| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /** | 
 | 2 |  * Routines supporting the Power 7+ Nest Accelerators driver | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2011-2012 International Business Machines Inc. | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or modify | 
 | 7 |  * it under the terms of the GNU General Public License as published by | 
 | 8 |  * the Free Software Foundation; version 2 only. | 
 | 9 |  * | 
 | 10 |  * This program is distributed in the hope that it will be useful, | 
 | 11 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 12 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 13 |  * GNU General Public License for more details. | 
 | 14 |  * | 
 | 15 |  * You should have received a copy of the GNU General Public License | 
 | 16 |  * along with this program; if not, write to the Free Software | 
 | 17 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 | 18 |  * | 
 | 19 |  * Author: Kent Yoder <yoder1@us.ibm.com> | 
 | 20 |  */ | 
 | 21 |  | 
 | 22 | #include <crypto/internal/aead.h> | 
 | 23 | #include <crypto/internal/hash.h> | 
 | 24 | #include <crypto/aes.h> | 
 | 25 | #include <crypto/sha.h> | 
 | 26 | #include <crypto/algapi.h> | 
 | 27 | #include <crypto/scatterwalk.h> | 
 | 28 | #include <linux/module.h> | 
 | 29 | #include <linux/moduleparam.h> | 
 | 30 | #include <linux/types.h> | 
 | 31 | #include <linux/mm.h> | 
 | 32 | #include <linux/scatterlist.h> | 
 | 33 | #include <linux/device.h> | 
 | 34 | #include <linux/of.h> | 
 | 35 | #include <asm/hvcall.h> | 
 | 36 | #include <asm/vio.h> | 
 | 37 |  | 
 | 38 | #include "nx_csbcpb.h" | 
 | 39 | #include "nx.h" | 
 | 40 |  | 
 | 41 |  | 
 | 42 | /** | 
 | 43 |  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure | 
 | 44 |  * | 
 | 45 |  * @nx_ctx: the crypto context handle | 
 | 46 |  * @op: PFO operation struct to pass in | 
 | 47 |  * @may_sleep: flag indicating the request can sleep | 
 | 48 |  * | 
 | 49 |  * Make the hcall, retrying while the hardware is busy. If we cannot yield | 
 | 50 |  * the thread, limit the number of retries to 10 here. | 
 | 51 |  */ | 
 | 52 | int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, | 
 | 53 | 		  struct vio_pfo_op    *op, | 
 | 54 | 		  u32                   may_sleep) | 
 | 55 | { | 
 | 56 | 	int rc, retries = 10; | 
 | 57 | 	struct vio_dev *viodev = nx_driver.viodev; | 
 | 58 |  | 
 | 59 | 	atomic_inc(&(nx_ctx->stats->sync_ops)); | 
 | 60 |  | 
 | 61 | 	do { | 
 | 62 | 		rc = vio_h_cop_sync(viodev, op); | 
 | 63 | 	} while (rc == -EBUSY && !may_sleep && retries--); | 
 | 64 |  | 
 | 65 | 	if (rc) { | 
 | 66 | 		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " | 
 | 67 | 			"hcall rc: %ld\n", rc, op->hcall_err); | 
 | 68 | 		atomic_inc(&(nx_ctx->stats->errors)); | 
 | 69 | 		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); | 
 | 70 | 		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); | 
 | 71 | 	} | 
 | 72 |  | 
 | 73 | 	return rc; | 
 | 74 | } | 
 | 75 |  | 
 | 76 | /** | 
 | 77 |  * nx_build_sg_list - build an NX scatter list describing a single  buffer | 
 | 78 |  * | 
 | 79 |  * @sg_head: pointer to the first scatter list element to build | 
 | 80 |  * @start_addr: pointer to the linear buffer | 
 | 81 |  * @len: length of the data at @start_addr | 
 | 82 |  * @sgmax: the largest number of scatter list elements we're allowed to create | 
 | 83 |  * | 
 | 84 |  * This function will start writing nx_sg elements at @sg_head and keep | 
 | 85 |  * writing them until all of the data from @start_addr is described or | 
 | 86 |  * until sgmax elements have been written. Scatter list elements will be | 
 | 87 |  * created such that none of the elements describes a buffer that crosses a 4K | 
 | 88 |  * boundary. | 
 | 89 |  */ | 
 | 90 | struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, | 
 | 91 | 			       u8           *start_addr, | 
 | 92 | 			       unsigned int *len, | 
 | 93 | 			       u32           sgmax) | 
 | 94 | { | 
 | 95 | 	unsigned int sg_len = 0; | 
 | 96 | 	struct nx_sg *sg; | 
 | 97 | 	u64 sg_addr = (u64)start_addr; | 
 | 98 | 	u64 end_addr; | 
 | 99 |  | 
 | 100 | 	/* determine the start and end for this address range - slightly | 
