequency =  clk_get_rate(parent); | 
|  | 411 |  | 
|  | 412 | if (!base_frequency) { | 
|  | 413 | dev_err(cpu_dev, "Failed to get parent clock rate for CPU\n"); | 
|  | 414 | clk_put(clk); | 
|  | 415 | return -EINVAL; | 
|  | 416 | } | 
|  | 417 |  | 
|  | 418 | /* Get nominal (current) CPU frequency */ | 
|  | 419 | cur_frequency = clk_get_rate(clk); | 
|  | 420 | if (!cur_frequency) { | 
|  | 421 | dev_err(cpu_dev, "Failed to get clock rate for CPU\n"); | 
|  | 422 | clk_put(clk); | 
|  | 423 | return -EINVAL; | 
|  | 424 | } | 
|  | 425 |  | 
|  | 426 | dvfs = armada_37xx_cpu_freq_info_get(cur_frequency); | 
|  | 427 | if (!dvfs) { | 
|  | 428 | clk_put(clk); | 
|  | 429 | return -EINVAL; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | armada37xx_cpufreq_state = kmalloc(sizeof(*armada37xx_cpufreq_state), | 
|  | 433 | GFP_KERNEL); | 
|  | 434 | if (!armada37xx_cpufreq_state) { | 
|  | 435 | clk_put(clk); | 
|  | 436 | return -ENOMEM; | 
|  | 437 | } | 
|  | 438 |  | 
|  | 439 | armada37xx_cpufreq_state->regmap = nb_pm_base; | 
|  | 440 |  | 
|  | 441 | armada37xx_cpufreq_avs_configure(avs_base, dvfs); | 
|  | 442 | armada37xx_cpufreq_avs_setup(avs_base, dvfs); | 
|  | 443 |  | 
|  | 444 | armada37xx_cpufreq_dvfs_setup(nb_pm_base, clk, dvfs->divider); | 
|  | 445 | clk_put(clk); | 
|  | 446 |  | 
|  | 447 | for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR; | 
|  | 448 | load_lvl++) { | 
|  | 449 | unsigned long u_volt = avs_map[dvfs->avs[load_lvl]] * 1000; | 
|  | 450 | freq = base_frequency / dvfs->divider[load_lvl]; | 
|  | 451 | ret = dev_pm_opp_add(cpu_dev, freq, u_volt); | 
|  | 452 | if (ret) | 
|  | 453 | goto remove_opp; | 
|  | 454 |  | 
|  | 455 |  | 
|  | 456 | } | 
|  | 457 |  | 
|  | 458 | /* Now that everything is setup, enable the DVFS at hardware level */ | 
|  | 459 | armada37xx_cpufreq_enable_dvfs(nb_pm_base); | 
|  | 460 |  | 
|  | 461 | pdata.suspend = armada37xx_cpufreq_suspend; | 
|  | 462 | pdata.resume = armada37xx_cpufreq_resume; | 
|  | 463 |  | 
|  | 464 | pdev = platform_device_register_data(NULL, "cpufreq-dt", -1, &pdata, | 
|  | 465 | sizeof(pdata)); | 
|  | 466 | ret = PTR_ERR_OR_ZERO(pdev); | 
|  | 467 | if (ret) | 
|  | 468 | goto disable_dvfs; | 
|  | 469 |  | 
|  | 470 | return 0; | 
|  | 471 |  | 
|  | 472 | disable_dvfs: | 
|  | 473 | armada37xx_cpufreq_disable_dvfs(nb_pm_base); | 
|  | 474 | remove_opp: | 
|  | 475 | /* clean-up the already added opp before leaving */ | 
|  | 476 | while (load_lvl-- > ARMADA_37XX_DVFS_LOAD_0) { | 
|  | 477 | freq = cur_frequency / dvfs->divider[load_lvl]; | 
|  | 478 | dev_pm_opp_remove(cpu_dev, freq); | 
|  | 479 | } | 
|  | 480 |  | 
|  | 481 | kfree(armada37xx_cpufreq_state); | 
|  | 482 |  | 
|  | 483 | return ret; | 
|  | 484 | } | 
|  | 485 | /* late_initcall, to guarantee the driver is loaded after A37xx clock driver */ | 
|  | 486 | late_initcall(armada37xx_cpufreq_driver_init); | 
|  | 487 |  | 
|  | 488 | MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); | 
|  | 489 | MODULE_DESCRIPTION("Armada 37xx cpufreq driver"); | 
|  | 490 | MODULE_LICENSE("GPL"); |