 | 101 | 	 * different if this is in VMALLOC_REGION */ | 
 | 102 | 	if (is_vmalloc_addr(start_addr)) | 
 | 103 | 		sg_addr = page_to_phys(vmalloc_to_page(start_addr)) | 
 | 104 | 			  + offset_in_page(sg_addr); | 
 | 105 | 	else | 
 | 106 | 		sg_addr = __pa(sg_addr); | 
 | 107 |  | 
 | 108 | 	end_addr = sg_addr + *len; | 
 | 109 |  | 
 | 110 | 	/* each iteration will write one struct nx_sg element and add the | 
 | 111 | 	 * length of data described by that element to sg_len. Once @len bytes | 
 | 112 | 	 * have been described (or @sgmax elements have been written), the | 
 | 113 | 	 * loop ends. min_t is used to ensure @end_addr falls on the same page | 
 | 114 | 	 * as sg_addr, if not, we need to create another nx_sg element for the | 
 | 115 | 	 * data on the next page. | 
 | 116 | 	 * | 
 | 117 | 	 * Also when using vmalloc'ed data, every time that a system page | 
 | 118 | 	 * boundary is crossed the physical address needs to be re-calculated. | 
 | 119 | 	 */ | 
 | 120 | 	for (sg = sg_head; sg_len < *len; sg++) { | 
 | 121 | 		u64 next_page; | 
 | 122 |  | 
 | 123 | 		sg->addr = sg_addr; | 
 | 124 | 		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), | 
 | 125 | 				end_addr); | 
 | 126 |  | 
 | 127 | 		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; | 
 | 128 | 		sg->len = min_t(u64, sg_addr, next_page) - sg->addr; | 
 | 129 | 		sg_len += sg->len; | 
 | 130 |  | 
 | 131 | 		if (sg_addr >= next_page && | 
 | 132 | 				is_vmalloc_addr(start_addr + sg_len)) { | 
 | 133 | 			sg_addr = page_to_phys(vmalloc_to_page( | 
 | 134 | 						start_addr + sg_len)); | 
 | 135 | 			end_addr = sg_addr + *len - sg_len; | 
 | 136 | 		} | 
 | 137 |  | 
 | 138 | 		if ((sg - sg_head) == sgmax) { | 
 | 139 | 			pr_err("nx: scatter/gather list overflow, pid: %d\n", | 
 | 140 | 			       current->pid); | 
 | 141 | 			sg++; | 
 | 142 | 			break; | 
 | 143 | 		} | 
 | 144 | 	} | 
 | 145 | 	*len = sg_len; | 
 | 146 |  | 
 | 147 | 	/* return the moved sg_head pointer */ | 
 | 148 | 	return sg; | 
 | 149 | } | 
 | 150 |  | 
 | 151 | /** | 
 | 152 |  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist | 
 | 153 |  * | 
 | 154 |  * @nx_dst: pointer to the first nx_sg element to write | 
 | 155 |  * @sglen: max number of nx_sg entries we're allowed to write | 
 | 156 |  * @sg_src: pointer to the source linux scatterlist to walk | 
 | 157 |  * @start: number of bytes to fast-forward past at the beginning of @sg_src | 
 | 158 |  * @src_len: number of bytes to walk in @sg_src | 
 | 159 |  */ | 
 | 160 | struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst, | 
 | 161 | 				unsigned int        sglen, | 
 | 162 | 				struct scatterlist *sg_src, | 
 | 163 | 				unsigned int        start, | 
 | 164 | 				unsigned int       *src_len) | 
 | 165 | { | 
 | 166 | 	struct scatter_walk walk; | 
 | 167 | 	struct nx_sg *nx_sg = nx_dst; | 
 | 168 | 	unsigned int n, offset = 0, len = *src_len; | 
 | 169 | 	char *dst; | 
 | 170 |  | 
 | 171 | 	/* we need to fast forward through @start bytes first */ | 
 | 172 | 	for (;;) { | 
 | 173 | 		scatterwalk_start(&walk, sg_src); | 
 | 174 |  | 
 | 175 | 		if (start < offset + sg_src->length) | 
 | 176 | 			break; | 
 | 177 |  | 
 | 178 | 		offset += sg_src->length; | 
 | 179 | 		sg_src = sg_next(sg_src); | 
 | 180 | 	} | 
 | 181 |  | 
 | 182 | 	/* start - offset is the number of bytes to advance in the scatterlist | 
 | 183 | 	 * element we're currently looking at */ | 
 | 184 | 	scatterwalk_advance(&walk, start - offset); | 
 | 185 |  | 
 | 186 | 	while (len && (nx_sg - nx_dst) < sglen) { | 
 | 187 | 		n = scatterwalk_clamp(&walk, len); | 
 | 188 | 		if (!n) { | 
 | 189 | 			/* In cases where we have scatterlist chain sg_next | 
 | 190 | 			 * handles with it properly */ | 
 | 191 | 			scatterwalk_start(&walk, sg_next(walk.sg)); | 
 | 192 | 			n = scatterwalk_clamp(&walk, len); | 
 | 193 | 		} | 
 | 194 | 		dst = scatterwalk_map(&walk); | 
 | 195 |  | 
 | 196 | 		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); | 
 | 197 | 		len -= n; | 
 | 198 |  | 
 | 199 | 		scatterwalk_unmap(dst); | 
 | 200 | 		scatterwalk_advance(&walk, n); | 
 | 201 | 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); | 
 | 202 | 	} | 
 | 203 | 	/* update to_process */ | 
 | 204 | 	*src_len -= len; | 
 | 205 |  | 
 | 206 | 	/* return the moved destination pointer */ | 
 | 207 | 	return nx_sg; | 
 | 208 | } | 
 | 209 |  | 
 | 210 | /** | 
 | 211 |  * trim_sg_list - ensures the bound in sg list. | 
 | 212 |  * @sg: sg list head | 
 | 213 |  * @end: sg lisg end | 
 | 214 |  * @delta:  is the amount we need to crop in order to bound the list. | 
 | 215 |  * | 
 | 216 |  */ | 
 | 217 | static long int trim_sg_list(struct nx_sg *sg, | 
 | 218 | 			     struct nx_sg *end, | 
 | 219 | 			     unsigned int delta, | 
 | 220 | 			     unsigned int *nbytes) | 
 | 221 | { | 
 | 222 | 	long int oplen; | 
 | 223 | 	long int data_back; | 
 | 224 | 	unsigned int is_delta = delta; | 
 | 225 |  | 
 | 226 | 	while (delta && end > sg) { | 
 | 227 | 		struct nx_sg *last = end - 1; | 
 | 228 |  | 
 | 229 | 		if (last->len > delta) { | 
 | 230 | 			last->len -= delta; | 
 | 231 | 			delta = 0; | 
 | 232 | 		} else { | 
 | 233 | 			end--; | 
 | 234 | 			delta -= last->len; | 
 | 235 | 		} | 
 | 236 | 	} | 
 | 237 |  | 
 | 238 | 	/* There are cases where we need to crop list in order to make it | 
 | 239 | 	 * a block size multiple, but we also need to align data. In order to | 
 | 240 | 	 * that we need to calculate how much we need to put back to be | 
 | 241 | 	 * processed | 
 | 242 | 	 */ | 
 | 243 | 	oplen = (sg - end) * sizeof(struct nx_sg); | 
 | 244 | 	if (is_delta) { | 
 | 245 | 		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len; | 
 | 246 | 		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1)); | 
 | 247 | 		*nbytes -= data_back; | 
 | 248 | 	} | 
 | 249 |  | 
 | 250 | 	return oplen; | 
 | 251 | } | 
 | 252 |  | 
 | 253 | /** | 
 | 254 |  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX | 
 | 255 |  *                     scatterlists based on them. | 
 | 256 |  * | 
 | 257 |  * @nx_ctx: NX crypto context for the lists we're building | 
 | 258 |  * @desc: the block cipher descriptor for the operation | 
 | 259 |  * @dst: destination scatterlist | 
 | 260 |  * @src: source scatterlist | 
 | 261 |  * @nbytes: length of data described in the scatterlists | 
 | 262 |  * @offset: number of bytes to fast-forward past at the beginning of | 
 | 263 |  *          scatterlists. | 
 | 264 |  * @iv: destination for the iv data, if the algorithm requires it | 
 | 265 |  * | 
 | 266 |  * This is common code shared by all the AES algorithms. It uses the block | 
 | 267 |  * cipher walk routines to traverse input and output scatterlists, building | 
 | 268 |  * corresponding NX scatterlists | 
 | 269 |  */ | 
 | 270 | int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx, | 
 | 271 | 		      struct blkcipher_desc *desc, | 
 | 272 | 		      struct scatterlist    *dst, | 
 | 273 | 		      struct scatterlist    *src, | 
 | 274 | 		      unsigned int          *nbytes, | 
 | 275 | 		      unsigned int           offset, | 
 | 276 | 		      u8                    *iv) | 
 | 277 | { | 
 | 278 | 	unsigned int delta = 0; | 
 | 279 | 	unsigned int total = *nbytes; | 
 | 280 | 	struct nx_sg *nx_insg = nx_ctx->in_sg; | 
 | 281 | 	struct nx_sg *nx_outsg = nx_ctx->out_sg; | 
 | 282 | 	unsigned int max_sg_len; | 
 | 283 |  | 
 | 284 | 	max_sg_len = min_t(u64, nx_ctx->ap->sglen, | 
 | 285 | 			nx_driver.of.max_sg_len/sizeof(struct nx_sg)); | 
 | 286 | 	max_sg_len = min_t(u64, max_sg_len, | 
 | 287 | 			nx_ctx->ap->databytelen/NX_PAGE_SIZE); | 
 | 288 |  | 
 | 289 | 	if (iv) | 
 | 290 | 		memcpy(iv, desc->info, AES_BLOCK_SIZE); | 
 | 291 |  | 
 | 292 | 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); | 
 | 293 |  | 
 | 294 | 	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, | 
 | 295 | 					offset, nbytes); | 
 | 296 | 	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, | 
 | 297 | 					offset, nbytes); | 
 | 298 |  | 
 | 299 | 	if (*nbytes < total) | 
 | 300 | 		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); | 
 | 301 |  | 
 | 302 | 	/* these lengths should be negative, which will indicate to phyp that | 
 | 303 | 	 * the input and output parameters are scatterlists, not linear | 
 | 304 | 	 * buffers */ | 
 | 305 | 	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes); | 
 | 306 | 	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes); | 
 | 307 |  | 
 | 308 | 	return 0; | 
 | 309 | } | 
 | 310 |  | 
 | 311 | /** | 
 | 312 |  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct | 
 | 313 |  * | 
 | 314 |  * @nx_ctx: the nx context to initialize | 
 | 315 |  * @function: the function code for the op | 
 | 316 |  */ | 
 | 317 | void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) | 
 | 318 | { | 
 | 319 | 	spin_lock_init(&nx_ctx->lock); | 
 | 320 | 	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); | 
 | 321 | 	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; | 
 | 322 |  | 
 | 323 | 	nx_ctx->op.flags = function; | 
 | 324 | 	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); | 
 | 325 | 	nx_ctx->op.in = __pa(nx_ctx->in_sg); | 
 | 326 | 	nx_ctx->op.out = __pa(nx_ctx->out_sg); | 
 | 327 |  | 
 | 328 | 	if (nx_ctx->csbcpb_aead) { | 
 | 329 | 		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; | 
 | 330 |  | 
 | 331 | 		nx_ctx->op_aead.flags = function; | 
 | 332 | 		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); | 
 | 333 | 		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); | 
 | 334 | 		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); | 
 | 335 | 	} | 
 | 336 | } | 
 | 337 |  | 
 | 338 | static void nx_of_update_status(struct device   *dev, | 
 | 339 | 			       struct property *p, | 
 | 340 | 			       struct nx_of    *props) | 
 | 341 | { | 
 | 342 | 	if (!strncmp(p->value, "okay", p->length)) { | 
 | 343 | 		props->status = NX_WAITING; | 
 | 344 | 		props->flags |= NX_OF_FLAG_STATUS_SET; | 
 | 345 | 	} else { | 
 | 346 | 		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, | 
 | 347 | 			 (char *)p->value); | 
 | 348 | 	} | 
 | 349 | } | 
 | 350 |  | 
 | 351 | static void nx_of_update_sglen(struct device   *dev, | 
 | 352 | 			       struct property *p, | 
 | 353 | 			       struct nx_of    *props) | 
 | 354 | { | 
 | 355 | 	if (p->length != sizeof(props->max_sg_len)) { | 
 | 356 | 		dev_err(dev, "%s: unexpected format for " | 
 | 357 | 			"ibm,max-sg-len property\n", __func__); | 
 | 358 | 		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " | 
 | 359 | 			"long, expected %zd bytes\n", __func__, | 
 | 360 | 			p->length, sizeof(props->max_sg_len)); | 
 | 361 | 		return; | 
 | 362 | 	} | 
 | 363 |  | 
 | 364 | 	props->max_sg_len = *(u32 *)p->value; | 
 | 365 | 	props->flags |= NX_OF_FLAG_MAXSGLEN_SET; | 
 | 366 | } | 
 | 367 |  | 
 | 368 | static void nx_of_update_msc(struct device   *dev, | 
 | 369 | 			     struct property *p, | 
 | 370 | 			     struct nx_of    *props) | 
 | 371 | { | 
 | 372 | 	struct msc_triplet *trip; | 
 | 373 | 	struct max_sync_cop *msc; | 
 | 374 | 	unsigned int bytes_so_far, i, lenp; | 
 | 375 |  | 
 | 376 | 	msc = (struct max_sync_cop *)p->value; | 
 | 377 | 	lenp = p->length; | 
 | 378 |  | 
 | 379 | 	/* You can't tell if the data read in for this property is sane by its | 
 | 380 | 	 * size alone. This is because there are sizes embedded in the data | 
 | 381 | 	 * structure. The best we can do is check lengths as we parse and bail | 
 | 382 | 	 * as soon as a length error is detected. */ | 
 | 383 | 	bytes_so_far = 0; | 
 | 384 |  | 
 | 385 | 	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { | 
 | 386 | 		bytes_so_far += sizeof(struct max_sync_cop); | 
 | 387 |  | 
 | 388 | 		trip = msc->trip; | 
 | 389 |  | 
 | 390 | 		for (i = 0; | 
 | 391 | 		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && | 
 | 392 | 		     i < msc->triplets; | 
 | 393 | 		     i++) { | 
 | 394 | 			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) { | 
 | 395 | 				dev_err(dev, "unknown function code/mode " | 
 | 396 | 					"combo: %d/%d (ignored)\n", msc->fc, | 
 | 397 | 					msc->mode); | 
 | 398 | 				goto next_loop; | 
 | 399 | 			} | 
 | 400 |  | 
 | 401 | 			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) { | 
 | 402 | 				dev_warn(dev, "bogus sglen/databytelen: " | 
 | 403 | 					 "%u/%u (ignored)\n", trip->sglen, | 
 | 404 | 					 trip->databytelen); | 
 | 405 | 				goto next_loop; | 
 | 406 | 			} | 
 | 407 |  | 
 | 408 | 			switch (trip->keybitlen) { | 
 | 409 | 			case 128: | 
 | 410 | 			case 160: | 
 | 411 | 				props->ap[msc->fc][msc->mode][0].databytelen = | 
 | 412 | 					trip->databytelen; | 
 | 413 | 				props->ap[msc->fc][msc->mode][0].sglen = | 
 | 414 | 					trip->sglen; | 
 | 415 | 				break; | 
 | 416 | 			case 192: | 
 | 417 | 				props->ap[msc->fc][msc->mode][1].databytelen = | 
 | 418 | 					trip->databytelen; | 
 | 419 | 				props->ap[msc->fc][msc->mode][1].sglen = | 
 | 420 | 					trip->sglen; | 
 | 421 | 				break; | 
 | 422 | 			case 256: | 
 | 423 | 				if (msc->fc == NX_FC_AES) { | 
 | 424 | 					props->ap[msc->fc][msc->mode][2]. | 
 | 425 | 						databytelen = trip->databytelen; | 
 | 426 | 					props->ap[msc->fc][msc->mode][2].sglen = | 
 | 427 | 						trip->sglen; | 
 | 428 | 				} else if (msc->fc == NX_FC_AES_HMAC || | 
 | 429 | 					   msc->fc == NX_FC_SHA) { | 
 | 430 | 					props->ap[msc->fc][msc->mode][1]. | 
 | 431 | 						databytelen = trip->databytelen; | 
 | 432 | 					props->ap[msc->fc][msc->mode][1].sglen = | 
 | 433 | 						trip->sglen; | 
 | 434 | 				} else { | 
 | 435 | 					dev_warn(dev, "unknown function " | 
 | 436 | 						"code/key bit len combo" | 
 | 437 | 						": (%u/256)\n", msc->fc); | 
 | 438 | 				} | 
 | 439 | 				break; | 
 | 440 | 			case 512: | 
 | 441 | 				props->ap[msc->fc][msc->mode][2].databytelen = | 
 | 442 | 					trip->databytelen; | 
 | 443 | 				props->ap[msc->fc][msc->mode][2].sglen = | 
 | 444 | 					trip->sglen; | 
 | 445 | 				break; | 
 | 446 | 			default: | 
 | 447 | 				dev_warn(dev, "unknown function code/key bit " | 
 | 448 | 					 "len combo: (%u/%u)\n", msc->fc, | 
 | 449 | 					 trip->keybitlen); | 
 | 450 | 				break; | 
 | 451 | 			} | 
 | 452 | next_loop: | 
 | 453 | 			bytes_so_far += sizeof(struct msc_triplet); | 
 | 454 | 			trip++; | 
 | 455 | 		} | 
 | 456 |  | 
 | 457 | 		msc = (struct max_sync_cop *)trip; | 
 | 458 | 	} | 
 | 459 |  | 
 | 460 | 	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; | 
 | 461 | } | 
 | 462 |  | 
 | 463 | /** | 
 | 464 |  * nx_of_init - read openFirmware values from the device tree | 
 | 465 |  * | 
 | 466 |  * @dev: device handle | 
 | 467 |  * @props: pointer to struct to hold the properties values | 
 | 468 |  * | 
 | 469 |  * Called once at driver probe time, this function will read out the | 
 | 470 |  * openFirmware properties we use at runtime. If all the OF properties are | 
 | 471 |  * acceptable, when we exit this function props->flags will indicate that | 
 | 472 |  * we're ready to register our crypto algorithms. | 
 | 473 |  */ | 
 | 474 | static void nx_of_init(struct device *dev, struct nx_of *props) | 
 | 475 | { | 
 | 476 | 	struct device_node *base_node = dev->of_node; | 
 | 477 | 	struct property *p; | 
 | 478 |  | 
 | 479 | 	p = of_find_property(base_node, "status", NULL); | 
 | 480 | 	if (!p) | 
 | 481 | 		dev_info(dev, "%s: property 'status' not found\n", __func__); | 
 | 482 | 	else | 
 | 483 | 		nx_of_update_status(dev, p, props); | 
 | 484 |  | 
 | 485 | 	p = of_find_property(base_node, "ibm,max-sg-len", NULL); | 
 | 486 | 	if (!p) | 
 | 487 | 		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", | 
 | 488 | 			 __func__); | 
 | 489 | 	else | 
 | 490 | 		nx_of_update_sglen(dev, p, props); | 
 | 491 |  | 
 | 492 | 	p = of_find_property(base_node, "ibm,max-sync-cop", NULL); | 
 | 493 | 	if (!p) | 
 | 494 | 		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", | 
 | 495 | 			 __func__); | 
 | 496 | 	else | 
 | 497 | 		nx_of_update_msc(dev, p, props); | 
 | 498 | } | 
 | 499 |  | 
 | 500 | static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot) | 
 | 501 | { | 
 | 502 | 	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot]; | 
 | 503 |  | 
 | 504 | 	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) { | 
 | 505 | 		if (dev) | 
 | 506 | 			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: " | 
 | 507 | 				 "%u/%u (ignored)\n", fc, mode, slot, | 
 | 508 | 				 props->sglen, props->databytelen); | 
 | 509 | 		return false; | 
 | 510 | 	} | 
 | 511 |  | 
 | 512 | 	return true; | 
 | 513 | } | 
 | 514 |  | 
 | 515 | static bool nx_check_props(struct device *dev, u32 fc, u32 mode) | 
 | 516 | { | 
 | 517 | 	int i; | 
 | 518 |  | 
 | 519 | 	for (i = 0; i < 3; i++) | 
 | 520 | 		if (!nx_check_prop(dev, fc, mode, i)) | 
 | 521 | 			return false; | 
 | 522 |  | 
 | 523 | 	return true; | 
 | 524 | } | 
 | 525 |  | 
 | 526 | static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode) | 
 | 527 | { | 
 | 528 | 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? | 
 | 529 | 	       crypto_register_alg(alg) : 0; | 
 | 530 | } | 
 | 531 |  | 
 | 532 | static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode) | 
 | 533 | { | 
 | 534 | 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? | 
 | 535 | 	       crypto_register_aead(alg) : 0; | 
 | 536 | } | 
 | 537 |  | 
 | 538 | static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot) | 
 | 539 | { | 
 | 540 | 	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev, | 
 | 541 | 					  fc, mode, slot) : | 
 | 542 | 			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ? | 
 | 543 | 	       crypto_register_shash(alg) : 0; | 
 | 544 | } | 
 | 545 |  | 
 | 546 | static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode) | 
 | 547 | { | 
 | 548 | 	if (nx_check_props(NULL, fc, mode)) | 
 | 549 | 		crypto_unregister_alg(alg); | 
 | 550 | } | 
 | 551 |  | 
 | 552 | static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode) | 
 | 553 | { | 
 | 554 | 	if (nx_check_props(NULL, fc, mode)) | 
 | 555 | 		crypto_unregister_aead(alg); | 
 | 556 | } | 
 | 557 |  | 
 | 558 | static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode, | 
 | 559 | 				int slot) | 
 | 560 | { | 
 | 561 | 	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) : | 
 | 562 | 			nx_check_props(NULL, fc, mode)) | 
 | 563 | 		crypto_unregister_shash(alg); | 
 | 564 | } | 
 | 565 |  | 
 | 566 | /** | 
 | 567 |  * nx_register_algs - register algorithms with the crypto API | 
 | 568 |  * | 
 | 569 |  * Called from nx_probe() | 
 | 570 |  * | 
 | 571 |  * If all OF properties are in an acceptable state, the driver flags will | 
 | 572 |  * indicate that we're ready and we'll create our debugfs files and register | 
 | 573 |  * out crypto algorithms. | 
 | 574 |  */ | 
 | 575 | static int nx_register_algs(void) | 
 | 576 | { | 
 | 577 | 	int rc = -1; | 
 | 578 |  | 
 | 579 | 	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) | 
 | 580 | 		goto out; | 
 | 581 |  | 
 | 582 | 	memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); | 
 | 583 |  | 
 | 584 | 	rc = NX_DEBUGFS_INIT(&nx_driver); | 
 | 585 | 	if (rc) | 
 | 586 | 		goto out; | 
 | 587 |  | 
 | 588 | 	nx_driver.of.status = NX_OKAY; | 
 | 589 |  | 
 | 590 | 	rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); | 
 | 591 | 	if (rc) | 
 | 592 | 		goto out; | 
 | 593 |  | 
 | 594 | 	rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); | 
 | 595 | 	if (rc) | 
 | 596 | 		goto out_unreg_ecb; | 
 | 597 |  | 
 | 598 | 	rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); | 
 | 599 | 	if (rc) | 
 | 600 | 		goto out_unreg_cbc; | 
 | 601 |  | 
 | 602 | 	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
 | 603 | 	if (rc) | 
 | 604 | 		goto out_unreg_ctr3686; | 
 | 605 |  | 
 | 606 | 	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
 | 607 | 	if (rc) | 
 | 608 | 		goto out_unreg_gcm; | 
 | 609 |  | 
 | 610 | 	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
 | 611 | 	if (rc) | 
 | 612 | 		goto out_unreg_gcm4106; | 
 | 613 |  | 
 | 614 | 	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
 | 615 | 	if (rc) | 
 | 616 | 		goto out_unreg_ccm; | 
 | 617 |  | 
 | 618 | 	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, | 
 | 619 | 			       NX_PROPS_SHA256); | 
 | 620 | 	if (rc) | 
 | 621 | 		goto out_unreg_ccm4309; | 
 | 622 |  | 
 | 623 | 	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, | 
 | 624 | 			       NX_PROPS_SHA512); | 
 | 625 | 	if (rc) | 
 | 626 | 		goto out_unreg_s256; | 
 | 627 |  | 
 | 628 | 	rc = nx_register_shash(&nx_shash_aes_xcbc_alg, | 
 | 629 | 			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); | 
 | 630 | 	if (rc) | 
 | 631 | 		goto out_unreg_s512; | 
 | 632 |  | 
 | 633 | 	goto out; | 
 | 634 |  | 
 | 635 | out_unreg_s512: | 
 | 636 | 	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, | 
 | 637 | 			    NX_PROPS_SHA512); | 
 | 638 | out_unreg_s256: | 
 | 639 | 	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, | 
 | 640 | 			    NX_PROPS_SHA256); | 
 | 641 | out_unreg_ccm4309: | 
 | 642 | 	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
 | 643 | out_unreg_ccm: | 
 | 644 | 	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
 | 645 | out_unreg_gcm4106: | 
 | 646 | 	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
 | 647 | out_unreg_gcm: | 
 | 648 | 	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); | 
 | 649 | out_unreg_ctr3686: | 
 | 650 | 	nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); | 
 | 651 | out_unreg_cbc: | 
 | 652 | 	nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); | 
 | 653 | out_unreg_ecb: | 
 | 654 | 	nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); | 
 | 655 | out: | 
 | 656 | 	return rc; | 
 | 657 | } | 
 | 658 |  | 
 | 659 | /** | 
 | 660 |  * nx_crypto_ctx_init - create and initialize a crypto api context | 
 | 661 |  * | 
 | 662 |  * @nx_ctx: the crypto api context | 
 | 663 |  * @fc: function code for the context | 
 | 664 |  * @mode: the function code specific mode for this context | 
 | 665 |  */ | 
 | 666 | static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) | 
 | 667 | { | 
 | 668 | 	if (nx_driver.of.status != NX_OKAY) { | 
 | 669 | 		pr_err("Attempt to initialize NX crypto context while device " | 
 | 670 | 		       "is not available!\n"); | 
 | 671 | 		return -ENODEV; | 
 | 672 | 	} | 
 | 673 |  | 
 | 674 | 	/* we need an extra page for csbcpb_aead for these modes */ | 
 | 675 | 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) | 
 | 676 | 		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + | 
 | 677 | 				   sizeof(struct nx_csbcpb); | 
 | 678 | 	else | 
 | 679 | 		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + | 
 | 680 | 				   sizeof(struct nx_csbcpb); | 
 | 681 |  | 
 | 682 | 	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); | 
 | 683 | 	if (!nx_ctx->kmem) | 
 | 684 | 		return -ENOMEM; | 
 | 685 |  | 
 | 686 | 	/* the csbcpb and scatterlists must be 4K aligned pages */ | 
 | 687 | 	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, | 
 | 688 | 						       (u64)NX_PAGE_SIZE)); | 
 | 689 | 	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); | 
 | 690 | 	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); | 
 | 691 |  | 
 | 692 | 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) | 
 | 693 | 		nx_ctx->csbcpb_aead = | 
 | 694 | 			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + | 
 | 695 | 					     NX_PAGE_SIZE); | 
 | 696 |  | 
 | 697 | 	/* give each context a pointer to global stats and their OF | 
 | 698 | 	 * properties */ | 
 | 699 | 	nx_ctx->stats = &nx_driver.stats; | 
 | 700 | 	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], | 
 | 701 | 	       sizeof(struct alg_props) * 3); | 
 | 702 |  | 
 | 703 | 	return 0; | 
 | 704 | } | 
 | 705 |  | 
 | 706 | /* entry points from the crypto tfm initializers */ | 
 | 707 | int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm) | 
 | 708 | { | 
 | 709 | 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx)); | 
 | 710 | 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, | 
 | 711 | 				  NX_MODE_AES_CCM); | 
 | 712 | } | 
 | 713 |  | 
 | 714 | int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm) | 
 | 715 | { | 
 | 716 | 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx)); | 
 | 717 | 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, | 
 | 718 | 				  NX_MODE_AES_GCM); | 
 | 719 | } | 
 | 720 |  | 
 | 721 | int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) | 
 | 722 | { | 
 | 723 | 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
 | 724 | 				  NX_MODE_AES_CTR); | 
 | 725 | } | 
 | 726 |  | 
 | 727 | int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) | 
 | 728 | { | 
 | 729 | 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
 | 730 | 				  NX_MODE_AES_CBC); | 
 | 731 | } | 
 | 732 |  | 
 | 733 | int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) | 
 | 734 | { | 
 | 735 | 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
 | 736 | 				  NX_MODE_AES_ECB); | 
 | 737 | } | 
 | 738 |  | 
 | 739 | int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) | 
 | 740 | { | 
 | 741 | 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); | 
 | 742 | } | 
 | 743 |  | 
 | 744 | int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) | 
 | 745 | { | 
 | 746 | 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, | 
 | 747 | 				  NX_MODE_AES_XCBC_MAC); | 
 | 748 | } | 
 | 749 |  | 
 | 750 | /** | 
 | 751 |  * nx_crypto_ctx_exit - destroy a crypto api context | 
 | 752 |  * | 
 | 753 |  * @tfm: the crypto transform pointer for the context | 
 | 754 |  * | 
 | 755 |  * As crypto API contexts are destroyed, this exit hook is called to free the | 
 | 756 |  * memory associated with it. | 
 | 757 |  */ | 
 | 758 | void nx_crypto_ctx_exit(struct crypto_tfm *tfm) | 
 | 759 | { | 
 | 760 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); | 
 | 761 |  | 
 | 762 | 	kzfree(nx_ctx->kmem); | 
 | 763 | 	nx_ctx->csbcpb = NULL; | 
 | 764 | 	nx_ctx->csbcpb_aead = NULL; | 
 | 765 | 	nx_ctx->in_sg = NULL; | 
 | 766 | 	nx_ctx->out_sg = NULL; | 
 | 767 | } | 
 | 768 |  | 
 | 769 | void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm) | 
 | 770 | { | 
 | 771 | 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm); | 
 | 772 |  | 
 | 773 | 	kzfree(nx_ctx->kmem); | 
 | 774 | } | 
 | 775 |  | 
 | 776 | static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) | 
 | 777 | { | 
 | 778 | 	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", | 
 | 779 | 		viodev->name, viodev->resource_id); | 
 | 780 |  | 
 | 781 | 	if (nx_driver.viodev) { | 
 | 782 | 		dev_err(&viodev->dev, "%s: Attempt to register more than one " | 
 | 783 | 			"instance of the hardware\n", __func__); | 
 | 784 | 		return -EINVAL; | 
 | 785 | 	} | 
 | 786 |  | 
 | 787 | 	nx_driver.viodev = viodev; | 
 | 788 |  | 
 | 789 | 	nx_of_init(&viodev->dev, &nx_driver.of); | 
 | 790 |  | 
 | 791 | 	return nx_register_algs(); | 
 | 792 | } | 
 | 793 |  | 
 | 794 | static int nx_remove(struct vio_dev *viodev) | 
 | 795 | { | 
 | 796 | 	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", | 
 | 797 | 		viodev->unit_address); | 
 | 798 |  | 
 | 799 | 	if (nx_driver.of.status == NX_OKAY) { | 
 | 800 | 		NX_DEBUGFS_FINI(&nx_driver); | 
 | 801 |  | 
 | 802 | 		nx_unregister_shash(&nx_shash_aes_xcbc_alg, | 
 | 803 | 				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); | 
 | 804 | 		nx_unregister_shash(&nx_shash_sha512_alg, | 
 | 805 | 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256); | 
 | 806 | 		nx_unregister_shash(&nx_shash_sha256_alg, | 
 | 807 | 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512); | 
 | 808 | 		nx_unregister_aead(&nx_ccm4309_aes_alg, | 
 | 809 | 				   NX_FC_AES, NX_MODE_AES_CCM); | 
 | 810 | 		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); | 
 | 811 | 		nx_unregister_aead(&nx_gcm4106_aes_alg, | 
 | 812 | 				   NX_FC_AES, NX_MODE_AES_GCM); | 
 | 813 | 		nx_unregister_aead(&nx_gcm_aes_alg, | 
 | 814 | 				   NX_FC_AES, NX_MODE_AES_GCM); | 
 | 815 | 		nx_unregister_alg(&nx_ctr3686_aes_alg, | 
 | 816 | 				  NX_FC_AES, NX_MODE_AES_CTR); | 
 | 817 | 		nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); | 
 | 818 | 		nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); | 
 | 819 | 	} | 
 | 820 |  | 
 | 821 | 	return 0; | 
 | 822 | } | 
 | 823 |  | 
 | 824 |  | 
 | 825 | /* module wide initialization/cleanup */ | 
 | 826 | static int __init nx_init(void) | 
 | 827 | { | 
 | 828 | 	return vio_register_driver(&nx_driver.viodriver); | 
 | 829 | } | 
 | 830 |  | 
 | 831 | static void __exit nx_fini(void) | 
 | 832 | { | 
 | 833 | 	vio_unregister_driver(&nx_driver.viodriver); | 
 | 834 | } | 
 | 835 |  | 
 | 836 | static const struct vio_device_id nx_crypto_driver_ids[] = { | 
 | 837 | 	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" }, | 
 | 838 | 	{ "", "" } | 
 | 839 | }; | 
 | 840 | MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); | 
 | 841 |  | 
 | 842 | /* driver state structure */ | 
 | 843 | struct nx_crypto_driver nx_driver = { | 
 | 844 | 	.viodriver = { | 
 | 845 | 		.id_table = nx_crypto_driver_ids, | 
 | 846 | 		.probe = nx_probe, | 
 | 847 | 		.remove = nx_remove, | 
 | 848 | 		.name  = NX_NAME, | 
 | 849 | 	}, | 
 | 850 | }; | 
 | 851 |  | 
 | 852 | module_init(nx_init); | 
 | 853 | module_exit(nx_fini); | 
 | 854 |  | 
 | 855 | MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); | 
 | 856 | MODULE_DESCRIPTION(NX_STRING); | 
 | 857 | MODULE_LICENSE("GPL"); | 
 | 858 | MODULE_VERSION(NX_VERSION); |